51
|
Marzouki S, Abdeladhim M, Abdessalem CB, Oliveira F, Ferjani B, Gilmore D, Louzir H, Valenzuela JG, Ahmed MB. Salivary antigen SP32 is the immunodominant target of the antibody response to Phlebotomus papatasi bites in humans. PLoS Negl Trop Dis 2012; 6:e1911. [PMID: 23209854 PMCID: PMC3510156 DOI: 10.1371/journal.pntd.0001911] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/04/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Zoonotic cutaneous leishmaniasis (ZCL) due to Leishmania major is highly prevalent in Tunisia and is transmitted by a hematophagous vector Phlebotomus papatasi (P. papatasi). While probing for a blood meal, the sand fly injects saliva into the host's skin, which contains a variety of compounds that are highly immunogenic. We recently showed that the presence of anti-saliva antibodies was associated with an enhanced risk for leishmaniasis and identified the immunodominant salivary protein of Phlebotomus papatasi as a protein of approximately 30 kDa. METHODOLOGY/PRINCIPAL FINDINGS We cloned and expressed in mammalian cells two salivary proteins PpSP30 and PpSP32 with predicted molecular weights close to 30 kDa from the Tunisian strain of P. papatasi. The two recombinant salivary proteins were purified by two-step HPLC (High-Performance Liquid Chromatography) and tested if these proteins correspond to the immunodominant antigen of 30 kDa previously shown to be recognized by human sera from endemic areas for ZCL and exposed naturally to P. papatasi bites. While recombinant PpSP30 (rPpSP30) was poorly recognized by human sera from endemic areas for ZCL, rPpSP32 was strongly recognized by the tested sera. The binding of human IgG antibodies to native PpSP32 was inhibited by the addition of rPpSP32. Consistently, experiments in mice showed that PpSP32 induced the highest levels of antibodies compared to other P. papatasi salivary molecules while PpSP30 did not induce any detectable levels of antibodies. CONCLUSIONS Our findings demonstrate that PpSP32 is the immunodominant target of the antibody response to P. papatasi saliva. They also indicate that the recombinant form of PpSP32 is similar to the native one and represents a good candidate for large scale testing of human exposure to P. papatasi bites and perhaps for assessing the risk of contracting the disease.
Collapse
Affiliation(s)
- Soumaya Marzouki
- Laboratory of Transmission, Control and Immunobiology of Infection, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisie
| | - Maha Abdeladhim
- Laboratory of Transmission, Control and Immunobiology of Infection, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisie
| | - Chaouki Ben Abdessalem
- Laboratory of Transmission, Control and Immunobiology of Infection, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisie
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Beya Ferjani
- Laboratory of Transmission, Control and Immunobiology of Infection, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisie
| | - Dana Gilmore
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hechmi Louzir
- Laboratory of Transmission, Control and Immunobiology of Infection, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisie
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisie
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mélika Ben Ahmed
- Laboratory of Transmission, Control and Immunobiology of Infection, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisie
- Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisie
| |
Collapse
|
52
|
Abstract
Visceral leishmaniasis (VL), commonly known as kala-azar, is caused by Leishmania donovani and Leishmania infantum (Leishmania chagasi in the Americas). These Leishmania species infect macrophages throughout the viscera, and parasites are typically found in the spleen, liver, and bone marrow. Patients with active disease typically exhibit marked immunosuppression, lack reactivity to the Leishmania skin test (LST), a delayed type hypersensitivity test, and their peripheral blood mononuclear cells (PBMC) fail to respond when stimulated with leishmanial antigens in vitro. However, most people infected with visceralizing species of Leishmania never develop disease. Understanding immune failure and the underlying immune mechanism that lead to disease as well as control of infection are key questions for research in this field. In this review, we discuss immunological events described in human and experimental VL and how these can affect the outcome of infection.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University Varanasi, India
| | | |
Collapse
|
53
|
Vlkova M, Rohousova I, Hostomska J, Pohankova L, Zidkova L, Drahota J, Valenzuela JG, Volf P. Kinetics of antibody response in BALB/c and C57BL/6 mice bitten by Phlebotomus papatasi. PLoS Negl Trop Dis 2012; 6:e1719. [PMID: 22802977 PMCID: PMC3393673 DOI: 10.1371/journal.pntd.0001719] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/20/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Phlebotomine sand flies are blood-sucking insects transmitting Leishmania parasites. In bitten hosts, sand fly saliva elicits specific immune response and the humoral immunity was shown to reflect the intensity of sand fly exposure. Thus, anti-saliva antibodies were suggested as the potential risk marker of Leishmania transmission. In this study, we examined the long-term kinetics and persistence of anti-Phlebotomus papatasi saliva antibody response in BALB/c and C57BL/6 mice. We also tested the reactivity of mice sera with P. papatasi salivary antigens and with the recombinant proteins. METHODOLOGY/PRINCIPAL FINDINGS Sera of BALB/c and C57BL/6 mice experimentally bitten by Phlebotomus papatasi were tested by ELISA for the presence of anti-saliva IgE, IgG and its subclasses. We detected a significant increase of specific IgG and IgG1 in both mice strains and IgG2b in BALB/c mice that positively correlated with the number of blood-fed P. papatasi females. Using western blot and mass spectrometry we identified the major P. papatasi antigens as Yellow-related proteins, D7-related proteins, antigen 5-related proteins and SP-15-like proteins. We therefore tested the reactivity of mice sera with four P. papatasi recombinant proteins coding for most of these potential antigens (PpSP44, PpSP42, PpSP30, and PpSP28). Each mouse serum reacted with at least one of the recombinant protein tested, although none of the recombinant proteins were recognized by all sera. CONCLUSIONS Our data confirmed the concept of using anti-sand fly saliva antibodies as a marker of sand fly exposure in Phlebotomus papatasi-mice model. As screening of specific antibodies is limited by the availability of salivary gland homogenate, utilization of recombinant proteins in such studies would be beneficial. Our present work demonstrates the feasibility of this implementation. A combination of recombinant salivary proteins is recommended for evaluation of intensity of sand fly exposure in endemic areas and for estimation of risk of Leishmania transmission.
Collapse
Affiliation(s)
- Michaela Vlkova
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Martín-Martín I, Molina R, Jiménez M. An insight into the Phlebotomus perniciosus saliva by a proteomic approach. Acta Trop 2012; 123:22-30. [PMID: 22445778 DOI: 10.1016/j.actatropica.2012.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 01/14/2023]
Abstract
Sand fly saliva is known to play an important role in the establishment of Leishmania spp. infection. As a consequence, identifying antigenic salivary proteins of different leishmaniasis vectors has currently become a major task in the field of anti-Leishmania vaccine development. The purpose of this work was to improve the knowledge of Phlebotomus perniciosus salivary proteins by combining two-dimensional gel electrophoresis (2DE) methodology, mass spectrometry and Western blotting (WB). Salivary protein profiles of three P. perniciosus colonies from different geographic origins in Spain were compared through SDS-PAGE, leading to a similar pattern with no qualitatively noticeable differences. A gradual increase of the protein content was significantly detected with the age of sand flies, reaching the complete salivary protein profiles at day four. The 2DE revealed a reproducible protein profile that matched the classic monodimensional SDS-PAGE pattern (1DE). More spots rather than protein bands (19 versus 11) were visualized by 2DE and 1DE, respectively, suggesting the presence of either protein isoforms or posttranslational modifications. Sera of mice and hamsters immunized through exposure to sand fly bites following different immunization schedules showed elevated anti-saliva IgG levels. These sera allowed the detection of 5 bands and 16 immunogenic spots in 1DE and 2DE, respectively, followed by WB. These antigens were identified by MALDITOF/TOF as SP03, SP03B, SP08, SP01, SP01B, SP04, SP04B, SP02, Phlebotomus ariasi SP16, and Phlebotomus argentipes SP13. This work is assumed to be the first attempt to establish 2DE proteomic maps of P. perniciosus saliva. All spots were identified as salivary proteins, confirming this technology as an interesting tool to improve sand fly salivary knowledge.
Collapse
|
55
|
Stone W, Bousema T, Jones S, Gesase S, Hashim R, Gosling R, Carneiro I, Chandramohan D, Theander T, Ronca R, Modiano D, Arcà B, Drakeley C. IgG responses to Anopheles gambiae salivary antigen gSG6 detect variation in exposure to malaria vectors and disease risk. PLoS One 2012; 7:e40170. [PMID: 22768250 PMCID: PMC3387013 DOI: 10.1371/journal.pone.0040170] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/05/2012] [Indexed: 01/05/2023] Open
Abstract
Assessment of exposure to malaria vectors is important to our understanding of spatial and temporal variations in disease transmission and facilitates the targeting and evaluation of control efforts. Recently, an immunogenic Anopheles gambiae salivary protein (gSG6) was identified and proposed as the basis of an immuno-assay determining exposure to Afrotropical malaria vectors. In the present study, IgG responses to gSG6 and 6 malaria antigens (CSP, AMA-1, MSP-1, MSP-3, GLURP R1, and GLURP R2) were compared to Anopheles exposure and malaria incidence in a cohort of children from Korogwe district, Tanzania, an area of moderate and heterogeneous malaria transmission. Anti-gSG6 responses above the threshold for seropositivity were detected in 15% (96/636) of the children, and were positively associated with geographical variations in Anopheles exposure (OR 1.25, CI 1.01–1.54, p = 0.04). Additionally, IgG responses to gSG6 in individual children showed a strong positive association with household level mosquito exposure. IgG levels for all antigens except AMA-1 were associated with the frequency of malaria episodes following sampling. gSG6 seropositivity was strongly positively associated with subsequent malaria incidence (test for trend p = 0.004), comparable to malaria antigens MSP-1 and GLURP R2. Our results show that the gSG6 assay is sensitive to micro-epidemiological variations in exposure to Anopheles mosquitoes, and provides a correlate of malaria risk that is unrelated to immune protection. While the technique requires further evaluation in a range of malaria endemic settings, our findings suggest that the gSG6 assay may have a role in the evaluation and planning of targeted and preventative anti-malaria interventions.
Collapse
Affiliation(s)
- Will Stone
- Department of Immunity and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Immunity and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sophie Jones
- Department of Immunity and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samwel Gesase
- National Institute for Medical Research, Tanga, Tanzania
| | | | - Roly Gosling
- Global Health Group, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Ilona Carneiro
- Department of Immunity and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Daniel Chandramohan
- Department of Immunity and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thor Theander
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Raffaele Ronca
- Department of Structural and Functional Biology, University “Federico II”, Naples, Italy
| | - David Modiano
- Parasitology Section, Department of Public Health and Infectious Diseases, University “La Sapienza”, Rome, Italy
| | - Bruno Arcà
- Department of Structural and Functional Biology, University “Federico II”, Naples, Italy
- Parasitology Section, Department of Public Health and Infectious Diseases, University “La Sapienza”, Rome, Italy
| | - Chris Drakeley
- Department of Immunity and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
56
|
Salivary gland transcriptomes and proteomes of Phlebotomus tobbi and Phlebotomus sergenti, vectors of leishmaniasis. PLoS Negl Trop Dis 2012; 6:e1660. [PMID: 22629480 PMCID: PMC3358328 DOI: 10.1371/journal.pntd.0001660] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022] Open
Abstract
Background Phlebotomus tobbi is a vector of Leishmania infantum, and P. sergenti is a vector of Leishmania tropica. Le. infantum and Le. tropica typically cause visceral or cutaneous leishmaniasis, respectively, but Le. infantum strains transmitted by P. tobbi can cause cutaneous disease. To better understand the components and possible implications of sand fly saliva in leishmaniasis, the transcriptomes of the salivary glands (SGs) of these two sand fly species were sequenced, characterized and compared. Methodology/Principal Findings cDNA libraries of P. tobbi and P. sergenti female SGs were constructed, sequenced, and analyzed. Clones (1,152) were randomly picked from each library, producing 1,142 high-quality sequences from P. tobbi and 1,090 from P. sergenti. The most abundant, secreted putative proteins were categorized as antigen 5-related proteins, apyrases, hyaluronidases, D7-related and PpSP15-like proteins, ParSP25-like proteins, PpSP32-like proteins, yellow-related proteins, the 33-kDa salivary proteins, and the 41.9-kDa superfamily of proteins. Phylogenetic analyses and multiple sequence alignments of putative proteins were used to elucidate molecular evolution and describe conserved domains, active sites, and catalytic residues. Proteomic analyses of P. tobbi and P. sergenti SGs were used to confirm the identification of 35 full-length sequences (18 in P. tobbi and 17 in P. sergenti). To bridge transcriptomics with biology P. tobbi antigens, glycoproteins, and hyaluronidase activity was characterized. Conclusions This analysis of P. sergenti is the first description of the subgenus Paraphlebotomus salivary components. The investigation of the subgenus Larroussius sand fly P. tobbi expands the repertoire of salivary proteins in vectors of Le. infantum. Although P. tobbi transmits a cutaneous form of leishmaniasis, its salivary proteins are most similar to other Larroussius subgenus species transmitting visceral leishmaniasis. These transcriptomic and proteomic analyses provide a better understanding of sand fly salivary proteins across species and subgenera that will be vital in vector-pathogen and vector-host research. Phlebotomine female sand flies require a blood meal for egg development, and it is during the blood feeding that pathogens can be transmitted to a host. Leishmania parasites are among these pathogens and can cause disfiguring cutaneous or even possibly fatal visceral disease. The Leishmania parasites are deposited into the bite wound along with the sand fly saliva. The components of the saliva have many pharmacologic and immune functions important in blood feeding and disease establishment. In this article, the authors identify and investigate the protein components of saliva of two important vectors of leishmaniasis, Phlebotomus tobbi and P. sergenti, by sequencing the transcriptomes of the salivary glands. We then compared the predicted protein sequences of these salivary proteins to those of other bloodsucking insects to elucidate the similarity in composition, structure, and enzymatic activity. Finally, this descriptive analysis of P. tobbi and P. sergenti transcriptomes can aid future research in identifying molecules for epidemiologic assays and in investigating sand fly-host interactions.
Collapse
|
57
|
Andrade BB, Teixeira CR. Biomarkers for exposure to sand flies bites as tools to aid control of leishmaniasis. Front Immunol 2012; 3:121. [PMID: 22661974 PMCID: PMC3356838 DOI: 10.3389/fimmu.2012.00121] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/27/2012] [Indexed: 11/13/2022] Open
Abstract
Intense research efforts so far have not been sufficient to reduce leishmaniasis burden worldwide. This disease is transmitted by bites of infected sand flies, which inject saliva in the host skin in an attempt to obtain a blood meal. Sand fly saliva has an array of proteins with diverse pharmacological properties that modulates the host homeostatic and immune responses. Some of these proteins are also immunogenic and can induce both cellular and humoral immune responses. Recently, the use of sand fly salivary proteins to estimate exposure to sand fly bites and consequently the risk of infection has emerged. Here, we review evidence that supports the use of the host immune responses against sand fly salivary proteins to estimate risk of infection. We also discuss how the use of recombinant salivary proteins can optimize serological surveys and provide guidance for the implementation of specific measures for disease control in endemic areas.
Collapse
Affiliation(s)
- Bruno Bezerril Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA
| | | |
Collapse
|
58
|
Gomes R, Oliveira F. The immune response to sand fly salivary proteins and its influence on leishmania immunity. Front Immunol 2012; 3:110. [PMID: 22593758 PMCID: PMC3349933 DOI: 10.3389/fimmu.2012.00110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/19/2012] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic. Immunization with a single salivary protein or exposure to uninfected bites was shown to result in a protective immune response against leishmaniasis. Antibodies to saliva were not required for this protection. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review the immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and their vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.
Collapse
Affiliation(s)
- Regis Gomes
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Disease Rockville, MD, USA
| | | |
Collapse
|
59
|
Drame PM, Machault V, Diallo A, Cornélie S, Poinsignon A, Lalou R, Sembène M, Dos Santos S, Rogier C, Pagès F, Le Hesran JY, Remoué F. IgG responses to the gSG6-P1 salivary peptide for evaluating human exposure to Anopheles bites in urban areas of Dakar region, Sénégal. Malar J 2012; 11:72. [PMID: 22424570 PMCID: PMC3337805 DOI: 10.1186/1475-2875-11-72] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 03/16/2012] [Indexed: 11/28/2022] Open
Abstract
Background Urban malaria can be a serious public health problem in Africa. Human-landing catches of mosquitoes, a standard entomological method to assess human exposure to malaria vector bites, can lack sensitivity in areas where exposure is low. A simple and highly sensitive tool could be a complementary indicator for evaluating malaria exposure in such epidemiological contexts. The human antibody response to the specific Anopheles gSG6-P1 salivary peptide have been described as an adequate tool biomarker for a reliable assessment of human exposure level to Anopheles bites. The aim of this study was to use this biomarker to evaluate the human exposure to Anopheles mosquito bites in urban settings of Dakar (Senegal), one of the largest cities in West Africa, where Anopheles biting rates and malaria transmission are supposed to be low. Methods One cross-sectional study concerning 1,010 (505 households) children (n = 505) and adults (n = 505) living in 16 districts of downtown Dakar and its suburbs was performed from October to December 2008. The IgG responses to gSG6-P1 peptide have been assessed and compared to entomological data obtained in or near the same district. Results Considerable individual variations in anti-gSG6-P1 IgG levels were observed between and within districts. In spite of this individual heterogeneity, the median level of specific IgG and the percentage of immune responders differed significantly between districts. A positive and significant association was observed between the exposure levels to Anopheles gambiae bites, estimated by classical entomological methods, and the median IgG levels or the percentage of immune responders measuring the contact between human populations and Anopheles mosquitoes. Interestingly, immunological parameters seemed to better discriminate the exposure level to Anopheles bites between different exposure groups of districts. Conclusions Specific human IgG responses to gSG6-P1 peptide biomarker represent, at the population and individual levels, a credible new alternative tool to assess accurately the heterogeneity of exposure level to Anopheles bites and malaria risk in low urban transmission areas. The development of such biomarker tool would be particularly relevant for mapping and monitoring malaria risk and for measuring the efficiency of vector control strategies in these specific settings.
Collapse
Affiliation(s)
- Papa M Drame
- Unité Mixte de Recherche MIVEGEC (IRD 224-CNRS 5290-UM1), Institut de Recherche pour le Développement, 34394, Montpellier Cedex 8, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Fraga AG, Martins TG, Torrado E, Huygen K, Portaels F, Silva MT, Castro AG, Pedrosa J. Cellular immunity confers transient protection in experimental Buruli ulcer following BCG or mycolactone-negative Mycobacterium ulcerans vaccination. PLoS One 2012; 7:e33406. [PMID: 22413022 PMCID: PMC3297633 DOI: 10.1371/journal.pone.0033406] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/14/2012] [Indexed: 11/25/2022] Open
Abstract
Background Buruli ulcer (BU) is an emerging infectious disease caused by Mycobacterium ulcerans that can result in extensive necrotizing cutaneous lesions due to the cytotoxic exotoxin mycolactone. There is no specific vaccine against BU but reports show some degree of cross-reactive protection conferred by M. bovis BCG immunization. Alternatively, an M. ulcerans-specific immunization could be a better preventive strategy. Methodology/Principal Findings In this study, we used the mouse model to characterize the histological and cytokine profiles triggered by vaccination with either BCG or mycolactone-negative M. ulcerans, followed by footpad infection with virulent M. ulcerans. We observed that BCG vaccination significantly delayed the onset of M. ulcerans growth and footpad swelling through the induction of an earlier and sustained IFN-γ T cell response in the draining lymph node (DLN). BCG vaccination also resulted in cell-mediated immunity (CMI) in M. ulcerans-infected footpads, given the predominance of a chronic mononuclear infiltrate positive for iNOS, as well as increased and sustained levels of IFN-γ and TNF. No significant IL-4, IL-17 or IL-10 responses were detected in the footpad or the DLN, in either infected or vaccinated mice. Despite this protective Th1 response, BCG vaccination did not avoid the later progression of M. ulcerans infection, regardless of challenge dose. Immunization with mycolactone-deficient M. ulcerans also significantly delayed the progression of footpad infection, swelling and ulceration, but ultimately M. ulcerans pathogenic mechanisms prevailed. Conclusions/Significance The delay in the emergence of pathology observed in vaccinated mice emphasizes the relevance of protective Th1 recall responses against M. ulcerans. In future studies it will be important to determine how the transient CMI induced by vaccination is compromised.
Collapse
Affiliation(s)
- Alexandra G. Fraga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Teresa G. Martins
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Kris Huygen
- Scientific Service Immunology, Scientific Institute of Public Health WIV-ISP (Site Ukkel), Brussels, Belgium
| | - Françoise Portaels
- Mycobacteriology Unit, Department of Microbiology, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - António G. Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
61
|
New Insights on the Inflammatory Role of Lutzomyia longipalpis Saliva in Leishmaniasis. J Parasitol Res 2012; 2012:643029. [PMID: 22506098 PMCID: PMC3306990 DOI: 10.1155/2012/643029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 11/17/2022] Open
Abstract
When an haematophagous sand fly vector insect bites a vertebrate host, it introduces its mouthparts into the skin and lacerates blood vessels, forming a hemorrhagic pool which constitutes an intricate environment of cell interactions. In this scenario, the initial performance of host, parasite, and vector “authors” will heavily influence the course of Leishmania infection. Recent advances in vector-parasite-host interaction have elucidated “co-authors” and “new roles” not yet described. We review here the stimulatory role of Lutzomyia longipalpis saliva leading to inflammation and try to connect them in an early context of Leishmania infection.
Collapse
|
62
|
Andrade BB, Barral-Netto M. Biomarkers for susceptibility to infection and disease severity in human malaria. Mem Inst Oswaldo Cruz 2012; 106 Suppl 1:70-8. [PMID: 21881759 DOI: 10.1590/s0074-02762011000900009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/25/2011] [Indexed: 01/11/2023] Open
Abstract
Malaria remains a major infectious disease that affects millions of people. Once infected with Plasmodium parasites, a host can develop a broad range of clinical presentations, which result from complex interactions between factors derived from the host, the parasite and the environment. Intense research has focused on the identification of reliable predictors for exposure, susceptibility to infection and the development of severe complications during malaria. Although most promising markers are based on the current understanding of malaria immunopathogenesis, some are also focused more broadly on mechanisms of tissue damage and inflammation. Taken together, these markers can help optimise therapeutic strategies and reduce disease burden. Here, we review the recent advances in the identification of malarial biomarkers, focusing on those related to parasite exposure and disease susceptibility. We also discuss priorities for research in biomarkers for severe malaria.
Collapse
Affiliation(s)
- Bruno Bezerril Andrade
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
63
|
da Silva RAA, Tavares NM, Costa D, Pitombo M, Barbosa L, Fukutani K, Miranda JC, de Oliveira CI, Valenzuela JG, Barral A, Soto M, Barral-Netto M, Brodskyn C. DNA vaccination with KMP11 and Lutzomyia longipalpis salivary protein protects hamsters against visceral leishmaniasis. Acta Trop 2011; 120:185-90. [PMID: 21875567 DOI: 10.1016/j.actatropica.2011.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 08/02/2011] [Accepted: 08/12/2011] [Indexed: 01/14/2023]
Abstract
It was recently shown that immunization of hamsters with DNA plasmids coding LJM19, a sand fly salivary protein, partially protected against a challenge with Leishmania chagasi, whereas immunization with KMP11 DNA plasmid, a Leishmania antigen, induced protection against L. donovani infection. In the present study, we evaluated the protective effect of immunization with both LJM19 and KMP11 DNA plasmid together. Concerning the protection against an infection by L. chagasi, immunization with DNA plasmids coding LJM19 or KMP11, as well as with both plasmids combined, induced IFN-γ production in draining lymph nodes at 7, 14 and 21 days post-immunization. Immunized hamsters challenged with L. chagasi plus Salivary Gland Sonicate (SGS) from Lutzomyia longipalpis showed an enhancement of IFN-γ/IL-10 and IFN-γ/TGF-β in draining lymph nodes after 7 and 14 days of infection. Two and five months after challenge, immunized animals showed reduced parasite load in the liver and spleen, as well as increased IFN-γ/IL-10 and IFN-γ/TGF-β ratios in the spleen. Furthermore, immunized animals remained with a normal hematological profile even five months after the challenge, whereas L. chagasi in unimmunized hamsters lead to a significant anemia. The protection observed with LJM19 or KMP11 DNA plasmids used alone was very similar to the protection obtained by the combination of both plasmids.
Collapse
Affiliation(s)
- Robson A A da Silva
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Rua Waldemar Falcão 121, Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Canine antibody response to Phlebotomus perniciosus bites negatively correlates with the risk of Leishmania infantum transmission. PLoS Negl Trop Dis 2011; 5:e1344. [PMID: 22022626 PMCID: PMC3191129 DOI: 10.1371/journal.pntd.0001344] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/19/2011] [Indexed: 11/20/2022] Open
Abstract
Background Phlebotomine sand flies are blood-sucking insects that can transmit Leishmania parasites. Hosts bitten by sand flies develop an immune response against sand fly salivary antigens. Specific anti-saliva IgG indicate the exposure to the vector and may also help to estimate the risk of Leishmania spp. transmission. In this study, we examined the canine antibody response against the saliva of Phlebotomus perniciosus, the main vector of Leishmania infantum in the Mediterranean Basin, and characterized salivary antigens of this sand fly species. Methodology/Principal Findings Sera of dogs bitten by P. perniciosus under experimental conditions and dogs naturally exposed to sand flies in a L. infantum focus were tested by ELISA for the presence of anti-P. perniciosus antibodies. Antibody levels positively correlated with the number of blood-fed P. perniciosus females. In naturally exposed dogs the increase of specific IgG, IgG1 and IgG2 was observed during sand fly season. Importantly, Leishmania-positive dogs revealed significantly lower anti-P. perniciosus IgG2 compared to Leishmania-negative ones. Major P. perniciosus antigens were identified by western blot and mass spectrometry as yellow proteins, apyrases and antigen 5-related proteins. Conclusions Results suggest that monitoring canine antibody response to sand fly saliva in endemic foci could estimate the risk of L. infantum transmission. It may also help to control canine leishmaniasis by evaluating the effectiveness of anti-vector campaigns. Data from the field study where dogs from the Italian focus of L. infantum were naturally exposed to P. perniciosus bites indicates that the levels of anti-P. perniciosus saliva IgG2 negatively correlate with the risk of Leishmania transmission. Thus, specific IgG2 response is suggested as a risk marker of L. infantum transmission for dogs. Leishmania infantum is the causative agent of zoonotic visceral leishmaniasis in the Mediterranean Basin and Phlebotomus perniciosus serve as the major vector. In the endemic foci, Leishmania parasites are transmitted mostly to dogs, the main reservoir host, and to humans. We studied the canine humoral immune response to Phlebotomus perniciosus saliva and its potential use as a marker of sand fly exposure and consequently as a risk marker for Leishmania transmission. We also characterized major salivary antigens of P. perniciosus. We demonstrated that under laboratory conditions, the levels of anti-P. perniciosus saliva antibodies positively correlated with the number of blood-fed sand flies and therefore, may be used to evaluate the need for, and the effectiveness of, anti-vector campaigns. In parallel, we studied sera of dogs naturally exposed to P. perniciosus in highly active focus of canine leishmaniasis in Southern Italy. Specific antibodies against P. perniciosus saliva were significantly increased according to the ongoing sand fly season. Moreover, the levels of anti-P. perniciosus antibodies in naturally bitten dogs negatively correlated with anti-Leishmania seropositivity. Thus, for dogs living in endemic areas, specific antibody response against saliva of the vector is an important marker for estimating the risk of Leishmania transmission.
Collapse
|
65
|
Fontaine A, Diouf I, Bakkali N, Missé D, Pagès F, Fusai T, Rogier C, Almeras L. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors 2011; 4:187. [PMID: 21951834 PMCID: PMC3197560 DOI: 10.1186/1756-3305-4-187] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 09/28/2011] [Indexed: 01/25/2023] Open
Abstract
The saliva of haematophagous arthropods contains an array of anti-haemostatic, anti-inflammatory and immunomodulatory molecules that contribute to the success of the blood meal. The saliva of haematophagous arthropods is also involved in the transmission and the establishment of pathogens in the host and in allergic responses. This survey provides a comprehensive overview of the pharmacological activity and immunogenic properties of the main salivary proteins characterised in various haematophagous arthropod species. The potential biological and epidemiological applications of these immunogenic salivary molecules will be discussed with an emphasis on their use as biomarkers of exposure to haematophagous arthropod bites or vaccine candidates that are liable to improve host protection against vector-borne diseases.
Collapse
Affiliation(s)
- Albin Fontaine
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Ibrahima Diouf
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Nawal Bakkali
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Dorothée Missé
- Laboratoire de Génétique et Evolution des Maladies infectieuses, UMR 2724 CNRS/IRD, Montpellier, France
| | - Frédéric Pagès
- Unité d'Entomologie Médicale, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Thierry Fusai
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | - Christophe Rogier
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
- Institut Pasteur de Madagascar, B.P. 1274, Ambohitrakely, 101 Antananarivo, Madagascar
| | - Lionel Almeras
- Unité de Parasitologie - UMR6236 - IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées (IRBA), Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| |
Collapse
|
66
|
Soares MRA, Carvalho CC, Silva LA, Lima MSCS, Barral AMP, Rebêlo JMM, Pereira SRF. [Molecular analysis of natural infection of Lutzomyia longipalpis in an endemic area for visceral leishmaniasis in Brazil]. CAD SAUDE PUBLICA 2011; 26:2409-13. [PMID: 21243235 DOI: 10.1590/s0102-311x2010001200019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 08/23/2010] [Indexed: 11/21/2022] Open
Abstract
The main purpose of this study was to investigate natural infection by Leishmania chagasi in female sand flies in a visceral leishmaniasis (VL) focus on São Luís Island, Maranhão State, Brazil. Molecular analysis by polymerase chain reaction (PCR) was applied to determine the rate of natural infection of Lutzomyia longipalpis by L. chagasi in areas of old and recent human settlement on São Luís Island. Based on a sample of 800 female specimens captured from March to August 2005, the natural infection rate was 1.25% in an area of old settlement and 0.25% in two recently settled areas. Infection of L. longipalpis was detected in both areas, regardless of the number of reported human VL cases, indicating that other factors modulating infection in the wild need to be investigated. The results confirm PCR as a specific technique and an important tool for epidemiological surveillance.
Collapse
|
67
|
Marzouki S, Ben Ahmed M, Boussoffara T, Abdeladhim M, Ben Aleya-Bouafif N, Namane A, Hamida NB, Ben Salah A, Louzir H. Characterization of the antibody response to the saliva of Phlebotomus papatasi in people living in endemic areas of cutaneous leishmaniasis. Am J Trop Med Hyg 2011; 84:653-61. [PMID: 21540371 DOI: 10.4269/ajtmh.2011.10-0598] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Important data obtained in mice raise the possibility that immunization against the saliva of sand flies could protect from leishmaniasis. Sand fly saliva stimulates the production of specific antibodies in individuals living in endemic areas of parasite transmission. To characterize the humoral immune response against the saliva of Phlebotomus papatasi in humans, we carried out a prospective study on 200 children living in areas of Leishmania major transmission. We showed that 83% of donors carried anti-saliva IgG antibodies, primarily of IgG4 isotype. Positive sera reacted differentially with seven salivary proteins. The protein PpSP30 was prominently recognized by all the sera. The salivary proteins triggered the production of various antibody isotypes. Interestingly, the immunodominant PpSP30 was recognized by all IgG subclasses, whereas PpSP12 was not by IgG4. Immunoproteomic analyses may help to identify the impact of each salivary protein on the L. major infection and to select potential vaccine candidates.
Collapse
Affiliation(s)
- Soumaya Marzouki
- Department of Clinical Immunology, Institut Pasteur de Tunis, 13 Place Pasteur, Le Belvédère, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Rizzo C, Ronca R, Fiorentino G, Verra F, Mangano V, Poinsignon A, Sirima SB, Nèbiè I, Lombardo F, Remoue F, Coluzzi M, Petrarca V, Modiano D, Arcà B. Humoral response to the Anopheles gambiae salivary protein gSG6: a serological indicator of exposure to Afrotropical malaria vectors. PLoS One 2011; 6:e17980. [PMID: 21437289 PMCID: PMC3060095 DOI: 10.1371/journal.pone.0017980] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/17/2011] [Indexed: 11/19/2022] Open
Abstract
Salivary proteins injected by blood feeding arthropods into their hosts evoke a saliva-specific humoral response which can be useful to evaluate exposure to bites of disease vectors. However, saliva of hematophagous arthropods is a complex cocktail of bioactive factors and its use in immunoassays can be misleading because of potential cross-reactivity to other antigens. Toward the development of a serological marker of exposure to Afrotropical malaria vectors we expressed the Anopheles gambiae gSG6, a small anopheline-specific salivary protein, and we measured the anti-gSG6 IgG response in individuals from a malaria hyperendemic area of Burkina Faso, West Africa. The gSG6 protein was immunogenic and anti-gSG6 IgG levels and/or prevalence increased in exposed individuals during the malaria transmission/rainy season. Moreover, this response dropped during the intervening low transmission/dry season, suggesting it is sensitive enough to detect variation in vector density. Members of the Fulani ethnic group showed higher anti-gSG6 IgG response as compared to Mossi, a result consistent with the stronger immune reactivity reported in this group. Remarkably, anti-gSG6 IgG levels among responders were high in children and gradually declined with age. This unusual pattern, opposite to the one observed with Plasmodium antigens, is compatible with a progressive desensitization to mosquito saliva and may be linked to the continued exposure to bites of anopheline mosquitoes. Overall, the humoral anti-gSG6 IgG response appears a reliable serological indicator of exposure to bites of the main African malaria vectors (An. gambiae, Anopheles arabiensis and, possibly, Anopheles funestus) and it may be exploited for malaria epidemiological studies, development of risk maps and evaluation of anti-vector measures. In addition, the gSG6 protein may represent a powerful model system to get a deeper understanding of molecular and cellular mechanisms underlying the immune tolerance and progressive desensitization to insect salivary allergens.
Collapse
Affiliation(s)
- Cinzia Rizzo
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Raffaele Ronca
- Department of Structural and Functional Biology, “Federico II” University, Naples, Italy
| | - Gabriella Fiorentino
- Department of Structural and Functional Biology, “Federico II” University, Naples, Italy
| | - Federica Verra
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
| | - Valentina Mangano
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
| | - Anne Poinsignon
- UR016 Biology and Control of Vectors, Institut de Recherche pour le Développement, Montpellier, France
| | | | - Issa Nèbiè
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
| | - Franck Remoue
- UR016 Biology and Control of Vectors, Institut de Recherche pour le Développement, Montpellier, France
| | - Mario Coluzzi
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
| | - Vincenzo Petrarca
- Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Rome, Italy
| | - David Modiano
- Department of Public Health and Infectious Diseases, “Sapienza” University, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Bruno Arcà
- Department of Structural and Functional Biology, “Federico II” University, Naples, Italy
- * E-mail:
| |
Collapse
|
69
|
Drame PM, Poinsignon A, Besnard P, Cornelie S, Le Mire J, Toto JC, Foumane V, Dos-Santos MA, Sembène M, Fortes F, Simondon F, Carnevale P, Remoue F. Human antibody responses to the Anopheles salivary gSG6-P1 peptide: a novel tool for evaluating the efficacy of ITNs in malaria vector control. PLoS One 2010; 5:e15596. [PMID: 21179476 PMCID: PMC3001874 DOI: 10.1371/journal.pone.0015596] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/15/2010] [Indexed: 11/23/2022] Open
Abstract
To optimize malaria control, WHO has prioritised the need for new indicators to evaluate the efficacy of malaria vector control strategies. The gSG6-P1 peptide from gSG6 protein of Anopheles gambiae salivary glands was previously designed as a specific salivary sequence of malaria vector species. It was shown that the quantification of human antibody (Ab) responses to Anopheles salivary proteins in general and especially to the gSG6-P1 peptide was a pertinent biomarker of human exposure to Anopheles. The present objective was to validate this indicator in the evaluation of the efficacy of Insecticide Treated Nets (ITNs). A longitudinal evaluation, including parasitological, entomological and immunological assessments, was conducted on children and adults from a malaria-endemic area before and after the introduction of ITNs. Significant decrease of anti-gSG6-P1 IgG response was observed just after the efficient ITNs use. Interestingly, specific IgG Ab level was especially pertinent to evaluate a short-time period of ITNs efficacy and at individual level. However, specific IgG rose back up within four months as correct ITN use waned. IgG responses to one salivary peptide could constitute a reliable biomarker for the evaluation of ITN efficacy, at short- and long-term use, and provide a valuable tool in malaria vector control based on a real measurement of human-vector contact.
Collapse
Affiliation(s)
- Papa Makhtar Drame
- UR016 Contrôle et Caractérisation des Populations de Vecteurs, Institut de Recherche pour le Développement, Cotonou, Benin.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Araújo-Santos T, Prates DB, Andrade BB, Nascimento DO, Clarêncio J, Entringer PF, Carneiro AB, Silva-Neto MAC, Miranda JC, Brodskyn CI, Barral A, Bozza PT, Borges VM. Lutzomyia longipalpis saliva triggers lipid body formation and prostaglandin E₂ production in murine macrophages. PLoS Negl Trop Dis 2010; 4:e873. [PMID: 21072234 PMCID: PMC2970534 DOI: 10.1371/journal.pntd.0000873] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022] Open
Abstract
Background Sand fly saliva contains molecules that modify the host's hemostasis and immune responses. Nevertheless, the role played by this saliva in the induction of key elements of inflammatory responses, such as lipid bodies (LB, also known as lipid droplets) and eicosanoids, has been poorly investigated. LBs are cytoplasmic organelles involved in arachidonic acid metabolism that form eicosanoids in response to inflammatory stimuli. In this study, we assessed the role of salivary gland sonicate (SGS) from Lutzomyia (L.) longipalpis, a Leishmania infantum chagasi vector, in the induction of LBs and eicosanoid production by macrophages in vitro and ex vivo. Methodology/Principal Findings Different doses of L. longipalpis SGS were injected into peritoneal cavities of C57BL/6 mice. SGS induced increased macrophage and neutrophil recruitment into the peritoneal cavity at different time points. Sand fly saliva enhanced PGE2 and LTB4 production by harvested peritoneal leukocytes after ex vivo stimulation with a calcium ionophore. At three and six hours post-injection, L. longipalpis SGS induced more intense LB staining in macrophages, but not in neutrophils, compared with mice injected with saline. Moreover, macrophages harvested by peritoneal lavage and stimulated with SGS in vitro presented a dose- and time-dependent increase in LB numbers, which was correlated with increased PGE2 production. Furthermore, COX-2 and PGE-synthase co-localized within the LBs induced by L. longipalpis saliva. PGE2 production by macrophages induced by SGS was abrogated by treatment with NS-398, a COX-2 inhibitor. Strikingly, SGS triggered ERK-1/2 and PKC-α phosphorylation, and blockage of the ERK-1/2 and PKC-α pathways inhibited the SGS effect on PGE2 production by macrophages. Conclusion In sum, our results show that L. longipalpis saliva induces lipid body formation and PGE2 production by macrophages ex vivo and in vitro via the ERK-1/2 and PKC-α signaling pathways. This study provides new insights regarding the pharmacological mechanisms whereby L. longipalpis saliva influences the early steps of the host's inflammatory response. After the injection of saliva into the host's skin by sand flies, a transient erythematous reaction is observed, which is related to an influx of inflammatory cells and the release of various molecules that actively facilitate the blood meal. It is important to understand the specific mechanisms by which sand fly saliva manipulates the host's inflammatory responses. Herein, we report that saliva from Lutzomyia (L.) longipalpis, a widespread Leishmania vector, induces early production of eicosanoids. Intense formation of intracellular organelles called lipid bodies (LBs) was noted within those cells that migrated to the site of saliva injection. In vitro and ex vivo, sand fly saliva was able to induce LB formation and PGE2 release by macrophages. Interestingly, PGE2 production induced by L. longipalpis saliva was dependent on intracellular mechanisms involving phosphorylation of signaling proteins such as PKC-α and ERK-1/2 and subsequent activation of cyclooxygenase-2. Thus, this study provides new insights into the pharmacological properties of sand fly saliva and opens new opportunities for intervening with the induction of the host's inflammatory pathways by L. longipalpis bites.
Collapse
Affiliation(s)
- Théo Araújo-Santos
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ-BA, Salvador, Brasil
- Universidade Federal da Bahia, Salvador, Brasil
| | - Deboraci Brito Prates
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ-BA, Salvador, Brasil
- Universidade Federal da Bahia, Salvador, Brasil
| | - Bruno Bezerril Andrade
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ-BA, Salvador, Brasil
- Universidade Federal da Bahia, Salvador, Brasil
| | | | - Jorge Clarêncio
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ-BA, Salvador, Brasil
| | | | - Alan B. Carneiro
- Institutos de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mário A. C. Silva-Neto
- Institutos de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Cláudia Ida Brodskyn
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ-BA, Salvador, Brasil
- Universidade Federal da Bahia, Salvador, Brasil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brasil
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ-BA, Salvador, Brasil
- Universidade Federal da Bahia, Salvador, Brasil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brasil
| | - Patrícia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Valéria Matos Borges
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ-BA, Salvador, Brasil
- Universidade Federal da Bahia, Salvador, Brasil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brasil
- * E-mail:
| |
Collapse
|
71
|
Aquino DMC, Caldas AJM, Miranda JC, Silva AAM, Barral-Netto M, Barral A. Epidemiological study of the association between anti-Lutzomyia longipalpis saliva antibodies and development of delayed-type hypersensitivity to Leishmania antigen. Am J Trop Med Hyg 2010; 83:825-7. [PMID: 20889873 DOI: 10.4269/ajtmh.2010.10-0182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Recent reports from animal models and from cross-sectional studies have suggested that host responses to anti-Lutzomyia longipalpis saliva antibodies may be related to delayed-type hypersensitivity to Leishmania antigen. In a prospective cohort study, we evaluated 1,080 children from two endemic areas for visceral leishmaniasis (VL) by means of Kaplan-Meier analysis. The incidence rate of delayed-type hypersensitivity to Leishmania antigen, measured at the 24th follow-up month, was higher among those reactive to Lu. longipalpis saliva antibodies at the beginning of the study (0.0217 cases per person-month) than among those previously negative (0.0131 cases per person-month) (P value for the log-rank test = 0.0006). It seems that mounting an anti-saliva immune response helps the development of a cell-mediated anti-Leishmania response.
Collapse
Affiliation(s)
- Dorlene M C Aquino
- Departamento de Enfermagem, Universidade Federal do Maranhão, São Luís, Maranhão, Brazil
| | | | | | | | | | | |
Collapse
|
72
|
Las glándulas salivales de dos flebotominos vectores de Leishmania: Lutzomyia migonei (França) y Lutzomyia ovallesi (Ortiz) (Diptera: Psychodidae). BIOMEDICA 2010. [DOI: 10.7705/biomedica.v30i3.274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
73
|
Drame PM, Poinsignon A, Besnard P, Le Mire J, Dos-Santos MA, Sow CS, Cornelie S, Foumane V, Toto JC, Sembene M, Boulanger D, Simondon F, Fortes F, Carnevale P, Remoue F. Human antibody response to Anopheles gambiae saliva: an immuno-epidemiological biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control. Am J Trop Med Hyg 2010; 83:115-21. [PMID: 20595489 DOI: 10.4269/ajtmh.2010.09-0684] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
For the fight against malaria, the World Health Organization (WHO) has emphasized the need for indicators to evaluate the efficacy of vector-control strategies. This study investigates a potential immunological marker, based on human antibody responses to Anopheles saliva, as a new indicator to evaluate the efficacy of insecticide-treated nets (ITNs). Parasitological, entomological, and immunological assessments were carried out in children and adults from a malaria-endemic region of Angola before and after the introduction of ITNs. Immunoglobulin G (IgG) levels to An. gambiae saliva were positively associated with the intensity of An. gambiae exposure and malaria infection. A significant decrease in the anti-saliva IgG response was observed after the introduction of ITNs, and this was associated with a drop in parasite load. This study represents the first stage in the development of a new indicator to evaluate the efficacy of malaria vector-control strategies, which could apply in other arthropod vector-borne diseases.
Collapse
Affiliation(s)
- Papa M Drame
- Institut de Recherche pour le Développement (IRD), UR024 "Epidémiologie et Prévention" Unit, Dakar, Senegal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Clements MF, Gidwani K, Kumar R, Hostomska J, Dinesh DS, Kumar V, Das P, Müller I, Hamilton G, Volfova V, Boelaert M, Das M, Rijal S, Picado A, Volf P, Sundar S, Davies CR, Rogers ME. Measurement of recent exposure to Phlebotomus argentipes, the vector of Indian visceral Leishmaniasis, by using human antibody responses to sand fly saliva. Am J Trop Med Hyg 2010; 82:801-7. [PMID: 20439958 PMCID: PMC2861389 DOI: 10.4269/ajtmh.2010.09-0336] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Antibody (IgG) responses to the saliva of Phlebotomus argentipes were investigated using serum samples from regions of India endemic and non-endemic for visceral leishmaniasis (VL). By pre-adsorbing the sera against the saliva of the competing human-biting but non-VL vector P. papatasi, we significantly improved the specificity of a P. argentipes saliva enzyme-linked immunosorbent assay. Using this method, we observed a statistically significant correlation between antibodies to P. argenitpes saliva and the average indoor density of female sand flies. Additionally, the method was able to detect recent changes in vector exposure when sera from VL patients were assayed before, during, and after hospitalization and protected from sand fly bites under untreated bed nets. Collectively, these results highlight the utility of antibodies to P. argentipes saliva as an important tool to evaluate VL vector control programs.
Collapse
|
75
|
Alves-Silva J, Ribeiro JMC, Abbeele JVD, Attardo G, Hao Z, Haines LR, Soares MB, Berriman M, Aksoy S, Lehane MJ. An insight into the sialome of Glossina morsitans morsitans. BMC Genomics 2010; 11:213. [PMID: 20353571 PMCID: PMC2853526 DOI: 10.1186/1471-2164-11-213] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/30/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Blood feeding evolved independently in worms, arthropods and mammals. Among the adaptations to this peculiar diet, these animals developed an armament of salivary molecules that disarm their host's anti-bleeding defenses (hemostasis), inflammatory and immune reactions. Recent sialotranscriptome analyses (from the Greek sialo = saliva) of blood feeding insects and ticks have revealed that the saliva contains hundreds of polypeptides, many unique to their genus or family. Adult tsetse flies feed exclusively on vertebrate blood and are important vectors of human and animal diseases. Thus far, only limited information exists regarding the Glossina sialome, or any other fly belonging to the Hippoboscidae. RESULTS As part of the effort to sequence the genome of Glossina morsitans morsitans, several organ specific, high quality normalized cDNA libraries have been constructed, from which over 20,000 ESTs from an adult salivary gland library were sequenced. These ESTs have been assembled using previously described ESTs from the fat body and midgut libraries of the same fly, thus totaling 62,251 ESTs, which have been assembled into 16,743 clusters (8,506 of which had one or more EST from the salivary gland library). Coding sequences were obtained for 2,509 novel proteins, 1,792 of which had at least one EST expressed in the salivary glands. Despite library normalization, 59 transcripts were overrepresented in the salivary library indicating high levels of expression. This work presents a detailed analysis of the salivary protein families identified. Protein expression was confirmed by 2D gel electrophoresis, enzymatic digestion and mass spectrometry. Concurrently, an initial attempt to determine the immunogenic properties of selected salivary proteins was undertaken. CONCLUSIONS The sialome of G. m. morsitans contains over 250 proteins that are possibly associated with blood feeding. This set includes alleles of previously described gene products, reveals new evidence that several salivary proteins are multigenic and identifies at least seven new polypeptide families unique to Glossina. Most of these proteins have no known function and thus, provide a discovery platform for the identification of novel pharmacologically active compounds, innovative vector-based vaccine targets, and immunological markers of vector exposure.
Collapse
Affiliation(s)
- Juliana Alves-Silva
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Current address: The Healing Foundation Centre, Manchester, M13 9PT, UK
| | - José MC Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville MD 20852, USA
| | - Jan Van Den Abbeele
- Department of Parasitology, Unit of Entomology, Institute of Tropical Medicine, B-2000 Antwerp, Belgium
| | - Geoffrey Attardo
- Department of Epidemiology of Microbial Diseases, Yale School of Public Heath, New Haven, CT 06520, USA
| | - Zhengrong Hao
- Department of Epidemiology of Microbial Diseases, Yale School of Public Heath, New Haven, CT 06520, USA
| | - Lee R Haines
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Marcelo B Soares
- Children's Memorial Research Center, North-Western University, Chicago, IL 60614, USA
| | | | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Heath, New Haven, CT 06520, USA
| | - Michael J Lehane
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
76
|
Teixeira C, Gomes R, Collin N, Reynoso D, Jochim R, Oliveira F, Seitz A, Elnaiem DE, Caldas A, de Souza AP, Brodskyn CI, de Oliveira CI, Mendonca I, Costa CHN, Volf P, Barral A, Kamhawi S, Valenzuela JG. Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America. PLoS Negl Trop Dis 2010; 4:e638. [PMID: 20351786 PMCID: PMC2843637 DOI: 10.1371/journal.pntd.0000638] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/02/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sand flies deliver Leishmania parasites to a host alongside salivary molecules that affect infection outcomes. Though some proteins are immunogenic and have potential as markers of vector exposure, their identity and vector specificity remain elusive. METHODOLOGY/PRINCIPAL FINDINGS We screened human, dog, and fox sera from endemic areas of visceral leishmaniasis to identify potential markers of specific exposure to saliva of Lutzomyia longipalpis. Human and dog sera were further tested against additional sand fly species. Recombinant proteins of nine transcripts encoding secreted salivary molecules of Lu. longipalpis were produced, purified, and tested for antigenicity and specificity. Use of recombinant proteins corresponding to immunogenic molecules in Lu. longipalpis saliva identified LJM17 and LJM11 as potential markers of exposure. LJM17 was recognized by human, dog, and fox sera; LJM11 by humans and dogs. Notably, LJM17 and LJM11 were specifically recognized by humans exposed to Lu. longipalpis but not by individuals exposed to Lu. intermedia. CONCLUSIONS/SIGNIFICANCE Salivary recombinant proteins are of value as markers of vector exposure. In humans, LJM17 and LJM11 emerged as potential markers of specific exposure to Lu. longipalpis, the vector of Leishmania infantum chagasi in Latin America. In dogs, LJM17, LJM11, LJL13, LJL23, and LJL143 emerged as potential markers of sand fly exposure. Testing these recombinant proteins in large scale studies will validate their usefulness as specific markers of Lu. longipalpis exposure in humans and of sand fly exposure in dogs.
Collapse
Affiliation(s)
- Clarissa Teixeira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Regis Gomes
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Nicolas Collin
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - David Reynoso
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ryan Jochim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Amy Seitz
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Dia-Eldin Elnaiem
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| | - Arlene Caldas
- Universidade Federal do Maranhão, São Luis, Maranhão, Brazil
| | | | | | | | - Ivete Mendonca
- Laboratorio de Leishmanioses, Instituto de Doencas Tropicais Natan Portella and Universidade Federal do Piaui, Teresina, Piaui, Brazil
| | - Carlos H. N. Costa
- Laboratorio de Leishmanioses, Instituto de Doencas Tropicais Natan Portella and Universidade Federal do Piaui, Teresina, Piaui, Brazil
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Aldina Barral
- Centro de Pesquisas Goncalo Moniz–FIOCRUZ, Salvador, Bahia, Brazil
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
77
|
Souza AP, Andrade BB, Aquino D, Entringer P, Miranda JC, Alcantara R, Ruiz D, Soto M, Teixeira CR, Valenzuela JG, de Oliveira CI, Brodskyn CI, Barral-Netto M, Barral A. Using recombinant proteins from Lutzomyia longipalpis saliva to estimate human vector exposure in visceral Leishmaniasis endemic areas. PLoS Negl Trop Dis 2010; 4:e649. [PMID: 20351785 PMCID: PMC2843636 DOI: 10.1371/journal.pntd.0000649] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 02/12/2010] [Indexed: 11/19/2022] Open
Abstract
Background Leishmania is transmitted by female sand flies and deposited together with saliva, which contains a vast repertoire of pharmacologically active molecules that contribute to the establishment of the infection. The exposure to vector saliva induces an immune response against its components that can be used as a marker of exposure to the vector. Performing large-scale serological studies to detect vector exposure has been limited by the difficulty in obtaining sand fly saliva. Here, we validate the use of two sand fly salivary recombinant proteins as markers for vector exposure. Methodology/principal findings ELISA was used to screen human sera, collected in an area endemic for visceral leishmaniasis, against the salivary gland sonicate (SGS) or two recombinant proteins (rLJM11 and rLJM17) from Lutzomyia longipalpis saliva. Antibody levels before and after SGS seroconversion (n = 26) were compared using the Wilcoxon signed rank paired test. Human sera from an area endemic for VL which recognize Lu. longipalpis saliva in ELISA also recognize a combination of rLJM17 and rLJM11. We then extended the analysis to include 40 sera from individuals who were seropositive and 40 seronegative to Lu. longipalpis SGS. Each recombinant protein was able to detect anti-saliva seroconversion, whereas the two proteins combined increased the detection significantly. Additionally, we evaluated the specificity of the anti-Lu. longipalpis response by testing 40 sera positive to Lutzomyia intermedia SGS, and very limited (2/40) cross-reactivity was observed. Receiver-operator characteristics (ROC) curve analysis was used to identify the effectiveness of these proteins for the prediction of anti-SGS positivity. These ROC curves evidenced the superior performance of rLJM17+rLJM11. Predicted threshold levels were confirmed for rLJM17+rLJM11 using a large panel of 1,077 serum samples. Conclusion Our results show the possibility of substituting Lu. longipalpis SGS for two recombinant proteins, LJM17 and LJM11, in order to probe for vector exposure in individuals residing in endemic areas. During the blood meal, female sand flies (insects that transmit the parasite Leishmania) inject saliva containing a large variety of molecules with different pharmacological activities that facilitate the acquisition of blood. These molecules can induce the production of anti-saliva antibodies, which can then be used as markers for insect (vector) biting or exposure. Epidemiological studies using sand fly salivary gland sonicate as antigens are hampered by the difficulty of obtaining large amounts of salivary glands. In the present study, we have investigated the use of two salivary recombinant proteins from the sand fly Lutzomyia longipalpis, considered the main vector of visceral leishmaniasis, as an alternative method for screening of exposure to the sand fly. We primarily tested the suitability of using the recombinant proteins to estimate positive anti-saliva ELISA test in small sets of serum samples. Further, we validated the assay in a large sample of 1,077 individuals from an epidemiological survey in a second area endemic for visceral leishmaniasis. Our findings indicate that these proteins represent a promising epidemiological tool that can aid in implementing control measures against leishmaniasis.
Collapse
Affiliation(s)
- Ana Paula Souza
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz – FIOCRUZ), Salvador, Brazil
| | | | - Dorlene Aquino
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz – FIOCRUZ), Salvador, Brazil
- Departamento de Enfermagem, Universidade Federal do Maranhão, São Luis, Brazil
| | - Petter Entringer
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz – FIOCRUZ), Salvador, Brazil
| | - José Carlos Miranda
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz – FIOCRUZ), Salvador, Brazil
| | - Ruan Alcantara
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz – FIOCRUZ), Salvador, Brazil
| | - Daniel Ruiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Clarissa R. Teixeira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Camila Indiani de Oliveira
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz – FIOCRUZ), Salvador, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Cláudia Ida Brodskyn
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz – FIOCRUZ), Salvador, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz – FIOCRUZ), Salvador, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz – FIOCRUZ), Salvador, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), São Paulo, Brazil
- * E-mail:
| |
Collapse
|
78
|
Calvo E, Sanchez-Vargas I, Favreau AJ, Barbian KD, Pham VM, Olson KE, Ribeiro JM. An insight into the sialotranscriptome of the West Nile mosquito vector, Culex tarsalis. BMC Genomics 2010; 11:51. [PMID: 20089177 PMCID: PMC2823692 DOI: 10.1186/1471-2164-11-51] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 01/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saliva of adult female mosquitoes help sugar and blood feeding by providing enzymes and polypeptides that help sugar digestion, control microbial growth and counteract their vertebrate host hemostasis and inflammation. Mosquito saliva also potentiates the transmission of vector borne pathogens, including arboviruses. Culex tarsalis is a bird feeding mosquito vector of West Nile Virus closely related to C. quinquefasciatus, a mosquito relatively recently adapted to feed on humans, and the only mosquito of the genus Culex to have its sialotranscriptome so far described. RESULTS A total of 1,753 clones randomly selected from an adult female C. tarsalis salivary glands (SG) cDNA library were sequenced and used to assemble a database that yielded 809 clusters of related sequences, 675 of which were singletons. Primer extension experiments were performed in selected clones to further extend sequence coverage, allowing for the identification of 283 protein sequences, 80 of which code for putative secreted proteins. CONCLUSION Comparison of the C. tarsalis sialotranscriptome with that of C. quinquefasciatus reveals accelerated evolution of salivary proteins as compared to housekeeping proteins. The average amino acid identity among salivary proteins is 70.1%, while that for housekeeping proteins is 91.2% (P < 0.05), and the codon volatility of secreted proteins is significantly higher than those of housekeeping proteins. Several protein families previously found exclusive of mosquitoes, including only in the Aedes genus have been identified in C. tarsalis. Interestingly, a protein family so far unique to C. quinquefasciatus, with 30 genes, is also found in C. tarsalis, indicating it was not a specific C. quinquefasciatus acquisition in its evolution to optimize mammal blood feeding.
Collapse
Affiliation(s)
- Eric Calvo
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Challenges and perspectives in vaccination against leishmaniasis. Parasitol Int 2009; 58:319-24. [DOI: 10.1016/j.parint.2009.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 07/28/2009] [Accepted: 07/31/2009] [Indexed: 11/24/2022]
|
80
|
Schwarz A, Helling S, Collin N, Teixeira CR, Medrano-Mercado N, Hume JCC, Assumpção TC, Marcus K, Stephan C, Meyer HE, Ribeiro JMC, Billingsley PF, Valenzuela JG, Sternberg JM, Schaub GA. Immunogenic salivary proteins of Triatoma infestans: development of a recombinant antigen for the detection of low-level infestation of triatomines. PLoS Negl Trop Dis 2009; 3:e532. [PMID: 19841746 PMCID: PMC2760138 DOI: 10.1371/journal.pntd.0000532] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 09/16/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Triatomines are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease in Latin America. The most effective vector, Triatoma infestans, has been controlled successfully in much of Latin America using insecticide spraying. Though rarely undertaken, surveillance programs are necessary in order to identify new infestations and estimate the intensity of triatomine bug infestations in domestic and peridomestic habitats. Since hosts exposed to triatomines develop immune responses to salivary antigens, these responses can be evaluated for their usefulness as epidemiological markers to detect infestations of T. infestans. METHODOLOGY/PRINCIPAL FINDINGS T. infestans salivary proteins were separated by 2D-gel electrophoresis and tested for their immunogenicity by Western blotting using sera from chickens and guinea pigs experimentally exposed to T. infestans. From five highly immunogenic protein spots, eight salivary proteins were identified by nano liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS/MS) and comparison to the protein sequences of the National Center for Biotechnology Information (NCBI) database and expressed sequence tags of a unidirectionally cloned salivary gland cDNA library from T. infestans combined with the NCBI yeast protein sub-database. The 14.6 kDa salivary protein [gi|149689094] was produced as recombinant protein (rTiSP14.6) in a mammalian cell expression system and recognized by all animal sera. The specificity of rTiSP14.6 was confirmed by the lack of reactivity to anti-mosquito and anti-sand fly saliva antibodies. However, rTiSP14.6 was recognized by sera from chickens exposed to four other triatomine species, Triatoma brasiliensis, T. sordida, Rhodnius prolixus, and Panstrongylus megistus and by sera of chickens from an endemic area of T. infestans and Chagas disease in Bolivia. CONCLUSIONS/SIGNIFICANCE The recombinant rTiSP14.6 is a suitable and promising epidemiological marker for detecting the presence of small numbers of different species of triatomines and could be developed for use as a new tool in surveillance programs, especially to corroborate vector elimination in Chagas disease vector control campaigns.
Collapse
Affiliation(s)
- Alexandra Schwarz
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Laurenti MD, dos Santos Silveira VM, Costa Secundino NF, Corbett CEP, Pimenta PPF. Saliva of laboratory-reared Lutzomyia longipalpis exacerbates Leishmania (Leishmania) amazonensis infection more potently than saliva of wild-caught Lutzomyia longipalpis. Parasitol Int 2009; 58:220-6. [DOI: 10.1016/j.parint.2009.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/06/2009] [Accepted: 05/09/2009] [Indexed: 11/26/2022]
|
82
|
Poinsignon A, Cornelie S, Ba F, Boulanger D, Sow C, Rossignol M, Sokhna C, Cisse B, Simondon F, Remoue F. Human IgG response to a salivary peptide, gSG6-P1, as a new immuno-epidemiological tool for evaluating low-level exposure to Anopheles bites. Malar J 2009; 8:198. [PMID: 19674487 PMCID: PMC2733152 DOI: 10.1186/1475-2875-8-198] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/13/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human populations exposed to low malaria transmission present particular severe risks of malaria morbidity and mortality. In addition, in a context of low-level exposure to Anopheles vector, conventional entomological methods used for sampling Anopheles populations are insufficiently sensitive and probably under-estimate the real risk of malaria transmission. The evaluation of antibody (Ab) responses to arthropod salivary proteins constitutes a novel tool for estimating exposure level to insect bites. In the case of malaria, a recent study has shown that human IgG responses to the gSG6-P1 peptide represented a specific biomarker of exposure to Anopheles gambiae bites. The objective of this study was to investigate if this biomarker can be used to estimate low-level exposure of individuals to Anopheles vector. METHODS The IgG Ab level to gSG6-P1 was evaluated at the peak and at the end of the An. gambiae exposure season in children living in Senegalese villages, where the Anopheles density was estimated to be very low by classical entomological trapping but where malaria transmission occurred during the studied season. RESULTS Specific IgG responses to gSG6-P1 were observed in children exposed to very low-level of Anopheles bites. In addition, a significant increase in the specific IgG Ab level was observed during the Anopheles exposure season whereas classical entomological data have reported very few or no Anopheles during the studied period. Furthermore, this biomarker may also be applicable to evaluate the heterogeneity of individual exposure. CONCLUSION The results strengthen the hypothesis that the evaluation of IgG responses to gSG6-P1 during the season of exposure could reflect the real human contact with anthropophilic Anopheles and suggest that this biomarker of low exposure could be used at the individual level. This promising immuno-epidemiological marker could represent a useful tool to assess the risk to very low exposure to malaria vectors as observed in seasonal, urban, altitude or travellers contexts. In addition, this biomarker could be used for the surveillance survey after applying anti-vector strategy.
Collapse
Affiliation(s)
- Anne Poinsignon
- UR016-IRD (Institut de Recherche pour le Développement), Caractérisation et Contrôle des Populations de Vecteurs, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Sylvie Cornelie
- UR016-IRD (Institut de Recherche pour le Développement), Caractérisation et Contrôle des Populations de Vecteurs, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Fatou Ba
- UR077-IRD, Campus International IRD-UCAD, route des Pères Maristes, BP 1836, Dakar, Sénégal
| | - Denis Boulanger
- UR024-IRD, Montpellier, France and Campus International IRD-UCAD, Dakar, Sénégal
| | - Cheikh Sow
- UR024-IRD, Montpellier, France and Campus International IRD-UCAD, Dakar, Sénégal
| | - Marie Rossignol
- UR016-IRD (Institut de Recherche pour le Développement), Caractérisation et Contrôle des Populations de Vecteurs, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Cheikh Sokhna
- UR077-IRD, Campus International IRD-UCAD, route des Pères Maristes, BP 1836, Dakar, Sénégal
| | - Badara Cisse
- Département de parasitologie, Université Cheikh Anta Diop, Dakar, Sénégal
| | - François Simondon
- UR024-IRD, Montpellier, France and Campus International IRD-UCAD, Dakar, Sénégal
| | - Franck Remoue
- UR016-IRD (Institut de Recherche pour le Développement), Caractérisation et Contrôle des Populations de Vecteurs, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|
83
|
Schwarz A, Sternberg JM, Johnston V, Medrano-Mercado N, Anderson JM, Hume JCC, Valenzuela JG, Schaub GA, Billingsley PF. Antibody responses of domestic animals to salivary antigens of Triatomainfestans as biomarkers for low-level infestation of triatomines. Int J Parasitol 2009; 39:1021-9. [PMID: 19248784 PMCID: PMC2748746 DOI: 10.1016/j.ijpara.2009.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 01/20/2009] [Accepted: 01/23/2009] [Indexed: 11/18/2022]
Abstract
Hematophagous arthropods such as Triatoma infestans, the vector of Trypanosoma cruzi, elicit host-immune responses during feeding. Characterization of antibody responses to salivary antigens offers the potential to develop immunologically based monitoring techniques for exposure to re-emergent triatomine bug populations in peridomestic animals. IgG-antibody responses to the salivary antigens of T.infestans have been detected in chickens as soon as 2 days after the first exposure to five adult bugs. Chickens and guinea pigs regularly exposed to this number of triatomines showed a significantly lower anti-saliva antibody titre than animals exposed to 25 adults and fifth instars of four different T.infestans strains originating from Bolivia and from Northern Chile. Highly immunogenic salivary antigens of 14 and 21kDa were recognised by all chicken sera and of 79kDa by all guinea pig sera. Cross-reactivity studies using saliva or salivary gland extracts from different hematophagous species, e.g. different triatomines, bed bugs, mosquitoes, sand flies and ticks, as well as chicken sera exposed to triatomines and mosquitoes, demonstrated that the 14 and 21kDa salivary antigens were only found in triatomines. Sera from peridomestic chickens and guinea pigs in sites of known T.infestans challenge in Bolivia also recognised the 14 and 21kDa antigens. These represent promising epidemiological markers for the detection of small numbers of feeding bugs and hence may be a new tool for vector surveillance in Chagas disease control programs.
Collapse
Affiliation(s)
- Alexandra Schwarz
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Oliveira F, Jochim RC, Valenzuela JG, Kamhawi S. Sand flies, Leishmania, and transcriptome-borne solutions. Parasitol Int 2009; 58:1-5. [PMID: 18768167 PMCID: PMC2670770 DOI: 10.1016/j.parint.2008.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 11/29/2022]
Abstract
Sand fly-parasite and sand fly-host interactions play an important role in the transmission of leishmaniasis. Vector molecules relevant for such interactions include midgut and salivary proteins. These potential targets for interruption of propagation of Leishmania parasites have been poorly characterized. Transcriptomic analysis has proven to be an effective tool for identification of new sand fly molecules, providing exciting new insights into vector-based control strategies against leishmaniasis.
Collapse
Affiliation(s)
| | | | - Jesus G. Valenzuela
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
85
|
Hostomska J, Rohousova I, Volfova V, Stanneck D, Mencke N, Volf P. Kinetics of Canine Antibody Response to Saliva of the Sand Fly Lutzomyia longipalpis. Vector Borne Zoonotic Dis 2008; 8:443-50. [DOI: 10.1089/vbz.2007.0214] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jitka Hostomska
- Charles University in Prague, Faculty of Science, Department of Parasitology, Vinicna 7, 128 44 Praha 2, Czech Republic
| | - Iva Rohousova
- Charles University in Prague, Faculty of Science, Department of Parasitology, Vinicna 7, 128 44 Praha 2, Czech Republic
| | - Vera Volfova
- Charles University in Prague, Faculty of Science, Department of Parasitology, Vinicna 7, 128 44 Praha 2, Czech Republic
| | - Dorothee Stanneck
- Bayer HealthCare AG, Animal Health Division, D-51368 Leverkusen, Germany
| | - Norbert Mencke
- Bayer HealthCare AG, Animal Health Division, D-51368 Leverkusen, Germany
| | - Petr Volf
- Charles University in Prague, Faculty of Science, Department of Parasitology, Vinicna 7, 128 44 Praha 2, Czech Republic
| |
Collapse
|
86
|
Poinsignon A, Cornelie S, Mestres-Simon M, Lanfrancotti A, Rossignol M, Boulanger D, Cisse B, Sokhna C, Arcà B, Simondon F, Remoue F. Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites. PLoS One 2008; 3:e2472. [PMID: 18575604 PMCID: PMC2427200 DOI: 10.1371/journal.pone.0002472] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 04/30/2008] [Indexed: 11/18/2022] Open
Abstract
Background In order to improve malaria control, and under the aegis of WHO recommendations, many efforts are being devoted to developing new tools for identifying geographic areas with high risk of parasite transmission. Evaluation of the human antibody response to arthropod salivary proteins could be an epidemiological indicator of exposure to vector bites, and therefore to risk of pathogen transmission. In the case of malaria, which is transmitted only by anopheline mosquitoes, maximal specificity could be achieved through identification of immunogenic proteins specific to the Anopheles genus. The objective of the present study was to determine whether the IgG response to the Anopheles gambiae gSG6 protein, from its recombinant form to derived synthetic peptides, could be an immunological marker of exposure specific to Anopheles gambiae bites. Methodology/Principal Findings Specific IgG antibodies to recombinant gSG6 protein were observed in children living in a Senegalese area exposed to malaria. With the objective of optimizing Anopheles specificity and reproducibility, we designed five gSG6-based peptide sequences using a bioinformatic approach, taking into consideration i) their potential antigenic properties and ii) the absence of cross-reactivity with protein sequences of other arthropods/organisms. The specific anti-peptide IgG antibody response was evaluated in exposed children. The five gSG6 peptides showed differing antigenic properties, with gSG6-P1 and gSG6-P2 exhibiting the highest antigenicity. However, a significant increase in the specific IgG response during the rainy season and a positive association between the IgG level and the level of exposure to Anopheles gambiae bites was significant only for gSG6-P1. Conclusions/Significance This step-by-step approach suggests that gSG6-P1 could be an optimal candidate marker for evaluating exposure to Anopheles gambiae bites. This marker could be employed as a geographic indicator, like remote sensing techniques, for mapping the risk of malaria. It could also represent a direct criterion of efficacy in evaluation of vector control strategies.
Collapse
Affiliation(s)
- Anne Poinsignon
- UR024-Epidémiologie et Prévention, Institut de Recherche pour le Développement, Dakar, Sénégal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci U S A 2008; 105:7845-50. [PMID: 18509051 DOI: 10.1073/pnas.0712153105] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Visceral leishmaniasis (VL) is a fatal disease for humans, and no vaccine is currently available. Sand fly salivary proteins have been associated with protection against cutaneous leishmaniasis. To test whether vector salivary proteins can protect against VL, a hamster model was developed involving intradermal inoculation in the ears of 100,000 Leishmania infantum chagasi parasites together with Lutzomyia longipalpis saliva to mimic natural transmission by sand flies. Hamsters developed classical signs of VL rapidly, culminating in a fatal outcome 5-6 months postinfection. Saliva had no effect on the course of infection in this model. Immunization with 16 DNA plasmids coding for salivary proteins of Lu. longipalpis resulted in the identification of LJM19, a novel 11-kDa protein, that protected hamsters against the fatal outcome of VL. LJM19-immunized hamsters maintained a low parasite load that correlated with an overall high IFN-gamma/TGF-beta ratio and inducible NOS expression in the spleen and liver up to 5 months postinfection. Importantly, a delayed-type hypersensitivity response with high expression of IFN-gamma was also noted in the skin of LJM19-immunized hamsters 48 h after exposure to uninfected sand fly bites. Induction of IFN-gamma at the site of bite could partly explain the protection observed in the viscera of LJM19-immunized hamsters through direct parasite killing and/or priming of anti-Leishmania immunity. We have shown that immunity to a defined salivary protein (LJM19) confers powerful protection against the fatal outcome of a parasitic disease, which reinforces the concept of using components of arthropod saliva in vaccine strategies against vector-borne diseases.
Collapse
|
88
|
Prates DB, Santos LD, Miranda JC, Souza APA, Palma MS, Barral-Netto M, Barral A. Changes in amounts of total salivary gland proteins of Lutzomyia longipallpis (Diptera: Psychodidae) according to age and diet. JOURNAL OF MEDICAL ENTOMOLOGY 2008; 45:409-413. [PMID: 18533433 DOI: 10.1603/0022-2585(2008)45[409:ciaots]2.0.co;2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Saliva plays important roles in facilitation of a bloodmeal, lubrication of mouthparts, and parasite transmission for some vector insects. Salivary composition changes during the lifetime of an insect, and differences in the salivary profile may influence its functions. In this report, the amount and profile of salivary gland protein of the American visceral leishmaniasis vector Lutzomyia longipalpis (Lutz & Neiva, 1912) were analyzed at different times of insect development and diet. Protein content from unfed female sand flies increased significantly with age, and a significant difference was observed in sugar-fed females during the first 10 d of adult life. Salivary protein content sharply decreased 1 d after blood feeding, with gradual increase in concentration the following days. SDS-polyacrylamide gel electrophoresis analysis revealed that most polypeptides present in the saliva of sugar-fed also were present in the saliva of blood-fed females. Understanding changes in sand fly's saliva contents at distinct days after emergence and the influence of a bloodmeal in this aspect may reveal the role played by saliva during leishmaniasis transmission.
Collapse
Affiliation(s)
- D B Prates
- Centro de Pesquisas Gonçalo Moniz-Fundação Oswaldo Cruz-FIOCRUZ-BA. 40296-710 Salvador, Bahia, Brasil
| | | | | | | | | | | | | |
Collapse
|
89
|
Oliveira F, Lawyer PG, Kamhawi S, Valenzuela JG. Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease. PLoS Negl Trop Dis 2008; 2:e226. [PMID: 18414648 PMCID: PMC2291569 DOI: 10.1371/journal.pntd.0000226] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 03/14/2008] [Indexed: 12/04/2022] Open
Abstract
Background Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects biologically active salivary components that favorably change the environment at the feeding site. Exposure to bites or to salivary proteins results in immunity specific to these components. Mice immunized with Phlebotomus papatasi salivary gland homogenate (SGH) or pre-exposed to uninfected bites were protected against Leishmania major infection delivered by needle inoculation with SGH or by infected sand fly bites. Immunization with individual salivary proteins of two sand fly species protected mice from L. major infection. Here, we analyze the immune response to distinct salivary proteins from P. papatasi that produced contrasting outcomes of L. major infection. Methodology/Principal Findings DNA immunization with distinct DTH-inducing salivary proteins from P. papatasi modulates L. major infection. PpSP15-immunized mice (PpSP15-mice) show lasting protection while PpSP44-immunized mice (PpSP44-mice) aggravate the infection, suggesting that immunization with these distinct molecules alters the course of anti-Leishmania immunity. Two weeks post-infection, 31.5% of CD4+ T cells produced IFN-γ in PpSP15-mice compared to 7.1% in PpSP44-mice. Moreover, IL-4-producing cells were 3-fold higher in PpSP44-mice. At an earlier time point of two hours after challenge with SGH and L. major, the expression profile of PpSP15-mice showed over 3-fold higher IFN-γ and IL-12-Rβ2 and 20-fold lower IL-4 expression relative to PpSP44-mice, suggesting that salivary proteins differentially prime anti-Leishmania immunity. This immune response is inducible by sand fly bites where PpSP15-mice showed a 3-fold higher IFN-γ and a 5-fold lower IL-4 expression compared with PpSP44-mice. Conclusions/Significance Immunization with two salivary proteins from P. papatasi, PpSP15 and PpSP44, produced distinct immune profiles that correlated with resistance or susceptibility to Leishmania infection. The demonstration for the first time that immunity to a defined salivary protein (PpSP44) results in disease enhancement stresses the importance of the proper selection of vector-based vaccine candidates. In vector-borne diseases, the role of vectors has been overlooked in the search for vaccines. Nonetheless, there is a body of evidence showing the importance of salivary proteins of vectors in pathogen transmission. Leishmaniasis is a neglected vector-borne disease transmitted by sand flies. Pre-exposure to sand fly saliva or immunization with a salivary protein protected mice against cutaneous leishmaniasis. Using DNA immunization we investigated the immune response induced by abundant proteins within the saliva of the sand fly Phlebotomus papatasi. We found that one salivary protein protected while another exacerbated L. major infection, suggesting that the type of immune response induced by specific salivary proteins can prime and direct anti-Leishmania immunity. This stresses the importance of the proper selection of vector-based vaccine candidates. This work validates the powerful protection that can be acquired through vaccination with the appropriate salivary molecule and more importantly, shows that this protective immune response is efficiently recalled by sand fly bites, the natural route of transmission.
Collapse
Affiliation(s)
- Fabiano Oliveira
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil
| | - Phillip G. Lawyer
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shaden Kamhawi
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jesus G. Valenzuela
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
90
|
Vinhas V, Andrade BB, Paes F, Bomura A, Clarencio J, Miranda JC, Báfica A, Barral A, Barral-Netto M. Human anti-saliva immune response following experimental exposure to the visceral leishmaniasis vector, Lutzomyia longipalpis. Eur J Immunol 2007; 37:3111-21. [PMID: 17935072 DOI: 10.1002/eji.200737431] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Experiments in animals verified that phlebotomine saliva enhances Leishmania infection, and vaccination with saliva prevents disease. We have shown that individuals from an endemic area of visceral leishmaniasis displayed robust antibody responses to saliva from the vector Lutzomyia longipalpis, which correlated with anti-parasite cell-mediated immunity. Here, we explored human anti-saliva responses following exposure to sand flies, using an in vivo bite model in which normal volunteers were exposed four times to 30 laboratory-reared Lu. longipalpis. Following the third exposure, normal volunteers developed diverse dermatological reactions at the site of insect bite. Serum from normal volunteers displayed high levels of anti-salivary gland sonicate IgG1, IgG4 and IgE as well as several salivary gland proteins. Furthermore, following in vitro stimulation with salivary gland sonicate, there was an increased frequency of CD4(+)CD25(+) and CD8(+)CD25(+) T cells as well as IFN-gamma and IL-10 synthesis. Strikingly, 1 year after the first exposure, PBMC from the volunteers displayed recall IFN-gamma responses that correlated with a significant reduction in infection rates using a macrophage-lymphocyte autologous culture. Together, these data suggest that human immunization against sand fly saliva is feasible and recall responses are obtained even 1 year after exposure, opening perspectives for vaccination in man.
Collapse
Affiliation(s)
- Vera Vinhas
- Centro de Pesquisas Gonçalo Moniz (FIOCRUZ) and Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Bahia, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
A killed Leishmania vaccine with sand fly saliva extract and saponin adjuvant displays immunogenicity in dogs. Vaccine 2007; 26:623-38. [PMID: 18180079 PMCID: PMC7115610 DOI: 10.1016/j.vaccine.2007.11.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 11/14/2007] [Accepted: 11/21/2007] [Indexed: 11/30/2022]
Abstract
A vaccine against canine visceral leishmaniasis (CVL), comprising Leishmania braziliensis promastigote protein, sand fly gland extract (SGE) and saponin adjuvant, was evaluated in dog model, in order to analyse the immunogenicity of the candidate vaccine. The vaccine candidate elicited strong antigenicity in dogs in respect of specific SGE and Leishmania humoral immune response. The major saliva proteins recognized by serum from immunized dogs exhibited molecular weights of 35 and 45 kDa, and were related to the resistance pattern against Leishmania infection. Immunophenotypic analysis revealed increased circulating CD21+ B-cells and CD5+ T-cells, reflected by higher counts of CD4+ and CD8+ T-cells. The observed interaction between potential antigen-presenting cells (evaluated as CD14+ monocytes) and lymphocyte activation status indicated a relationship between innate and adaptive immune responses. The higher frequency in L. chagasi antigen-specific CD8+ T-lymphocytes, and their positive association with intense cell proliferation, in addition to the progressively higher production of serum nitric oxide levels, showed a profile compatible with anti-CVL vaccine potential. Further studies on immunological response after challenge with L. chagasi may provide important information that will lead to a better understanding on vaccine trial and efficacy.
Collapse
|
92
|
Enhanced Leishmania braziliensis infection following pre-exposure to sandfly saliva. PLoS Negl Trop Dis 2007; 1:e84. [PMID: 18060088 PMCID: PMC2100374 DOI: 10.1371/journal.pntd.0000084] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 08/10/2007] [Indexed: 12/01/2022] Open
Abstract
Background Sand fly saliva has an array of pharmacological and immunomodulatory components, and immunity to saliva protects against Leishmania infection. In the present study, we have studied the immune response against Lutzomyia intermedia saliva, the main vector of Leishmania braziliensis in Brazil, and the effects of saliva pre-exposure on L. braziliensis infection employing an intradermal experimental model. Methodology/principal findings BALB/c mice immunized with L. intermedia salivary gland sonicate (SGS) developed a saliva-specific antibody response and a cellular immune response with presence of both IFN-γ and IL-4. The inflammatory infiltrate observed in SGS-immunized mice was comprised of numerous polymorphonuclear and few mononuclear cells. Mice challenged with live L. braziliensis in the presence of saliva were not protected although lesion development was delayed. The inoculation site and draining lymph node showed continuous parasite replication and low IFN-γ to IL-4 ratio, indicating that pre-exposure to L. intermedia saliva leads to modulation of the immune response. Furthermore, in an endemic area of cutaneous leishmaniasis, patients with active lesions displayed higher levels of anti-L. intermedia saliva antibodies when compared to individuals with a positive skin test result for Leishmania. Conclusion These results show that pre-exposure to sand fly saliva plays an important role in the outcome of cutaneous leishmaniasis, in both mice and humans. They emphasize possible hurdles in the development of vaccines based on sand fly saliva and the need to identify and select the individual salivary candidates instead of using whole salivary mixture that may favor a non-protective response. Parasites of the genus Leishmania cause a variety of diseases known as leishmaniasis, that are transmitted by bites of female sand flies that, during blood-feeding, inject humans with parasites and saliva. It was shown that, in mice, immunity to sand-fly saliva is able to protect against the development of leishmaniasis. We have investigated, in the present study, whether this finding extends the sand fly species Lutzomyia intermedia, which is responsible for transmission of Leishmania braziliensis, a parasite species able to cause destructive skin lesions that can be fatal if left untreated. We observed that mice injected with sand fly saliva develop a specific immune response against salivary proteins. Most importantly, however, this immune response was unable to protect mice against a challenge infection with L. braziliensis, indicating that exposure to this sand fly saliva is harmful to the host. Indeed, subjects with cutaneous leishmaniasis have a higher immune response against L. intermedia saliva. These findings indicate that the anti-saliva immune response to sand fly saliva plays an important role in the outcome of leishmaniasis caused by L. braziliensis, in both mice and humans, and emphasize possible hurdles in the development of vaccines based on sand fly saliva.
Collapse
|
93
|
Remoue F, Alix E, Cornelie S, Sokhna C, Cisse B, Doucoure S, Mouchet F, Boulanger D, Simondon F. IgE and IgG4 antibody responses to Aedes saliva in African children. Acta Trop 2007; 104:108-15. [PMID: 17825239 DOI: 10.1016/j.actatropica.2007.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/01/2007] [Accepted: 07/27/2007] [Indexed: 10/23/2022]
Abstract
Aedes mosquitoes are the major vectors of (re)-emerging infections including arboviruses (dengue, Chikungunya, yellow fever) in developing countries. Moreover, the emergence of Aedes-borne diseases in the developed world is currently a source of concern. Evaluation of human immune responses to Aedes bites could be a useful immuno-epidemiological tool for evaluating exposure to Aedes-borne diseases and thus predicting the risk of such emerging diseases. Specific IgE and IgG4 antibody (Ab) responses to Aedes aegypti saliva were evaluated in young Senegalese children living in an area of exposure to the Aedes vector. Specific IgE and IgG4 responses increased during rainy season of high exposure to Aedes bites. In addition, the evolution of anti-saliva isotype levels during the rainy season presented spatial heterogeneity between the studied villages. These preliminaries results support the potential approach of using anti-saliva Ab responses for evaluating exposure to Aedes vectors and risks of emerging arbovirus infections.
Collapse
Affiliation(s)
- Franck Remoue
- Institut de Recherche pour le Développement (IRD) - UR024, Epidémiologie et Prévention Unit, Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Orlandi-Pradines E, Almeras L, Denis de Senneville L, Barbe S, Remoué F, Villard C, Cornelie S, Penhoat K, Pascual A, Bourgouin C, Fontenille D, Bonnet J, Corre-Catelin N, Reiter P, Pagés F, Laffite D, Boulanger D, Simondon F, Pradines B, Fusaï T, Rogier C. Antibody response against saliva antigens of Anopheles gambiae and Aedes aegypti in travellers in tropical Africa. Microbes Infect 2007; 9:1454-62. [PMID: 17913537 DOI: 10.1016/j.micinf.2007.07.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/14/2007] [Accepted: 07/31/2007] [Indexed: 11/30/2022]
Abstract
Exposure to vectors of infectious diseases has been associated with antibody responses against salivary antigens of arthropods among people living in endemic areas. This immune response has been proposed as a surrogate marker of exposure to vectors appropriate for evaluating the protective efficacy of antivectorial devices. The existence and potential use of such antibody responses in travellers transiently exposed to Plasmodium or arbovirus vectors in tropical areas has never been investigated. The IgM and IgG antibody responses of 88 French soldiers against the saliva of Anopheles gambiae and Aedes aegypti were evaluated before and after a 5-month journey in tropical Africa. Antibody responses against Anopheles and Aedes saliva increased significantly in 41% and 15% of the individuals, respectively, and appeared to be specific to the mosquito genus. A proteomic and immunoproteomic analysis of anopheles and Aedes saliva allowed for the identification of some antigens that were recognized by most of the exposed individuals. These results suggest that antibody responses to the saliva of mosquitoes could be considered as specific surrogate markers of exposure of travellers to mosquito vectors that transmit arthropod borne infections.
Collapse
Affiliation(s)
- Eve Orlandi-Pradines
- Unité de recherche en biologie et en épidémiologie parasitaires, Institut de Médecine Tropicale du Service de Santé des Armées, Parc le Pharo, BP 46, 13998 Marseille-Armées, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Andrade BB, de Oliveira CI, Brodskyn CI, Barral A, Barral-Netto M. Role of Sand Fly Saliva in Human and Experimental Leishmaniasis: Current Insights. Scand J Immunol 2007; 66:122-7. [PMID: 17635789 DOI: 10.1111/j.1365-3083.2007.01964.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leishmaniases are wide spread diseases transmitted to their vertebrate host by infected sand fly. The saliva from these arthropods contains a vast repertoire of pharmacologically active molecules that hampers the host's haemostatic, inflammatory and immune responses. The early interactions between Leishmania and the host's immune response are closely linked to disease evolution or protection against the protozoan, and the ectoparasite saliva contributes directly to these interactions. Current studies have depicted these features, and these relations are being widely explored. There are concrete indications that the host response against sand fly saliva influences disease outcome in leishmaniasis. Additionally, there are demonstrations that immunization with whole sand fly saliva, or its components, leads to protection against leishmaniasis in different host species. The combination of these evidences opens up optimistic perspectives for improving vaccine development against Leishmania infection.
Collapse
Affiliation(s)
- B B Andrade
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, and Universidade Federal da Bahia, Bahia, Brazil
| | | | | | | | | |
Collapse
|
96
|
Cornelie S, Remoue F, Doucoure S, NDiaye T, Sauvage FX, Boulanger D, Simondon F. An insight into immunogenic salivary proteins of Anopheles gambiae in African children. Malar J 2007; 6:75. [PMID: 17550586 PMCID: PMC1891310 DOI: 10.1186/1475-2875-6-75] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 06/05/2007] [Indexed: 12/01/2022] Open
Abstract
Background During blood feeding, the mosquito injects saliva into the vertebrate host. This saliva contains bioactive components which may play a role in pathogen transmission and in host-vector relationships by inducing an immune response in the vertebrate host. The evaluation of human immune responses to arthropod bites might also represent a research direction for assessing individual exposure to the bite of a malaria vector. Methods The present study examined the antibody (Ab) IgG response during the season of exposure to Anopheles gambiae bites in young children living in a malaria endemic area. Immunoblots were performed with An. gambiae saliva to detect anti-saliva Ab bands and the evolution of immunogenic bands at the peak of, and following, the transmission period. Results The results showed that anti-Anopheles Ab was directed against a limited number of salivary proteins (175, 115, 72 and 30 kDa bands). Specific IgG responses to mosquito salivary proteins were variable among exposed individuals; nevertheless, two major bands (175 and 72 kDa) were observed in all immune-responder children. Analysis of the intensity of immunogenic bands revealed that IgG levels against the 175 kDa band were significantly higher during the peak period compared to the end period malaria transmission. Conclusion This preliminary work supports the potential of using anti-saliva immune responses as a measure of exposure to Anopheles bites. The use of immunoblots coupled with evaluation of band intensity could be an adequate tool for distinguishing immunogenic salivary proteins as candidate markers of bite exposure. Furthermore, this study may open the way to design new epidemiological tools for evaluating the risk of malaria exposure.
Collapse
Affiliation(s)
- Sylvie Cornelie
- Unité de Recherche Epidemiologie et Prevention (UR024), Centre IRD de Montpellier, BP 64501,911 avenue Agropolis, 34394 Montpellier cedex 5, France
| | - Franck Remoue
- Unité de Recherche Epidemiologie et Prevention (UR024), Campus IRD de Hann, BP1386, Route des Pères Maristes, CP 18524, Dakar, Sénégal
| | - Souleymane Doucoure
- Unité de Recherche Epidemiologie et Prevention (UR024), Campus IRD de Hann, BP1386, Route des Pères Maristes, CP 18524, Dakar, Sénégal
| | - Tofene NDiaye
- Unité de Recherche Epidemiologie et Prevention (UR024), Campus IRD de Hann, BP1386, Route des Pères Maristes, CP 18524, Dakar, Sénégal
| | - Francois-Xavier Sauvage
- UMR Sciences pour l'Œnologie, INRA Centre de Montpellier, 2 place Viala 34060 Montpellier cedex 1, France
| | - Denis Boulanger
- Unité de Recherche Epidemiologie et Prevention (UR024), Campus IRD de Hann, BP1386, Route des Pères Maristes, CP 18524, Dakar, Sénégal
| | - Francois Simondon
- Unité de Recherche Epidemiologie et Prevention (UR024), Centre IRD de Montpellier, BP 64501,911 avenue Agropolis, 34394 Montpellier cedex 5, France
| |
Collapse
|
97
|
Gomes RB, Mendonça IL, Silva VC, Ruas J, Silva MB, Cruz MSP, Barral A, Costa CHN. Antibodies against Lutzomyia longipalpis saliva in the fox Cerdocyon thous and the sylvatic cycle of Leishmania chagasi. Trans R Soc Trop Med Hyg 2007; 101:127-33. [PMID: 16887159 DOI: 10.1016/j.trstmh.2006.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 06/01/2006] [Accepted: 06/02/2006] [Indexed: 11/26/2022] Open
Abstract
Sera of 11 wild Cerdocyon thous foxes from an endemic area for American visceral leishmaniasis were tested for the presence of antibodies against salivary gland homogenates (SGH) of Lutzomyia longipalpis. All foxes had higher levels of anti-Lu. longipalpis SGH antibodies than foxes from non-endemic areas, suggesting contact between foxes and the vector of visceral leishmaniasis. Sera of humans and dogs living in the same area were also tested for reactivity against Lu. longipalpis SGHs and had a lower proportion of reactivity than foxes. Antibodies against Leishmania chagasi were not detected in any of the foxes, but three foxes showed the presence of parasites in the bone marrow by direct examination, PCR or by infecting the vector. Both humans and dogs had higher levels of anti-Le. chagasi IgG antibodies than C. thous. The finding of an antibody response against saliva of Lu. longipalpis among C. thous together with the broad distribution of the vector in resting areas of infected foxes suggests that the natural foci of transmission of Le. chagasi exists independently of the transmission among dogs and humans.
Collapse
Affiliation(s)
- Regis B Gomes
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Texeira and colleagues discuss the association between arthropods and M. ulcerans in the light of a new study in PLoS Medicine .
Collapse
Affiliation(s)
- Manuel T Silva
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.
| | | | | |
Collapse
|
99
|
Rohoušová I, Volf P. Sand fly saliva: effects on host immune response and Leishmania transmission. Folia Parasitol (Praha) 2006. [DOI: 10.14411/fp.2006.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
100
|
Mejia JS, Bishop JV, Titus RG. Is it possible to develop pan-arthropod vaccines? Trends Parasitol 2006; 22:367-70. [PMID: 16784890 DOI: 10.1016/j.pt.2006.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 05/08/2006] [Accepted: 06/01/2006] [Indexed: 11/19/2022]
Abstract
Hematophagous arthropods that transmit the etiological agents of arthropod-borne diseases have become the focus of anti-vector vaccines, targeted mainly at components of their saliva and midgut. These efforts have been directed mostly towards developing species-specific vaccines. An alternative is to target cross-reactive epitopes that have been preserved during evolution of the arthropods. The N- and O-linked glycans that are attached to arthropod glycoproteins are one of the potential targets of this pan-arthropod vaccine approach. Here, we discuss how genetically modified Drosophila melanogaster cells can be used to synthesize and to deliver these arthropod glycans to vertebrate hosts.
Collapse
Affiliation(s)
- J Santiago Mejia
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|