51
|
Valenzuela I, Linés M, Martínez-Sáez E, Cueto-González A, Castillo F, Tizzano E. Clinical study of a patient with congenital myotonic dystrophy reveals chylothorax as neonatal presentation of the disease. CASE REPORTS IN PERINATAL MEDICINE 2018. [DOI: 10.1515/crpm-2017-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Congenital myotonic dystrophy type 1 presents with severe generalized weakness, hypotonia and respiratory involvement after birth with high mortality and poor outcome among survivors. We report on a patient that prenatally showed polyhydramnios and arthrogypotic attitude. Postnatal examination was compatible with the diagnosis of congenital myopathy. A rare finding associated with the patient was chylothorax. Genetic testing confirmed the diagnosis of myotonic dystrophy. Few prenatal and neonatal cases of congenital myotonic dystrophy associated with chylothorax have been reported in the literature. We reviewed all cases reported to date showing congenital myopathic weakness in association with chylothorax to delineate the clinical manifestations that allow an early diagnosis and management of this syndrome. Possible mechanisms to explain the association between myopathy and chylothorax are also discussed.
Collapse
Affiliation(s)
- Irene Valenzuela
- Department of Clinical and Molecular Genetics and Rare Disease Unit , Hospital Vall d’Hebron , Passeig Vall d’Hebrón 119-129 , 08035 Barcelona , Spain
| | - Marcos Linés
- Neonatal Intensive Care Unit, Hospital Vall d’Hebron , Passeig Vall d’Hebrón 119-129 , 08035 Barcelona , Spain
| | - Elena Martínez-Sáez
- Anatomo-Pathology Department , Hospital Vall d’Hebron , Passeig Vall d’Hebrón 119-129 , 08035 Barcelona , Spain
| | - Ana Cueto-González
- Department of Clinical and Molecular Genetics and Rare Disease Unit , Hospital Vall d’Hebron , Passeig Vall d’Hebrón 119-129 , 08035 Barcelona , Spain
| | - Félix Castillo
- Neonatal Intensive Care Unit, Hospital Vall d’Hebron , Passeig Vall d’Hebrón 119-129 , 08035 Barcelona , Spain
| | - Eduardo Tizzano
- Department of Clinical and Molecular Genetics and Rare Disease Unit , Hospital Vall d’Hebron , Passeig Vall d’Hebrón 119-129, 08035 Barcelona Hospital Vall d’Hebron , Barcelona , Spain , Tel.: +34934893141
| |
Collapse
|
52
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
53
|
Management of anesthesia in a pediatric patient with myotonic dystrophy type 1. Case report. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2018. [DOI: 10.1097/cj9.0000000000000013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
54
|
Thomas JD, Sznajder ŁJ, Bardhi O, Aslam FN, Anastasiadis ZP, Scotti MM, Nishino I, Nakamori M, Wang ET, Swanson MS. Disrupted prenatal RNA processing and myogenesis in congenital myotonic dystrophy. Genes Dev 2017; 31:1122-1133. [PMID: 28698297 PMCID: PMC5538435 DOI: 10.1101/gad.300590.117] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
Abstract
Thomas et al. demonstrate that RNA misprocessing is a major pathogenic factor in congenital myotonic dystrophy and provide novel mouse models to further examine roles for cotranscriptional/post-transcriptional gene regulation during tissue development. Myotonic dystrophy type 1 (DM1) is a CTG microsatellite expansion (CTGexp) disorder caused by expression of CUGexp RNAs. These mutant RNAs alter the activities of RNA processing factors, including MBNL proteins, leading to re-expression of fetal isoforms in adult tissues and DM1 pathology. While this pathogenesis model accounts for adult-onset disease, the molecular basis of congenital DM (CDM) is unknown. Here, we test the hypothesis that disruption of developmentally regulated RNA alternative processing pathways contributes to CDM disease. We identify prominent alternative splicing and polyadenylation abnormalities in infant CDM muscle, and, although most are also misregulated in adult-onset DM1, dysregulation is significantly more severe in CDM. Furthermore, analysis of alternative splicing during human myogenesis reveals that CDM-relevant exons undergo prenatal RNA isoform transitions and are predicted to be disrupted by CUGexp-associated mechanisms in utero. To test this possibility and the contribution of MBNLs to CDM pathogenesis, we generated mouse Mbnl double (Mbnl1; Mbnl2) and triple (Mbnl1; Mbnl2; Mbnl3) muscle-specific knockout models that recapitulate the congenital myopathy, gene expression, and spliceopathy defects characteristic of CDM. This study demonstrates that RNA misprocessing is a major pathogenic factor in CDM and provides novel mouse models to further examine roles for cotranscriptional/post-transcriptional gene regulation during development.
Collapse
Affiliation(s)
- James D Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Olgert Bardhi
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Faaiq N Aslam
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Zacharias P Anastasiadis
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
55
|
Lee O, Porteous M. Genetic testing and reproductive choice in neurological disorders. Pract Neurol 2017; 17:275-281. [PMID: 28512206 DOI: 10.1136/practneurol-2017-001619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2017] [Indexed: 11/04/2022]
Abstract
Genetic testing is increasingly important for investigating suspected inherited neurological conditions. A genetic diagnosis can have a huge impact on patients and also their families. It is important for neurologists to appreciate the presymptomatic and prenatal testing options available to patients and their at-risk relatives once a genetic disorder is diagnosed. Asymptomatic family members can experience considerable psychological distress from the knowledge that they might have inherited a neurodegenerative condition. They may also be concerned about the risk of their children inheriting the condition. Information on reproductive options can provide hope and reassurance. This paper reviews the principles of genetic testing in neurological practice, and how they can be applied in prenatal and preimplantation genetic diagnosis. We explain the basis for direct and exclusion testing, use case examples to illustrate the process by which families are counselled and discuss the ethical implications of reproductive technologies.
Collapse
Affiliation(s)
- Omay Lee
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, EH4 2XU, Edinburgh, Scotland, UK
| | - Mary Porteous
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, EH4 2XU, Edinburgh, Scotland, UK.,South East Scotland Genetic Service, Western General Hospital, Crewe Road South, EH4 2XU, Edinburgh, Scotland, UK
| |
Collapse
|
56
|
Pucillo EM, Dibella DL, Hung M, Bounsanga J, Crockett B, Dixon M, Butterfield RJ, Campbell C, Johnson NE. Physical function and mobility in children with congenital myotonic dystrophy. Muscle Nerve 2017; 56:224-229. [PMID: 27859360 PMCID: PMC5436951 DOI: 10.1002/mus.25482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Congenital myotonic dystrophy (CDM) occurs when symptoms of myotonic dystrophy present at birth. In this study we evaluated the relationship between physical function, muscle mass, and age to provide an assessment of the disease and help prepare for therapeutic trials. METHODS CDM participants performed timed functional tests (TFTs), the first 2 minutes of 6-minute walk tests (2/6MWTs), and myometry tests, and also performed dual-energy X-ray absorption (DEXA) scans. Healthy controls (HCs) performed TFTs, 6MWTs, and myometry. RESULTS Thirty-seven children with CDM and 27 HCs (age range 3-13 years) participated in the study. There were significant differences in the 10-meter walk (11.3 seconds in CDM vs. 6.8 seconds in HC) and 2MWT (91 meters in CDM vs. 193 meters in HCs). DEXA lean mass of the right arm correlated with grip strength (r = 0.91), and lean mass of the right leg correlated with 6MWT (r = 0.62). CONCLUSION Children with CDM have significant limitations in strength and mobility. The tests performed were reliable, and lean muscle mass may serve as a useful biomarker. Muscle Nerve 56: 224-229, 2017.
Collapse
Affiliation(s)
- Evan M Pucillo
- Eccles Institute of Human Genetics, Department of Neurology, University of Utah School of Medicine, 15N 2030 East, Salt Lake City, Utah, 84112, USA
| | - Deanna L Dibella
- Eccles Institute of Human Genetics, Department of Neurology, University of Utah School of Medicine, 15N 2030 East, Salt Lake City, Utah, 84112, USA
| | - Man Hung
- Department of Orthopedics, University of Utah, Salt Lake City, Utah, USA.,Division of Public Health, University of Utah, Salt Lake City, Utah, USA
| | - Jerry Bounsanga
- Department of Orthopedics, University of Utah, Salt Lake City, Utah, USA
| | - Becky Crockett
- Eccles Institute of Human Genetics, Department of Neurology, University of Utah School of Medicine, 15N 2030 East, Salt Lake City, Utah, 84112, USA
| | - Melissa Dixon
- Eccles Institute of Human Genetics, Department of Neurology, University of Utah School of Medicine, 15N 2030 East, Salt Lake City, Utah, 84112, USA
| | | | - Craig Campbell
- Department of Pediatrics, Clinical Neurological Sciences and Epidemiology, Western University, London, Ontario, Canada
| | - Nicholas E Johnson
- Eccles Institute of Human Genetics, Department of Neurology, University of Utah School of Medicine, 15N 2030 East, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
57
|
Abstract
Muscular dystrophy is a group of inherited myopathies characterised by progressive skeletal muscle wasting, including of the respiratory muscles. Respiratory failure, i.e. when the respiratory system fails in its gas exchange functions, is a common feature in muscular dystrophy, being the main cause of death, and it is a consequence of lung failure, pump failure or a combination of the two. The former is due to recurrent aspiration, the latter to progressive weakness of respiratory muscles and an increase in the load against which they must contract. In fact, both the resistive and elastic components of the work of breathing increase due to airway obstruction and chest wall and lung stiffening, respectively. The respiratory disturbances in muscular dystrophy are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. They can be present at different rates according to the type of muscular dystrophy and its progression, leading to different onset of each symptom, prognosis and degree of respiratory involvement. KEY POINTS A common feature of muscular dystrophy is respiratory failure, i.e. the inability of the respiratory system to provide proper oxygenation and carbon dioxide elimination.In the lung, respiratory failure is caused by recurrent aspiration, and leads to hypoxaemia and hypercarbia.Ventilatory failure in muscular dystrophy is caused by increased respiratory load and respiratory muscles weakness.Respiratory load increases in muscular dystrophy because scoliosis makes chest wall compliance decrease, atelectasis and fibrosis make lung compliance decrease, and airway obstruction makes airway resistance increase.The consequences of respiratory pump failure are restrictive pulmonary function, hypoventilation, altered thoracoabdominal pattern, hypercapnia, dyspnoea, impaired regulation of breathing, inefficient cough and sleep disordered breathing. EDUCATIONAL AIMS To understand the mechanisms leading to respiratory disturbances in patients with muscular dystrophy.To understand the impact of respiratory disturbances in patients with muscular dystrophy.To provide a brief description of the main forms of muscular dystrophy with their respiratory implications.
Collapse
Affiliation(s)
- Antonella Lo Mauro
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| |
Collapse
|
58
|
Medication adherence in patients with myotonic dystrophy and facioscapulohumeral muscular dystrophy. J Neurol 2016; 263:2528-2537. [PMID: 27734165 DOI: 10.1007/s00415-016-8300-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Myotonic dystrophy (DM) and facioscapulohumeral muscular dystrophy (FSHD) are the two most common adult muscular dystrophies and have progressive and often disabling manifestations. Higher levels of medication adherence lead to better health outcomes, especially important to patients with DM and FSHD because of their multisystem manifestations and complexity of care. However, medication adherence has not previously been studied in a large cohort of DM type 1 (DM1), DM type 2 (DM2), and FSHD patients. The purpose of our study was to survey medication adherence and disease manifestations in patients enrolled in the NIH-supported National DM and FSHD Registry. The study was completed by 110 DM1, 49 DM2, and 193 FSHD patients. Notable comorbidities were hypertension in FSHD (44 %) and DM2 (37 %), gastroesophageal reflux disease in DM1 (24 %) and DM2 (31 %) and arrhythmias (29 %) and thyroid disease (20 %) in DM1. Each group reported high levels of adherence based on regimen complexity, medication costs, health literacy, side effect profile, and their beliefs about treatment. Only dysphagia in DM1 was reported to significantly impact medication adherence. Approximately 35 % of study patients reported polypharmacy (taking 6 or more medications). Of the patients with polypharmacy, the DM1 cohort was significantly younger (mean 55.0 years) compared to DM2 (59.0 years) and FSHD (63.2 years), and had shorter disease duration (mean 26 years) compared to FSHD (26.8 years) and DM2 (34.8 years). Future research is needed to assess techniques to ease pill swallowing in DM1 and to monitor polypharmacy and potential drug interactions in DM and FSHD.
Collapse
|
59
|
De Antonio M, Dogan C, Hamroun D, Mati M, Zerrouki S, Eymard B, Katsahian S, Bassez G. Unravelling the myotonic dystrophy type 1 clinical spectrum: A systematic registry-based study with implications for disease classification. Rev Neurol (Paris) 2016; 172:572-580. [DOI: 10.1016/j.neurol.2016.08.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/15/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
60
|
|
61
|
Ravenscroft G, Davis MR, Lamont P, Forrest A, Laing NG. New era in genetics of early-onset muscle disease: Breakthroughs and challenges. Semin Cell Dev Biol 2016; 64:160-170. [PMID: 27519468 DOI: 10.1016/j.semcdb.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Early-onset muscle disease includes three major entities that present generally at or before birth: congenital myopathies, congenital muscular dystrophies and congenital myasthenic syndromes. Almost exclusively there is weakness and hypotonia, although cases manifesting hypertonia are increasingly being recognised. These diseases display a wide phenotypic and genetic heterogeneity, with the uptake of next generation sequencing resulting in an unparalleled extension of the phenotype-genotype correlations and "diagnosis by sequencing" due to unbiased sequencing. Perhaps now more than ever, detailed clinical evaluations are necessary to guide the genetic diagnosis; with arrival at a molecular diagnosis frequently occurring following dialogue between the molecular geneticist, the referring clinician and the pathologist. There is an ever-increasing blurring of the boundaries between the congenital myopathies, dystrophies and myasthenic syndromes. In addition, many novel disease genes have been described and new insights have been gained into skeletal muscle development and function. Despite the advances made, a significant percentage of patients remain without a molecular diagnosis, suggesting that there are many more human disease genes and mechanisms to identify. It is now technically- and clinically-feasible to perform next generation sequencing for severe diseases on a population-wide scale, such that preconception-carrier screening can occur. Newborn screening for selected early-onset muscle diseases is also technically and ethically-achievable, with benefits to the patient and family from early management of these diseases and should also be implemented. The need for world-wide Reference Centres to meticulously curate polymorphisms and mutations within a particular gene is becoming increasingly apparent, particularly for interpretation of variants in the large genes which cause early-onset myopathies: NEB, RYR1 and TTN. Functional validation of candidate disease variants is crucial for accurate interpretation of next generation sequencing and appropriate genetic counseling. Many published "pathogenic" variants are too frequent in control populations and are thus likely rare polymorphisms. Mechanisms need to be put in place to systematically update the classification of variants such that accurate interpretation of variants occurs. In this review, we highlight the recent advances made and the challenges ahead for the molecular diagnosis of early-onset muscle diseases.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Australia
| | - Phillipa Lamont
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia; Neurogenetic unit, Dept of Neurology, Royal Perth Hospital and The Perth Children's Hospital, Western Australia, Australia
| | - Alistair Forrest
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research and the Centre for Medical Research, University of Western Australia, Nedlands, Australia; Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Australia.
| |
Collapse
|
62
|
Musova Z, Hancarova M, Havlovicova M, Pourova R, Hrdlicka M, Kraus J, Trkova M, Stejskal D, Sedlacek Z. Expanded DMPK repeats in dizygotic twins referred for diagnosis of autism versus absence of expanded DMPK repeats at screening of 330 children with autism. Neuropsychiatr Dis Treat 2016; 12:2367-2372. [PMID: 27695335 PMCID: PMC5034902 DOI: 10.2147/ndt.s113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) belongs to the broad spectrum of genetic disorders associated with autism spectrum disorders (ASD). ASD were reported predominantly in congenital and early childhood forms of DM1. We describe dizygotic twin boys with ASD who were referred for routine laboratory genetic testing and in whom karyotyping, FMR1 gene testing, and single nucleotide polymorphism array analysis yielded negative results. The father of the boys was later diagnosed with suspected DM1, and testing revealed characteristic DMPK gene expansions in his genome as well as in the genomes of both twins and their elder brother, who also suffered from ASD. In accord with previous reports on childhood forms of DM1, our patients showed prominent neuropsychiatric phenotypes characterized especially by hypotonia, developmental and language delay, emotional and affective lability, lowered adaptability, and social withdrawal. The experience with this family and multiple literature reports of ASD in DM1 on the one side but the lack of literature data on the frequency of DMPK gene expansions in ASD patients on the other side prompted us to screen the DMPK gene in a sample of 330 patients with ASD who were first seen by a geneticist before they were 10 years of age, before the muscular weakness, which may signal DM1, usually becomes obvious. The absence of any DMPK gene expansions in this cohort indicates that targeted DMPK gene testing can be recommended only in ASD patients with specific symptoms or family history suggestive of DM1.
Collapse
Affiliation(s)
| | | | | | | | | | - Josef Kraus
- Department of Child Neurology, Charles University 2nd Faculty of Medicine and University Hospital Motol
| | - Marie Trkova
- Gennet, Centre for Fetal Medicine, Prague, Czech Republic
| | - David Stejskal
- Gennet, Centre for Fetal Medicine, Prague, Czech Republic
| | | |
Collapse
|