51
|
Lundy SD, Gantz JA, Pagan CM, Filice D, Laflamme MA. Pluripotent stem cell derived cardiomyocytes for cardiac repair. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2014; 16:319. [PMID: 24838687 DOI: 10.1007/s11936-014-0319-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OPINION STATEMENT The adult mammalian heart has limited capacity for regeneration, and any major injury such as a myocardial infarction results in the permanent loss of up to 1 billion cardiomyocytes. The field of cardiac cell therapy aims to replace these lost contractile units with de novo cardiomyocytes to restore lost systolic function and prevent progression to heart failure. Arguably, the ideal cell for this application is the human cardiomyocyte itself, which can electromechanically couple with host myocardium and contribute active systolic force. Pluripotent stem cells from human embryonic or induced pluripotent lineages are attractive sources for cardiomyocytes, and preclinical investigation of these cells is in progress. Recent work has focused on the efficient generation and purification of cardiomyocytes, tissue engineering efforts, and examining the consequences of cell transplantation from mechanical, vascular, and electrical standpoints. Here we discuss historical and contemporary aspects of pluripotent stem cell-based cardiac cell therapy, with an emphasis on recent preclinical studies with translational goals.
Collapse
Affiliation(s)
- Scott D Lundy
- Department of Bioengineering, University of Washington, Box 358050, 850 Republican St., Seattle, WA, 98195, USA
| | | | | | | | | |
Collapse
|
52
|
Martins AM, Vunjak-Novakovic G, Reis RL. The current status of iPS cells in cardiac research and their potential for tissue engineering and regenerative medicine. Stem Cell Rev Rep 2014; 10:177-90. [PMID: 24425421 PMCID: PMC4476262 DOI: 10.1007/s12015-013-9487-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent availability of human cardiomyocytes derived from induced pluripotent stem (iPS) cells opens new opportunities to build in vitro models of cardiac disease, screening for new drugs, and patient-specific cardiac therapy. Notably, the use of iPS cells enables studies in the wide pool of genotypes and phenotypes. We describe progress in reprogramming of induced pluripotent stem (iPS) cells towards the cardiac lineage/differentiation. The focus is on challenges of cardiac disease modeling using iPS cells and their potential to produce safe, effective and affordable therapies/applications with the emphasis of cardiac tissue engineering. We also discuss implications of human iPS cells to biological research and some of the future needs.
Collapse
Affiliation(s)
- Ana M. Martins
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal. ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal. Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | | | - Rui L. Reis
- 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal. ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal. Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
| |
Collapse
|
53
|
Budniatzky I, Gepstein L. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming. Stem Cells Transl Med 2014; 3:448-57. [PMID: 24591731 DOI: 10.5966/sctm.2013-0163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Myocardial cell-replacement therapies are emerging as novel therapeutic paradigms for myocardial repair but are hampered by the lack of sources of autologous human cardiomyocytes. The recent advances in stem cell biology and in transcription factor-based reprogramming strategies may provide exciting solutions to this problem. In the current review, we describe the different reprogramming strategies that can give rise to cardiomyocytes for regenerative medicine purposes. Initially, we describe induced pluripotent stem cell technology, a method by which adult somatic cells can be reprogrammed to yield pluripotent stem cells that could later be coaxed ex vivo to differentiate into cardiomyocytes. The generated induced pluripotent stem cell-derived cardiomyocytes could then be used for myocardial cell transplantation and tissue engineering strategies. We also describe the more recent direct reprogramming approaches that aim to directly convert the phenotype of one mature cell type (fibroblast) to another (cardiomyocyte) without going through a pluripotent intermediate cell type. The advantages and shortcomings of each strategy for cardiac regeneration are discussed, along with the hurdles that need to be overcome on the road to clinical translation.
Collapse
Affiliation(s)
- Inbar Budniatzky
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine and Cardiology Department, Rambam Medical Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
54
|
Association of telomere shortening in myocardium with heart weight gain and cause of death. Sci Rep 2014; 3:2401. [PMID: 23929129 PMCID: PMC3738945 DOI: 10.1038/srep02401] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/24/2013] [Indexed: 02/07/2023] Open
Abstract
We attempted to clarify myocardial telomere dynamics using samples from 530 autopsied patients using Southern blot analysis. Overall regression analysis demonstrated yearly telomere reduction rate of 20 base pairs in the myocardium. There was a significant correlation between myocardial telomere and aging. Moreover, regression analyses of telomere and heart weight yielded a telomere reduction rate of 3 base pairs per gram, and a small but significant correlation between telomere reduction and heart weight was demonstrated. Hearts of autopsied patients who had died of heart disease were significantly heavier than those of patients who had died of cancer or other diseases, and heart disease was significantly more correlated with myocardial telomere shortening than cancer or other diseases. Here we show that telomeres in myocardial tissue become shortened with aging and heart disease, and that heart disease was associated with a gain of heart weight and telomere shortening in the myocardium.
Collapse
|
56
|
Liao SY, Tse HF. Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons? Stem Cell Res Ther 2013; 4:151. [PMID: 24476362 PMCID: PMC4056686 DOI: 10.1186/scrt381] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heart failure after myocardial infarction is the leading cause of mortality and morbidity worldwide. Existing medical and interventional therapies can only reduce the loss of cardiomyocytes during myocardial infarction but are unable to replenish the permanent loss of cardiomyocytes after the insult, which contributes to progressive pathological left ventricular remodeling and progressive heart failure. As a result, cell-based therapies using multipotent (adult) stem cells and pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells) have been explored as potential therapeutic approaches to restore cardiac function in heart failure. Nevertheless, the optimal cell type with the best therapeutic efficacy and safety for heart regeneration is still unknown. In this review, the potential pros and cons of different types of multipotent (adult) stem cells and pluripotent stem cells that have been investigated in preclinical and clinical studies are reviewed, and the future perspective of stem cell-based therapy for heart regeneration is discussed.
Collapse
|
57
|
Present and future perspectives on cell sheet-based myocardial regeneration therapy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:583912. [PMID: 24369013 PMCID: PMC3867859 DOI: 10.1155/2013/583912] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/28/2013] [Indexed: 12/28/2022]
Abstract
Heart failure is a life-threatening disorder worldwide and many papers reported about myocardial regeneration through surgical method induced by LVAD, cellular cardiomyoplasty (cell injection), tissue cardiomyoplasty (bioengineered cardiac graft implantation), in situ engineering (scaffold implantation), and LV restrictive devices. Some of these innovated technologies have been introduced to clinical settings. Especially, cell sheet technology has been developed and has already been introduced to clinical situation. As the first step in development of cell sheet, neonatal cardiomyocyte sheets were established and these sheets showed electrical and histological homogeneous heart-like tissue with contractile ability in vitro and worked as functional heart muscle which has electrical communication with recipient myocardium in small animal heart failure model. Next, as a preclinical study, noncontractile myoblast sheets have been established and these sheets have proved to secrete multiple cytokines such as HGF or VEGF in vitro study. Moreover, in vivo studies using large and small animal heart failure model have been done and myoblast sheets could improve diastolic and systolic performance by cytokine paracrine effect such as angiogenesis, antifibrosis, and stem cell migration. Recently evidenced by these preclinical results, clinical trials using autologous myoblast sheets have been started in ICM and DCM patients and some patients showed LV reverse remodelling, improved symptoms, and exercise tolerance. Recent works demonstrated that iPS cell-derived cardiomyocyte sheet were developed and showed electrical and microstructural homogeneity of heart tissue in vitro, leading to the establishment of proof of concept in small and large animal heart failure model.
Collapse
|
59
|
Liu YY, Li LF, Yang CT, Lu KH, Huang CC, Kao KC, Chiou SH. Suppressing NF-κB and NKRF Pathways by Induced Pluripotent Stem Cell Therapy in Mice with Ventilator-Induced Lung Injury. PLoS One 2013; 8:e66760. [PMID: 23840526 PMCID: PMC3694116 DOI: 10.1371/journal.pone.0066760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/12/2013] [Indexed: 01/14/2023] Open
Abstract
Background High-tidal-volume mechanical ventilation used in patients with acute lung injury (ALI) can induce the release of inflammatory cytokines, as macrophage inflammatory protein-2 (MIP-2), recruitment of neutrophils, and disruption of alveolar epithelial and endothelial barriers. Induced pluripotent stem cells (iPSCs) have been shown to improve ALI in mice, but the mechanisms regulating the interactions between mechanical ventilation and iPSCs are not fully elucidated. Nuclear factor kappa B (NF-κB) and NF-κB repressing factor (NKRF) have been proposed to modulate the neutrophil activation involved in ALI. Thus, we hypothesized intravenous injection of iPSCs or iPSC-derived conditioned medium (iPSC-CM) would decrease high-tidal-volume ventilation-induced neutrophil infiltration, oxidative stress, and MIP-2 production through NF-κB/NKRF pathways. Methods Male C57BL/6 mice, aged between 6 and 8 weeks, weighing between 20 and 25 g, were exposed to high-tidal-volume (30 ml/kg) mechanical ventilation with room air for 1 to 4 h after 5×107 cells/kg mouse iPSCs or iPSC-CM administration. Nonventilated mice were used as control groups. Results High-tidal-volume mechanical ventilation induced the increases of integration of iPSCs into the injured lungs of mice, microvascular permeability, neutrophil infiltration, malondialdehyde, MIP-2 production, and NF-κB and NKRF activation. Lung injury indices including inflammation, lung edema, ultrastructure pathologic changes and functional gas exchange impairment induced by mechanical ventilation were attenuated with administration of iPSCs or iPSC-CM, which was mimicked by pharmacological inhibition of NF-κB activity with SN50 or NKRF expression with NKRF short interfering RNA. Conclusions Our data suggest that iPSC-based therapy attenuates high-tidal-volume mechanical ventilation-induced lung injury, at least partly, through inhibition of NF-κB/NKRF pathways. Notably, the conditioned medium of iPSCs revealed beneficial effects equal to those of iPSCs.
Collapse
Affiliation(s)
- Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-Fu Li
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail: (L-FL); (S-HC)
| | - Cheng-Ta Yang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kai-Hsi Lu
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Medical Research and Education, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Chung-Chi Huang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chin Kao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (L-FL); (S-HC)
| |
Collapse
|
60
|
In vitro and in vivo delivery of genes and proteins using the bacteriophage T4 DNA packaging machine. Proc Natl Acad Sci U S A 2013. [PMID: 23530211 DOI: 10.1073/pnas] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The bacteriophage T4 DNA packaging machine consists of a molecular motor assembled at the portal vertex of an icosahedral head. The ATP-powered motor packages the 56-µm-long, 170-kb viral genome into 120 nm × 86 nm head to near crystalline density. We engineered this machine to deliver genes and proteins into mammalian cells. DNA molecules were translocated into emptied phage head and its outer surface was decorated with proteins fused to outer capsid proteins, highly antigenic outer capsid protein (Hoc) and small outer capsid protein (Soc). T4 nanoparticles carrying reporter genes, vaccine candidates, functional enzymes, and targeting ligands were efficiently delivered into cells or targeted to antigen-presenting dendritic cells, and the delivered genes were abundantly expressed in vitro and in vivo. Mice delivered with a single dose of F1-V plague vaccine containing both gene and protein in the T4 head elicited robust antibody and cellular immune responses. This "progene delivery" approach might lead to new types of vaccines and genetic therapies.
Collapse
|
61
|
In vitro and in vivo delivery of genes and proteins using the bacteriophage T4 DNA packaging machine. Proc Natl Acad Sci U S A 2013; 110:5846-51. [PMID: 23530211 DOI: 10.1073/pnas.1300867110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The bacteriophage T4 DNA packaging machine consists of a molecular motor assembled at the portal vertex of an icosahedral head. The ATP-powered motor packages the 56-µm-long, 170-kb viral genome into 120 nm × 86 nm head to near crystalline density. We engineered this machine to deliver genes and proteins into mammalian cells. DNA molecules were translocated into emptied phage head and its outer surface was decorated with proteins fused to outer capsid proteins, highly antigenic outer capsid protein (Hoc) and small outer capsid protein (Soc). T4 nanoparticles carrying reporter genes, vaccine candidates, functional enzymes, and targeting ligands were efficiently delivered into cells or targeted to antigen-presenting dendritic cells, and the delivered genes were abundantly expressed in vitro and in vivo. Mice delivered with a single dose of F1-V plague vaccine containing both gene and protein in the T4 head elicited robust antibody and cellular immune responses. This "progene delivery" approach might lead to new types of vaccines and genetic therapies.
Collapse
|