51
|
Hu X, Yasuda T, Yasuda-Yosihara N, Yonemura A, Umemoto T, Nakachi Y, Yamashita K, Semba T, Arima K, Uchihara T, Nishimura A, Bu L, Fu L, Wei F, Zhang J, Tong Y, Wang H, Iwamoto K, Fukuda T, Nakagawa H, Taniguchi K, Miyamoto Y, Baba H, Ishimoto T. Downregulation of 15-PGDH enhances MASH-HCC development via fatty acid-induced T-cell exhaustion. JHEP Rep 2023; 5:100892. [PMID: 37942226 PMCID: PMC10628853 DOI: 10.1016/j.jhepr.2023.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 11/10/2023] Open
Abstract
Background & Aims Hepatocellular carcinoma (HCC) mainly develops from chronic hepatitis. Metabolic dysfunction-associated steatohepatitis (MASH) has gradually become the main pathogenic factor for HCC given the rising incidence of obesity and metabolic diseases. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) degrades prostaglandin 2 (PGE2), which is known to exacerbate inflammatory responses. However, the role of PGE2 accumulation caused by 15-PGDH downregulation in the development of MASH-HCC has not been determined. Methods We utilised the steric animal model to establish a MASH-HCC model using wild-type and 15-Pgdh+/- mice to assess the significance of PGE2 accumulation in the development of MASH-HCC. Additionally, we analysed clinical samples obtained from patients with MASH-HCC. Results PGE2 accumulation in the tumour microenvironment induced the production of reactive oxygen species in macrophages and the expression of cell growth-related genes and antiapoptotic genes. Conversely, the downregulation of fatty acid metabolism in the background liver promoted lipid accumulation in the tumour microenvironment, causing a decrease in mitochondrial membrane potential and CD8+ T-cell exhaustion, which led to enhanced development of MASH-HCC. Conclusions 15-PGDH downregulation inactivates immune surveillance by promoting the proliferation of exhausted effector T cells, which enhances hepatocyte survival and proliferation and leads to the development of MASH-HCC. Impact and implications The suppression of PGE2-related inflammation and subsequent lipid accumulation leads to a reduction in the severity of MASH and inhibition of subsequent progression toward MASH-HCC.
Collapse
Affiliation(s)
- Xichen Hu
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Noriko Yasuda-Yosihara
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsuko Yonemura
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Terumasa Umemoto
- Hematopoietic Stem Cell Engineering, International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Yamashita
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Semba
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kota Arima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoyuki Uchihara
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiho Nishimura
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Luke Bu
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Lingfeng Fu
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Feng Wei
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Zhang
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yilin Tong
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Huaitao Wang
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Mie University, Mie, Japan
| | - Koji Taniguchi
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
52
|
Burnham AJ, Foppiani EM, Goss KL, Jang-Milligan F, Kamalakar A, Bradley H, Goudy SL, Trochez CM, Dominici M, Daley-Bauer L, Gibson G, Horwitz EM. Differential response of mesenchymal stromal cells (MSCs) to type 1 ex vivo cytokine priming: implications for MSC therapy. Cytotherapy 2023; 25:1277-1284. [PMID: 37815775 DOI: 10.1016/j.jcyt.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are polymorphic, adherent cells with the capability to stimulate tissue regeneration and modulate immunity. MSCs have been broadly investigated for potential therapeutic applications, particularly immunomodulatory properties, wound healing and tissue regeneration. The exact physiologic role of MSCs, however, remains poorly understood, and this gap in knowledge significantly impedes the rational development of therapeutic cells. Here, we considered interferon γ (IFN-γ) and tumor necrosis factor alpha (TNF-α), two cytokines likely encountered physiologically and commonly used in cell manufacturing. For comparison, we studied interleukin-10 (IL-10) (anti-inflammatory) and interleukin-4 (IL-4) (type 2 cytokine). METHODS We directly assessed the effects of these cytokines on bone marrow MSCs by comparing RNA Seq transcriptional profiles. Western blotting and flow cytometry were also used to evaluate effects of cytokine priming. RESULTS The type 1 cytokines (IFN-γ and TNF-α) induced striking changes in gene expression and remarkably different profiles from one another. Importantly, priming MSCs with either of these cytokines did not increase variability among multiple donors beyond what is intrinsic to non-primed MSCs from different donors. IFN-γ-primed MSCs expressed IDO1 and chemokines that recruit activated T cells. In contrast, TNF-α-primed MSCs expressed genes in alternate pathways, namely PGE2 and matrix metalloproteinases synthesis, and chemokines that recruit neutrophils. IL-10 and IL-4 priming had little to no effect. CONCLUSIONS Our data suggest that IFN-γ-primed MSCs may be a more efficacious immunosuppressive therapy aimed at diseases that target T cells (ie, graft-versus-host disease) compared with TNF-α-primed or non-primed MSCs, which may be better suited for therapies in other disease settings. These results contribute to our understanding of MSC bioactivity and suggest rational ex vivo cytokine priming approaches for MSC manufacturing and therapeutic applications.
Collapse
Affiliation(s)
- Andre J Burnham
- Department of Pediatrics, Marcus Center for Pediatric Cellular Therapy, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Elisabetta M Foppiani
- Department of Pediatrics, Marcus Center for Pediatric Cellular Therapy, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kyndal L Goss
- Department of Pediatrics, Marcus Center for Pediatric Cellular Therapy, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Biologic and Biomedical Sciences, Laney Graduate School, Emory University Atlanta, Georgia, USA
| | - Fraser Jang-Milligan
- Department of Pediatrics, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Archana Kamalakar
- Department of Otolaryngology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Heath Bradley
- Department of Otolaryngology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven L Goudy
- Department of Otolaryngology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Lisa Daley-Bauer
- Department of Pediatrics, Marcus Center for Pediatric Cellular Therapy, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Edwin M Horwitz
- Department of Pediatrics, Marcus Center for Pediatric Cellular Therapy, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA; Division of Biologic and Biomedical Sciences, Laney Graduate School, Emory University Atlanta, Georgia, USA.
| |
Collapse
|
53
|
Shahzadi U, Zeeshan R, Tabassum S, Khadim H, Arshad M, Ansari AA, Safi SZ, ul Haq RI, Asif A. Physico‐chemical properties and in‐vitro biocompatibility of thermo‐sensitive hydrogel developed with enhanced antimicrobial activity for soft tissue engineering. POLYM ADVAN TECHNOL 2023; 34:3870-3884. [DOI: 10.1002/pat.6188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/02/2023] [Indexed: 10/07/2024]
Abstract
AbstractSmart materials such as thermo‐sensitive in situ forming hydrogels can be effective agents in drug delivery and tissue regeneration with minimal invasion. Injection method would avoid complex surgical procedures facilitating rapid recovery process. In this research, we report the fabrication of an easy, reproducible thermo‐sensitive hydrogel constituting of chitosan (CHI), glycerol phosphate (GP) with variable quantity of ‐poly‐l‐lysine (PS). Fourier‐transform infrared spectra exhibited hydrogel formation where interactions between CHI and GP were seen. The gelation kinetics presented gelation time of 8 min at physiological temperature. The results indicated an increase in degradation rate with the passage of time. Contact angles measurements were employed to observe hydrophilic characteristics which were shown to be favorable. Mechanical strength was determined to be in the range of ~0.1–0.6 MPa for all the hydrogels. Due to intrinsic antibacterial features of CHI and PS, the hydrogels showed potent antibacterial activity against Escherichia coli, Staphylococcus aureus, and Methicillin‐resistant S. aureus (MR‐SA). Interestingly, PS's addition in the hydrogel resulted in potent antibacterial activity against clinically relevant MR‐SA. The hydrogels can hence be delivered to a specific target for localized treatments where the potential of inhibiting multidrug resistant strain is clinically relevant. Biocompatibility of the hydrogels was seen by an overall increase in cell viability of mouse fibroblast cells and scratch assay revealed favorable migration potential. Proangiogenic Vascular endothelial growth factor (VEGF)'s expression showed a gradual increase with increasing concentration of PS, whereas one composition demonstrated a slight increase in the expression of cytosolic prostaglandin E synthase (cPGES) as determined by RT‐PCR. Overall, an increase in PS content of the hydrogels resulted in simultaneously enhanced antibacterial efficiency and marked increase in fibroblast cell viability, hence, reiterating their potential as potent antibacterial agents that can be explored as wound healing agents. In conclusion, novel antibacterial thermo‐sensitive hydrogels were synthesized with a potential of regulating proangiogenic and tissue regeneration factors that highlight their role as wound healing agents.
Collapse
Affiliation(s)
- Uzma Shahzadi
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Rabia Zeeshan
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Sobia Tabassum
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Hina Khadim
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
- Department of Chemistry COMSATS University Islamabad Lahore Pakistan
| | - Muhammad Arshad
- Institute of Chemistry The Islamia University of Bahawalpur Pakistan
| | - Arsalan Ahmad Ansari
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| | | | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials COMSATS University Islamabad Lahore Pakistan
| |
Collapse
|
54
|
Kim J, Kim S, Lee SY, Jo BK, Oh JY, Kwon EJ, Kim KT, Adpaikar AA, Kim EJ, Jung HS, Kim HR, Roe JS, Hong CP, Kim JK, Koo BK, Cha HJ. Partial in vivo reprogramming enables injury-free intestinal regeneration via autonomous Ptgs1 induction. SCIENCE ADVANCES 2023; 9:eadi8454. [PMID: 38000027 PMCID: PMC10672161 DOI: 10.1126/sciadv.adi8454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Tissue regeneration after injury involves the dedifferentiation of somatic cells, a natural adaptive reprogramming that leads to the emergence of injury-responsive cells with fetal-like characteristics. However, there is no direct evidence that adaptive reprogramming involves a shared molecular mechanism with direct cellular reprogramming. Here, we induced dedifferentiation of intestinal epithelial cells using OSKM (Oct4, Sox2, Klf4, and c-Myc) in vivo. The OSKM-induced forced dedifferentiation showed similar molecular features of intestinal regeneration, including a transition from homeostatic cell types to injury-responsive-like cell types. These injury-responsive-like cells, sharing gene signatures of revival stem cells and atrophy-induced villus epithelial cells, actively assisted tissue regeneration following damage. In contrast to normal intestinal regeneration involving Ptgs2 induction, the OSKM promotes autonomous production of prostaglandin E2 via epithelial Ptgs1 expression. These results indicate prostaglandin synthesis is a common mechanism for intestinal regeneration but involves a different enzyme when partial reprogramming is applied to the intestinal epithelium.
Collapse
Affiliation(s)
- Jumee Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung-Yeon Lee
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Beom-Ki Jo
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Oh
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Keun-Tae Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Anish Ashok Adpaikar
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Jae-Seok Roe
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | - Chang Pyo Hong
- Theragen Bio Co., Ltd, Seongnam 13488, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Bon-Kyoung Koo
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
55
|
Ferreira AV, Alarcon-Barrera JC, Domínguez-Andrés J, Bulut Ö, Kilic G, Debisarun PA, Röring RJ, Özhan HN, Terschlüsen E, Ziogas A, Kostidis S, Mohammed Y, Matzaraki V, Renieris G, Giamarellos-Bourboulis EJ, Netea MG, Giera M. Fatty acid desaturation and lipoxygenase pathways support trained immunity. Nat Commun 2023; 14:7385. [PMID: 37968313 PMCID: PMC10651900 DOI: 10.1038/s41467-023-43315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
Infections and vaccines can induce enhanced long-term responses in innate immune cells, establishing an innate immunological memory termed trained immunity. Here, we show that monocytes with a trained immunity phenotype, due to exposure to the Bacillus Calmette-Guérin (BCG) vaccine, are characterized by an increased biosynthesis of different lipid mediators (LM) derived from long-chain polyunsaturated fatty acids (PUFA). Pharmacological and genetic approaches show that long-chain PUFA synthesis and lipoxygenase-derived LM are essential for the BCG-induced trained immunity responses of human monocytes. Furthermore, products of 12-lipoxygenase activity increase in monocytes of healthy individuals after BCG vaccination. Grasping the underscoring lipid metabolic pathways contributes to our understanding of trained immunity and may help to identify therapeutic tools and targets for the modulation of innate immune responses.
Collapse
Affiliation(s)
- Anaísa V Ferreira
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands.
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal.
| | | | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Özlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Priya A Debisarun
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Hatice N Özhan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Eva Terschlüsen
- Department of Medical Microbiology, Radboud University Medical Centre, 6500HB, Nijmegen, The Netherlands
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, the Netherlands
| | - Yassene Mohammed
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - George Renieris
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, the Netherlands.
| |
Collapse
|
56
|
Wu X, Du YZ. Nanodrug Delivery Strategies to Signaling Pathways in Alopecia. Mol Pharm 2023; 20:5396-5415. [PMID: 37817669 DOI: 10.1021/acs.molpharmaceut.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Over 50% of the global population suffers from hair loss. The mixed results in the treatment of hair loss reveal the limitations of conventional commercial topical drugs. One the one hand, the definite pathogenesis of hair loss is still an enigma. On the other hand, targeted drug carriers ensure the drug therapeutic effect and low side effects. This review highlights the organization and overview of nine crucial signaling pathways associated with hair loss, as well as the development of nanobased topical delivery systems loading the clinical drugs, which will fuel emerging hair loss treatment strategies.
Collapse
Affiliation(s)
- Xiaochuan Wu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong-Zhong Du
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
57
|
Zeng C, Liu J, Zheng X, Hu X, He Y. Prostaglandin and prostaglandin receptors: present and future promising therapeutic targets for pulmonary arterial hypertension. Respir Res 2023; 24:263. [PMID: 37915044 PMCID: PMC10619262 DOI: 10.1186/s12931-023-02559-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH), Group 1 pulmonary hypertension (PH), is a type of pulmonary vascular disease characterized by abnormal contraction and remodeling of the pulmonary arterioles, manifested by pulmonary vascular resistance (PVR) and increased pulmonary arterial pressure, eventually leading to right heart failure or even death. The mechanisms involved in this process include inflammation, vascular matrix remodeling, endothelial cell apoptosis and proliferation, vasoconstriction, vascular smooth muscle cell proliferation and hypertrophy. In this study, we review the mechanisms of action of prostaglandins and their receptors in PAH. MAIN BODY PAH-targeted therapies, such as endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, activators of soluble guanylate cyclase, prostacyclin, and prostacyclin analogs, improve PVR, mean pulmonary arterial pressure, and the six-minute walk distance, cardiac output and exercise capacity and are licensed for patients with PAH; however, they have not been shown to reduce mortality. Current treatments for PAH primarily focus on inhibiting excessive pulmonary vasoconstriction, however, vascular remodeling is recalcitrant to currently available therapies. Lung transplantation remains the definitive treatment for patients with PAH. Therefore, it is imperative to identify novel targets for improving pulmonary vascular remodeling in PAH. Studies have confirmed that prostaglandins and their receptors play important roles in the occurrence and development of PAH through vasoconstriction, vascular smooth muscle cell proliferation and migration, inflammation, and extracellular matrix remodeling. CONCLUSION Prostacyclin and related drugs have been used in the clinical treatment of PAH. Other prostaglandins also have the potential to treat PAH. This review provides ideas for the treatment of PAH and the discovery of new drug targets.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Jing Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xialei Zheng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xinqun Hu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Yuhu He
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
58
|
Liu D, Tang F, Zhang L, Zhang JN, Zhao XL, Xu LY, Peng C, Ao H. Alpinia katsumadai Hayata Volatile Oil Is Effective in Treating 5-Fluorouracil-Induced Mucositis by Regulating Gut Microbiota and Modulating the GC/GR Pathway and the mPGES-1/PGE2/EP4 Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15156-15169. [PMID: 37800952 DOI: 10.1021/acs.jafc.3c05051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This study was aimed to investigate the therapeutic effect and mechanism of AKHO on 5-fluorouracil (5-FU)-induced intestinal mucositis in mice. Mouse body weight, diarrhea score, and H&E staining were applied to judge the therapeutic effect of AKHO. 16S rDNA and nontargeted metabolomics have been used to study the mechanism. WB, ELISA, and immunohistochemistry were adopted to validate possible mechanisms. The results demonstrated that AKHO significantly reduced diarrhea scores and intestinal damage induced by 5-FU in mice. AKHO lowered the serum levels of LD and DAO, and upregulated the expressions of ZO-1 and occludin in the ileum. Also, AKHO upregulated the abundance of Lactobacillus in the gut and suppressed KEGG pathways such as cortisol synthesis and secretion and arachidonic acid metabolism. Further validation studies indicated that AKHO downregulated the expressions of prostaglandin E2 (PGE2), microsomal prostaglandin E synthase-1 (mPGES-1), and PGE2 receptor EP4, as well as upregulated the expression of glucocorticoid (GC) receptor (GR), leading to improved intestinal epithelial barrier function. Taken together, AKHO elicited protective effects against 5-FU-induced mucositis by regulating the expressions of tight junction proteins via modulation of GC/GR and mPGES-1/PGE2/EP4 pathway, providing novel insights into the utilization and development of this pharmaceutical/food resource.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
59
|
Liang M, Zhan W, Wang L, Bei W, Wang W. Ginsenoside Rb1 Promotes Hepatic Glycogen Synthesis to Ameliorate T2DM Through 15-PGDH/PGE 2/EP4 Signaling Pathway. Diabetes Metab Syndr Obes 2023; 16:3223-3234. [PMID: 37867629 PMCID: PMC10590136 DOI: 10.2147/dmso.s431423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Ginsenoside Rb1 (Rb1), one of the crucial bioactive constituents in Panax ginseng C. A. Mey., possesses anti-type 2 diabetes mellitus (T2DM) property. Nevertheless, the precise mechanism, particularly the impact of Rb1 on hepatic glycogen production, a crucial process in the advancement of T2DM, remains poorly understood. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is responsible for prostaglandin E2 (PGE2) inactivation. A recent study has reported that inhibition of 15-PGDH promoted hepatic glycogen synthesis and improved T2DM. Therefore, herein, we aimed to investigate whether Rb1 ameliorated T2DM through 15-PGDH/PGE2-regulated hepatic glycogen synthesis. Methods By combining streptozotocin with a high-fat diet, we successfully established a mouse model for T2DM. Afterward, these mice were administered Rb1 or metformin for 8 weeks. An insulin-resistant cell model was established by incubating LO2 cells with palmitic acid. Liver glycogen and PGE2 levels, the expression levels of 15-PGDH, serine/threonine kinase AKT (AKT), and glycogen synthase kinase 3 beta (GSK3β) were measured. Molecular docking was used to predict the binding affinity between 15-PGDH and Rb1. Results Rb1 administration increased the phosphorylation levels of AKT and GSK3β to enhance glycogen synthesis in the liver of T2DM mice. Molecular docking indicated that Rb1 had a high affinity for 15-PGDH. Moreover, Rb1 treatment resulted in the suppression of elevated 15-PGDH levels and the elevation of decreased PGE2 levels in the liver of T2DM mice. Furthermore, in vitro experiments showed that Rb1 administration might enhance glycogen production by modulating the 15-PGDH/PGE2/PGE2 receptor EP4 pathway. Conclusion Our findings indicate that Rb1 may enhance liver glycogen production through a 15-PGDH-dependent pathway to ameliorate T2DM, thereby offering a new explanation for the positive impact of Rb1 on T2DM and supporting its potential as an effective therapeutic approach for T2DM.
Collapse
Affiliation(s)
- Mingjie Liang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Wenjing Zhan
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Lexun Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Weijian Bei
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Weixuan Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
60
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
61
|
Miyoshi M, Usami M, Nishiyama Y, Kai M, Suzuki A, Maeshige N, Yamaguchi A, Ma X, Shinohara M. Soleus muscle contains a higher concentration of lipid metabolites than extensor digitorum longus in rats with lipopolysaccharide-induced acute muscle atrophy. Clin Nutr ESPEN 2023; 57:48-57. [PMID: 37739695 DOI: 10.1016/j.clnesp.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS Muscle atrophy is one of the most important and frequent problems for critically ill patients. The purpose of this study was to evaluate the effect of lipid mediators on acute muscle atrophy. Skeletal muscle fiber-specific analysis of lipid mediators in endotoxemic rats was therefore performed. METHODS Male Wistar rats were intraperitoneally injected with lipopolysaccharide (LPS). Slow-twitch soleus muscle and fast-twitch extensor digitorum longus (EDL) muscle were harvested 0, 6, and 24 h after LPS injection. Lipid mediators were profiled using liquid chromatography-tandem mass spectrometry, and free fatty acid (FFA) concentrations were measured using gas chromatography-mass spectrometry. Muscles were weighed and their cross-sectional areas were evaluated. Expression levels of mRNAs encoding inflammatory cytokines, autophagy-related transcription factors, and members of the ubiquitin-proteasome system were measured using real-time PCR. RESULTS Before LPS injection, the concentrations of all FFAs, including arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, and all measured lipid mediators were higher in soleus muscle than in EDL muscle, especially those of pro-inflammatory prostaglandin E2 (PGE2) and leukotriene B4. LPS injection, increased PGE2 and D2 and decreased FFAs in soleus muscle but did not change in EDL muscle. The concentrations of specialized pro-resolving mediators E-series hydroxy-eicosapentaenoic acid and D-series hydroxy-docosahexaenoic acid were higher in soleus muscle. Muscle cross-sectional area decreased and the expression level of atrogin-1 was upregulated in EDL muscle, but both were unchanged in soleus muscle. After LPS injection, a discrepancy involving an increased PGE2 concentration and decreased muscle atrophy was identified in this acute muscle atrophy model of critical illness. CONCLUSION Concentrations of FFAs and lipid mediators were higher in soleus muscle than in EDL muscle, and LPS injection rapidly increased concentrations of pro-inflammatory lipid mediators. However, muscle atrophy with upregulation of autophagy-related transcription factors was observed in EDL muscle but not in soleus muscle.
Collapse
Affiliation(s)
- Makoto Miyoshi
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| | - Makoto Usami
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan; Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, Japan
| | - Yuya Nishiyama
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Motoki Kai
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ayumi Suzuki
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Maeshige
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Atomu Yamaguchi
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Xiaoqi Ma
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
62
|
Wang J, He Y, Wang B, Yin R, Chen B, Wang H. Muscle-targeted nanoparticles strengthen the effects of small-molecule inhibitors in ameliorating sarcopenia. Nanomedicine (Lond) 2023; 18:1635-1649. [PMID: 37909281 DOI: 10.2217/nnm-2023-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Background: Sarcopenia is an aging-related degeneration of muscle mass and strength. Small-molecule inhibitor SW033291 has been shown to attenuate muscle atrophy. Targeted nanodrug-delivery systems can improve the efficacy of small-molecule inhibitors. Methods: The skeletal muscle cell-targeted nanoparticle was called AP@SW033291, which consisted of SW033291, modular peptide ASSLNIAGGRRRRRG and PEG-DSPE. Nanoparticles were featured with particle size, fluorescence emission spectra and targeting ability. We also investigated their effects on muscle mass and function. Results: The size of AP@SW033291 was 125.7 nm and it demonstrated targeting effects on skeletal muscle; thus, it could improve muscle mass and muscle function. Conclusion: Nanoparticle AP@SW033291 could become a potential strategy to strengthen the treatment effects of small-molecule inhibitors in sarcopenia.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yikang He
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Baoyue Wang
- Lianshui People's Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Ruian Yin
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Biao Chen
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, PR China
| | - Hongxing Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| |
Collapse
|
63
|
Szczuko M, Golańska J, Palma J, Ziętek M. Impact of Selected Eicosanoids in Normal and Pathological Pregnancies. J Clin Med 2023; 12:5995. [PMID: 37762934 PMCID: PMC10532391 DOI: 10.3390/jcm12185995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Pregnancy is a physiological state in which the female body undergoes a series of changes and adaptations to provide the best possible conditions for the growth and development of the forming baby. The internal adaptations that take place lead to the production of inflammation, which is necessary for the initial and final stages of pregnancy (embryo implantation and induction of labor). Gestational diabetes mellitus is considered to be the most common pathology during this period. However, many more serious health complications can arise, which include pre-eclampsia, fetal stunting, and preterm labor. The purpose of this study was to analyze the impact of the levels of individual eicosanoids on the course of normal pregnancy and the possibility of pathologies including gestational diabetes and pre-eclampsia. METHODS Sixty-nine pregnant women who were overweight or obese before and during pregnancy were studied. Eicosanoids were extracted as appropriate and then determined using liquid chromatography. The levels of eicosanoids studied in pregnant women differed not only according to the week of pregnancy but also in relation to individual anthropometric and biochemical parameters. RESULTS There was a significant correlation between being overweight and having a high BMI before pregnancy-as well as biochemical parameters of lipid and carbohydrate profiles-and the occurrence of pathological conditions in pregnancy. CONCLUSIONS Eicosanoids are involved in the pathology of pregnancy associated with the occurrence of gestational diabetes and pre-eclampsia. Salicylic acid may find use in the treatment of pregnant women exposed to both phenomena, as well as in overweight and obese women found before pregnancy. Diets rich in natural salicylates, methods of administration, and pharmacotherapy and dosage need further study. Some of the mediators (lipoxin, prostaglandin and leucotrien) may be new diagnostic markers in pregnancy pathology and intervention pathways in the future.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, W. Broniewskiego 24, 71-460 Szczecin, Poland
| | - Justyna Golańska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, W. Broniewskiego 24, 71-460 Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Sciences, Pomeranian Medical University, 70-204 Szczecin, Poland;
| | - Maciej Ziętek
- Department of Perinatology, Obstetrics and Gynecology Pomeranian Medical University in Szczecin, Siedlecka 2, 72-010 Police, Poland;
| |
Collapse
|
64
|
Berni M, Veronesi F, Fini M, Giavaresi G, Marchiori G. Relations between Structure/Composition and Mechanics in Osteoarthritic Regenerated Articular Tissue: A Machine Learning Approach. Int J Mol Sci 2023; 24:13374. [PMID: 37686179 PMCID: PMC10487849 DOI: 10.3390/ijms241713374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In the context of a large animal model of early osteoarthritis (OA) treated by orthobiologics, the purpose of this study was to reveal relations between articular tissues structure/composition and cartilage viscoelasticity. Twenty-four sheep, with induced knee OA, were treated by mesenchymal stem cells in various preparations-adipose-derived mesenchymal stem cells (ADSCs), stromal vascular fraction (SVF), and amniotic endothelial cells (AECs)-and euthanized at 3 or 6 months to evaluate the (i) biochemistry of synovial fluid; (ii) histology, immunohistochemistry, and histomorphometry of articular cartilage; and (iii) viscoelasticity of articular cartilage. After performing an initial analysis to evaluate the correlation and multicollinearity between the investigated variables, this study used machine learning (ML) models-Variable Selection Using Random Forests (VSURF) and Extreme Gradient Boosting (XGB)-to classify variables according to their importance and employ them for interpretation and prediction. The experimental setup revealed a potential relation between cartilage elastic modulus and cartilage thickness (CT), synovial fluid interleukin 6 (IL6), and prostaglandin E2 (PGE2), and between cartilage relaxation time and CT and PGE2. SVF treatment was the only limit on the deleterious OA effect on cartilage viscoelastic properties. This work provides indications to future studies aiming to highlight these and other relationships and focusing on advanced regeneration targets.
Collapse
Affiliation(s)
- Matteo Berni
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy;
| | - Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (G.G.); (G.M.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (G.G.); (G.M.)
| | - Gregorio Marchiori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy; (G.G.); (G.M.)
| |
Collapse
|
65
|
Lu Q, Xu Y, Zhang Z, Li S, Zhang Z. Primary hypertrophic osteoarthropathy: genetics, clinical features and management. Front Endocrinol (Lausanne) 2023; 14:1235040. [PMID: 37705574 PMCID: PMC10497106 DOI: 10.3389/fendo.2023.1235040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023] Open
Abstract
Primary hypertrophic osteoarthropathy (PHO) is a genetic disorder mainly characterized by clubbing fingers, pachydermia and periostosis. Mutations in the HPGD or SLCO2A1 gene lead to impaired prostaglandin E2 (PGE2) degradation, thus elevating PGE2 levels. The identification of the causative genes has provided a better understanding of the underlying mechanisms. PHO can be divided into three subtypes according to its pathogenic gene and inheritance patterns. The onset age, sex ratio and clinical features differ among subtypes. The synthesis and signaling pathways of PGE2 are outlined in this review. Cyclooxygenase-2 (COX-2) is the key enzyme that acts as the rate-limiting step for prostaglandin production, thus COX-2 inhibitors have been used to treat this disease. Although this treatment showed effective results, it has side effects that restrain its use. Here, we reviewed the genetics, clinical features, differential diagnosis and current treatment options of PHO according to our many years of clinical research on the disease. We also discussed probable treatment that may be an option in the future.
Collapse
Affiliation(s)
- Qi Lu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yang Xu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zeng Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shanshan Li
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
66
|
Wajda A, Bogucka D, Stypińska B, Radkowski MJ, Targowski T, Dudek E, Kmiołek T, Modzelewska E, Paradowska-Gorycka A. Expression of Prostaglandin Genes and β-Catenin in Whole Blood as Potential Markers of Muscle Degeneration. Int J Mol Sci 2023; 24:12885. [PMID: 37629065 PMCID: PMC10454559 DOI: 10.3390/ijms241612885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Prostaglandin signaling pathways are closely related to inflammation, but also muscle regeneration and processes associated with frailty and sarcopenia, whereas β-catenin (CTNNB1 gene) as a part of Wnt signaling is also involved in the differentiation of muscle cells and fibrosis. The present study analyzed the association between selected prostaglandin pathway genes and clinical parameters in patients with sarcopenia and frailty syndrome. The present study was conducted on patients with sarcopenia, frailty syndrome, and control older patients (N = 25). Additionally, two healthy controls at the age of 25-30 years (N = 51) and above 50 years old (N = 42) were included. The expression of the PTRGER4, PTGES2 (COX2), PTGS2, and CTNNB1 genes in whole blood was checked by the qPCR method. The serum cytokine levels (IL-10, TNFα, IFN-y, IL-1α, IL-1β) in patients and controls were checked by the Q-Plex Human Cytokine Panel. The results showed a significant effect of age on PTGER4 gene expression (p = 0.01). A negative trend between the appendicular skeletal muscle mass parameter (ASSM) and the expression of PTGER4 has been noted (r = -0.224, p = 0.484). PTGES2 and PTGS2 expressions negatively correlated with creatine phosphokinase (r = -0.71, p = 0.009; r = -0.58, p = 0.047) and positively with the functional mobility test timed up and go scale (TUG) (r = 0.61, p = 0.04; r = 0.63, p = 0.032). In the older control group, a negative association between iron levels and the expression of PTGS2 (r = -0.47, p = 0.017) was observed. A similar tendency was noted in patients with sarcopenia (r = -0.112, p = 0.729). A negative trend between appendicular skeletal muscle mass (ASMM) and PTGER4 seems to confirm the impairment of muscle regeneration associated with sarcopenia. The expression of the studied genes revealed a trend in associations with the clinical picture of muscular dystrophy and weakening patients. Perhaps PTGS2 and PTGES2 is in opposition to the role of the PTGER4 receptor in muscle physiology. Nevertheless, further, including functional studies is needed.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Diana Bogucka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Barbara Stypińska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Marcin Jerzy Radkowski
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.J.R.); (T.T.)
| | - Tomasz Targowski
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.J.R.); (T.T.)
| | - Ewa Dudek
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Tomasz Kmiołek
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Ewa Modzelewska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| |
Collapse
|
67
|
Martín-Vázquez E, Cobo-Vuilleumier N, López-Noriega L, Lorenzo PI, Gauthier BR. The PTGS2/COX2-PGE 2 signaling cascade in inflammation: Pro or anti? A case study with type 1 diabetes mellitus. Int J Biol Sci 2023; 19:4157-4165. [PMID: 37705740 PMCID: PMC10496497 DOI: 10.7150/ijbs.86492] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 09/15/2023] Open
Abstract
Prostaglandins are lipid mediators involved in physiological processes, such as constriction or dilation of blood vessels, but also pathophysiological processes, which include inflammation, pain and fever. They are produced by almost all cell types in the organism by activation of Prostaglandin endoperoxide synthases/Cyclooxygenases. The inducible Prostaglandin Endoperoxide Synthase 2/Cyclooxygenase 2 (PTGS2/COX2) plays an important role in pathologies associated with inflammatory signaling. The main product derived from PTGS2/COX2 expression and activation is Prostaglandin E2 (PGE2), which promotes a wide variety of tissue-specific effects, pending environmental inputs. One of the major sources of PGE2 are infiltrating inflammatory cells - the production of this molecule increases drastically in damaged tissues. Immune infiltration is a hallmark of type 1 diabetes mellitus, a multifactorial disease that leads to autoimmune-mediated pancreatic beta cell destruction. Controversial effects for the PTGS2/COX2-PGE2 signaling cascade in pancreatic islet cells subjected to diabetogenic conditions have been reported, allocating PGE2 as both, cause and consequence of inflammation. Herein, we review the main effects of this molecular pathway in a tissue-specific manner, with a special emphasis on beta cell mass protection/destruction and its potential role in the prevention or development of T1DM. We also discuss strategies to target this pathway for future therapies.
Collapse
Affiliation(s)
- Eugenia Martín-Vázquez
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Livia López-Noriega
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Petra I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
68
|
Herz C, Frei L, Tran HTT, Claßen S, Spöttel J, Krell M, Hanschen FS, Arvandi M, Binder N, Schreiner M, Rohn S, Lamy E. A monocentric, randomized, double-blind, controlled crossover trial of nasturtium ( Tropaeolum majus) on the lipid regulator prostaglandin E 2. Front Nutr 2023; 10:1223158. [PMID: 37599682 PMCID: PMC10434789 DOI: 10.3389/fnut.2023.1223158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Scope As prostaglandin E2 (PGE2) has important roles in physiological and inflammatory functions, a double-blind randomized controlled crossover study to investigate the potential of nasturtium (Tropaeolum majus) for modulating PGE2 was conducted, aiming at clarifying the role of benzyl isothiocyanate (BITC). As secondary parameters leukotriene 4 (LTB4), and cytokine release (tumor necrosis factor alpha, TNF-α; interleukins IL-1β, IL-10, and IL-12) were quantified. Methods and results Thirty-four healthy female participants consumed 1.5 g nasturtium containing BITC, (verum) or no BITC (control) twice a day for 2 weeks each. Nasturtium intervention resulted in an increase in mean PGE2 levels in serum samples (verum: 1.76-fold, p ≤ 0.05; control: 1.78-fold, p ≤ 0.01), and ex vivo stimulated peripheral blood mononuclear cells (PBMC) (verum: 1.71-fold, p ≤ 0.01; control: 1.43-fold). Using a pre-to-post responder analysis approach, 18 of 34 subjects showed a > 25% PGE2 increase in serum, while it was >25% decreased for 9 subjects (stimulated PBMC: 14 and 8 of 28, respectively). Under the selected conditions, the BITC content of nasturtium did not affect the observed changes in PGE2. Verum intervention also increased mean LTB4 serum level (1.24-fold, p ≤ 0.01), but not in LPS stimulated PBMC, and significantly increased TNF-α release in stimulated PBMC after 3 h (verum: 1.65-fold, p = 0.0032; control: 1.22-fold, p = 0.7818). No change was seen in the anti-inflammatory cytokine IL-10, or the pro-inflammatory cytokines IL-1β, and IL-12. Conclusion In contrast to the previously reported in vitro results, on average, LPS activated PBMC and serum from both groups showed increased PGE2 levels. Further analyses suggest that PGE2 release after intervention could possibly depend on the baseline PGE2 level. Identification of phenotypes that respond differently to the nasturtium intervention could be useful to establish personalized approaches for dosing phytopharmaceuticals medicines.
Collapse
Affiliation(s)
- Corinna Herz
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Linda Frei
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hoai T. T. Tran
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sophie Claßen
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jenny Spöttel
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Mareike Krell
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Franziska S. Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Marjan Arvandi
- Department of Public Health, Health Services Research and Health Technology Assessment, Institute of Public Health, Medical Decision Making and HTA, UMIT TIROL, University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Nadine Binder
- Institute of General Practice/Family Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Monika Schreiner
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Evelyn Lamy
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
69
|
Chen R, Dai J. Lipid metabolism in idiopathic pulmonary fibrosis: From pathogenesis to therapy. J Mol Med (Berl) 2023; 101:905-915. [PMID: 37289208 DOI: 10.1007/s00109-023-02336-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic irreversible interstitial lung disease characterized by a progressive decline in lung function. The etiology of IPF is unknown, which poses a significant challenge to the treatment of IPF. Recent studies have identified a strong association between lipid metabolism and the development of IPF. Qualitative and quantitative analysis of small molecule metabolites using lipidomics reveals that lipid metabolic reprogramming plays a role in the pathogenesis of IPF. Lipids such as fatty acids, cholesterol, arachidonic acid metabolites, and phospholipids are involved in the onset and progression of IPF by inducing endoplasmic reticulum stress, promoting cell apoptosis, and enhancing the expression of pro-fibrotic biomarkers. Therefore, targeting lipid metabolism can provide a promising therapeutic strategy for pulmonary fibrosis. This review focuses on lipid metabolism in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ranxun Chen
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
70
|
Zhu L, Liu L, Wang A, Liu J, Huang X, Zan T. Positive feedback loops between fibroblasts and the mechanical environment contribute to dermal fibrosis. Matrix Biol 2023; 121:1-21. [PMID: 37164179 DOI: 10.1016/j.matbio.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Dermal fibrosis is characterized by excessive deposition of extracellular matrix in the dermis and affects millions of people worldwide and causes limited movement, disfigurement and psychological distress in patients. Fibroblast dysfunction of plays a central role in the pathogenesis of dermal fibrosis and is controlled by distinct factors. Recent studies support the hypothesis that fibroblasts can drive matrix deposition and stiffening, which in turn can exacerbate the functional dysregulation of fibroblasts. Ultimately, through a positive feedback loop, uncontrolled pathological fibrosis develops. This review aims to summarize the phenomenon and mechanism of the positive feedback loop in dermal fibrosis, and discuss potential therapeutic targets to help further elucidate the pathogenesis of dermal fibrosis and develop therapeutic strategies. In this review, fibroblast-derived compositional and structural changes in the ECM that lead to altered mechanical properties are briefly discussed. We focus on the mechanisms by which mechanical cues participate in dermal fibrosis progression. The mechanosensors discussed in the review include integrins, DDRs, proteoglycans, and mechanosensitive ion channels. The FAK, ERK, Akt, and Rho pathways, as well as transcription factors, including MRTF and YAP/TAZ, are also discussed. In addition, we describe stiffness-induced biological changes in the ECM on fibroblasts that contribute to the formation of a positive feedback loop. Finally, we discuss therapeutic strategies to treat the vicious cycle and present important suggestions for researchers conducting in-depth research.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lechen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aoli Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jinwen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
71
|
Kerob D, Czermanska A, Karamon EM, Moga A, Lecerf G, Nioré M, Le Dantec G, Le Floc’h C, Tan J. A Dermocosmetic Significantly Reduces the Frequency and Intensity of Facial Skin Intolerability and Sensitivity in Subjects with Skin Intolerant to Skin Care Products and Sensitive Skin. Clin Cosmet Investig Dermatol 2023; 16:1787-1794. [PMID: 37456802 PMCID: PMC10349597 DOI: 10.2147/ccid.s418483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Introduction Intolerance to dermocosmetics is frequent in subjects with allergic contact dermatitis (ACD). A dermocosmetic (DC) was developed to restore the natural skin barrier, to reduce skin inflammation and to improve sensitive skin in ACD. Objective To assess the benefit of a DC in subjects with an allergic background and intolerance to cosmetic care, or with sensitive skin. Materials and Methods In this open-label study, 107 subjects above 16 years of age applied DC on the face twice a day for 28 days. Assessments at Days 0, 14 and 28, included skin sensitivity, stinging test, local tolerance, transepidermal water loss (TEWL), skin hydration, inflammatory biomarkers (IL-1α, IL-1RA, PGE2) using tape stripping and subject satisfaction. Results 88% were women and mean age was 42.0±15.0 years. Skin sensitivity at inclusion scored 5.9±0.35; 46% had ACD, 95% skin irritation, 92% sensitive skin and 88% intolerance to cosmetics. A significant (p<0.0001) 85% decrease of frequency and intensity of the composite score was observed at both endpoints. Stinging scores significantly (p<0.0001) decreased from 3.9 at baseline to 2.4 at Day 14 and 1.4 at Day 28; 77% and 81% of subjects reported improved skin reactivity at Day 14 and Day 28, respectively. Similar improvements were noted in the frequency and intensity of irritation, erythema, stinging, burning and discomfort. TEWL, skin hydration and inflammatory biomarker levels significantly (p<0.0001) improved. Overall subject satisfaction (85%) and tolerance (investigators: 99%, subjects: 97%) were high. Conclusion DC significantly reduced the frequency and intensity of facial skin intolerability and sensitivity in subjects with skin intolerant to skin care products. Clinicaltrialsgov Identifier NCT05487937.
Collapse
Affiliation(s)
- Delphine Kerob
- Scientific Direction, La Roche-Posay Laboratoire Dermatologique, Levallois-Perret, France
| | | | | | - Alain Moga
- QIMA Bioalternatives - Prologue Biotech, Labège, France
| | | | - Margot Nioré
- Scientific Direction, La Roche-Posay Laboratoire Dermatologique, Levallois-Perret, France
| | - Guénaëlle Le Dantec
- Scientific Direction, La Roche-Posay Laboratoire Dermatologique, Levallois-Perret, France
| | - Caroline Le Floc’h
- Scientific Direction, La Roche-Posay Laboratoire Dermatologique, Levallois-Perret, France
| | - Jerry Tan
- Western University, Department of Medicine and Windsor Clinical Research Inc, Windsor, ON, Canada
| |
Collapse
|
72
|
Huang HJ, Lee YH, Sung LC, Chen YJ, Chiu YJ, Chiu HW, Zheng CM. Drug repurposing screens to identify potential drugs for chronic kidney disease by targeting prostaglandin E2 receptor. Comput Struct Biotechnol J 2023; 21:3490-3502. [PMID: 37484490 PMCID: PMC10362296 DOI: 10.1016/j.csbj.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Renal inflammation and fibrosis are significantly correlated with the deterioration of kidney function and result in chronic kidney disease (CKD). However, current therapies only delay disease progression and have limited treatment effects. Hence, the development of innovative therapeutic approaches to mitigate the progression of CKD has become an attractive issue. To date, the incidence of CKD is still increasing, and the biomarkers of the pathophysiologic processes of CKD are not clear. Therefore, the identification of novel therapeutic targets associated with the progression of CKD is an attractive issue. It is a critical necessity to discover new therapeutics as nephroprotective strategies to stop CKD progression. In this research, we focus on targeting a prostaglandin E2 receptor (EP2) as a nephroprotective strategy for the development of additional anti-inflammatory or antifibrotic strategies for CKD. The in silico study identified that ritodrine, dofetilide, dobutamine, and citalopram are highly related to EP2 from the results of chemical database virtual screening. Furthermore, we found that the above four candidate drugs increased the activation of autophagy in human kidney cells, which also reduced the expression level of fibrosis and NLRP3 inflammasome activation. It is hoped that these findings of the four candidates with anti-NLRP3 inflammasome activation and antifibrotic effects will lead to the development of novel therapies for patients with CKD in the future.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jie Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jhe Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Wen Chiu
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| |
Collapse
|
73
|
Bordin DS, Livzan MA, Gaus OV, Mozgovoi SI, Lanas A. Drug-Associated Gastropathy: Diagnostic Criteria. Diagnostics (Basel) 2023; 13:2220. [PMID: 37443618 DOI: 10.3390/diagnostics13132220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Drugs are widely used to treat different diseases in modern medicine, but they are often associated with adverse events. Those located in the gastrointestinal tract are common and often mild, but they can be serious or life-threatening and determine the continuation of treatment. The stomach is often affected not only by drugs taken orally but also by those administered parenterally. Here, we review the mechanisms of damage, risk factors and specific endoscopic, histopathological and clinical features of those drugs more often involved in gastric damage, namely NSAIDs, aspirin, anticoagulants, glucocorticosteroids, anticancer drugs, oral iron preparations and proton pump inhibitors. NSAID- and aspirin-associated forms of gastric damage are widely studied and have specific features, although they are often hidden by the coexistence of Helicobacter pylori infection. However, the damaging effect of anticoagulants and corticosteroids or oral iron therapy on the gastric mucosa is controversial. At the same time, the increased use of new antineoplastic drugs, such as checkpoint inhibitors, has opened up a new area of gastrointestinal damage that will be seen more frequently in the near future. We conclude that there is a need to expand and understand drug-induced gastrointestinal damage to prevent and recognize drug-associated gastropathy in a timely manner.
Collapse
Affiliation(s)
- Dmitry S Bordin
- A.S. Loginov Moscow Clinical Scientific Center, Department of Pancreatic, Biliary and Upper Digestive Tract Disorders, 111123 Moscow, Russia
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
- Department of Outpatient Therapy and Family Medicine, Tver State Medical University, 170100 Tver, Russia
| | - Maria A Livzan
- Department of Faculty Therapy and Gastroenterology, Omsk Sate Medical University, 644099 Omsk, Russia
| | - Olga V Gaus
- Department of Faculty Therapy and Gastroenterology, Omsk Sate Medical University, 644099 Omsk, Russia
| | - Sergei I Mozgovoi
- Department of Pathological Anatomy, Omsk Sate Medical University, 644099 Omsk, Russia
| | - Angel Lanas
- Digestive Diseases Service, Aragón Health Research Institute (IIS Aragón), University Clinic Hospital, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
74
|
Mohan M, Mannan A, Singh TG. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol Rep 2023:10.1007/s43440-023-00505-0. [PMID: 37347388 DOI: 10.1007/s43440-023-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Sonic Hedgehog (SHh) is a homology protein that is involved in the modeling and development of embryonic tissues. As SHh plays both protective and harmful roles in ischemia, any disruption in the transduction and regulation of the SHh signaling pathway causes ischemia to worsen. The SHh signal activation occurs when SHh binds to the receptor complex of Ptc-mediated Smoothened (Smo) (Ptc-smo), which initiates the downstream signaling cascade. This article will shed light on how pharmacological modifications to the SHh signaling pathway transduction mechanism alter ischemic conditions via canonical and non-canonical pathways by activating certain downstream signaling cascades with respect to protein kinase pathways, angiogenic cytokines, inflammatory mediators, oxidative parameters, and apoptotic pathways. The canonical pathway includes direct activation of interleukins (ILs), angiogenic cytokines like hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and hypoxia-inducible factor alpha (HIF-), which modulate ischemia. The non-canonical pathway includes indirect activation of certain pathways like mTOR, PI3K/Akt, MAPK, RhoA/ROCK, Wnt/-catenin, NOTCH, Forkhead box protein (FOXF), Toll-like receptors (TLR), oxidative parameters such as GSH, SOD, and CAT, and some apoptotic parameters such as Bcl2. This review provides comprehensive insights that contribute to our knowledge of how SHh impacts the progression and outcomes of ischemic injuries.
Collapse
Affiliation(s)
- Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
75
|
Xiong M, Chen H, Fan Y, Jin M, Yang D, Chen Y, Zhang Y, Petersen RB, Su H, Peng A, Wang C, Zheng L, Huang K. Tubular Elabela-APJ axis attenuates ischemia-reperfusion induced acute kidney injury and the following AKI-CKD transition by protecting renal microcirculation. Theranostics 2023; 13:3387-3401. [PMID: 37351176 PMCID: PMC10283061 DOI: 10.7150/thno.84308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/29/2023] [Indexed: 06/24/2023] Open
Abstract
Rationale: Ischemia-reperfusion injury (I/R) is a common cause of acute kidney injury (AKI). Post-ischemic recovery of renal blood supply plays an important role in attenuating injury. Exogenous application of elabela (ELA) peptides has been demonstrated by us and others to alleviate AKI, partly through its receptor APJ. However, the endogenous role of ELA in renal I/R remains unclear. Methods: Renal tubule specific ELA knockout (ApelaKsp KO) mice challenged with bilateral or unilateral I/R were used to investigate the role of endogenous ELA in renal I/R. RNA-sequencing analysis was performed to unbiasedly investigate altered genes in kidneys of ApelaKsp KO mice. Injured mice were treated with ELA32 peptide, Nω-hydroxy-nor-L-arginine (nor-NOHA), prostaglandin E2 (PGE2), Paricalcitol, ML221 or respective vehicles, individually or in combination. Results: ELA is mostly expressed in renal tubules. Aggravated pathological injury and further reduction of renal microvascular blood flow were observed in ApelaKsp KO mice during AKI and the following transition to chronic kidney disease (AKI-CKD). RNA-seq analysis suggested that two blood flow regulators, arginine metabolizing enzyme arginase 2 (ARG2) and PGE2 metabolizing enzyme carbonyl reductases 1 and 3 (CBR1/3), were altered in injured ApelaKsp KO mice. Notably, combination application of an ARG2 inhibitor nor-NOHA, and Paricalcitol, a clinically used activator for PGE2 synthesis, alleviated injury-induced AKI/AKI-CKD stages and eliminated the worst outcomes observed in ApelaKsp KO mice. Moreover, while the APJ inhibitor ML221 blocked the beneficial effects of ELA32 peptide on AKI, it showed no effect on combination treatment of nor-NOHA and Paricalcitol. Conclusions: An endogenous tubular ELA-APJ axis regulates renal microvascular blood flow that plays a pivotal role in I/R-induced AKI. Furthermore, improving renal blood flow by inhibiting ARG2 and activating PGE2 is an effective treatment for AKI and prevents the subsequent AKI-CKD transition.
Collapse
Affiliation(s)
- Mingrui Xiong
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science & Technology, Wuhan, China, 430030
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science & Technology, Wuhan, China, 430030
| | - Yu Fan
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Muchuan Jin
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Dong Yang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science & Technology, Wuhan, China, 430030
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science & Technology, Wuhan, China, 430030
| | - Yu Zhang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science & Technology, Wuhan, China, 430030
| | - Robert B. Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA, 48859
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, 430030
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China, 430075
| | - Congyi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China, 430030
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science & Technology, Wuhan, China, 430030
| |
Collapse
|
76
|
Hu XH, Chen L, Wu H, Tang YB, Zheng QM, Wei XY, Wei Q, Huang Q, Chen J, Xu X. Cell therapy in end-stage liver disease: replace and remodel. Stem Cell Res Ther 2023; 14:141. [PMID: 37231461 DOI: 10.1186/s13287-023-03370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Liver disease is prevalent worldwide. When it reaches the end stage, mortality rises to 50% or more. Although liver transplantation has emerged as the most efficient treatment for end-stage liver disease, its application has been limited by the scarcity of donor livers. The lack of acceptable donor organs implies that patients are at high risk while waiting for suitable livers. In this scenario, cell therapy has emerged as a promising treatment approach. Most of the time, transplanted cells can replace host hepatocytes and remodel the hepatic microenvironment. For instance, hepatocytes derived from donor livers or stem cells colonize and proliferate in the liver, can replace host hepatocytes, and restore liver function. Other cellular therapy candidates, such as macrophages and mesenchymal stem cells, can remodel the hepatic microenvironment, thereby repairing the damaged liver. In recent years, cell therapy has transitioned from animal research to early human studies. In this review, we will discuss cell therapy in end-stage liver disease treatment, especially focusing on various cell types utilized for cell transplantation, and elucidate the processes involved. Furthermore, we will also summarize the practical obstacles of cell therapy and offer potential solutions.
Collapse
Affiliation(s)
- Xin-Hao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lan Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hao Wu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yang-Bo Tang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Qiu-Min Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Huang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
77
|
Liang M, Wang L, Wang W. The 15-hydroxyprostaglandin dehydrogenase inhibitor SW033291 ameliorates abnormal hepatic glucose metabolism through PGE 2-EP4 receptor-AKT signaling in a type 2 diabetes mellitus mouse model. Cell Signal 2023; 108:110707. [PMID: 37164143 DOI: 10.1016/j.cellsig.2023.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with high rates of morbidity and mortality worldwide. Prostaglandin E2 (PGE2) is a lipid signaling molecule that can ameliorate the symptoms of some metabolic diseases, including T2DM, and improve tissue repair and regeneration. Although SW033291 can increase PGE2 levels through its action as a small molecule inhibitor of the PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase, its effects on T2DM remain unclear. In the present study, we evaluated whether SW033291 treatment exerts a protective effect against T2DM and explored the underlying mechanisms. A T2DM mouse model was established using a high-fat diet combined with streptozotocin treatment. Palmitic acid-treated LO2 cells were used as an insulin-resistant cell model. SW033291 treatment reduced body weight and fasting blood glucose levels as well as serum triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels in vivo. In addition to ameliorating glucose and insulin tolerance, SW033291 treatment reversed the T2DM-induced decrease in glycogen synthesis and increase in gluconeogenesis in the liver. Furthermore, SW033291 administration increased hepatic glycogen synthase kinase 3 beta (GSK3β) phosphorylation levels to promote glycogen synthesis. SW033291 treatment also inhibited gluconeogenesis by upregulating AKT serine/threonine kinase (AKT) and forkhead box O1 (FOXO1) phosphorylation and reducing glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 expression in the livers of T2DM model mice. Additionally, SW033291 treatment improved abnormal hepatic glucose metabolism through the PGE2-EP4 receptor-AKT-GSK3β/FOXO1 signaling pathway in vitro. These results suggest a novel role of SW033291 in improving T2DM and support its potential as a novel therapeutic agent.
Collapse
Affiliation(s)
- Mingjie Liang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Lexun Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Weixuan Wang
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China; Guangdong Provincial Research Center of Integration of Traditional Chinese Medicine and Western Medicine in Metabolic Diseases, Guangzhou, Guangdong Province, China; Key Laboratory of Glucolipid Metabolic Diseases, Ministry of Education, Guangzhou, Guangdong Province, China; Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
78
|
Luo Q, Liu P, Yu P, Qin T. Cancer Stem Cells are Actually Stem Cells with Disordered Differentiation: the Monophyletic Origin of Cancer. Stem Cell Rev Rep 2023; 19:827-838. [PMID: 36648606 PMCID: PMC10185654 DOI: 10.1007/s12015-023-10508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Cancer stem cells (CSCs) play an important role in cancer development. Based on advancements in CSC research, we propose a monophyletic model of cancer. This model is based on the idea that CSCs are stem cells with disordered differentiation whose original purpose was to repair damaged tissues. Inflammatory responses and damage repair signals are crucial for the creation and maintenance of CSCs. Normal quiescent stem cells are activated by environmental stimulation, such as an inflammatory response, and undergo cell division and differentiation. In the initial stage of cancer development, stem cell differentiation leads to heteromorphism due to the accumulation of gene mutations, resulting in the development of metaplasia or precancerosis. In the second stage, accumulated mutations induce poor differentiation and lead to cancer development. The monophyletic model illustrates the evolution, biological behavior, and hallmarks of CSCs, proposes a concise understanding of the origin of cancer, and may encourage a novel therapeutic approach.
Collapse
Affiliation(s)
- Qiankun Luo
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Pan Liu
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Pengfei Yu
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Tao Qin
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China.
| |
Collapse
|
79
|
Calder PC, Harris WS. Editorial: Lipids to support physiology and function: both quantity and quality are important. Curr Opin Clin Nutr Metab Care 2023; 26:273-277. [PMID: 37017715 DOI: 10.1097/mco.0000000000000929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - William S Harris
- Fatty Acid Research Institute
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
80
|
Casali CI, Pescio LG, Sendyk DE, Erjavec LC, Morel Gómez E, Parra LG, Fernández-Tomé MC. Dynamics of differentiated-renal epithelial cell monolayer after calcium oxalate injury: The role of cyclooxygenase-2. Life Sci 2023; 319:121544. [PMID: 36871933 DOI: 10.1016/j.lfs.2023.121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
AIMS Calcium oxalate (Oxa), constituent of most common kidney stones, damages renal tubular epithelial cells leading to kidney disease. Most in vitro studies designed to evaluate how Oxa exerts its harmful effects were performed in proliferative or confluent non-differentiated renal epithelial cultures; none of them considered physiological hyperosmolarity of renal medullary interstitium. Cyclooxygenase 2 (COX2) has been associated to Oxa deleterious actions; however, up to now, it is not clear how COX2 acts. In this work, we proposed an in vitro experimental system resembling renal differentiated-epithelial cells that compose medullary tubular structures which were grown and maintained in a physiological hyperosmolar environment and evaluated whether COX2 → PGE2 axis (COX2 considered a cytoprotective protein for renal cells) induces Oxa damage or epithelial restitution. MAIN METHODS MDCK cells were differentiated with NaCl hyperosmolar medium for 72 h where cells acquired the typical apical and basolateral membrane domains and a primary cilium. Then, cultures were treated with 1.5 mM Oxa for 24, 48, and 72 h to evaluate epithelial monolayer restitution dynamics and COX2-PGE2 effect. KEY FINDINGS Oxa completely turned the differentiated phenotype into mesenchymal one (epithelial-mesenchymal transition). Such effect was partially and totally reverted after 48 and 72 h, respectively. Oxa damage was even deeper when COX2 was blocked by NS398. PGE2 addition restituted the differentiated-epithelial phenotype in a time and concentration dependence. SIGNIFICANCE This work presents an experimental system that approaches in vitro to in vivo renal epithelial studies and, more important, warns about NSAIDS use in patients suffering from kidney stones.
Collapse
Affiliation(s)
- Cecilia I Casali
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Lucila G Pescio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Dylan E Sendyk
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.
| | - Luciana C Erjavec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Emanuel Morel Gómez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.
| | - Leandro G Parra
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - María C Fernández-Tomé
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
81
|
Hezam K, Wang C, Fu E, Zhou M, Liu Y, Wang H, Zhu L, Han Z, Han ZC, Chang Y, Li Z. Superior protective effects of PGE2 priming mesenchymal stem cells against LPS-induced acute lung injury (ALI) through macrophage immunomodulation. Stem Cell Res Ther 2023; 14:48. [PMID: 36949464 PMCID: PMC10032272 DOI: 10.1186/s13287-023-03277-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have demonstrated remarkable therapeutic promise for acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS). MSC secretomes contain various immunoregulatory mediators that modulate both innate and adaptive immune responses. Priming MSCs has been widely considered to boost their therapeutic efficacy for a variety of diseases. Prostaglandin E2 (PGE2) plays a vital role in physiological processes that mediate the regeneration of injured organs. METHODS This work utilized PGE2 to prime MSCs and investigated their therapeutic potential in ALI models. MSCs were obtained from human placental tissue. MSCs were transduced with firefly luciferase (Fluc)/eGFP fusion protein for real-time monitoring of MSC migration. Comprehensive genomic analyses explored the therapeutic effects and molecular mechanisms of PGE2-primed MSCs in LPS-induced ALI models. RESULTS Our results demonstrated that PGE2-MSCs effectively ameliorated lung injury and decreased total cell numbers, neutrophils, macrophages, and protein levels in bronchoalveolar lavage fluid (BALF). Meanwhile, treating ALI mice with PGE2-MSCs dramatically reduced histopathological changes and proinflammatory cytokines while increasing anti-inflammatory cytokines. Furthermore, our findings supported that PGE2 priming improved the therapeutic efficacy of MSCs through M2 macrophage polarization. CONCLUSION PGE2-MSC therapy significantly reduced the severity of LPS-induced ALI in mice by modulating macrophage polarization and cytokine production. This strategy boosts the therapeutic efficacy of MSCs in cell-based ALI therapy.
Collapse
Affiliation(s)
- Kamal Hezam
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Chen Wang
- Nankai University School of Medicine, Tianjin, 300071, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China
| | - Enze Fu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Hui Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, 300120, China
| | - Lihong Zhu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cells, Shangrao, 334109, Jiangxi, China
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceuticals, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd, Tianjin, 300457, China
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co., 100176, Beijing, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China.
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, 300052, China.
- The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin, 300071, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
82
|
Nicolaou A, Kendall AC. Current insights into skin lipids and their roles in cutaneous health and disease. Curr Opin Clin Nutr Metab Care 2023; 26:83-90. [PMID: 36574279 DOI: 10.1097/mco.0000000000000902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW The unique and complex array of cutaneous lipids include essential components of the skin structure and signalling molecules mediating homeostasis and inflammation. Understanding skin lipid biology and metabolism can support our comprehension of health and disease, including systemic conditions with cutaneous involvement. RECENT FINDINGS Lipids found on the skin surface, produced by both the host and resident microbes, maintain and regulate the skin microbiome and the epidermal barrier, whilst altered contributions from either source can be detrimental to skin health. The unique lipid composition of the epidermal barrier is essential for its function, and recent studies have expanded our understanding of epidermal ceramide production. This has been supported by improved models available for skin research, including organotypic skin models enabling in-vitro production of complex acylceramides for the first time, and model systems facilitating in-silico exploration of the lipid profile changes observed in clinical samples. Studies have revealed further involvement of lipid mediators such as eicosanoids in cutaneous inflammation, as well as immune regulation in both healthy and diseased skin. SUMMARY Skin lipids offer exciting opportunities as therapeutic targets for many conditions, whether through topical interventions or nutritional supplementation.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences
| |
Collapse
|
83
|
Prostaglandin E2 prevents radiotherapy-induced alopecia by attenuating transit amplifying cell apoptosis through promoting G1 arrest. J Dermatol Sci 2023; 109:117-126. [PMID: 36872218 DOI: 10.1016/j.jdermsci.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Growing hair follicles (HFs) harbor actively dividing transit amplifying cells (TACs), rendering them highly sensitive to radiotherapy (RT). Clinically, there is still a lack of treatment options for radiotherapy-induced alopecia (RIA). OBJECTIVE Our present study aimed to investigated the effect and mechanism of local prostaglandin E2 (PGE2) treatment in RIA prevention. METHODS We compared the response of growing HFs to radiation with and without local PGE2 pretreatment in a mouse model in vivo. The effect of PGE2 on the cell cycle was determined in cultured HF cells from fluorescent ubiquitination-based cell cycle indicator mice. We also compared the protective effects of PGE2 and a cyclin-dependent kinases 4/6 (CDK4/6) inhibitor against RIA. RESULTS The local cutaneous PGE2 injection reduced RIA by enhancing HF self-repair. Mechanistically, PGE2 did not activate HF stem cells, but it preserved more TACs for regenerative attempts. Pretreatment of PGE2 lessened radiosensitivity of TACs by transiently arresting them in the G1 phase, thereby reducing TAC apoptosis and mitigating HF dystrophy. The preservation of more TACs accelerated HF self-repair and bypassed RT-induced premature termination of anagen. Promoting G1 arrest by systemic administration of palbociclib isethionate (PD0332991), a CDK4/6 inhibitor, offered a similar protective effect against RT. CONCLUSIONS Locally administered PGE2 protects HF TACs from RT by transiently inducing G1 arrest, and the regeneration of HF structures lost from RT is accelerated to resume anagen growth, thus bypassing the long downtime of hair loss. PGE2 has the potential to be repurposed as a local preventive treatment for RIA.
Collapse
|
84
|
Higashiyama M, Miura S, Hokari R. Modulation by luminal factors on the functions and migration of intestinal innate immunity. Front Immunol 2023; 14:1113467. [PMID: 36860849 PMCID: PMC9968923 DOI: 10.3389/fimmu.2023.1113467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Luminal antigens, nutrients, metabolites from commensal bacteria, bile acids, or neuropeptides influence the function and trafficking of immune cells in the intestine. Among the immune cells in the gut, innate lymphoid cells, including macrophages, neutrophils, dendritic cells, mast cells, and innate lymphoid cells, play an important role for the maintenance of intestinal homeostasis through a rapid immune response to luminal pathogens. These innate cells are influenced by several luminal factors, possibly leading to dysregulated gut immunity and intestinal disorders such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), and intestinal allergy. Luminal factors are sensed by distinct neuro-immune cell units, which also have a strong impact on immunoregulation of the gut. Immune cell trafficking from the blood stream through the lymphatic organ to lymphatics, an essential function for immune responses, is also modulated by luminal factors. This mini-review examines knowledge of luminal and neural factors that regulate and modulate response and migration of leukocytes including innate immune cells, some of which are clinically associated with pathological intestinal inflammation.
Collapse
Affiliation(s)
- Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan,*Correspondence: Masaaki Higashiyama,
| | - Soichiro Miura
- International University of Health and Welfare, Tokyo, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
85
|
Jerkic M, Szaszi K, Laffey JG, Rotstein O, Zhang H. Key Role of Mesenchymal Stromal Cell Interaction with Macrophages in Promoting Repair of Lung Injury. Int J Mol Sci 2023; 24:ijms24043376. [PMID: 36834784 PMCID: PMC9965074 DOI: 10.3390/ijms24043376] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Lung macrophages (Mφs) are essential for pulmonary innate immunity and host defense due to their dynamic polarization and phenotype shifts. Mesenchymal stromal cells (MSCs) have secretory, immunomodulatory, and tissue-reparative properties and have shown promise in acute and chronic inflammatory lung diseases and in COVID-19. Many beneficial effects of MSCs are mediated through their interaction with resident alveolar and pulmonary interstitial Mφs. Bidirectional MSC-Mφ communication is achieved through direct contact, soluble factor secretion/activation, and organelle transfer. The lung microenvironment facilitates MSC secretion of factors that result in Mφ polarization towards an immunosuppressive M2-like phenotype for the restoration of tissue homeostasis. M2-like Mφ in turn can affect the MSC immune regulatory function in MSC engraftment and tissue reparatory effects. This review article highlights the mechanisms of crosstalk between MSCs and Mφs and the potential role of their interaction in lung repair in inflammatory lung diseases.
Collapse
Affiliation(s)
- Mirjana Jerkic
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Correspondence:
| | - Katalin Szaszi
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - John G. Laffey
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Anaesthesia and Intensive Care Medicine, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Ori Rotstein
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Haibo Zhang
- The Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Anesthesiology and Pain Medicine, Interdepartmental Division of Critical Care Medicine and Department of Physiology, University of Toronto, Toronto, ON M5G 1E2, Canada
| |
Collapse
|
86
|
Zhong Y, Zhou Y, Ding R, Zou L, Zhang H, Wei X, He D. Intra-articular treatment of temporomandibular joint osteoarthritis by injecting actively-loaded meloxicam liposomes with dual-functions of anti-inflammation and lubrication. Mater Today Bio 2023; 19:100573. [PMID: 36816604 PMCID: PMC9929446 DOI: 10.1016/j.mtbio.2023.100573] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular joint (TMJ) osteoarthritis is a common osteochondral degenerative disease which can severely affect patient's mouth opening and mastication. Meloxicam (MLX), one of the most widely used non-steroidal anti-inflammatory drugs, is the main clinical therapy for the treatment of TMJ osteoarthritis. However, the clinical effect is greatly compromised because of its poor water solubility and high lipophilicity. In the present study, we developed an actively-loaded liposomal formulation, namely MLX-Ca(AC)2Lipo, using meglumine to enhance aqueous solubility and divalent metal (Ca2+) solution to improve encapsulation efficiency. By the formation of the nano-bowl shaped MLX-Ca precipitates inside the liposomes, MLX-Ca(AC)2Lipo successfully achieved an optimal encapsulation efficiency as high as 98.4% compared with previous passive loading method (60.6%). Additionally, MLX-Ca(AC)2Lipo maintained stable, and the slow drug release not only prolonged the duration of drug efficacy but also improved bioavailability. It was shown in the in vitro and in vivo tests that MLX-Ca(AC)2Lipo downregulated the synthesis of the inflammatory factors (such as prostaglandin-E2) and as a consequence reduced chondrocytes apoptosis and extracellular matrix degeneration. Furthermore, the intra-articular injection of MLX-Ca(AC)2Lipo enhanced bioinspired lubrication of TMJ, protecting the cartilage from progressive wear. In summary, MLX-Ca(AC)2Lipo with dual-functions of anti-inflammation and lubrication is a promising nanomedicine for the treatment of TMJ osteoarthritis by intra-articular injection.
Collapse
Affiliation(s)
- Yingqian Zhong
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China,National Clinical Research Center of Stomatology, Shanghai, 200011, China
| | - Yuyu Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruoyi Ding
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China,National Clinical Research Center of Stomatology, Shanghai, 200011, China
| | - Luxiang Zou
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China,National Clinical Research Center of Stomatology, Shanghai, 200011, China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China,Corresponding author.
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China,Corresponding author.
| | - Dongmei He
- Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China,National Clinical Research Center of Stomatology, Shanghai, 200011, China,Corresponding author. Department of Oral Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
87
|
The Role of COX-2 and PGE2 in the Regulation of Immunomodulation and Other Functions of Mesenchymal Stromal Cells. Biomedicines 2023; 11:biomedicines11020445. [PMID: 36830980 PMCID: PMC9952951 DOI: 10.3390/biomedicines11020445] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The ability of MSCs to modulate the inflammatory environment is well recognized, but understanding the molecular mechanisms responsible for these properties is still far from complete. Prostaglandin E2 (PGE2), a product of the cyclooxygenase 2 (COX-2) pathway, is indicated as one of the key mediators in the immunomodulatory effect of MSCs. Due to the pleiotropic effect of this molecule, determining its role in particular intercellular interactions and aspects of cell functioning is very difficult. In this article, the authors attempt to summarize the previous observations regarding the role of PGE2 and COX-2 in the immunomodulatory properties and other vital functions of MSCs. So far, the most consistent results relate to the inhibitory effect of MSC-derived PGE2 on the early maturation of dendritic cells, suppressive effect on the proliferation of activated lymphocytes, and stimulatory effect on the differentiation of macrophages into M2 phenotype. Additionally, COX-2/PGE2 plays an important role in maintaining the basic life functions of MSCs, such as the ability to proliferate, migrate and differentiate, and it also positively affects the formation of niches that are conducive to both hematopoiesis and carcinogenesis.
Collapse
|
88
|
Takahashi C, Oishi M, Iwata Y, Maekawa K, Matsumura T. Impact of the TRPV2 Inhibitor on Advanced Heart Failure in Patients with Muscular Dystrophy: Exploratory Study of Biomarkers Related to the Efficacy of Tranilast. Int J Mol Sci 2023; 24:ijms24032167. [PMID: 36768491 PMCID: PMC9917168 DOI: 10.3390/ijms24032167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Cardiomyopathy is the leading cause of death in patients with muscular dystrophy (MD). Tranilast, a widely used anti-allergic drug, has displayed inhibitory activity against the transient receptor potential cation channel subfamily V member 2 and improved cardiac function in MD patients. To identify urinary biomarkers that assess improved cardiac function after tranilast administration, we performed a urinary metabolomic study focused on oxidative fatty acids. Accompanying the clinical trial of tranilast, urine specimens were collected over 24 weeks from MD patients with advanced heart failure. Urinary levels of tetranor-PGDM (tetranor-prostaglandin D metabolite), a metabolite of prostaglandin D2, significantly decreased 12 weeks after tranilast administration and were correlated with BNP. These results suggest that prostaglandin-mediated inflammation, which increases with the pathological progression of heart failure in MD patients, was attenuated. Urinary prostaglandin E3 (PGE3) levels significantly increased 4 weeks after tranilast administration. There were positive correlations between the urinary levels of PGE3 and 8-hydroxy-2'-deoxyguanosine, an oxidative stress marker. High PGE3 levels may have a protective effect against cardiomyopathy in MD patients with high oxidative stress. Although further validation studies are necessary, urinary tetranor-PGDM and PGE3 levels may help the current understanding of the extent of advanced heart failure in patients with MD after tranilast administration.
Collapse
Affiliation(s)
- Chisato Takahashi
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Kyoto, Japan
| | - Mariko Oishi
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Kyoto, Japan
| | - Yuko Iwata
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita 564-8565, Osaka, Japan
| | - Keiko Maekawa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Kyoto, Japan
- Correspondence: (K.M.); (T.M.)
| | - Tsuyoshi Matsumura
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8551, Osaka, Japan
- Correspondence: (K.M.); (T.M.)
| |
Collapse
|
89
|
Vizely K, Wagner KT, Mandla S, Gustafson D, Fish JE, Radisic M. Angiopoietin-1 derived peptide hydrogel promotes molecular hallmarks of regeneration and wound healing in dermal fibroblasts. iScience 2023; 26:105984. [PMID: 36818306 PMCID: PMC9932487 DOI: 10.1016/j.isci.2023.105984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/12/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
By providing an ideal environment for healing, biomaterials can be designed to facilitate and encourage wound regeneration. As the wound healing process is complex, there needs to be consideration for the cell types playing major roles, such as fibroblasts. As a major cell type in the dermis, fibroblasts have a large impact on the processes and outcomes of wound healing. Prevopisly, conjugating the angiopoietin-1 derived Q-peptide (QHREDGS) to a collagen-chitosan hydrogel created a biomaterial with in vivo success in accelerating wound healing. This study utilized solvent cast Q-peptide conjugated collagen-chitosan seeded with fibroblast monolayers to investigate the direct impact of the material on this major cell type. After 24 h, fibroblasts had a significant change in release of anti-inflammatory, pro-healing, and ECM deposition cytokines, with demonstrated immunomodulatory effects on macrophages and upregulated expression of critical wound healing genes.
Collapse
Affiliation(s)
- Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Karl T. Wagner
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Serena Mandla
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Dakota Gustafson
- Toronto General Hospital Research Institute, University Health Network, Toronto,ON M5G 2C4, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto,ON M5G 2C4, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada,Toronto General Hospital Research Institute, University Health Network, Toronto,ON M5G 2C4, Canada,Corresponding author
| |
Collapse
|
90
|
Rubino M, Travers JG, Headrick AL, Enyart BT, Lemieux ME, Cavasin MA, Schwisow JA, Hardy EJ, Kaltenbacher KJ, Felisbino MB, Jonas E, Ambardekar AV, Bristow MR, Koch KA, McKinsey TA. Inhibition of Eicosanoid Degradation Mitigates Fibrosis of the Heart. Circ Res 2023; 132:10-29. [PMID: 36475698 DOI: 10.1161/circresaha.122.321475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Organ fibrosis due to excessive production of extracellular matrix by resident fibroblasts is estimated to contribute to >45% of deaths in the Western world, including those due to cardiovascular diseases such as heart failure. Here, we screened for small molecule inhibitors with a common ability to suppress activation of fibroblasts across organ systems. METHODS High-content imaging of cultured cardiac, pulmonary, and renal fibroblasts was used to identify nontoxic compounds that blocked induction of markers of activation in response to the profibrotic stimulus, transforming growth factor-β1. SW033291, which inhibits the eicosanoid-degrading enzyme, 15-hydroxyprostaglandin dehydrogenase, was chosen for follow-up studies with cultured adult rat ventricular fibroblasts and human cardiac fibroblasts (CF), and for evaluation in mouse models of cardiac fibrosis and diastolic dysfunction. Additional mechanistic studies were performed with CFs treated with exogenous eicosanoids. RESULTS Nine compounds, including SW033291, shared a common ability to suppress transforming growth factor-β1-mediated activation of cardiac, pulmonary, and renal fibroblasts. SW033291 dose-dependently inhibited transforming growth factor-β1-induced expression of activation markers (eg, α-smooth muscle actin and periostin) in adult rat ventricular fibroblasts and normal human CFs, and reduced contractile capacity of the cells. Remarkably, the 15-hydroxyprostaglandin dehydrogenase inhibitor also reversed constitutive activation of fibroblasts obtained from explanted hearts from patients with heart failure. SW033291 blocked cardiac fibrosis induced by angiotensin II infusion and ameliorated diastolic dysfunction in an alternative model of systemic hypertension driven by combined uninephrectomy and deoxycorticosterone acetate administration. Mechanistically, SW033291-mediated stimulation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling was required for the compound to block CF activation. Of the 12 exogenous eicosanoids that were tested, only 12(S)-hydroxyeicosatetraenoic acid, which signals through the G protein-coupled receptor, GPR31, recapitulated the suppressive effects of SW033291 on CF activation. CONCLUSIONS Inhibition of degradation of eicosanoids, arachidonic acid-derived fatty acids that signal through G protein-coupled receptors, is a potential therapeutic strategy for suppression of pathological organ fibrosis. In the heart, we propose that 15-hydroxyprostaglandin dehydrogenase inhibition triggers CF-derived autocrine/paracrine signaling by eicosanoids, including 12(S)-hydroxyeicosatetraenoic acid, to stimulate extracellular signal-regulated kinase 1/2 and block conversion of fibroblasts into activated cells that secrete excessive amounts of extracellular matrix and contribute to heart failure pathogenesis.
Collapse
Affiliation(s)
- Marcello Rubino
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Joshua G Travers
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Alaina L Headrick
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Blake T Enyart
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | | | - Maria A Cavasin
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Jessica A Schwisow
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Elizabeth J Hardy
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Keenan J Kaltenbacher
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Marina B Felisbino
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Eric Jonas
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Amrut V Ambardekar
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Michael R Bristow
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Keith A Koch
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| | - Timothy A McKinsey
- From the Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., J.A.S., E.J.H., K.J.K., M.B.F., E.J., A.V.A., M.R.B., K.A.K., T.A.M.).,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora (M.R., J.G.T., A.L.H., B.T.E., M.A.C., E.J.H., K.J.K., M.B.F., A.V.A., M.R.B., K.A.K., T.A.M.)
| |
Collapse
|
91
|
Lighthouse JK, Small EM. Cell-Based Phenotypic Screen for Antifibrotic Compounds Targets Eicosanoid Metabolism. Circ Res 2023; 132:30-33. [PMID: 36603069 PMCID: PMC9830582 DOI: 10.1161/circresaha.122.322272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Janet K. Lighthouse
- Wegmans School of Pharmacy, Department of Pharmaceutical Sciences, St. John Fisher University, Rochester, NY, USA
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M. Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642
| |
Collapse
|
92
|
Huang Y, Chen S, Yao Y, Wu N, Xu M, Du H, Zhao Y, Tu Y. Ovotransferrin alleviated acute gastric mucosal injury in BALB/c mice caused by ethanol. Food Funct 2023; 14:305-318. [PMID: 36503960 DOI: 10.1039/d2fo02364d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute gastric mucosal injury is a common gastrointestinal disorder, which influences patients' life quality. It was found that ovotransferrin (OVT) reduces the abundance of Helicobacter pylori associated with gastric disease in the intestine of immunosuppressed mice. To clarify its gastric protective function, the present study investigated the effect of OVT on BALB/c mice with ethanol-induced gastric mucosal injury. Results showed that OVT attenuated the ethanol-induced gastric mucosal injury. Furthermore, OVT effectively downregulated the expression of inflammatory markers (tumor necrosis factor-α, interleukin (IL)-1β and IL-6) but enhanced the secretion of IL-4, IL-10 and prostaglandin E2. And OVT pretreatment significantly inhibited the activation of the MAPK/NF-κB pathway. Additionally, OVT improved gastric antioxidant ability by increasing superoxide dismutase and glutathione levels and decreasing malondialdehyde and myeloperoxidase content. Pretreatment with OVT modulated the equilibrium between B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X. The above results indicated that OVT alleviated inflammatory responses, oxidative stress and apoptosis in gastric mucosal injury mice caused by ethanol.
Collapse
Affiliation(s)
- Yan Huang
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
93
|
Wang W, Liang M, Wang L, Bei W, Rong X, Xu J, Guo J. Role of prostaglandin E2 in macrophage polarization: Insights into atherosclerosis. Biochem Pharmacol 2023; 207:115357. [PMID: 36455672 DOI: 10.1016/j.bcp.2022.115357] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis, a trigger of cardiovascular disease, poses grave threats to human health. Although atherosclerosis depends on lipid accumulation and vascular wall inflammation, abnormal phenotypic regulation of macrophages is considered the pathological basis of atherosclerosis. Macrophage polarization mainly refers to the transformation of macrophages into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, which has recently become a much-discussed topic. Increasing evidence has shown that M2 macrophage polarization can alleviate atherosclerosis progression. PGE2 is a bioactive lipid that has been observed to be elevated in atherosclerosis and to play a pro-inflammatory role, yet recent studies have reported that PGE2 promotes anti-inflammatory M2 macrophage polarization and mitigates atherosclerosis progression. However, the mechanisms by which PGE2 acts remain unclear. This review summarizes current knowledge of PGE2 and macrophages in atherosclerosis. Additionally, we discuss potential PGE2 mechanisms of macrophage polarization, including CREB, NF-κB, and STAT signaling pathways, which may provide important therapeutic strategies based on targeting PGE2 pathways to modulate macrophage polarization for atherosclerosis treatment.
Collapse
Affiliation(s)
- Weixuan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Mingjie Liang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Weijian Bei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Jianqin Xu
- Department of Endocrinology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China.
| |
Collapse
|
94
|
Cheng H, Liu F, Zhou M, Chen S, Huang H, Liu Y, Zhao X, Zhang Q, Zhou X, Li Z, Cai H. Enhancement of hair growth through stimulation of hair follicle stem cells by prostaglandin E2 collagen matrix. Exp Cell Res 2022; 421:113411. [PMID: 36351501 DOI: 10.1016/j.yexcr.2022.113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/02/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
Prostaglandin metabolism is involved in the regulation of the periodic process of hair follicles. Preliminary research data reported that prostaglandin E2 (PGE2) exhibits potential in hair growth. However, the relevant evidence is still insufficient. Herein, we prepared a PGE2 matrix by conjugating PGE2 with collagen via crosslinkers to avoid rapid degradation of PGE2 molecules in vivo. First, we measured the physical properties of the PGE2 matrix. A mouse model of hair loss was established, and PGE2 matrix subcutaneous injection was applied to evaluate hair growth. Under different treatments with the PGE2 matrix, the morphology of hair follicles, the dynamic expression of hair follicle stem cell markers and key regulators in the hair growth cycle were explored. Our data revealed that the PGE2 matrix increased the proportion of developing hair follicles at the early growth stage. Improvements in hair follicle stem cells, such as Sox9+ and Lgr5+ cells, have also been confirmed as therapeutic effects of PGE2 to stimulate hair follicle growth. Our study indicated that PGE2 exhibits effective roles in hair development during anagen. Furthermore, the results also highlight the potential of the PGE2 delivery system as a novel therapeutic strategy for the treatment of hair disorders in the future.
Collapse
Affiliation(s)
- Hui Cheng
- Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Fei Liu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shang Chen
- Nankai University School of Medicine, Tianjin, China
| | - Haoyan Huang
- Nankai University School of Medicine, Tianjin, China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin, China
| | - Xiaotong Zhao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Qiaonan Zhang
- Nankai University School of Medicine, Tianjin, China
| | - Xinrun Zhou
- Nankai University School of Medicine, Tianjin, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Sciences, Tianjin, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Hong Cai
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China.
| |
Collapse
|
95
|
Stable Gastric Pentadecapeptide BPC 157 and Striated, Smooth, and Heart Muscle. Biomedicines 2022; 10:biomedicines10123221. [PMID: 36551977 PMCID: PMC9775659 DOI: 10.3390/biomedicines10123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
First, we review the definitively severed myotendinous junction and recovery by the cytoprotective stable gastric pentadecapeptide BPC 157 therapy, its healing that might combine both transected and detached tendon and transected muscle, ligament and bone injuries, applied alone, as native peptide therapy, effective in rat injury, given intraperitoneally or in drinking water or topically, at the site of injury. As a follow up, we reviewed that with the BPC 157 therapy, its cytoprotective ability to organize simultaneous healing of different tissues of and full recovery of the myotendinous junction might represent the particular muscle therapy against distinctive etiopathology muscle disabilities and weakness. In this, BPC 157 therapy might recover many of muscle disabilities (i.e., succinylcholine, vascular occlusion, spinal cord compression, stroke, traumatic brain injury, severe electrolyte disturbances, neurotoxins, neuroleptics, alcohol, serotonin syndrome and NO-system blockade and tumor-cachexia). These might provide practical realization of the multimodal muscle-axis impact able to react depending on the condition and the given agent(s) and the symptoms distinctively related to the prime injurious cause symptoms in the wide healing concept, the concept of cytoprotection, in particular. Further, the BPC 157 therapy might be the recovery for the disabled heart functioning, and disabled smooth muscle functioning (various sphincters function recovery). Finally, BPC 157, native and stable in human gastric juice, might be a prototype of anti-ulcer cytoprotective peptide for the muscle therapy with high curing potential (very safe profile (lethal dose not achieved), with suited wide effective range (µg-ng regimens) and ways of application).
Collapse
|
96
|
Xie C, Lin X, Hu J, Wang S, Wu J, Xiong W, Wu L. The polysaccharide from Camellia oleifera fruit shell enhances immune responses via activating MAPKs and NF-κB signaling pathways in RAW264.7 macrophages. Food Nutr Res 2022; 66:8963. [PMID: 36590859 PMCID: PMC9793767 DOI: 10.29219/fnr.v66.8963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 11/10/2022] [Indexed: 12/10/2022] Open
Abstract
Background Macrophage plays an important role in innate immune responses by secreting immune molecules and phagocytosis. Camellia oleifera fruit shell, accounting for approximately 60% weight of the single C. oleifera fruit, is rich in polysaccharides and has several biological activities such as anti-oxidation, lipid regulation and anticancer. However, the immunomodulatory activity of the polysaccharide from C. oleifera fruit shells (CPS) has not been reported. Objective This study aimed to investigate the immunomodulatory activities and mechanisms of CPS in RAW264.7 macrophages. Methods The Methyl Thiazolyl Tetrazolium (MTT) method was used to evaluate the effect of CPS on the cell viability of RAW264.7 macrophages, and cell morphology was pictured using microscope. The production of immune-related molecules, including nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor α (TNFα), interleukin (IL)-1β and IL-6, was detected by Griess assay and enzyme-linked immunosorbent assay (ELISA). The protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2) and the phosphorylation level of mitogen-activated protein kinases (MAPKs) were analyzed through western blotting. The mRNA levels of related genes were tested using reverse transcription-polymerase chain reaction (RT-PCR). The nuclear translocation of nuclear factor-kappa B (NF-κB) was detected using immunofluorescence technology. Results The results indicated that CPS treatment stimulated the production of NO and PGE2 and significantly enhanced the protein expression of iNOS and COX2 with little effect on the cell morphology and viability. Also, the secretion and mRNA levels of TNFα were increased by the treatment of CPS. In addition, CPS treatment markedly upregulated the phosphorylation level of MAPKs including Extracellular Signal Regulated Kinase (ERK), P38, and c-Jun N-terminal Kinase (JNK) at different time points and caused the activation and nuclear translocation of NF-κB. Conclusion Our data implied that CPS exerts immunomodulatory activities by activating MAPKs and NF-κB signaling pathways in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Chuanqi Xie
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, P.R. China
| | - Xinying Lin
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, P.R. China,School of Medicine, Xiamen University, Xiamen, China
| | - Juwu Hu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, P.R. China
| | - Shufen Wang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, P.R. China
| | - Jing Wu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, P.R. China
| | - Wei Xiong
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, P.R. China,Wei Xiong, Institute of Applied Chemistry, Jiangxi Academy of Sciences, Changdong avenue 7777 Nanchang China.
| | - Lei Wu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, P.R. China,Lei Wu, Institute of Applied Chemistry, Jiangxi Academy of Sciences, Changdong avenue 7777 Nanchang China.
| |
Collapse
|
97
|
Zhu J, Yang L, Jia Y, Balistrieri A, Fraidenburg DR, Wang J, Tang H, Yuan JXJ. Pathogenic Mechanisms of Pulmonary Arterial Hypertension: Homeostasis Imbalance of Endothelium-Derived Relaxing and Contracting Factors. JACC. ASIA 2022; 2:787-802. [PMID: 36713766 PMCID: PMC9877237 DOI: 10.1016/j.jacasi.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease. Sustained pulmonary vasoconstriction and concentric pulmonary vascular remodeling contribute to the elevated pulmonary vascular resistance and pulmonary artery pressure in PAH. Endothelial cells regulate vascular tension by producing endothelium-derived relaxing factors (EDRFs) and endothelium-derived contracting factors (EDCFs). Homeostasis of EDRF and EDCF production has been identified as a marker of the endothelium integrity. Impaired synthesis or release of EDRFs induces persistent vascular contraction and pulmonary artery remodeling, which subsequently leads to the development and progression of PAH. In this review, the authors summarize how EDRFs and EDCFs affect pulmonary vascular homeostasis, with special attention to the recently published novel mechanisms related to endothelial dysfunction in PAH and drugs associated with EDRFs and EDCFs.
Collapse
Key Words
- 5-HT, 5-hydroxytryptamine
- ACE, angiotensin-converting enzyme
- EC, endothelial cell
- EDCF, endothelium-derived contracting factor
- EDRF, endothelium-derived relaxing factor
- ET, endothelin
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cell
- PG, prostaglandin
- TPH, tryptophan hydroxylase
- TXA2, thromboxane A2
- cGMP, cyclic guanosine monophosphate
- endothelial dysfunction
- endothelium-derived relaxing factor
- pulmonary arterial hypertension
- vascular homeostasis
Collapse
Affiliation(s)
- Jinsheng Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yangfan Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Dustin R. Fraidenburg
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
98
|
Şenol Y, Kaplan O, Varan C, Demirtürk N, Öncül S, Fidan BB, Ercan A, Bilensoy E, Çelebier M. Pharmacometabolomic assessment of vitamin E loaded human serum albumin nanoparticles on HepG2 cancer cell lines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
99
|
Willer H, Spohn G, Morgenroth K, Thielemann C, Elvers-Hornung S, Bugert P, Delorme B, Giesen M, Schmitz-Rixen T, Seifried E, Pfarrer C, Schäfer R, Bieback K. Pooled human bone marrow-derived mesenchymal stromal cells with defined trophic factors cargo promote dermal wound healing in diabetic rats by improved vascularization and dynamic recruitment of M2-like macrophages. Front Immunol 2022; 13:976511. [PMID: 36059533 PMCID: PMC9437960 DOI: 10.3389/fimmu.2022.976511] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Human Mesenchymal Stromal Cells (hMSCs) are a promising source for cell-based therapies. Yet, transition to phase III and IV clinical trials is remarkably slow. To mitigate donor variabilities and to obtain robust and valid clinical data, we aimed first to develop a manufacturing concept balancing large-scale production of pooled hMSCs in a minimal expansion period, and second to test them for key manufacture and efficacy indicators in the clinically highly relevant indication wound healing. Our novel clinical-scale manufacturing concept is comprised of six single donor hMSCs master cell banks that are pooled to a working cell bank from which an extrapolated number of 70,000 clinical doses of 1x106 hMSCs/cm2 wound size can be manufactured within only three passages. The pooled hMSC batches showed high stability of key manufacture indicators such as morphology, immune phenotype, proliferation, scratch wound healing, chemotactic migration and angiogenic support. Repeated topical hMSCs administration significantly accelerated the wound healing in a diabetic rat model by delivering a defined growth factor cargo (specifically BDNF, EGF, G-CSF, HGF, IL-1α, IL-6, LIF, osteopontin, VEGF-A, FGF-2, TGF-β, PGE-2 and IDO after priming) at the specific stages of wound repair, namely inflammation, proliferation and remodeling. Specifically, the hMSCs mediated epidermal and dermal maturation and collagen formation, improved vascularization, and promoted cell infiltration. Kinetic analyses revealed transient presence of hMSCs until day (d)4, and the dynamic recruitment of macrophages infiltrating from the wound edges (d3) and basis (d9), eventually progressing to the apical wound on d11. In the wounds, the hMSCs mediated M2-like macrophage polarization starting at d4, peaking at d9 and then decreasing to d11. Our study establishes a standardized, scalable and pooled hMSC therapeutic, delivering a defined cargo of trophic factors, which is efficacious in diabetic wound healing by improving vascularization and dynamic recruitment of M2-like macrophages. This decision-making study now enables the validation of pooled hMSCs as treatment for impaired wound healing in large randomized clinical trials.
Collapse
Affiliation(s)
- Hélène Willer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, Mannheim, Germany
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gabriele Spohn
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
| | - Kimberly Morgenroth
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
| | - Corinna Thielemann
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Susanne Elvers-Hornung
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, Mannheim, Germany
| | | | | | | | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
| | - Christiane Pfarrer
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- FlowCore, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
100
|
Liu X, Wang Z, Qian H, Tao W, Zhang Y, Hu C, Mao W, Guo Q. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front Immunol 2022; 13:945129. [PMID: 35979373 PMCID: PMC9376257 DOI: 10.3389/fimmu.2022.945129] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving joints, with clinical manifestations of joint inflammation, bone damage and cartilage destruction, joint dysfunction and deformity, and extra-articular organ damage. As an important source of new drug molecules, natural medicines have many advantages, such as a wide range of biological effects and small toxic and side effects. They have become a hot spot for the vast number of researchers to study various diseases and develop therapeutic drugs. In recent years, the research of natural medicines in the treatment of RA has made remarkable achievements. These natural medicines mainly include flavonoids, polyphenols, alkaloids, glycosides and terpenes. Among them, resveratrol, icariin, epigallocatechin-3-gallate, ginsenoside, sinomenine, paeoniflorin, triptolide and paeoniflorin are star natural medicines for the treatment of RA. Its mechanism of treating RA mainly involves these aspects: anti-inflammation, anti-oxidation, immune regulation, pro-apoptosis, inhibition of angiogenesis, inhibition of osteoclastogenesis, inhibition of fibroblast-like synovial cell proliferation, migration and invasion. This review summarizes natural medicines with potential therapeutic effects on RA and briefly discusses their mechanisms of action against RA.
Collapse
Affiliation(s)
- Xueling Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhiguo Wang
- Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qian
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang City, China
| | - Ying Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunyan Hu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weiwei Mao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Guo
- School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Qi Guo,
| |
Collapse
|