51
|
ANKRD49 inhibits etoposide-induced intrinsic apoptosis of GC-1 cells by modulating NF-κB signaling. Mol Cell Biochem 2019; 457:21-29. [DOI: 10.1007/s11010-019-03508-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/14/2019] [Indexed: 01/09/2023]
|
52
|
Abstract
The bipotential nature of cell types in the early developing gonad and the process of sex determination leading to either testis or ovary differentiation makes this an interesting system in which to study transcriptional regulation of gene expression and cell fate decisions. SOX9 is a transcription factor with multiple roles during development, including being a key player in mediating testis differentiation and therefore subsequent male development. Loss of Sox9 expression in both humans and mice results in XY female development, whereas its inappropriate activation in XX embryonic gonads can give male development. Multiple cases of Disorders of Sex Development in human patients or sex reversal in mice and other vertebrates can be explained by mutations affecting upstream regulators of Sox9 expression, such as the product of the Y chromosome gene Sry that triggers testis differentiation. Other cases are due to mutations in the Sox9 gene itself, including its own regulatory region. Indeed, rearrangements in and around the Sox9 genomic locus indicate the presence of multiple critical enhancers and the complex nature of its regulation. Here we summarize what is known about the role of Sox9 and its regulation during gonad development, including recently discovered critical enhancers. We also discuss higher order chromatin organization and how this might be involved. We end with some interesting future directions that have the potential to further enrich our understanding on the complex, multi-layered regulation controlling Sox9 expression in the gonads.
Collapse
Affiliation(s)
- Nitzan Gonen
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
53
|
Garcia GR, Shankar P, Dunham CL, Garcia A, La Du JK, Truong L, Tilton SC, Tanguay RL. Signaling Events Downstream of AHR Activation That Contribute to Toxic Responses: The Functional Role of an AHR-Dependent Long Noncoding RNA ( slincR) Using the Zebrafish Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:117002. [PMID: 30398377 PMCID: PMC6371766 DOI: 10.1289/ehp3281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND A structurally diverse group of chemicals, including dioxins [e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)] and polycyclic aromatic hydrocarbons (PAHs), can xenobiotically activate the aryl hydrocarbon receptor (AHR) and contribute to adverse health effects in humans and wildlife. In the zebrafish model, repression of sox9b has a causal role in several AHR-mediated toxic responses, including craniofacial cartilage malformations; however, the mechanism of sox9b repression remains unknown. We previously identified a long noncoding RNA, sox9b long intergenic noncoding RNA (slincR), which is increased (in an AHR-dependent manner) by multiple AHR ligands and is required for the AHR-activated repression of sox9b. OBJECTIVE Using the zebrafish model, we aimed to enhance our understanding of the signaling events downstream of AHR activation that contribute to toxic responses by identifying: a) whether slincR is enriched on the sox9b locus, b) slincR's functional contributions to TCDD-induced toxicity, c) PAHs that increase slincR expression, and d) mammalian orthologs of slincR. METHODS We used capture hybridization analysis of RNA targets (CHART), qRT-PCR, RNA sequencing, morphometric analysis of cartilage structures, and hemorrhaging screens. RESULTS The slincR transcript was enriched at the 5' untranslated region (UTR) of the sox9b locus. Transcriptome profiling and human ortholog analyses identified processes related to skeletal and cartilage development unique to TCDD-exposed controls, and angiogenesis and vasculature development unique to TCDD-exposed zebrafish that were injected with a splice-blocking morpholino targeting slincR. In comparison to TCDD exposed control morphants, slincR morphants exposed to TCDD resulted in abnormal cartilage structures and a smaller percentage of animals displaying the hemorrhaging phenotype. In addition, slincR expression was significantly increased in six out of the sixteen PAHs we screened. CONCLUSION Our study establishes that in zebrafish, slincR is recruited to the sox9b 5' UTR to repress transcription, can regulate cartilage development, has a causal role in the TCDD-induced hemorrhaging phenotype, and is up-regulated by multiple environmentally relevant PAHs. These findings have important implications for understanding the ligand-specific mechanisms of AHR-mediated toxicity. https://doi.org/10.1289/EHP3281.
Collapse
Affiliation(s)
- Gloria R Garcia
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Prarthana Shankar
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Cheryl L Dunham
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Abraham Garcia
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Jane K La Du
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
54
|
Shimizu N, Matsuda M. Identification of a Novel Zebrafish Mutant Line that Develops Testicular Germ Cell Tumors. Zebrafish 2018; 16:15-28. [PMID: 30300574 DOI: 10.1089/zeb.2018.1604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Testicular tumors are the most common solid malignant tumors in men 20-35 years of age. Although most of testicular tumors are curable, current treatments still fail in 15%-20% of patients. However, insufficient understanding of the molecular basis and lack of animal models limit development of more effective treatments. This study reports the identification of a novel zebrafish mutant line, ns1402, which develops testicular germ cell tumors (TGCTs). While both male and female ns1402 mutants were fertile at young age, male ns1402 mutants became infertile as early as 9 months of age. This infertility was associated with progressive loss of mature sperm. Failure of spermatogenesis was, at least in part, explained by progressive loss of mature Leydig cells, a source of testosterone that is essential for spermatogenesis. Interestingly, TGCTs in ns1402 mutants contained a large number of Sertoli cells and gene expression profiles of Sertoli cells were altered before loss of mature Leydig cells. This suggests that changes in Sertoli cell properties happened first, followed by loss of mature Leydig cells and failure of spermatogenesis. Taken together, this study emphasizes the importance of cell-cell interactions and cell signaling in the testis for spermatogenesis and tissue homeostasis.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Miho Matsuda
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
55
|
Massoud D, Lao-Pérez M, Hurtado A, Abdo W, Palomino-Morales R, Carmona FD, Burgos M, Jiménez R, Barrionuevo FJ. Germ cell desquamation-based testis regression in a seasonal breeder, the Egyptian long-eared hedgehog, Hemiechinus auritus. PLoS One 2018; 13:e0204851. [PMID: 30286149 PMCID: PMC6171879 DOI: 10.1371/journal.pone.0204851] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/05/2018] [Indexed: 11/18/2022] Open
Abstract
Testes of seasonally breeding species experience a severe functional regression before the non-breeding period, which implies a substantial mass reduction due to massive germ-cell depletion. Two alternative mechanisms of seasonal germ-cell depletion have been described in mammals, apoptosis and desquamation (sloughing), but their prevalence has not been determined yet due to reduced number of species studied. We performed a morphological, hormonal, and molecular study of the mechanism of seasonal testicular regression in males of the Egyptian long eared-hedgehog (Hemiechinus auritus). Our results show that live, non-apoptotic, germ cells are massively depleted by desquamation during the testis regression process. This is concomitant with both decreased levels of serum testosterone and irregular distribution of the cell-adhesion molecules in the seminiferous epithelium. The inactive testes maintain some meiotic activity as meiosis onset is not halted and spermatocytes die by apoptosis at the pachytene stage. Our data support the notion that apoptosis is not the major testis regression effector in mammals. Instead, desquamation appears to be a common mechanism in this class.
Collapse
Affiliation(s)
- Diaa Massoud
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Miguel Lao-Pérez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Alicia Hurtado
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | | | - Francisco David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
- * E-mail:
| | | |
Collapse
|
56
|
Rotgers E, Jørgensen A, Yao HHC. At the Crossroads of Fate-Somatic Cell Lineage Specification in the Fetal Gonad. Endocr Rev 2018; 39:739-759. [PMID: 29771299 PMCID: PMC6173476 DOI: 10.1210/er.2018-00010] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Abstract
The reproductive endocrine systems are vastly different between males and females. This sexual dimorphism of the endocrine milieu originates from sex-specific differentiation of the somatic cells in the gonads during fetal life. Most gonadal somatic cells arise from the adrenogonadal primordium. After separation of the adrenal and gonadal primordia, the gonadal somatic cells initiate sex-specific differentiation during gonadal sex determination with the specification of the supporting cell lineages: Sertoli cells in the testis vs granulosa cells in the ovary. The supporting cell lineages then facilitate the differentiation of the steroidogenic cell lineages, Leydig cells in the testis and theca cells in the ovary. Proper differentiation of these cell types defines the somatic cell environment that is essential for germ cell development, hormone production, and establishment of the reproductive tracts. Impairment of lineage specification and function of gonadal somatic cells can lead to disorders of sexual development (DSDs) in humans. Human DSDs and processes for gonadal development have been successfully modeled using genetically modified mouse models. In this review, we focus on the fate decision processes from the initial stage of formation of the adrenogonadal primordium in the embryo to the maintenance of the somatic cell identities in the gonads when they become fully differentiated in adulthood.
Collapse
Affiliation(s)
- Emmi Rotgers
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Anne Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Research and Research Training Center in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, Denmark
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| |
Collapse
|
57
|
Janardhan KS, Jensen H, Clayton NP, Herbert RA. Immunohistochemistry in Investigative and Toxicologic Pathology. Toxicol Pathol 2018; 46:488-510. [PMID: 29966501 PMCID: PMC6033701 DOI: 10.1177/0192623318776907] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Immunohistochemistry (IHC) is a valuable tool in pathology. This review provides a brief description of the technical aspects of IHC and a detailed discussion on the variables that affect the results, interpretation, and reproducibility of IHC results. Lists of antibodies that have and have not worked in IHC on various mouse and rat tissues in our laboratory are provided as a guidance for selection of antibodies. An approach to IHC method optimization is presented. Finally, the critical information that should be included as a part of peer-reviewed manuscript is also discussed.
Collapse
Affiliation(s)
| | - Heather Jensen
- The Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Natasha P. Clayton
- The Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Ronald A. Herbert
- The Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
58
|
Grajevskaja V, Camerota D, Bellipanni G, Balciuniene J, Balciunas D. Analysis of a conditional gene trap reveals that tbx5a is required for heart regeneration in zebrafish. PLoS One 2018; 13:e0197293. [PMID: 29933372 PMCID: PMC6014646 DOI: 10.1371/journal.pone.0197293] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/30/2018] [Indexed: 01/27/2023] Open
Abstract
The ability to conditionally inactivate genes is instrumental for fine genetic analysis of all biological processes, but is especially important for studies of biological events, such as regeneration, which occur late in ontogenesis or in adult life. We have constructed and tested a fully conditional gene trap vector, and used it to inactivate tbx5a in the cardiomyocytes of larval and adult zebrafish. We observe that loss of tbx5a function significantly impairs the ability of zebrafish hearts to regenerate after ventricular resection, indicating that Tbx5a plays an essential role in the transcriptional program of heart regeneration.
Collapse
Affiliation(s)
- Viktorija Grajevskaja
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
- Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania
| | - Diana Camerota
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Gianfranco Bellipanni
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Jorune Balciuniene
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Darius Balciunas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
59
|
Hurtado A, Real FM, Palomino R, Carmona FD, Burgos M, Jiménez R, Barrionuevo FJ. Sertoli cell-specific ablation of miR-17-92 cluster significantly alters whole testis transcriptome without apparent phenotypic effects. PLoS One 2018; 13:e0197685. [PMID: 29795630 PMCID: PMC5967698 DOI: 10.1371/journal.pone.0197685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/07/2018] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs are frequently organized into polycistronic clusters whose transcription is controlled by a single promoter. The miR-17-92 cluster is expressed in most embryonic and postnatal organs. It is a potent oncogene associated to several types of cancer and it is involved in several important developmental processes. In the testis, expression of the miR-17-92 cluster in the germ cells is necessary to maintain normal spermatogenesis. This cluster is also expressed in Sertoli cells (the somatic cells of the seminiferous tubules), which require miRNAs for correct cell development and survival. To study the possible role of miR-17-92 in Sertoli cell development and function and, in order to overcome the postnatal lethality of miR-17-92-/ mice, we conditionally deleted it in embryonic Sertoli cells shortly after the sex determination stage using an Amh-Cre allele. Mutant mice developed apparently normal testes and were fertile, but their testis transcriptomes contained hundreds of moderately deregulated genes, indicating that testis homeostasis is tightly controlled in mammals and that miR-17-92 expression in Sertoli cells contribute to maintain normal gene expression levels, but is unnecessary for testis development and function. Our results show that significant deregulation of hundreds of genes might have no functional consequences.
Collapse
Affiliation(s)
- Alicia Hurtado
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Francisca M. Real
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Rogelio Palomino
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, Universidad de Granada,Centro de Investigación Biomédica,Armilla, Granada, Spain
| | - Francisco David Carmona
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Francisco J. Barrionuevo
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| |
Collapse
|
60
|
Guo Q, Xu L, Bi Y, Qiu L, Chen Y, Kong L, Pan R, Chang G. piRNA-19128 regulates spermatogenesis by silencing of KIT in chicken. J Cell Biochem 2018; 119:7998-8010. [PMID: 29384219 DOI: 10.1002/jcb.26695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/22/2018] [Indexed: 11/09/2022]
Abstract
Spermatogenesis is a complex process. Some studies have shown that Piwi-interacting RNAs (piRNAs) play an important role in spermatogenesis. To verify the evaluate between piRNAs and PIWI proteins in chicken and its possible role in spermatogenesis and reproductive stem cell proliferation and differentiation, we performed immunoprecipitation and deep sequencing analyses and determined the expression profiles of small RNAs in primordial germ cells (PGCs), spermatogonial stem cells (SSCs), spermatogonia (Sa) cells, and spermatozoa. Length analysis showed that piRNAs bound to PIWIL1 mainly contained 23-30 nt. Base preference analysis showed "1U-10A"; moreover, base preference of piRNAs was obvious in all of germline cells. Here we reported the TE family of gallus gallus, and targeted by piRNA. Target gene of piRNA annotation enrichment analysis identified candidate genes KIT, SRC, WNT4, and HMGB2. Kyoto Encyclopedia of Genes and Genomes analysis showed that these genes were associated with steroid hormone biosynthesis, Notch signaling pathway, and melanogenesis. These results indicate that chicken piRNAs perform important regulatory roles during spermatogenesis similar to mice piRNAs. Chicken piRNAs interacted with PIWI proteins and regulated spermatogenesis and germ cell proliferation and differentiation. Further, we observed a negative correlation between piRNA-19128 and KIT expression. Results of dual-luciferase reporter assay confirmed that piRNA-19128 directly interacted with KIT, suggesting that it plays a key role in the regulation spermatogenesis by inhibiting KIT expression. Thus, the present study provides information on the length and base preference of chicken piRNAs and suggests that piRNA-19128 regulates spermatogenesis in chicken by silencing KIT.
Collapse
Affiliation(s)
- Qixin Guo
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lu Xu
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China.,College of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yulin Bi
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingling Qiu
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yin Chen
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lingling Kong
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Pan
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guobin Chang
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
61
|
Expression and cellular localization of double sex and mab-3 related transcription factor 1 in testes of postnatal Small-Tail Han sheep at different developmental stages. Gene 2017; 642:467-473. [PMID: 29174386 DOI: 10.1016/j.gene.2017.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/12/2017] [Accepted: 11/17/2017] [Indexed: 11/20/2022]
Abstract
Double sex and mab-3 related transcription factor 1 (Dmrt1), an evolutionarily conserved gene, is a sex-related gene expressed in male gonads, that is involved in the regulation of sex differentiation, testicular development and reproductive function maintenance. Until now, functional studies on the Dmrt1 gene in sheep (Ovis aries) have been lacking. In this study, testis, heart, liver, spleen, lung, kidney and longissimus dorsi muscle tissues were collected from Small-Tail Han sheep at 0, 2, 5, 12 and 24months after birth (mab). Dmrt1 expression and cellular localization were detected in various testicular tissues by quantitative real time PCR (qRT-PCR), western blot and immunohistochemistry methods. The morphological structures of testicular tissues at different developmental stages were observed by hematoxylin & eosin (HE) staining. The Dmrt1 mRNA expression levels in 12 and 24 mab sheep were significantly higher than those in 0 and 2 mab sheep (P<0.05), and Dmrt1 protein expression showed a similar trend. The qRT-PCR results in various tissues at 12 mab showed that Dmrt1 mRNA was predominantly expressed in testes. Immunohistochemical staining in testes at different developmental stages showed that Dmrt1 protein immunoreactive responses were mainly localized in Sertoli cells and gonocytes at 0, 2 and 5 mab, while they were localized in spermatocytes, sperm cells and some spermatogonia and Sertoli cells at 12 and 24 mab. We speculate that the Dmrt1 gene plays a vital role in postnatal sheep spermatogenesis, perhaps by regulating the maturation and functional maintenance of Sertoli cells, the proliferation and differentiation of gonocytes in prepubertal sheep testes, and the mitosis and meiosis of germ cells in adult sheep, but the specific mechanisms underlying these phenomena must be further studied and verified. ABBREVIATIONS
Collapse
|
62
|
Reglodi D, Cseh S, Somoskoi B, Fulop BD, Szentleleky E, Szegeczki V, Kovacs A, Varga A, Kiss P, Hashimoto H, Tamas A, Bardosi A, Manavalan S, Bako E, Zakany R, Juhasz T. Disturbed spermatogenic signaling in pituitary adenylate cyclase activating polypeptide-deficient mice. Reproduction 2017; 155:129-139. [PMID: 29101268 DOI: 10.1530/rep-17-0470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/18/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
Abstract
PACAP is a neuropeptide with diverse functions in various organs, including reproductive system. It is present in the testis in high concentrations, and in addition to the stage-specific expression within the seminiferous tubules, PACAP affects spermatogenesis and the functions of Leydig and Sertoli cells. Mice lacking endogenous PACAP show reduced fertility, but the possibility of abnormalities in spermatogenic signaling has not yet been investigated. Therefore, we performed a detailed morphological analysis of spermatozoa, sperm motility and investigated signaling pathways that play a role during spermatogenesis in knockout mice. No significant alterations were found in testicular morphology or motility of sperm in homozygous and heterozygous PACAP-deficient mice in spite of the moderately increased number of severely damaged sperms. However, we found robust changes in mRNA and/or protein expression of several factors that play an important role in spermatogenesis. Protein kinase A expression was markedly reduced, while downstream phospho-ERK and p38 were elevated in knockout animals. Expression of major transcription factors, such as Sox9 and phospho-Sox9, was decreased, while that of Sox10, as a redundant factor, was increased in PACAP-deficient mice. The reduced phospho-Sox9 expression was partly due to increased expression and activity of phosphatase PP2A in knockout mice. Targets of Sox transcription factors, such as collagen type IV, were reduced in knockout mice. In summary, our results show that lack of PACAP leads to disturbed signaling in spermatogenesis, which could be a factor responsible for reduced fertility in PACAP knockout mice, and further support the role of PACAP in reproduction.
Collapse
Affiliation(s)
- D Reglodi
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - S Cseh
- Department and Clinic of ReproductionUniversity of Veterinary Medicine, Budapest, Hungary
| | - B Somoskoi
- Department and Clinic of ReproductionUniversity of Veterinary Medicine, Budapest, Hungary
| | - B D Fulop
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - E Szentleleky
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - V Szegeczki
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - A Kovacs
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - A Varga
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - P Kiss
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - H Hashimoto
- Laboratory of Molecular NeuropharmacologyGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental DevelopmentUnited Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan.,Division of BioscienceInstitute for Datability Science, Osaka University, Suita, Osaka, Japan
| | - A Tamas
- Department of AnatomyMTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs, Pecs, Hungary
| | - A Bardosi
- MVZ für HistologieZytologie und Molekulare Diagnostik, Trier, Germany
| | - S Manavalan
- Department of Basic SciencesNational University of Health Sciences, Pinellas Park, Florida, USA
| | - E Bako
- Cell Biology and Signalling Research Group of the Hungarian Academy of SciencesDepartment of Medical Chemistry, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - R Zakany
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - T Juhasz
- Department of AnatomyHistology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
63
|
Turnescu T, Arter J, Reiprich S, Tamm ER, Waisman A, Wegner M. Sox8 and Sox10 jointly maintain myelin gene expression in oligodendrocytes. Glia 2017; 66:279-294. [PMID: 29023979 DOI: 10.1002/glia.23242] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 11/08/2022]
Abstract
In Schwann cells of the vertebrate peripheral nervous system, induction of myelination and myelin maintenance both depend on the HMG-domain-containing transcription factor Sox10. In oligodendrocytes of the central nervous system, Sox10 is also essential for the induction of myelination. Its role in late phases of myelination and myelin maintenance has not been studied so far. Here, we show that these processes are largely unaffected in mice that lack Sox10 in mature oligodendrocytes. As Sox10 is co-expressed with the related Sox8, we also analyzed oligodendrocytes and myelination in Sox8-deficient mice. Again, we could not detect any major abnormalities. Expression of many myelin genes was only modestly reduced in both mouse mutants. Dramatic reductions in expression levels and phenotypic disturbances became only apparent once Sox8 and Sox10 were both absent. This argues that Sox8 and Sox10 are jointly required for myelin maintenance and impact myelin gene expression. One direct target gene of both Sox proteins is the late myelin gene Mog. Our results point to at least partial functional redundancy between both related Sox proteins in mature oligodendrocytes and are the first report of a substantial function of Sox8 in the oligodendroglial lineage.
Collapse
Affiliation(s)
- Tanja Turnescu
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Juliane Arter
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Reiprich
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ernst R Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, Regensburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
64
|
Recabarren SE, Recabarren M, Sandoval D, Carrasco A, Padmanabhan V, Rey R, Richter HG, Perez-Marin CC, Sir-Petermann T, Rojas-Garcia PP. Puberty arises with testicular alterations and defective AMH expression in rams prenatally exposed to testosterone. Domest Anim Endocrinol 2017; 61:100-107. [PMID: 28783504 DOI: 10.1016/j.domaniend.2017.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 11/20/2022]
Abstract
The male gonadal tissue can be a sensitive target to the reprogramming effects of testosterone (T) during prenatal development. We have demonstrated that male lambs born to dams receiving T during pregnancy-a model system to the polycystic ovary syndrome (PCOS)-show a decreased number of germ cells early in life, and when adult, a reduced amount of sperm and ejaculate volume. These findings are a key to put attention to the male offspring of women bearing PCOS, as they are exposed to increased levels of androgen during pregnancy which can reprogram their reproductive outcome. A possible origin of these defects can be a disruption in the expression of the anti-Müllerian hormone (AMH), due to its critical role in gonadal function at many postnatal stages. Therefore, we addressed the impact of prenatal T excess on the expression of AMH and factors related to its expression like AP2, SOX9, FSHR, and AR in the testicular tissue through real-time PCR during the peripubertal age. We also analyzed the testicular morphology and quantified the number of Sertoli cells and germ cells to evaluate any further defect in the testicle. Experiments were performed in rams at 24 wk of age, hence, prior puberty. The experimental animals (T-males) consisted of rams born to mothers receiving 30 mg testosterone twice a wk from Day 30 to 90 of pregnancy and then increased to 40 mg until Day 120 of pregnancy. The control males (C-males) were born to mothers receiving the vehicle of the hormone. We found a significant increase in the expression of the mRNA of AMH and SOX9, but not of the AP2, FHSR nor AR, in the T-males. Moreover, T-males showed a dramatic decrease in the number of germ cells, together with a decrease in the weight of their testicles. The findings of the present study show that before puberty, T-males are manifesting clear signs of disruption in the gonadal functions probably due to an alteration in the expression pattern of the AMH gene. The precise way by which T reprograms the expression of AMH gene remains to be established.
Collapse
Affiliation(s)
- S E Recabarren
- Laboratory of Animal Physiology and Endocrinology (FISENLAB), Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - M Recabarren
- Laboratory of Animal Physiology and Endocrinology (FISENLAB), Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - D Sandoval
- Laboratory of Animal Physiology and Endocrinology (FISENLAB), Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - A Carrasco
- Laboratory of Animal Physiology and Endocrinology (FISENLAB), Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile
| | - V Padmanabhan
- Departments of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan, USA
| | - R Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina; Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - H G Richter
- Laboratory of Developmental Chronobiology (LDC), Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - C C Perez-Marin
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - T Sir-Petermann
- Laboratory of Endocrinology and Metabolism, Department of Internal Medicine, Western Faculty of Medicine, University of Chile, Santiago, Chile
| | - P P Rojas-Garcia
- Laboratory of Animal Physiology and Endocrinology (FISENLAB), Faculty of Veterinary Sciences, University of Concepción, Chillán, Chile.
| |
Collapse
|
65
|
Garcia GR, Goodale BC, Wiley MW, La Du JK, Hendrix DA, Tanguay RL. In Vivo Characterization of an AHR-Dependent Long Noncoding RNA Required for Proper Sox9b Expression. Mol Pharmacol 2017; 91:609-619. [PMID: 28385905 PMCID: PMC5438132 DOI: 10.1124/mol.117.108233] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Xenobiotic activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents the proper formation of craniofacial cartilage and the heart in developing zebrafish. Downstream molecular targets responsible for AHR-dependent adverse effects remain largely unknown; however, in zebrafish sox9b has been identified as one of the most-reduced transcripts in several target organs and is hypothesized to have a causal role in TCDD-induced toxicity. The reduction of sox9b expression in TCDD-exposed zebrafish embryos has been shown to contribute to heart and jaw malformation phenotypes. The mechanisms by which AHR2 (functional ortholog of mammalian AHR) activation leads to reduced sox9b expression levels and subsequent target organ toxicity are unknown. We have identified a novel long noncoding RNA (slincR) that is upregulated by strong AHR ligands and is located adjacent to the sox9b gene. We hypothesize that slincR is regulated by AHR2 and transcriptionally represses sox9b. The slincR transcript functions as an RNA macromolecule, and slincR expression is AHR2 dependent. Antisense knockdown of slincR results in an increase in sox9b expression during both normal development and AHR2 activation, which suggests relief in repression. During development, slincR was expressed in tissues with sox9 essential functions, including the jaw/snout region, otic vesicle, eye, and brain. Reducing the levels of slincR resulted in altered neurologic and/or locomotor behavioral responses. Our results place slincR as an intermediate between AHR2 activation and the reduction of sox9b mRNA in the AHR2 signaling pathway.
Collapse
Affiliation(s)
- Gloria R Garcia
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Britton C Goodale
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Michelle W Wiley
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Jane K La Du
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - David A Hendrix
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center (G.R.G., J.K.L.D., R.L.T.), and Department of Biochemistry and Biophysics (M.W.W., D.A.H), Oregon State University, Corvallis, Oregon; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire (B.C.G.)
| |
Collapse
|
66
|
Zhao L, Arsenault M, Ng ET, Longmuss E, Chau TCY, Hartwig S, Koopman P. SOX4 regulates gonad morphogenesis and promotes male germ cell differentiation in mice. Dev Biol 2017; 423:46-56. [PMID: 28118982 DOI: 10.1016/j.ydbio.2017.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/14/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
The group C SOX transcription factors SOX4, -11 and -12 play important and mutually overlapping roles in development of a number of organs. Here, we examined the role of SoxC genes during gonadal development in mice. All three genes were expressed in developing gonads of both sexes, predominantly in somatic cells, with Sox4 being most strongly expressed. Sox4 deficiency resulted in elongation of both ovaries and testes, and an increased number of testis cords. While female germ cells entered meiosis normally, male germ cells showed reduced levels of differentiation markers Nanos2 and Dnmt3l and increased levels of pluripotency genes Cripto and Nanog, suggesting that SOX4 may normally act to restrict the pluripotency period of male germ cells and ensure their proper differentiation. Finally, our data reveal that SOX4 (and, to a lesser extent, SOX11 and -12) repressed transcription of the sex-determining gene Sox9 via an upstream testis-specific enhancer core (TESCO) element in fetal gonads, raising the possibility that SOXC proteins may function as transcriptional repressors in a context-dependent manner.
Collapse
Affiliation(s)
- Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michel Arsenault
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island,550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Ee Ting Ng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Enya Longmuss
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tevin Chui-Ying Chau
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sunny Hartwig
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island,550 University Avenue, Charlottetown, PE, Canada C1A 4P3
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|