51
|
Bai N, Ma J, Alimujiang M, Xu J, Hu F, Xu Y, Leng Q, Chen S, Li X, Han J, Jia W, Bao Y, Yang Y. Bola3 Regulates Beige Adipocyte Thermogenesis via Maintaining Mitochondrial Homeostasis and Lipolysis. Front Endocrinol (Lausanne) 2020; 11:592154. [PMID: 33505355 PMCID: PMC7829353 DOI: 10.3389/fendo.2020.592154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial iron-sulfur (Fe-S) cluster is an important cofactor for the maturation of Fe-S proteins, which are ubiquitously involved in energy metabolism; however, factors facilitating this process in beige fat have not been established. Here, we identified BolA family member 3 (Bola3), as one of 17 mitochondrial Fe-S cluster assembly genes, was the most significant induced gene in the browning program of white adipose tissue. Using lentiviral-delivered shRNA in vitro, we determined that Bola3 deficiency inhibited thermogenesis activity without affecting lipogenesis in differentiated beige adipocytes. The inhibition effect of Bola3 knockdown might be through impairing mitochondrial homeostasis and lipolysis. This was evidenced by the decreased expression of mitochondria related genes and respiratory chain complexes, attenuated mitochondrial formation, reduced mitochondrial maximal respiration and inhibited isoproterenol-stimulated lipolysis. Furthermore, BOLA3 mRNA levels were higher in human deep neck brown fat than in the paired subcutaneous white fat, and were positively correlated with thermogenesis related genes (UCP1, CIDEA, PRDM16, PPARG, COX7A1, and LIPE) expression in human omental adipose depots. This study demonstrates that Bola3 is associated with adipose tissue oxidative capacity both in mice and human, and it plays an indispensable role in beige adipocyte thermogenesis via maintaining mitochondrial homeostasis and adrenergic signaling-induced lipolysis.
Collapse
Affiliation(s)
- Ningning Bai
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jingyuan Ma
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Miriayi Alimujiang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jun Xu
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fan Hu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuejie Xu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qingyang Leng
- Department of Endocrinology, Seventh People’s Hospital of Shanghai University of TCM, Shanghai, China
| | - Shuqing Chen
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People’s Hospital of Shanghai University of TCM, Shanghai, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Ying Yang, ; Yuqian Bao,
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Ying Yang, ; Yuqian Bao,
| |
Collapse
|
52
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|
53
|
Smirlis D, Dingli F, Pescher P, Prina E, Loew D, Rachidi N, Späth GF. SILAC-based quantitative proteomics reveals pleiotropic, phenotypic modulation in primary murine macrophages infected with the protozoan pathogen Leishmania donovani. J Proteomics 2019; 213:103617. [PMID: 31846769 DOI: 10.1016/j.jprot.2019.103617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
Abstract
Leishmaniases are major vector-borne tropical diseases responsible for great human morbidity and mortality, caused by protozoan, trypanosomatid parasites of the genus Leishmania. In the mammalian host, parasites survive and multiply within mononuclear phagocytes, especially macrophages. However, the underlying mechanisms by which Leishmania spp. affect their host are not fully understood. Herein, proteomic alterations of primary, bone marrow-derived BALB/c macrophages are documented after 72 h of infection with Leishmania donovani insect-stage promastigotes, applying a SILAC-based, quantitative proteomics approach. The protocol was optimised by combining strong anion exchange and gel electrophoresis fractionation that displayed similar depth of analysis (combined total of 6189 mouse proteins). Our analyses revealed 86 differentially modulated proteins (35 showing increased and 51 decreased abundance) in response to Leishmania donovani infection. The proteomics results were validated by analysing the abundance of selected proteins. Intracellular Leishmania donovani infection led to changes in various host cell biological processes, including primary metabolism and catabolic process, with a significant enrichment in lysosomal organisation. Overall, our analysis establishes the first proteome of bona fide primary macrophages infected ex vivo with Leishmania donovani, revealing new mechanisms acting at the host/pathogen interface. SIGNIFICANCE: Little is known on proteome changes that occur in primary macrophages after Leishmania donovani infection. This study describes a SILAC-based quantitative proteomics approach to characterise changes of bone marrow-derived macrophages infected with L. donovani promastigotes for 72 h. With the application of SILAC and the use of SAX and GEL fractionation methods, we have tested new routes for proteome quantification of primary macrophages. The protocols developed here can be applicable to other diseases and pathologies. Moreover, this study sheds important new light on the "proteomic reprogramming" of infected macrophages in response to L. donovani promastigotes that affects primary metabolism, cellular catabolic processes, and lysosomal/vacuole organisation. Thus, our study reveals key molecules and processes that act at the host/pathogen interface that may inform on new immuno- or chemotherapeutic interventions to combat leishmaniasis.
Collapse
Affiliation(s)
- Despina Smirlis
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France; Hellenic Pasteur Institute, Molecular Parasitology Laboratory, Athens, Greece.
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, Université de recherche PSL, Paris, France
| | - Pascale Pescher
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, Université de recherche PSL, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Gerald F Späth
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France.
| |
Collapse
|
54
|
Nasta V, Suraci D, Gourdoupis S, Ciofi-Baffoni S, Banci L. A pathway for assembling [4Fe-4S] 2+ clusters in mitochondrial iron-sulfur protein biogenesis. FEBS J 2019; 287:2312-2327. [PMID: 31724821 DOI: 10.1111/febs.15140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
Abstract
During its late steps, the mitochondrial iron-sulfur cluster (ISC) assembly machinery leads to the formation of [4Fe-4S] clusters. In vivo studies revealed that several proteins are implicated in the biosynthesis and trafficking of [4Fe-4S] clusters in mitochondria. However, they do not provide a clear picture into how these proteins cooperate. Here, we showed that three late-acting components of the mitochondrial ISC assembly machinery (GLRX5, BOLA3, and NFU1) are part of a ISC assembly pathway leading to the synthesis of a [4Fe-4S]2+ cluster on NFU1. We showed that the [2Fe-2S]2+ GLRX5-BOLA3 complex transfers its cluster to monomeric apo NFU1 to form, in the presence of a reductant, a [4Fe-4S]2+ cluster bound to dimeric NFU1. The cluster formation on NFU1 does not occur with [2Fe-2S]2+ GLRX5, and thus, the [4Fe-4S] cluster assembly pathway is activated only in the presence of BOLA3. These results define NFU1 as an 'assembler' of [4Fe-4S] clusters, that is, a protein able of converting two [2Fe-2S]2+ clusters into a [4Fe-4S]2+ cluster. Finally, we found that the [4Fe-4S]2+ cluster bound to NFU1 has a coordination site which is easily accessible to sulfur-containing ligands, as is typically observed in metallochaperones. This finding supports a role for NFU1 in promoting rapid and controlled cluster-exchange reaction.
Collapse
Affiliation(s)
- Veronica Nasta
- Magnetic Resonance Center CERM, University of Florence, Italy.,Department of Chemistry, University of Florence, Italy
| | - Dafne Suraci
- Magnetic Resonance Center CERM, University of Florence, Italy
| | | | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Italy.,Department of Chemistry, University of Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Italy.,Department of Chemistry, University of Florence, Italy
| |
Collapse
|
55
|
Graça-Lopes G, Graça G, Barahona S, Moreira RN, Arraiano CM, Gonçalves LG. NMR-Metabolomics Shows That BolA Is an Important Modulator of Salmonella Typhimurium Metabolic Processes under Virulence Conditions. Metabolites 2019; 9:metabo9110243. [PMID: 31652780 PMCID: PMC6918366 DOI: 10.3390/metabo9110243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/28/2022] Open
Abstract
BolA is a ubiquitous global transcription factor. Despite its clear role in the induction of important stress-resistant physiological changes and its recent implication in the virulence of Salmonella, further research is required to shed light on the pathways modulated by BolA. In this study, we resorted to untargeted 1H-NMR metabolomics to understand the impact of BolA on the metabolic profile of Salmonella Typhimurium, under virulence conditions. Three strains of S. Typhimurium SL1344 were studied: An SL1344 strain transformed with an empty plasmid (control), a bolA knockout mutant (ΔbolA), and a strain overexpressing bolA (bolA+). These strains were grown in a minimal virulence-inducing medium and cells were collected at the end of the exponential and stationary phases. The extracts were analyzed by NMR, and multivariate and univariate statistical analysis were performed to identify significant alterations. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of 1H-NMR data allowed the discrimination between the metabolic profiles of these strains, revealing increased levels of acetate, valine, alanine, NAD+, succinate, coenzyme A, glutathione, and putrescine in bolA+. These results indicate that BolA regulates pathways related to stress resistance and virulence, being an important modulator of the metabolic processes needed for S. Typhimurium infection.
Collapse
Affiliation(s)
- Gil Graça-Lopes
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Gonçalo Graça
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK.
| | - Susana Barahona
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Ricardo N Moreira
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Cecília M Arraiano
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Luís G Gonçalves
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
56
|
Wachnowsky C, Rao B, Sen S, Fries B, Howard CJ, Ottesen JJ, Cowan JA. Reconstitution, characterization, and [2Fe-2S] cluster exchange reactivity of a holo human BOLA3 homodimer. J Biol Inorg Chem 2019; 24:1035-1045. [PMID: 31486956 PMCID: PMC6812618 DOI: 10.1007/s00775-019-01713-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
A new class of mitochondrial disease has been identified and characterized as Multiple Mitochondrial Dysfunctions Syndrome (MMDS). Four different forms of the disease have each been attributed to point mutations in proteins involved in iron-sulfur (Fe-S) biosynthesis; in particular, MMDS2 has been associated with the protein BOLA3. To date, this protein has been characterized in vitro concerning its ability to form heterodimeric complexes with two putative Fe-S cluster-binding partners: GLRX5 and NFU. However, BOLA3 has yet to be characterized in its own discrete holo form. Herein we describe procedures to isolate and characterize the human holo BOLA3 protein in terms of Fe-S cluster binding and trafficking and demonstrate that human BOLA3 can form a functional homodimer capable of engaging in Fe-S cluster transfer.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - Brian Rao
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Sambuddha Sen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Brian Fries
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Cecil J Howard
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - Jennifer J Ottesen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA.
| |
Collapse
|
57
|
Lindahl PA. A comprehensive mechanistic model of iron metabolism in Saccharomyces cerevisiae. Metallomics 2019; 11:1779-1799. [PMID: 31531508 DOI: 10.1039/c9mt00199a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ironome of budding yeast (circa 2019) consists of approximately 139 proteins and 5 nonproteinaceous species. These proteins were grouped according to location in the cell, type of iron center(s), and cellular function. The resulting 27 groups were used, along with an additional 13 nonprotein components, to develop a mesoscale mechanistic model that describes the import, trafficking, metallation, and regulation of iron within growing yeast cells. The model was designed to be simultaneously mutually autocatalytic and mutually autoinhibitory - a property called autocatinhibitory that should be most realistic for simulating cellular biochemical processes. The model was assessed at the systems' level. General conclusions are presented, including a new perspective on understanding regulatory mechanisms in cellular systems. Some unsettled issues are described. This model, once fully developed, has the potential to mimic the phenotype (at a coarse-grain level) of all iron-related genetic mutations in this simple and well-studied eukaryote.
Collapse
Affiliation(s)
- Paul A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3255, USA.
| |
Collapse
|
58
|
The monothiol glutaredoxin GrxD is essential for sensing iron starvation in Aspergillus fumigatus. PLoS Genet 2019; 15:e1008379. [PMID: 31525190 PMCID: PMC6762210 DOI: 10.1371/journal.pgen.1008379] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/26/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023] Open
Abstract
Efficient adaptation to iron starvation is an essential virulence determinant of the most common human mold pathogen, Aspergillus fumigatus. Here, we demonstrate that the cytosolic monothiol glutaredoxin GrxD plays an essential role in iron sensing in this fungus. Our studies revealed that (i) GrxD is essential for growth; (ii) expression of the encoding gene, grxD, is repressed by the transcription factor SreA in iron replete conditions and upregulated during iron starvation; (iii) during iron starvation but not iron sufficiency, GrxD displays predominant nuclear localization; (iv) downregulation of grxD expression results in de-repression of genes involved in iron-dependent pathways and repression of genes involved in iron acquisition during iron starvation, but did not significantly affect these genes during iron sufficiency; (v) GrxD displays protein-protein interaction with components of the cytosolic iron-sulfur cluster biosynthetic machinery, indicating a role in this process, and with the transcription factors SreA and HapX, which mediate iron regulation of iron acquisition and iron-dependent pathways; (vi) UV-Vis spectra of recombinant HapX or the complex of HapX and GrxD indicate coordination of iron-sulfur clusters; (vii) the cysteine required for iron-sulfur cluster coordination in GrxD is in vitro dispensable for interaction with HapX; and (viii) there is a GrxD-independent mechanism for sensing iron sufficiency by HapX; (ix) inactivation of SreA suppresses the lethal effect caused by GrxD inactivation. Taken together, this study demonstrates that GrxD is crucial for iron homeostasis in A. fumigatus. Aspergillus fumigatus is a ubiquitous saprophytic mold and the major causative pathogen causing life-threatening aspergillosis. To improve therapy, there is an urgent need for a better understanding of the fungal physiology. We have previously shown that adaptation to iron starvation is an essential virulence attribute of A. fumigatus. In the present study, we characterized the mechanism employed by A. fumigatus to sense the cellular iron status, which is essential for iron homeostasis. We demonstrate that the transcription factors SreA and HapX, which coordinate iron acquisition, iron consumption and iron detoxification require physical interaction with the monothiol glutaredoxin GrxD to sense iron starvation. Moreover, we show that there is a GrxD-independent mechanism for sensing excess of iron.
Collapse
|
59
|
Sen S, Rao B, Wachnowsky C, Cowan JA. Cluster exchange reactivity of [2Fe-2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins. Metallomics 2019; 10:1282-1290. [PMID: 30137089 DOI: 10.1039/c8mt00128f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The [2Fe-2S] cluster-bridged complex of BOLA3 with GLRX5 has been implicated in cluster trafficking, but cluster exchange involving this heterocomplex has not been reported. Herein we describe an investigation of the cluster exchange reactivity of holo BOLA3-GLRX complexes using two different monothiol glutaredoxins, H.s. GLRX5 and S.c. Grx3, which share significant identity. We observe that a 1 : 1 mixture of apo BOLA3 and glutaredoxin protein is able to accept a cluster from donors such as ISCU and a [2Fe-2S](GS)4 complex, with preferential formation of the cluster-bridged heterodimer over the plausible holo homodimeric glutaredoxin. Holo BOLA3-GLRX5 transfers clusters to apo acceptors at rates comparable to other Fe-S cluster trafficking proteins. Isothermal titration calorimetry experiments with apo proteins demonstrated a strong binding of BOLA3 with both GLRX5 and Grx3, while binding with an alternative mitochondrial partner, NFU1, was weak. Cluster exchange and calorimetry experiments resulted in a very similar behavior for yeast Grx3 (cytosolic) and human GLRX5 (mitochondrial), indicating conservation across the monothiol glutaredoxin family for interactions with BOLA3 and supporting a functional role for the BOLA3-GLRX5 heterocomplex relative to the previously proposed BOLA3-NFU1 interaction. The results also demonstrate rapid formation of the heterocomplexed holo cluster via delivery from a glutathione-complexed cluster, again indicative of the physiological relevance of the [2Fe-2S](GS)4 complex in the cellular labile iron pool.
Collapse
Affiliation(s)
- Sambuddha Sen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
60
|
Affiliation(s)
- Boa Kim
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Zolt Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
61
|
Devaux F, Thiébaut A. The regulation of iron homeostasis in the fungal human pathogen Candida glabrata. MICROBIOLOGY-SGM 2019; 165:1041-1060. [PMID: 31050635 DOI: 10.1099/mic.0.000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is an essential element to most microorganisms, yet an excess of iron is toxic. Hence, living cells have to maintain a tight balance between iron uptake and iron consumption and storage. The control of intracellular iron concentrations is particularly challenging for pathogens because mammalian organisms have evolved sophisticated high-affinity systems to sequester iron from microbes and because iron availability fluctuates among the different host niches. In this review, we present the current understanding of iron homeostasis and its regulation in the fungal pathogen Candida glabrata. This yeast is an emerging pathogen which has become the second leading cause of candidemia, a life-threatening invasive mycosis. C. glabrata is relatively poorly studied compared to the closely related model yeast Saccharomyces cerevisiae or to the pathogenic yeast Candida albicans. Still, several research groups have started to identify the actors of C. glabrata iron homeostasis and its transcriptional and post-transcriptional regulation. These studies have revealed interesting particularities of C. glabrata and have shed new light on the evolution of fungal iron homeostasis.
Collapse
Affiliation(s)
- Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| |
Collapse
|
62
|
Malina C, Larsson C, Nielsen J. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res 2019; 18:4969682. [PMID: 29788060 DOI: 10.1093/femsyr/foy040] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/10/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are dynamic organelles of endosymbiotic origin that are essential components of eukaryal cells. They contain their own genetic machinery, have multicopy genomes and like their bacterial ancestors they consist of two membranes. However, the majority of the ancestral genome has been lost or transferred to the nuclear genome of the host, preserving only a core set of genes involved in oxidative phosphorylation. Mitochondria perform numerous biological tasks ranging from bioenergetics to production of protein co-factors, including heme and iron-sulfur clusters. Due to the importance of mitochondria in many cellular processes, mitochondrial dysfunction is implicated in a wide variety of human disorders. Much of our current knowledge on mitochondrial function and dysfunction comes from studies using Saccharomyces cerevisiae. This yeast has good fermenting capacity, rendering tolerance to mutations that inactivate oxidative phosphorylation and complete loss of mitochondrial DNA. Here, we review yeast mitochondrial metabolism and function with focus on S. cerevisiae and its contribution in understanding mitochondrial biology. We further review how systems biology studies, including mathematical modeling, has allowed gaining new insight into mitochondrial function, and argue that this approach may enable us to gain a holistic view on how mitochondrial function interacts with different cellular processes.
Collapse
Affiliation(s)
- Carl Malina
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Wallenberg Center for Protein Research, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Christer Larsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Wallenberg Center for Protein Research, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
63
|
Touraine B, Vignols F, Przybyla-Toscano J, Ischebeck T, Dhalleine T, Wu HC, Magno C, Berger N, Couturier J, Dubos C, Feussner I, Caffarri S, Havaux M, Rouhier N, Gaymard F. Iron-sulfur protein NFU2 is required for branched-chain amino acid synthesis in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1875-1889. [PMID: 30785184 DOI: 10.1093/jxb/erz050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/25/2019] [Indexed: 05/23/2023]
Abstract
Numerous proteins require a metallic co-factor for their function. In plastids, the maturation of iron-sulfur (Fe-S) proteins necessitates a complex assembly machinery. In this study, we focused on Arabidopsis thaliana NFU1, NFU2, and NFU3, which participate in the final steps of the maturation process. According to the strong photosynthetic defects observed in high chlorophyll fluorescence 101 (hcf101), nfu2, and nfu3 plants, we determined that NFU2 and NFU3, but not NFU1, act immediately upstream of HCF101 for the maturation of [Fe4S4]-containing photosystem I subunits. An additional function of NFU2 in the maturation of the [Fe2S2] cluster of a dihydroxyacid dehydratase was obvious from the accumulation of precursors of the branched-chain amino acid synthesis pathway in roots of nfu2 plants and from the rescue of the primary root growth defect by supplying branched-chain amino acids. The absence of NFU3 in roots precluded any compensation. Overall, unlike their eukaryotic and prokaryotic counterparts, which are specific to [Fe4S4] proteins, NFU2 and NFU3 contribute to the maturation of both [Fe2S2] and [Fe4S4] proteins, either as a relay in conjunction with other proteins such as HCF101 or by directly delivering Fe-S clusters to client proteins. Considering the low number of Fe-S cluster transfer proteins relative to final acceptors, additional targets probably await identification.
Collapse
Affiliation(s)
- Brigitte Touraine
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Florence Vignols
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany
| | | | - Hui-Chen Wu
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Cyril Magno
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Nathalie Berger
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Christian Dubos
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany
| | - Stefano Caffarri
- Aix-Marseille Université, CEA Cadarache, CNRS UMR 7265, Laboratoire de Génétique et Biophysique des Plantes, 13009 Marseille, France
| | - Michel Havaux
- CEA Cadarache, CNRS UMR 7265, Aix-Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, 13108, Saint-Paul-lez-Durance, France
| | | | - Frédéric Gaymard
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
64
|
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2019; 10:49-72. [PMID: 29219157 DOI: 10.1039/c7mt00269f] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of iron-sulfur (Fe-S) proteins in humans is a multistage process occurring in different cellular compartments. The mitochondrial iron-sulfur cluster (ISC) assembly machinery composed of at least 17 proteins assembles mitochondrial Fe-S proteins. A cytosolic iron-sulfur assembly (CIA) machinery composed of at least 13 proteins has been more recently identified and shown to be responsible for the Fe-S cluster incorporation into cytosolic and nuclear Fe-S proteins. Cytosolic and nuclear Fe-S protein maturation requires not only the CIA machinery, but also the components of the mitochondrial ISC assembly machinery. An ISC export machinery, composed of a protein transporter located in the mitochondrial inner membrane, has been proposed to act in mediating the export process of a still unknown component that is required for the CIA machinery. Several functional and molecular aspects of the protein networks operative in the three machineries are still largely obscure. This Review focuses on the Fe-S protein maturation processes in humans with the specific aim of providing a molecular picture of the currently known protein-protein interaction networks. The human ISC and CIA machineries are presented, and the ISC export machinery is discussed with respect to possible molecules being the substrates of the mitochondrial protein transporter.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center-CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
65
|
Wang X, Zhang J, Zhao X, Wei W, Zhao J. Imaging and proteomic study of a clickable iridium complex. Metallomics 2019; 11:1344-1352. [DOI: 10.1039/c9mt00134d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized a clickable iridium complex 2-N3 which can be imaged via click reaction in cells. Quantitative proteomic analysis revealed that ECM–receptor interaction pathway was activated and a series of celluar process was affected by 2-N3.
Collapse
Affiliation(s)
- Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry
- Institute of Chemistry and Biomedical Sciences
- School of Life Sciences
- Nanjing University
- Nanjing 210023
| | - Jingyi Zhang
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Xinyang Zhao
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry
- Institute of Chemistry and Biomedical Sciences
- School of Life Sciences
- Nanjing University
- Nanjing 210023
| | - Jing Zhao
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
66
|
Rey P, Taupin-Broggini M, Couturier J, Vignols F, Rouhier N. Is There a Role for Glutaredoxins and BOLAs in the Perception of the Cellular Iron Status in Plants? FRONTIERS IN PLANT SCIENCE 2019; 10:712. [PMID: 31231405 PMCID: PMC6558291 DOI: 10.3389/fpls.2019.00712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/14/2019] [Indexed: 05/12/2023]
Abstract
Glutaredoxins (GRXs) have at least three major identified functions. In apoforms, they exhibit oxidoreductase activity controlling notably protein glutathionylation/deglutathionylation. In holoforms, i.e., iron-sulfur (Fe-S) cluster-bridging forms, they act as maturation factors for the biogenesis of Fe-S proteins or as regulators of iron homeostasis contributing directly or indirectly to the sensing of cellular iron status and/or distribution. The latter functions seem intimately connected with the capacity of specific GRXs to form [2Fe-2S] cluster-bridging homodimeric or heterodimeric complexes with BOLA proteins. In yeast species, both proteins modulate the localization and/or activity of transcription factors regulating genes coding for proteins involved in iron uptake and intracellular sequestration in response notably to iron deficiency. Whereas vertebrate GRX and BOLA isoforms may display similar functions, the involved partner proteins are different. We perform here a critical evaluation of the results supporting the implication of both protein families in similar signaling pathways in plants and provide ideas and experimental strategies to delineate further their functions.
Collapse
Affiliation(s)
- Pascal Rey
- Plant Protective Proteins Team, CEA, CNRS, BIAM, Aix-Marseille University, Saint-Paul-lez-Durance, France
| | - Maël Taupin-Broggini
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/Université de Montpellier/SupAgro, Montpellier, France
| | | | - Florence Vignols
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/Université de Montpellier/SupAgro, Montpellier, France
| | - Nicolas Rouhier
- Université de Lorraine, INRA, IAM, Nancy, France
- *Correspondence: Nicolas Rouhier,
| |
Collapse
|
67
|
Burschel S, Kreuzer Decovic D, Nuber F, Stiller M, Hofmann M, Zupok A, Siemiatkowska B, Gorka M, Leimkühler S, Friedrich T. Iron-sulfur cluster carrier proteins involved in the assembly of Escherichia coli
NADH:ubiquinone oxidoreductase (complex I). Mol Microbiol 2018; 111:31-45. [DOI: 10.1111/mmi.14137] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Sabrina Burschel
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Doris Kreuzer Decovic
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Germany
| | - Franziska Nuber
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Marie Stiller
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Maud Hofmann
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
| | - Arkadiusz Zupok
- University of Potsdam; Institut für Biochemie und Biologie; Karl-Liebknecht-Str. 24-25 14476 Potsdam-Golm Germany
| | - Beata Siemiatkowska
- Max-Planck-Institute of Molecular Plant Physiology; Am Mühlenberg 1 14476 Potsdam-Golm Germany
| | - Michal Gorka
- Max-Planck-Institute of Molecular Plant Physiology; Am Mühlenberg 1 14476 Potsdam-Golm Germany
| | - Silke Leimkühler
- University of Potsdam; Institut für Biochemie und Biologie; Karl-Liebknecht-Str. 24-25 14476 Potsdam-Golm Germany
| | - Thorsten Friedrich
- Albert-Ludwigs-Universität, Institut für Biochemie; Albertstr. 21 D-79104 Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Germany
| |
Collapse
|
68
|
Abstract
Abstract
Metal ions are essential cofactors required by the proteome of organisms from any kingdom of life to correctly exert their functions. Dedicated cellular import, transport and homeostasis systems assure that the needed metal ion is correctly delivered and inserted into the target proteins and avoid the presence of free metal ions in the cell, preventing oxidative damaging. Among metal ions, in eukaryotic organisms copper and iron are required by proteins involved in absolutely essential functions, such as respiration, oxidative stress protection, catalysis, gene expression regulation. Copper and iron binding proteins are localized in essentially all cellular compartments. Copper is physiologically present mainly as individual metal ion. Iron can be present both as individual metal ion or as part of cofactors, such as hemes and iron-sulfur (Fe-S) clusters. Both metal ions are characterized by the ability to cycle between different oxidation states, which enable them to catalyze redox reactions and to participate in electron transfer processes. Here we describe in detail the main processes responsible for the trafficking of copper and iron sulfur clusters, with particular interest for the structural aspects of the maturation of copper and iron-sulfur-binding proteins.
Collapse
|
69
|
NMR as a Tool to Investigate the Processes of Mitochondrial and Cytosolic Iron-Sulfur Cluster Biosynthesis. Molecules 2018; 23:molecules23092213. [PMID: 30200358 PMCID: PMC6205161 DOI: 10.3390/molecules23092213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters, the ubiquitous protein cofactors found in all kingdoms of life, perform a myriad of functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. The biogenesis of Fe-S clusters is a multi-step process that involves the participation of many protein partners. Recent biophysical studies, involving X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and small angle X-ray scattering (SAXS), have greatly improved our understanding of these steps. In this review, after describing the biological importance of iron sulfur proteins, we focus on the contributions of NMR spectroscopy has made to our understanding of the structures, dynamics, and interactions of proteins involved in the biosynthesis of Fe-S cluster proteins.
Collapse
|
70
|
Uzarska MA, Przybyla-Toscano J, Spantgar F, Zannini F, Lill R, Mühlenhoff U, Rouhier N. Conserved functions of Arabidopsis mitochondrial late-acting maturation factors in the trafficking of iron‑sulfur clusters. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1250-1259. [PMID: 29902489 DOI: 10.1016/j.bbamcr.2018.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 11/25/2022]
Abstract
Numerous proteins require iron‑sulfur (Fe-S) clusters as cofactors for their function. Their biogenesis is a multi-step process occurring in the cytosol and mitochondria of all eukaryotes and additionally in plastids of photosynthetic eukaryotes. A basic model of Fe-S protein maturation in mitochondria has been obtained based on studies achieved in mammals and yeast, yet some molecular details, especially of the late steps, still require investigation. In particular, the late-acting biogenesis factors in plant mitochondria are poorly understood. In this study, we expressed the factors belonging to NFU, BOLA, SUFA/ISCA and IBA57 families in the respective yeast mutant strains. Expression of the Arabidopsis mitochondrial orthologs was usually sufficient to rescue the growth defects observed on specific media and/or to restore the abundance or activity of the defective Fe-S or lipoic acid-dependent enzymes. These data demonstrate that the plant mitochondrial counterparts, including duplicated isoforms, likely retained their ancestral functions. In contrast, the SUFA1 and IBA57.2 plastidial isoforms cannot rescue the lysine and glutamate auxotrophies of the respective isa1-isa2Δ and iba57Δ strains or of the isa1-isa2-iba57Δ triple mutant when expressed in combination. This suggests a specialization of the yeast mitochondrial and plant plastidial factors in these late steps of Fe-S protein biogenesis, possibly reflecting substrate-specific interactions in these different compartments.
Collapse
Affiliation(s)
- Marta A Uzarska
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | - Farah Spantgar
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany.
| | | |
Collapse
|
71
|
Nishioka M, Inaba Y, Motobayashi M, Hara Y, Numata R, Amano Y, Shingu K, Yamamoto Y, Murayama K, Ohtake A, Nakazawa Y. An infant case of diffuse cerebrospinal lesions and cardiomyopathy caused by a BOLA3 mutation. Brain Dev 2018; 40:484-488. [PMID: 29501406 DOI: 10.1016/j.braindev.2018.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Mitochondrial dysfunction results in a wide range of organ disorders through diverse genetic abnormalities. We herein present the detailed clinical course of an infant admitted for extensive, rapidly progressing white matter lesions and hypertrophic cardiomyopathy due to a BOLA3 gene mutation. CASE A 6-month-old girl with no remarkable family or past medical history until 1 month prior presented with developmental regression and feeding impairment. Ultrasound cardiography and brain magnetic resonance imaging (MRI) respectively disclosed the presence of hypertrophic cardiomyopathy and symmetrical deep white matter lesions. She was transferred to our hospital at age 6 months. High lactate levels in her cerebrospinal fluid suggested mitochondrial dysfunction. Despite vitamin supplementation therapy followed by a ketogenic diet, the patient began exhibiting clusters of myoclonic seizures and respiratory failure. Brain and spinal cord MRI revealed rapid progression of the white matter lesions. She died at 10 months of age. Fibroblasts obtained pre-mortem displayed low mitochondrial respiratory chain complex I and II activity. A homozygous H96R (c. 287 A > G) mutation was identified in the BOLA3 gene. DISCUSSION No reported case of a homozygous BOLA3 gene mutation has survived past 1 year of life. BOLA3 appears to play a critical role in the electron transport system and production of iron-sulfur clusters that are related to lipid metabolism and enzyme biosynthesis.
Collapse
Affiliation(s)
- Makoto Nishioka
- Department of Pediatrics, Shinshu University School of Medicine, Japan
| | - Yuji Inaba
- Department of Pediatrics, Shinshu University School of Medicine, Japan; Center for Perinatal, Pediatrics, and Environmental Epidemiology, Shinshu University School of Medicine, Japan; Division of Neurology, Nagano Children's Hospital, Japan.
| | | | - Yosuke Hara
- Department of Pediatrics, Shinshu University School of Medicine, Japan
| | - Ryusuke Numata
- Department of Pediatrics, Nagano Red Cross Hospital, Japan
| | - Yoshiro Amano
- Department of Pediatrics, Nagano Red Cross Hospital, Japan
| | - Kunihiko Shingu
- Department of Laboratory Medicine, Shinshu University Hospital, Japan
| | - Yoichiro Yamamoto
- Department of Pathology, Shinshu University School of Medicine, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Japan
| | - Akira Ohtake
- Department of Pediatrics, Saitama Medical University, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Japan
| |
Collapse
|
72
|
Stutterd CA, Lake NJ, Peters H, Lockhart PJ, Taft RJ, van der Knaap MS, Vanderver A, Thorburn DR, Simons C, Leventer RJ. Severe Leukoencephalopathy with Clinical Recovery Caused by Recessive BOLA3 Mutations. JIMD Rep 2018; 43:63-70. [PMID: 29654549 PMCID: PMC6323033 DOI: 10.1007/8904_2018_100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 03/10/2023] Open
Abstract
AIM To identify the genetic aetiology of a distinct leukoencephalopathy causing acute neurological regression in infancy with apparently complete clinical recovery. METHODS We performed trio whole genome sequencing (WGS) to determine the genetic basis of the disorder. Mitochondrial function analysis in cultured patient fibroblasts was undertaken to confirm the pathogenicity of candidate variants. RESULTS The patient presented at 18 months with acute hemiplegia and cognitive regression without obvious trigger. This was followed by clinical recovery over 4 years. MRI at disease onset revealed bilateral T2 hyperintensity involving the periventricular and deep white matter and MR spectroscopy of frontal white matter demonstrated a lactate doublet. Lactate levels and mitochondrial respiratory chain enzyme activity in muscle, liver and fibroblasts were normal. Plasma glycine was elevated. The MRI abnormalities improved. WGS identified compound heterozygous variants in BOLA3: one previously reported (c.136C>T, p.Arg46*) and one novel variant (c.176G>A, p.Cys59Tyr). Analysis of cultured patient fibroblasts demonstrated deficient pyruvate dehydrogenase (PDH) activity and reduced quantity of protein subunits of mitochondrial complexes I and II, consistent with BOLA3 dysfunction. Previously reported cases of multiple mitochondrial dysfunctions syndrome 2 (MMDS2) with hyperglycinaemia caused by BOLA3 mutations have leukodystrophy with severe, progressive neurological and multisystem disease. CONCLUSIONS We report a novel phenotype for MMDS2 associated with apparently complete clinical recovery and partial resolution of MRI abnormalities. We have identified a novel disease-causing variant in BOLA3 validated by functional cellular studies. Our patient's clinical course broadens the phenotypic spectrum of MMDS2 and highlights the potential for some genetic leukoencephalopathies to spontaneously improve.
Collapse
Affiliation(s)
- C A Stutterd
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Department of Neurology, Royal Children's Hospital, Parkville, VIC, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| | - N J Lake
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Mitochondrial Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - H Peters
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Metabolic Medicine, Royal Children's Hospital, Parkville, VIC, Australia
- Metabolic Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - P J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - R J Taft
- Illumina Inc, San Diego, CA, USA
| | - M S van der Knaap
- Department of Child Neurology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - A Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D R Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Mitochondrial Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - C Simons
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
- Translational Bioinformatics Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - R J Leventer
- Department of Neurology, Royal Children's Hospital, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
| |
Collapse
|
73
|
Peña-Diaz P, Lukeš J. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem 2018; 23:521-541. [PMID: 29623424 PMCID: PMC6006210 DOI: 10.1007/s00775-018-1556-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the “supergroup” Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe–S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe–S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe–S cluster biogenesis pathways.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
74
|
Banci L, Camponeschi F, Ciofi-Baffoni S, Piccioli M. The NMR contribution to protein-protein networking in Fe-S protein maturation. J Biol Inorg Chem 2018; 23:665-685. [PMID: 29569085 PMCID: PMC6006191 DOI: 10.1007/s00775-018-1552-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Iron–sulfur proteins were among the first class of metalloproteins that were actively studied using NMR spectroscopy tailored to paramagnetic systems. The hyperfine shifts, their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues are an efficient fingerprint of the nature and the oxidation state of the Fe–S cluster. NMR significantly contributed to the analysis of the magnetic coupling patterns and to the understanding of the electronic structure occurring in [2Fe–2S], [3Fe–4S] and [4Fe–4S] clusters bound to proteins. After the first NMR structure of a paramagnetic protein was obtained for the reduced E. halophila HiPIP I, many NMR structures were determined for several Fe–S proteins in different oxidation states. It was found that differences in chemical shifts, in patterns of unobserved residues, in internal mobility and in thermodynamic stability are suitable data to map subtle changes between the two different oxidation states of the protein. Recently, the interaction networks responsible for maturing human mitochondrial and cytosolic Fe–S proteins have been largely characterized by combining solution NMR standard experiments with those tailored to paramagnetic systems. We show here the contribution of solution NMR in providing a detailed molecular view of “Fe–S interactomics”. This contribution was particularly effective when protein–protein interactions are weak and transient, and thus difficult to be characterized at high resolution with other methodologies.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.
| | - Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.
| |
Collapse
|
75
|
Cardenas-Rodriguez M, Chatzi A, Tokatlidis K. Iron-sulfur clusters: from metals through mitochondria biogenesis to disease. J Biol Inorg Chem 2018; 23:509-520. [PMID: 29511832 PMCID: PMC6006200 DOI: 10.1007/s00775-018-1548-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/22/2018] [Indexed: 01/12/2023]
Abstract
Iron–sulfur clusters are ubiquitous inorganic co-factors that contribute to a wide range of cell pathways including the maintenance of DNA integrity, regulation of gene expression and protein translation, energy production, and antiviral response. Specifically, the iron–sulfur cluster biogenesis pathways include several proteins dedicated to the maturation of apoproteins in different cell compartments. Given the complexity of the biogenesis process itself, the iron–sulfur research area constitutes a very challenging and interesting field with still many unaddressed questions. Mutations or malfunctions affecting the iron–sulfur biogenesis machinery have been linked with an increasing amount of disorders such as Friedreich’s ataxia and various cardiomyopathies. This review aims to recap the recent discoveries both in the yeast and human iron–sulfur cluster arena, covering recent discoveries from chemistry to disease.
Collapse
Affiliation(s)
- Mauricio Cardenas-Rodriguez
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Afroditi Chatzi
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
76
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
77
|
Wachnowsky C, Fidai I, Cowan JA. Iron-sulfur cluster biosynthesis and trafficking - impact on human disease conditions. Metallomics 2018; 10:9-29. [PMID: 29019354 PMCID: PMC5783746 DOI: 10.1039/c7mt00180k] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron-sulfur clusters (Fe-S) are one of the most ancient, ubiquitous and versatile classes of metal cofactors found in nature. Proteins that contain Fe-S clusters constitute one of the largest families of proteins, with varied functions that include electron transport, regulation of gene expression, substrate binding and activation, radical generation, and, more recently discovered, DNA repair. Research during the past two decades has shown that mitochondria are central to the biogenesis of Fe-S clusters in eukaryotic cells via a conserved cluster assembly machinery (ISC assembly machinery) that also controls the synthesis of Fe-S clusters of cytosolic and nuclear proteins. Several key steps for synthesis and trafficking have been determined for mitochondrial Fe-S clusters, as well as the cytosol (CIA - cytosolic iron-sulfur protein assembly), but detailed mechanisms of cluster biosynthesis, transport, and exchange are not well established. Genetic mutations and the instability of certain steps in the biosynthesis and maturation of mitochondrial, cytosolic and nuclear Fe-S cluster proteins affects overall cellular iron homeostasis and can lead to severe metabolic, systemic, neurological and hematological diseases, often resulting in fatality. In this review we briefly summarize the current molecular understanding of both mitochondrial ISC and CIA assembly machineries, and present a comprehensive overview of various associated inborn human disease states.
Collapse
Affiliation(s)
- C Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
78
|
Przybyla-Toscano J, Roland M, Gaymard F, Couturier J, Rouhier N. Roles and maturation of iron-sulfur proteins in plastids. J Biol Inorg Chem 2018; 23:545-566. [PMID: 29349662 PMCID: PMC6006212 DOI: 10.1007/s00775-018-1532-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022]
Abstract
One reason why iron is an essential element for most organisms is its presence in prosthetic groups such as hemes or iron–sulfur (Fe–S) clusters, which are notably required for electron transfer reactions. As an organelle with an intense metabolism in plants, chloroplast relies on many Fe–S proteins. This includes those present in the electron transfer chain which will be, in fact, essential for most other metabolic processes occurring in chloroplasts, e.g., carbon fixation, nitrogen and sulfur assimilation, pigment, amino acid, and vitamin biosynthetic pathways to cite only a few examples. The maturation of these Fe–S proteins requires a complex and specific machinery named SUF (sulfur mobilisation). The assembly process can be split in two major steps, (1) the de novo assembly on scaffold proteins which requires ATP, iron and sulfur atoms, electrons, and thus the concerted action of several proteins forming early acting assembly complexes, and (2) the transfer of the preformed Fe–S cluster to client proteins using a set of late-acting maturation factors. Similar machineries, having in common these basic principles, are present in the cytosol and in mitochondria. This review focuses on the currently known molecular details concerning the assembly and roles of Fe–S proteins in plastids.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France
| | - Mélanie Roland
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/Université Montpellier 2, SupAgro Campus, 34060, Montpellier, France
| | - Jérémy Couturier
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France
| | - Nicolas Rouhier
- Université de Lorraine, Interactions Arbres-Microorganismes, UMR1136, 54500, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
79
|
Freibert SA, Weiler BD, Bill E, Pierik AJ, Mühlenhoff U, Lill R. Biochemical Reconstitution and Spectroscopic Analysis of Iron-Sulfur Proteins. Methods Enzymol 2018; 599:197-226. [PMID: 29746240 DOI: 10.1016/bs.mie.2017.11.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Iron-sulfur (Fe/S) proteins are involved in numerous key biological functions such as respiration, metabolic processes, protein translation, DNA synthesis, and DNA repair. The simplest types of Fe/S clusters include [2Fe-2S], [3Fe-4S], and [4Fe-4S] forms that sometimes are present in multiple copies. De novo assembly of Fe/S cofactors and their insertion into apoproteins in living cells requires complex proteinaceous machineries that are frequently highly conserved. In eukaryotes such as yeast and mammals, the mitochondrial iron-sulfur cluster assembly machinery and the cytosolic iron-sulfur protein assembly system consist of more than 30 components that cooperate in the generation of some 50 cellular Fe/S proteins. Both the mechanistic dissection of the intracellular Fe/S protein assembly pathways and the identification and characterization of Fe/S proteins rely on tool boxes of in vitro and in vivo methods. These cell biological, biochemical, and biophysical techniques help to determine the extent, stability, and type of bound Fe/S cluster. They also serve to distinguish bona fide Fe/S proteins from other metal-binding proteins containing similar cofactor coordination motifs. Here, we present a collection of in vitro methods that have proven useful for basic biochemical and biophysical characterization of Fe/S proteins. First, we describe the chemical assembly of [2Fe-2S] or [4Fe-4S] clusters on purified apoproteins. Then, we summarize a reconstitution system reproducing the de novo synthesis of a [2Fe-2S] cluster in mitochondria. Finally, we explain the use of UV-vis, CD, electron paramagnetic resonance, and Mössbauer spectroscopy for the routine characterization of Fe/S proteins.
Collapse
Affiliation(s)
| | | | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Antonio J Pierik
- Chemistry and Biochemistry, Technical University of Kaiserlautern, Kaiserlautern, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität, Marburg, Germany; LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Marburg, Germany.
| |
Collapse
|
80
|
Stehling O, Paul VD, Bergmann J, Basu S, Lill R. Biochemical Analyses of Human Iron–Sulfur Protein Biogenesis and of Related Diseases. Methods Enzymol 2018; 599:227-263. [DOI: 10.1016/bs.mie.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
81
|
Albetel AN, Outten CE. Characterization of Glutaredoxin Fe-S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy. Methods Enzymol 2017; 599:327-353. [PMID: 29746245 DOI: 10.1016/bs.mie.2017.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monothiol glutaredoxins (Grxs) with a conserved Cys-Gly-Phe-Ser (CGFS) active site are iron-sulfur (Fe-S) cluster-binding proteins that interact with a variety of partner proteins and perform crucial roles in iron metabolism including Fe-S cluster transfer, Fe-S cluster repair, and iron signaling. Various analytical and spectroscopic methods are currently being used to monitor and characterize glutaredoxin Fe-S cluster-dependent interactions at the molecular level. The electronic, magnetic, and vibrational properties of the protein-bound Fe-S cluster provide a convenient handle to probe the structure, function, and coordination chemistry of Grx complexes. However, some limitations arise from sample preparation requirements, complexity of individual techniques, or the necessity for combining multiple methods in order to achieve a complete investigation. In this chapter, we focus on the use of UV-visible circular dichroism spectroscopy as a fast and simple initial approach for investigating glutaredoxin Fe-S cluster-dependent interactions.
Collapse
Affiliation(s)
| | - Caryn E Outten
- University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
82
|
Abstract
Iron-sulfur clusters (Fe/S clusters) are essential cofactors required throughout the clades of biology for performing a myriad of unique functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. Although Fe/S clusters can be synthesized in vitro and transferred to a client protein without enzymatic assistance, biology has evolved intricate mechanisms to assemble and transfer Fe/S clusters within the cellular environment. In eukaryotes, the foundation of all cellular clusters starts within the mitochondria. The focus of this review is to detail the mitochondrial Fe/S biogenesis (ISC) pathway along with the Fe/S cluster transfer steps necessary to mature Fe/S proteins. New advances in our understanding of the mitochondrial Fe/S biogenesis machinery will be highlighted. Additionally, we will address various experimental approaches that have been successful in the identification and characterization of components of the ISC pathway.
Collapse
Affiliation(s)
- Andrew Melber
- University of Utah Health Sciences Center, Salt Lake City, Utah, United States
| | - Dennis R Winge
- University of Utah Health Sciences Center, Salt Lake City, Utah, United States.
| |
Collapse
|
83
|
Lebigot E, Gaignard P, Dorboz I, Slama A, Rio M, de Lonlay P, Héron B, Sabourdy F, Boespflug-Tanguy O, Cardoso A, Habarou F, Ottolenghi C, Thérond P, Bouton C, Golinelli-Cohen MP, Boutron A. Impact of mutations within the [Fe-S] cluster or the lipoic acid biosynthesis pathways on mitochondrial protein expression profiles in fibroblasts from patients. Mol Genet Metab 2017; 122:85-94. [PMID: 28803783 DOI: 10.1016/j.ymgme.2017.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022]
Abstract
Lipoic acid (LA) is the cofactor of the E2 subunit of mitochondrial ketoacid dehydrogenases and plays a major role in oxidative decarboxylation. De novo LA biosynthesis is dependent on LIAS activity together with LIPT1 and LIPT2. LIAS is an iron‑sulfur (Fe-S) cluster-containing mitochondrial protein, like mitochondrial aconitase (mt-aco) and some subunits of respiratory chain (RC) complexes I, II and III. All of them harbor at least one [Fe-S] cluster and their activity is dependent on the mitochondrial [Fe-S] cluster (ISC) assembly machinery. Disorders in the ISC machinery affect numerous Fe-S proteins and lead to a heterogeneous group of diseases with a wide variety of clinical symptoms and combined enzymatic defects. Here, we present the biochemical profiles of several key mitochondrial [Fe-S]-containing proteins in fibroblasts from 13 patients carrying mutations in genes encoding proteins involved in either the lipoic acid (LIPT1 and LIPT2) or mitochondrial ISC biogenesis (FDX1L, ISCA2, IBA57, NFU1, BOLA3) pathway. Ten of them are new patients described for the first time. We confirm that the fibroblast is a good cellular model to study these deficiencies, except for patients presenting mutations in FDX1L and a muscular clinical phenotype. We find that oxidative phosphorylation can be affected by LA defects in LIPT1 and LIPT2 patients due to excessive oxidative stress or to another mechanism connecting LA and respiratory chain activity. We confirm that NFU1, BOLA3, ISCA2 and IBA57 operate in the maturation of [4Fe-4S] clusters and not in [2Fe-2S] protein maturation. Our work suggests a functional difference between IBA57 and other proteins involved in maturation of [Fe-S] proteins. IBA57 seems to require BOLA3, NFU1 and ISCA2 for its stability and NFU1 requires BOLA3. Finally, our study establishes different biochemical profiles for patients according to their mutated protein.
Collapse
Affiliation(s)
- E Lebigot
- Biochemistry Department, Hôpital de Bicêtre, Hôpitaux universitaires Paris-Sud, Assistance Publique - Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France; Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - P Gaignard
- Biochemistry Department, Hôpital de Bicêtre, Hôpitaux universitaires Paris-Sud, Assistance Publique - Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France
| | - I Dorboz
- Inserm U1141, Paris Diderot University, Sorbonne Paris Cité, DHU PROTECT, Hôpital Robert Debré, Paris, France
| | - A Slama
- Biochemistry Department, Hôpital de Bicêtre, Hôpitaux universitaires Paris-Sud, Assistance Publique - Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France
| | - M Rio
- Reference Center of Inherited Metabolic Diseases, Hôpital Necker Enfants Malades, Institut Imagine, Assistance Publique - Hôpitaux de Paris, Université Paris-Descartes, 75015 Paris, France
| | - P de Lonlay
- Reference Center of Inherited Metabolic Diseases, Hôpital Necker Enfants Malades, Institut Imagine, Assistance Publique - Hôpitaux de Paris, Université Paris-Descartes, 75015 Paris, France
| | - B Héron
- Neuropediatrics Department, Hôpital Trousseau, Assistance Publique - Hôpitaux de Paris, 75012 Paris, GCR Concer-LD Sorbonne Universités UPMC, Univ 06, Paris, France
| | - F Sabourdy
- Metabolic Biochemistry Department, Hôpital des Enfants, 31059 Toulouse cedex, France
| | - O Boespflug-Tanguy
- Inserm U1141, Paris Diderot University, Sorbonne Paris Cité, DHU PROTECT, Hôpital Robert Debré, Paris, France; Neuropediatrics Department, Hôpital Robert Debré, Assistance Publique - Hôpitaux de Paris, 75019 Paris, France
| | - A Cardoso
- Biochemistry Department, Hôpital de Bicêtre, Hôpitaux universitaires Paris-Sud, Assistance Publique - Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France
| | - F Habarou
- Metabolic Biochemistry Department, Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - C Ottolenghi
- Metabolic Biochemistry Department, Hôpital Necker Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - P Thérond
- Biochemistry Department, Hôpital de Bicêtre, Hôpitaux universitaires Paris-Sud, Assistance Publique - Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France
| | - C Bouton
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - M P Golinelli-Cohen
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - A Boutron
- Biochemistry Department, Hôpital de Bicêtre, Hôpitaux universitaires Paris-Sud, Assistance Publique - Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France.
| |
Collapse
|
84
|
Abstract
The biogenesis of iron-sulfur (Fe/S) proteins in eukaryotes is a multistage, multicompartment process that is essential for a broad range of cellular functions, including genome maintenance, protein translation, energy conversion, and the antiviral response. Genetic and cell biological studies over almost 2 decades have revealed some 30 proteins involved in the synthesis of cellular [2Fe-2S] and [4Fe-4S] clusters and their incorporation into numerous apoproteins. Mechanistic aspects of Fe/S protein biogenesis continue to be elucidated by biochemical and ultrastructural investigations. Here, we review recent developments in the pursuit of constructing a comprehensive model of Fe/S protein assembly in the mitochondrion.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg; LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
85
|
Philpott CC, Ryu MS, Frey A, Patel S. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells. J Biol Chem 2017; 292:12764-12771. [PMID: 28615454 DOI: 10.1074/jbc.r117.791962] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells.
Collapse
Affiliation(s)
- Caroline C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| | - Moon-Suhn Ryu
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota 55108
| | | | - Sarju Patel
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
86
|
Mashruwala AA, Boyd JM. Investigating the role(s) of SufT and the domain of unknown function 59 (DUF59) in the maturation of iron-sulfur proteins. Curr Genet 2017; 64:9-16. [PMID: 28589301 DOI: 10.1007/s00294-017-0716-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/07/2023]
Abstract
Comprehending biology at the molecular and systems levels is predicated upon understanding the functions of proteins. Proteins are typically composed of one or more functional moieties termed domains. Members of Bacteria, Eukarya, and Archaea utilize proteins containing a domain of unknown function (DUF) 59. Proteins requiring iron-sulfur (FeS) clusters containing cofactors are necessary for nearly all organisms making the assembly of functional FeS proteins essential. Recently, studies in eukaryotic and bacterial organisms have shown that proteins containing a DUF59, or those composed solely of DUF59, function in FeS protein maturation and/or intracellular Fe homeostasis. Herein, we review the current literature, discuss potential roles for DUF59, and address future studies that will help advance the field.
Collapse
Affiliation(s)
- Ameya A Mashruwala
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Dr., New Brunswick, NJ, 08901, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Dr., New Brunswick, NJ, 08901, USA.
| |
Collapse
|
87
|
Nasta V, Giachetti A, Ciofi-Baffoni S, Banci L. Structural insights into the molecular function of human [2Fe-2S] BOLA1-GRX5 and [2Fe-2S] BOLA3-GRX5 complexes. Biochim Biophys Acta Gen Subj 2017; 1861:2119-2131. [PMID: 28483642 DOI: 10.1016/j.bbagen.2017.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 01/12/2023]
Abstract
Members of the monothiol glutaredoxin family and members of the BolA-like protein family have recently emerged as specific interacting partners involved in iron-sulfur protein maturation and redox regulation pathways. It is known that human mitochondrial BOLA1 and BOLA3 form [2Fe-2S] cluster-bridged dimeric heterocomplexes with the monothiol glutaredoxin GRX5. The structure and cluster coordination of the two [2Fe-2S] heterocomplexes as well as their molecular function are, however, not defined yet. Experimentally-driven structural models of the two [2Fe-2S] cluster-bridged dimeric heterocomplexes, the relative stability of the two complexes and the redox properties of the [2Fe-2S] cluster bound to these complexes are here presented on the basis of UV/vis, CD, EPR and NMR spectroscopies and computational protein-protein docking. While the BOLA1-GRX5 complex coordinates a reduced, Rieske-type [2Fe-2S]1+ cluster, an oxidized, ferredoxin-like [2Fe-2S]2+ cluster is present in the BOLA3-GRX5 complex. The [2Fe-2S] BOLA1-GRX5 complex is preferentially formed over the [2Fe-2S] BOLA3-GRX5 complex, as a result of a higher cluster binding affinity. All these observed differences provide the first indications discriminating the molecular function of the two [2Fe-2S] heterocomplexes.
Collapse
Affiliation(s)
- Veronica Nasta
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Giachetti
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
88
|
Wachnowsky C, Wesley NA, Fidai I, Cowan JA. Understanding the Molecular Basis of Multiple Mitochondrial Dysfunctions Syndrome 1 (MMDS1)-Impact of a Disease-Causing Gly208Cys Substitution on Structure and Activity of NFU1 in the Fe/S Cluster Biosynthetic Pathway. J Mol Biol 2017; 429:790-807. [PMID: 28161430 DOI: 10.1016/j.jmb.2017.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/28/2017] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S)-cluster-containing proteins constitute one of the largest protein classes, with varied functions that include electron transport, regulation of gene expression, substrate binding and activation, and radical generation. Consequently, the biosynthetic machinery for Fe/S clusters is evolutionarily conserved, and mutations in a variety of putative intermediate Fe/S cluster scaffold proteins can cause disease states, including multiple mitochondrial dysfunctions syndrome (MMDS), sideroblastic anemia, and mitochondrial encephalomyopathy. Herein, we have characterized the impact of defects occurring in the MMDS1 disease state that result from a point mutation (Gly208Cys) near the active site of NFU1, an Fe/S scaffold protein, via an in vitro investigation into the structural and functional consequences. Analysis of protein stability and oligomeric state demonstrates that the mutant increases the propensity to dimerize and perturbs the secondary structure composition. These changes appear to underlie the severely decreased ability of mutant NFU1 to accept an Fe/S cluster from physiologically relevant sources. Therefore, the point mutation on NFU1 impairs downstream cluster trafficking and results in the disease phenotype, because there does not appear to be an alternative in vivo reconstitution path, most likely due to greater protein oligomerization from a minor structural change.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; The Ohio State Biochemistry Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA
| | - Nathaniel A Wesley
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; The Biophysics Graduate Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; The Ohio State Biochemistry Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA; The Biophysics Graduate Program, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
89
|
Freibert SA, Goldberg AV, Hacker C, Molik S, Dean P, Williams TA, Nakjang S, Long S, Sendra K, Bill E, Heinz E, Hirt RP, Lucocq JM, Embley TM, Lill R. Evolutionary conservation and in vitro reconstitution of microsporidian iron-sulfur cluster biosynthesis. Nat Commun 2017; 8:13932. [PMID: 28051091 PMCID: PMC5216125 DOI: 10.1038/ncomms13932] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022] Open
Abstract
Microsporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron–sulfur cluster (ISC) assembly, which we suggest is the essential task of these organelles. Cell fractionation, fluorescence imaging and immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe–2S] cluster biosynthesis that we biochemically reconstituted using purified mitosomal ISC proteins. The T. hominis cytosolic iron–sulfur protein assembly (CIA) pathway includes the essential Cfd1–Nbp35 scaffold complex that assembles a [4Fe–4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that the ISC and CIA pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides compelling evidence for the ancient chimeric ancestry of eukaryotes.
The functions of the highly reduced mitochondria (mitosomes) of microsporidians are not well-characterized. Here, the authors show that the Trachipleistophora hominis mitosome is the site of iron–sulfur cluster assembly and that its retention is likely linked to its role in cytosolic and nuclear iron–sulfur protein maturation.
Collapse
Affiliation(s)
- Sven-A Freibert
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Robert-Koch-Strasse 6, Marburg 35032, Germany
| | - Alina V Goldberg
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Christian Hacker
- School of Medicine, University of St Andrews, St. Andrews KY16 9TF, UK.,Bioimaging Centre, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Sabine Molik
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Robert-Koch-Strasse 6, Marburg 35032, Germany
| | - Paul Dean
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Tom A Williams
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Sirintra Nakjang
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Shaojun Long
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Kacper Sendra
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Eckhard Bill
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Eva Heinz
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - John M Lucocq
- School of Medicine, University of St Andrews, St. Andrews KY16 9TF, UK
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Robert-Koch-Strasse 6, Marburg 35032, Germany.,LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, Marburg 35043, Germany
| |
Collapse
|
90
|
Torraco A, Ardissone A, Invernizzi F, Rizza T, Fiermonte G, Niceta M, Zanetti N, Martinelli D, Vozza A, Verrigni D, Di Nottia M, Lamantea E, Diodato D, Tartaglia M, Dionisi-Vici C, Moroni I, Farina L, Bertini E, Ghezzi D, Carrozzo R. Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes. J Neurol 2016; 264:102-111. [PMID: 27785568 DOI: 10.1007/s00415-016-8312-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
Abstract
Defects of the Fe/S cluster biosynthesis represent a subgroup of diseases affecting the mitochondrial energy metabolism. In the last years, mutations in four genes (NFU1, BOLA3, ISCA2 and IBA57) have been related to a new group of multiple mitochondrial dysfunction syndromes characterized by lactic acidosis, hyperglycinemia, multiple defects of the respiratory chain complexes, and impairment of four lipoic acid-dependent enzymes: α-ketoglutarate dehydrogenase complex, pyruvic dehydrogenase, branched-chain α-keto acid dehydrogenase complex and the H protein of the glycine cleavage system. Few patients have been reported with mutations in IBA57 and with variable clinical phenotype. Herein, we describe four unrelated patients carrying novel mutations in IBA57. All patients presented with combined or isolated defect of complex I and II. Clinical features varied widely, ranging from fatal infantile onset of the disease to acute and severe psychomotor regression after the first year of life. Brain MRI was characterized by cavitating leukodystrophy. The identified mutations were never reported previously and all had a dramatic effect on IBA57 stability. Our study contributes to expand the array of the genotypic variation of IBA57 and delineates the leukodystrophic pattern of IBA57 deficient patients.
Collapse
Affiliation(s)
- Alessandra Torraco
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Ardissone
- Child Neurology Unit, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Federica Invernizzi
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Teresa Rizza
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Fiermonte
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, Bari, Italy
| | - Marcello Niceta
- Division of Genetic Disorders and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nadia Zanetti
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angelo Vozza
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, Bari, Italy
| | - Daniela Verrigni
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eleonora Lamantea
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Daria Diodato
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Division of Genetic Disorders and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Moroni
- Child Neurology Unit, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Laura Farina
- Unit of Neuroradiology, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute "C. Besta", Milan, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|