51
|
Noninvasive transcranial focal stimulation affects the convulsive seizure-induced P-glycoprotein expression and function in rats. Epilepsy Behav 2021; 115:107659. [PMID: 33334719 DOI: 10.1016/j.yebeh.2020.107659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 01/16/2023]
Abstract
Transcranial focal stimulation (TFS) is a noninvasive neuromodulation strategy that reduces seizure activity in different experimental models. Nevertheless, there is no information about the effects of TFS in the drug-resistant phenotype associated with P-glycoprotein (Pgp) overexpression. The present study focused on determining the effects of TFS on Pgp expression after an acute seizure induced by 3-mercaptopropionic acid (MPA). P-glycoprotein expression was analyzed by western blot in the cerebral cortex and hippocampus of rats receiving 5 min of TFS (300 Hz, 50 mA, 200 μs, biphasic charge-balanced squared pulses) using a tripolar concentric ring electrode (TCRE) prior to administration of a single dose of MPA. An acute administration of MPA induced Pgp overexpression in cortex (68 ± 13.4%, p < 0.05 vs the control group) and hippocampus (48.5 ± 14%, p < 0.05, vs the control group). This effect was avoided when TFS was applied prior to MPA. We also investigated if TFS augments the effects of phenytoin in an experimental model of drug-resistant seizures induced by repetitive MPA administration. Animals with MPA-induced drug-resistant seizures received TFS alone or associated with phenytoin (75 mg/kg, i.p.). TFS alone did not modify the expression of the drug-resistant seizures. However, TFS combined with phenytoin reduced seizure intensity, an effect associated with a lower prevalence of major seizures (50%, p = 0.03 vs phenytoin alone). Our experiments demonstrated that TFS avoids the Pgp overexpression induced after an acute convulsive seizure. In addition, TFS augments the phenytoin effects in an experimental model of drug-resistant seizures. According with these results, it is indicated that TFS may represent a new neuromodulatory strategy to revert the drug-resistant phenotype.
Collapse
|
52
|
Fukuma K, Kajimoto K, Tanaka T, Takaya S, Kobayashi K, Shimotake A, Matsumoto R, Ikeda A, Toyoda K, Ihara M. Visualizing prolonged hyperperfusion in post-stroke epilepsy using postictal subtraction SPECT. J Cereb Blood Flow Metab 2021; 41:146-156. [PMID: 32065077 PMCID: PMC7747161 DOI: 10.1177/0271678x20902742] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Diagnosis of post-stroke epilepsy is often challenging because of a low incidence of epileptiform abnormalities on electroencephalography (EEG). Hence, this study evaluated whether postictal subtraction single-photon emission computed tomography (SPECT) could visualize epileptic activity and act as a diagnostic modality in post-stroke epilepsy. Fifty post-stroke epilepsy patients, who had undergone Tc-99m-ECD SPECT twice (postictal and interictal), were enrolled. The postictal hyperperfusion area was identified by subtraction (postictal-interictal) SPECT and classified into two distribution types: superficial or deep-seated. Laterality and distribution of postictal hyperperfusion on subtraction SPECT were compared with stroke lesions, seizure symptoms, and epileptiform EEG findings. Forty-three of the 50 patients (86%) had hyperperfusion on subtraction SPECT and 26 (52%) had epileptiform EEG findings. Subtraction SPECT showed prolonged postictal hyperperfusion despite the relatively long interval between seizure end and postictal SPECT (median: 19.1 h, range: 2.2-112.5 h). The laterality of the hyperperfusion area had a high concordance rate with the laterality of stroke lesions (97.7%), seizure symptoms (91.9%), and epileptiform EEG findings (100%). Scalp EEG identified epileptiform activity more frequently in superficial type of SPECT, but less frequently in deep-seated type (both, P = 0.03). Postictal SPECT can be complementary to scalp EEG in endorsing the diagnosis and location of post-stroke epilepsy.
Collapse
Affiliation(s)
- Kazuki Fukuma
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Katsufumi Kajimoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shigetoshi Takaya
- Department of Neurology, Senri Rehabilitation Hospital, Osaka, Japan.,Department of Rehabilitation Medicine, Senri Rehabilitation Hospital, Osaka, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazunori Toyoda
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
53
|
Yoo HL, Choi YJ, Moon JH, Jo HJ, Park DW. Serial Perfusion and Vascular Changes after a Prolonged Seizure. ANNALS OF CHILD NEUROLOGY 2021. [DOI: 10.26815/acn.2020.00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
54
|
Tran CHT, George AG, Teskey GC, Gordon GR. Seizures elevate gliovascular unit Ca2+ and cause sustained vasoconstriction. JCI Insight 2020; 5:136469. [PMID: 33004688 PMCID: PMC7566700 DOI: 10.1172/jci.insight.136469] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/20/2020] [Indexed: 12/31/2022] Open
Abstract
Seizures can result in a severe hypoperfusion/hypoxic attack that causes postictal memory and behavioral impairments. However, neither postictal changes to microvasculature nor Ca2+ changes in key cell types controlling blood perfusion have been visualized in vivo, leaving essential components of the underlying cellular mechanisms unclear. Here, we use 2-photon microvascular and Ca2+ imaging in awake mice to show that seizures result in a robust vasoconstriction of cortical penetrating arterioles, which temporally mirrors the prolonged postictal hypoxia. The vascular effect was dependent on cyclooxygenase 2, as pretreatment with ibuprofen prevented postictal vasoconstriction. Moreover, seizures caused a rapid elevation in astrocyte endfoot Ca2+ that was confined to the seizure period, and vascular smooth muscle cells displayed a significant increase in Ca2+ both during and following seizures, lasting up to 75 minutes. Our data show enduring postictal vasoconstriction and temporal activities of 2 cell types within the neurovascular unit that are associated with seizure-induced hypoperfusion/hypoxia. These findings support prevention of this event may be a novel and tractable treatment strategy in patients with epilepsy who experience extended postseizure impairments. Seizures cause enduring microvascular constriction via long lasting calcium elevations in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Cam Ha T Tran
- Hotchkiss Brain Institute and.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Antis G George
- Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute and.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Grant R Gordon
- Hotchkiss Brain Institute and.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
55
|
Farrell JS, Colangeli R, Dudok B, Wolff MD, Nguyen SL, Jackson J, Dickson CT, Soltesz I, Teskey GC. In vivo assessment of mechanisms underlying the neurovascular basis of postictal amnesia. Sci Rep 2020; 10:14992. [PMID: 32929133 PMCID: PMC7490395 DOI: 10.1038/s41598-020-71935-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Long-lasting confusion and memory difficulties during the postictal state remain a major unmet problem in epilepsy that lacks pathophysiological explanation and treatment. We previously identified that long-lasting periods of severe postictal hypoperfusion/hypoxia, not seizures per se, are associated with memory impairment after temporal lobe seizures. While this observation suggests a key pathophysiological role for insufficient energy delivery, it is unclear how the networks that underlie episodic memory respond to vascular constraints that ultimately give rise to amnesia. Here, we focused on cellular/network level analyses in the CA1 of hippocampus in vivo to determine if neural activity, network oscillations, synaptic transmission, and/or synaptic plasticity are impaired following kindled seizures. Importantly, the induction of severe postictal hypoperfusion/hypoxia was prevented in animals treated by a COX-2 inhibitor, which experimentally separated seizures from their vascular consequences. We observed complete activation of CA1 pyramidal neurons during brief seizures, followed by a short period of reduced activity and flattening of the local field potential that resolved within minutes. During the postictal state, constituting tens of minutes to hours, we observed no changes in neural activity, network oscillations, and synaptic transmission. However, long-term potentiation of the temporoammonic pathway to CA1 was impaired in the postictal period, but only when severe local hypoxia occurred. Lastly, we tested the ability of rats to perform object-context discrimination, which has been proposed to require temporoammonic input to differentiate between sensory experience and the stored representation of the expected object-context pairing. Deficits in this task following seizures were reversed by COX-2 inhibition, which prevented severe postictal hypoxia. These results support a key role for hypoperfusion/hypoxia in postictal memory impairments and identify that many aspects of hippocampal network function are resilient during severe hypoxia except for long-term synaptic plasticity.
Collapse
Affiliation(s)
- Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Roberto Colangeli
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Marshal D Wolff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah L Nguyen
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Clayton T Dickson
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
56
|
Quantitative T 2 MRI is predictive of neurodegeneration following organophosphate exposure in a rat model. Sci Rep 2020; 10:13007. [PMID: 32747689 PMCID: PMC7400670 DOI: 10.1038/s41598-020-69991-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/13/2020] [Indexed: 02/03/2023] Open
Abstract
Organophosphorus compounds, such as chemical warfare nerve agents and pesticides, are known to cause neurological damage. This study measured nerve agent-related neuropathology and determined whether quantitative T2 MRI could be used as a biomarker of neurodegeneration. Quantitative T2 MRI was performed using a 9.4 T MRI on rats prior to and following soman exposure. T2 images were taken at least 24 h prior, 1 h and 18-24 h after soman exposure. Rats were pre- and post-treated with HI-6 dimethanesulfonate and atropine methyl nitrate. A multicomponent T2 acquisition and analysis was performed. Brains were stained with Fluoro-Jade C to assess neurodegeneration. Rats exposed to soman developed behavioral expression of electrographic seizures. At 18-24 h after soman exposure, significant increases in T2, a possible marker of edema, were found in multiple regions. The largest changes were in the piriform cortex (before: 47.7 ± 1.4 ms; 18-24 h: 82.3 ± 13.4 ms). Fluoro-Jade C staining showed significant neurodegeneration 18-24 h post exposure. The piriform cortex had the strongest correlation between the change in relaxation rate and percent neurodegeneration (r = 0.96, p < 0.001). These findings indicate there is regionally specific neurodegeneration 24 h after exposure to soman. The high correlation between T2 relaxivity and histopathology supports the use of T2 as a marker of injury.
Collapse
|
57
|
Liu J, Peedicail JS, Gaxiola-Valdez I, Li E, Mosher V, Wilson W, Perera T, Singh S, Teskey GC, Federico P. Postictal brainstem hypoperfusion and risk factors for sudden unexpected death in epilepsy. Neurology 2020; 95:e1694-e1705. [PMID: 32675079 DOI: 10.1212/wnl.0000000000010360] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Since the strongest risk factor for sudden unexpected death in epilepsy (SUDEP) is frequent bilateral tonic-clonic seizures (BTCS), our aim was to determine whether postictal hypoperfusion in brainstem respiratory centers (BRCs) is more common following tonic-clonic seizures. METHODS We studied 21 patients with focal epilepsies who underwent perfusion imaging with arterial spin labeling MRI. Subtraction maps of cerebral blood flow were obtained from the postictal and baseline scans. We identified 6 regions of interest in the brainstem that contain key BRCs. Patients were considered to have postictal BRC hypoperfusion if any of the 6 regions of interest were significantly hypoperfused. RESULTS All 6 patients who experienced BTCS during the study had significant clusters of postictal hypoperfusion in BRCs compared to 7 who had focal impaired awareness seizures (7/15). The association between seizure type studied and the presence of BRC hypoperfusion was significant. Duration of epilepsy and frequency of BTCS were not associated with postictal brainstem hypoperfusion despite also being associated with risk for SUDEP. CONCLUSION Postictal hypoperfusion in brainstem respiratory centers occurs more often following BTCS than other seizure types, providing a possible explanation for the increased risk of SUDEP in patients who regularly experience BTCS.
Collapse
Affiliation(s)
- Jonathan Liu
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Joseph S Peedicail
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Ismael Gaxiola-Valdez
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Emmy Li
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Victoria Mosher
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - William Wilson
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Tefani Perera
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Shaily Singh
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - G Campbell Teskey
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada
| | - Paolo Federico
- From Hotchkiss Brain Institute (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., G.C.T., P.F.), Seaman Family MR Research Centre (J.L., J.S.P., I.G.-V., E.L., V.M., W.W., T.P., S.S., P.F.), Department of Clinical Neurosciences (J.S.P., S.S., P.F.), and Department of Radiology (P.F.), Cumming School of Medicine, University of Calgary, Canada.
| | | |
Collapse
|
58
|
Han CL, Liu YP, Guo CJ, Du TT, Jiang Y, Wang KL, Shao XQ, Meng FG, Zhang JG. The lncRNA H19 binding to let-7b promotes hippocampal glial cell activation and epileptic seizures by targeting Stat3 in a rat model of temporal lobe epilepsy. Cell Prolif 2020; 53:e12856. [PMID: 32648622 PMCID: PMC7445408 DOI: 10.1111/cpr.12856] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives Glial cell activation contributes to the inflammatory response and occurrence of epilepsy. Our preliminary study demonstrated that the long non‐coding RNA, H19, promotes hippocampal glial cell activation during epileptogenesis. However, the precise mechanisms underlying this effect remain unclear. Materials and methods H19 and let‐7b were overexpressed or silenced using an adeno‐associated viral vector in vivo. Their expression in a kainic acid‐induced epilepsy model was evaluated by real‐time quantitative PCR, fluorescence in situ hybridization, and cytoplasmic and nuclear RNA isolation. A dual‐luciferase reporter assay was used to evaluate the direct binding of let‐7b to its target genes and H19. Western blot, video camera monitoring and Morris water maze were performed to confirm the role of H19 and let7b on epileptogenesis. Results H19 was increased in rat hippocampus neurons after status epilepticus, which might be due to epileptic seizure‐induced hypoxia. Increased H19 aggravated the epileptic seizures, memory impairment and mossy fibre sprouting of the epileptic rats. H19 could competitively bind to let‐7b to suppress its expression. Overexpression of let‐7b inhibited hippocampal glial cell activation, inflammatory response and epileptic seizures by targeting Stat3. Moreover, overexpressed H19 reversed the inhibitory effect of let‐7b on glial cell activation. Conclusions LncRNA H19 could competitively bind to let‐7b to promote hippocampal glial cell activation and epileptic seizures by targeting Stat3 in a rat model of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Chun-Lei Han
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun-Peng Liu
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chen-Jia Guo
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting-Ting Du
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Ying Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Kai-Liang Wang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan-Gang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
59
|
Wolff MD, Farrell JS, Scantlebury MH, Teskey GC. Dynamic oxygen changes during status epilepticus and subsequent endogenous kindling. Epilepsia 2020; 61:1515-1527. [PMID: 32478859 PMCID: PMC7496277 DOI: 10.1111/epi.16554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Brain tissue oxygen (partial oxygen pressure [pO2 ]) levels are tightly regulated to stay within the normoxic zone, with deviations on either side resulting in impaired brain function. Whereas pathological events such as ischemic attacks and brief seizures have previously been shown to result in pO2 levels well below the normoxic zone, oxygen levels during prolonged status epilepticus (SE) and the subsequent endogenous kindling period are unknown. METHODS We utilized two models of acquired temporal lobe epilepsy in rats: intrahippocampal kainic acid infusion and prolonged perforant pathway stimulation. Local tissue oxygen was measured in the dorsal hippocampus using an optode during and for several weeks following SE. RESULTS We observed hyperoxia in the hippocampus during induced SE in both models. Following termination of SE, 88% of rats initiated focal self-generated spiking activity in the hippocampus within the first 7 days, which was associated with dynamic oxygen changes. Self-generated and recurring epileptiform activity subsequently organized into higher-frequency bursts that became progressively longer and were ultimately associated with behavioral seizures that became more severe with time and led to postictal hypoxia. SIGNIFICANCE Induced SE and self-generated recurrent epileptiform activity can have profound and opposing effects on brain tissue oxygenation that may serve as a biomarker for ongoing pathological activity in the brain.
Collapse
Affiliation(s)
- Marshal D. Wolff
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Jordan S. Farrell
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of NeurosurgeryStanford UniversityStanfordCaliforniaUSA
| | - Morris H. Scantlebury
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Departments of Pediatrics and Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - G. Campbell Teskey
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
60
|
Anandamide Signaling Augmentation Rescues Amygdala Synaptic Function and Comorbid Emotional Alterations in a Model of Epilepsy. J Neurosci 2020; 40:6068-6081. [PMID: 32601243 DOI: 10.1523/jneurosci.0068-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/14/2020] [Accepted: 06/21/2020] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is often associated with emotional disturbances and the endocannabinoid (eCB) system tunes synaptic transmission in brain regions regulating emotional behavior. Thus, persistent alteration of eCB signaling after repeated seizures may contribute to the development of epilepsy-related emotional disorders. Here we report that repeatedly eliciting seizures (kindling) in the amygdala caused a long-term increase in anxiety and impaired fear memory retention, which was paralleled by an imbalance in GABA/glutamate presynaptic activity and alteration of synaptic plasticity in the basolateral amygdala (BLA), in male rats. Anandamide (AEA) content was downregulated after repeated seizures, and pharmacological enhancement of AEA signaling rescued seizure-induced anxiety by restoring the tonic control of the eCB signaling over glutamatergic transmission. Moreover, AEA signaling augmentation also rescued the seizure-induced alterations of fear memory by restoring the phasic control of eCB signaling over GABAergic activity and plasticity in the BLA. These results indicate that modulation of AEA signaling represents a potential and promising target for the treatment of comorbid emotional dysfunction associated with epilepsy.SIGNIFICANCE STATEMENT Epilepsy is a heterogeneous neurologic disorder commonly associated with comorbid emotional alterations. However, the management of epilepsy is usually restricted to the control of seizures. The endocannabinoid (eCB) system, particularly anandamide (AEA) signaling, controls neuronal excitability and seizure expression and regulates emotional behavior. We found that repeated seizures cause an allostatic maladaptation of AEA signaling in the amygdala that drives emotional alterations. Boosting AEA signaling through inhibition of its degradative enzyme, fatty acid amide hydrolase (FAAH), restored both synaptic and behavioral alterations. FAAH inhibitors dampen seizure activity in animal models and are used in clinical studies to treat the negative consequences associated with stress. Thereby, they are accessible and can be clinically evaluated to treat both seizures and comorbid conditions associated with epilepsy.
Collapse
|
61
|
Perera T, Gaxiola-Valdez I, Singh S, Peedicail J, Sandy S, Lebel RM, Li E, Milne-Ives M, Szostakiwskyj J, Federico P. Localizing the seizure onset zone by comparing patient postictal hypoperfusion to healthy controls. J Neurosci Res 2020; 98:1517-1531. [PMID: 32476173 DOI: 10.1002/jnr.24646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 11/10/2022]
Abstract
Arterial spin labeling (ASL) MRI can provide seizure onset zone (SOZ) localizing information in up to 80% of patients. Clinical implementation of this technique is limited by the need to obtain two scans per patient: a postictal scan that is subtracted from an interictal scan. We aimed to determine whether it is possible to limit the number of ASL scans to one per patient by comparing patient postictal ASL scans to baseline scans of 100 healthy controls. Eighteen patients aged 20-55 years underwent ASL MRI <90 min after a seizure and during the interictal period. Each postictal cerebral blood flow (CBF) map was statistically compared to average baseline CBF maps from 100 healthy controls (pvcASL; patient postictal CBF vs. control baseline CBF). The pvcASL maps were compared to subtraction ASL maps (sASL; patient baseline CBF minus patient postictal CBF). Postictal CBF reductions from pvcASL and sASL maps were seen in 17 of 18 (94.4%) and 14 of 18 (77.8%) patients, respectively. Maximal postictal hypoperfusion seen in pvcASL and sASL maps was concordant with the SOZ in 10 of 17 (59%) and 12 of 14 (86%) patients, respectively. In seven patients, both pvcASL and sASL maps showed similar results. In two patients, sASL showed no significant hypoperfusion, while pvcASL showed significant hypoperfusion concordant with the SOZ. We conclude that pvcASL is clinically useful and although it may have a lower overall concordance rate than sASL, pvcASL does provide localizing or lateralizing information for specific cases that would be otherwise missed through sASL.
Collapse
Affiliation(s)
- Tefani Perera
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
| | - Ismael Gaxiola-Valdez
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
| | - Shaily Singh
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joseph Peedicail
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sherry Sandy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - R Marc Lebel
- GE Healthcare, Calgary, Calgary, AB, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Emmy Li
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
| | - Madison Milne-Ives
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
| | | | - Paolo Federico
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
62
|
Olaciregui Dague K, Dafotakis M, Schulz JB, Surges R. Gaze Palsy as a Manifestation of Todd's Phenomenon: Case Report and Review of the Literature. Brain Sci 2020; 10:E298. [PMID: 32429106 PMCID: PMC7287959 DOI: 10.3390/brainsci10050298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Though Todd's phenomenon (TP) is a relatively rare occurrence, its correct identification is of key diagnostic and therapeutic importance as a stroke mimic. Here we describe a case of isolated gaze palsy as a manifestation of TP, discuss periictal gaze abnormalities as lateralizing sign involving the frontal eye field (FEF), and present a narrative literature review. Methods: We reviewed the main features of the case and conducted a structured literature search of TP and gaze palsy using PubMed. We restricted the search to publications in English, Spanish, French, and German. Case presentation: A 71-year-old male with a history of right frontotemporal subarachnoid hemorrhage was admitted to the Emergency Department of our institution after suffering a first unprovoked focal to bilateral tonic-clonic seizure with ictal gaze deviation to the left. Cranial imaging showed no signs of ischemia, intracerebral hemorrhage, or tumor. The patient presented the following postictal features: involuntary eye deviation to the right due to left-sided gaze palsy and disorientation in time with preserved responsiveness. Eye movements were normal three days later. We concluded that the patient suffered from new-onset epilepsy due to sequelae following the right frontotemporal subarachnoid hemorrhage, affecting the FEF with contralateral ictal gaze deviation, and postictal gaze palsy with ipsilateral eye deviation as an unusual Todd's phenomenon. Conclusion: Unusual manifestations of TP are uncommon but clinically highly relevant, as they can mimic stroke or epileptic status and are decisive in the diagnostic and therapeutic decision-making process. Though postictal gaze palsy has been reported associated with other deficits, this constitutes, to our knowledge, the first report of isolated gaze palsy as a form of TP. Further research into the underlying causes is needed. Ictal contralateral gaze and head deviation, and probably postictal ipsilateral gaze deviation if present, are very helpful for the lateralization of the seizure-onset zone.
Collapse
Affiliation(s)
- Karmele Olaciregui Dague
- Epileptology Center, Medical Faculty, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Manuel Dafotakis
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (M.D.); (J.B.S.)
| | - Jörg B. Schulz
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (M.D.); (J.B.S.)
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Rainer Surges
- Epileptology Center, Medical Faculty, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| |
Collapse
|
63
|
Pottkämper JCM, Hofmeijer J, van Waarde JA, van Putten MJAM. The postictal state - What do we know? Epilepsia 2020; 61:1045-1061. [PMID: 32396219 PMCID: PMC7317965 DOI: 10.1111/epi.16519] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
This narrative review provides a broad and comprehensive overview of the most important discoveries on the postictal state over the past decades as well as recent developments. After a description and definition of the postictal state, we discuss postictal sypmtoms, their clinical manifestations, and related findings. Moreover, pathophysiological advances are reviewed, followed by current treatment options.
Collapse
Affiliation(s)
- Julia C M Pottkämper
- Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Psychiatry, Rijnstate Hospital, Arnhem, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Michel J A M van Putten
- Clinical Neurophysiology, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
64
|
Xu SY, Li ZX, Wu XW, Li L, Li CX. Frequency and Pathophysiology of Post-Seizure Todd's Paralysis. Med Sci Monit 2020; 26:e920751. [PMID: 32134903 PMCID: PMC7075081 DOI: 10.12659/msm.920751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Todd's paralysis, a neurological abnormality characterized by temporary limb weakness or hemiplegia, typically occurs following a seizure, without enduring consequences. Since limb weakness or hemiplegia can also be a common symptom of an acute ischemic stroke, it is often difficult to diagnose Todd's paralysis in individuals experiencing an acute ischemic stroke if they do not have a pre-existing history of epilepsy. Given that there is a limited understanding of Todd's paralysis, this review discusses the history, prevalence, clinical manifestations, duration, etiology, and diagnosis of Todd's paralysis. A few factors that may help clinicians distinguish Todd's paralysis from other clinical indications are as follows: (1) Todd's paralysis is commonly observed after partial seizures or generalized tonic-clonic seizures. (2) The incidence of Todd's paralysis is greater if the epilepsy is associated with old age or stroke history. (3) The duration of Todd's paralysis can range from minutes to days, depending on the type of seizure or whether the patient has experienced cortical structural damage. (4) The etiology of Todd's paralysis is associated with cerebral perfusion abnormality after seizures. Further research is needed to explore factors that distinguish Todd's paralysis from other indications that may lead to limb weakness in order to improve the diagnosis of Todd's paralysis.
Collapse
Affiliation(s)
- Sui-Yi Xu
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland).,Department of Neurology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Ze-Xing Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Xiao-Wei Wu
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Ling Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Chang-Xin Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
65
|
Feldman RE, Marcuse LV, Verma G, Brown SSG, Rus A, Rutland JW, Delman BN, Balchandani P, Fields MC. Seven-tesla susceptibility-weighted analysis of hippocampal venous structures: Application to magnetic-resonance-normal focal epilepsy. Epilepsia 2020; 61:287-296. [PMID: 32020606 DOI: 10.1111/epi.16433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Vascular structures may play a significant role in epileptic pathology. Although previous attempts to characterize vasculature relative to epileptogenic zones and hippocampal sclerosis have been inconsistent, an in vivo method of analysis would assist in resolving these inconsistencies and facilitate a comparison against healthy controls in a human model. Magnetic resonance imaging is a noninvasive technique that provides excellent soft tissue contrast, and the relatively recent development of susceptibility-weighted imaging has dramatically improved the visibility of small veins. METHODS We built and tested a Hessian-based segmentation technique, which takes advantage of the increased signal and contrast available at 7 T to detect venous structures in vivo. We investigate the ability of this technique to quantify vessels in the brain and apply it to an asymmetry analysis of vessel density in the hippocampus in patients with mesial temporal lobe epilepsy (MTLE) and neocortical epilepsy. RESULTS Vessel density was highly symmetric in the hippocampus in controls (mean asymmetry = 0.080 ± 0.076, median = 0.05027), whereas average vessel density asymmetry was greater in neocortical (mean asymmetry = 0.23 ± 0.17, median = 0.14) and MTLE (mean asymmetry = 0.37 ± 0.46, median = 0.26) patients, with the decrease in vessel density ipsilateral to the suspected seizure onset zone. Post hoc testing with one-way analysis of variance and Tukey post hoc test indicated significant differences in the group means (P < .02) between MTLE and the control group only. SIGNIFICANCE Asymmetry in vessel density in the hippocampus is visible in patients with MTLE, even when qualitative and quantitative measures of hippocampal asymmetry show little volumetric difference between epilepsy patients and healthy controls.
Collapse
Affiliation(s)
- Rebecca Emily Feldman
- Department of Computer Science, Math, Physics, and Statistics, University of British Columbia, Kelowna, British Columbia, Canada.,Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Gaurav Verma
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Alexandru Rus
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Watson Rutland
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bradley Neil Delman
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Priti Balchandani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
66
|
Uetani H, Kitajima M, Sugahara T, Muto Y, Hirai K, Kuroki Y, Nakaura T, Tateishi M, Yamashita Y. Perfusion abnormality on three-dimensional arterial spin labeling in patients with acute encephalopathy with biphasic seizures and late reduced diffusion. J Neurol Sci 2020; 408:116558. [PMID: 31715327 DOI: 10.1016/j.jns.2019.116558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is the most common encephalopathy subtype in Japanese children. Few case reports have shown perfusion abnormality on arterial spin labeling (ASL) in patients with AESD. The present study aimed to review the chronological change of cerebral perfusion on three-dimensional (3D) ASL in patients with AESD. METHODS Twenty consecutive patients with AESD were enrolled; the patients underwent MRI including 3D ASL. The clinical course of AESD was divided into four phases according to the time from occurrence of seizures to MRI. Two neuroradiologists independently assessed presence or absence, distribution, and severity of perfusion abnormality using ASL and qualitatively scored perfusion abnormality using a five-point grading system. The level of interobserver agreement in the evaluation was analyzed using weighted κ statistics. Additionally, the signal ratio of abnormal perfusion region and peri-central sulcus region on ASL was semi-quantitatively evaluated. Moreover, we qualitatively compared the distribution between perfusion abnormality on ASL and bright tree appearance (BTA) on diffusion-weighted image (DWI). RESULTS ASL showed hypoperfusion from 8.5 to 22 h after early seizures (ESs) and hyperperfusion within 24 h after late seizures (LSs). Various perfusions were found >3 days after LSs. Interobserver agreement for qualitative scored perfusion abnormality was good (κ = 0.77). The distribution of abnormal perfusion was relatively consistent with BTA. CONCLUSION In AESD, cerebral perfusion changes with time. ASL showed hypoperfusion from 8.5 to 22 h after ESs, hyperperfusion within 24 h after LSs in patients with AESD.
Collapse
Affiliation(s)
- Hiroyuki Uetani
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Japan; Department of Radiology, Japanese Red Cross Kumamoto Hospital, Japan.
| | - Mika Kitajima
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Takeshi Sugahara
- Department of Radiology, Japanese Red Cross Kumamoto Hospital, Japan
| | - Yuichiro Muto
- Department of Pediatrics, Japanese Red Cross Kumamoto Hospital, Japan
| | - Katsuki Hirai
- Department of Pediatrics, Japanese Red Cross Kumamoto Hospital, Japan
| | - Yohei Kuroki
- Department of Radiology, Japanese Red Cross Kumamoto Hospital, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Machiko Tateishi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Yasuyuki Yamashita
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Japan
| |
Collapse
|
67
|
Phillips TJ, Gom RC, Wolff MD, Teskey GC. Caffeine Exacerbates Postictal Hypoxia. Neuroscience 2019; 422:32-43. [PMID: 31678341 DOI: 10.1016/j.neuroscience.2019.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
A stroke-like event follows seizures which may be responsible for the postictal state and a contributing factor to the development of seizure-induced brain abnormalities and behavioral dysfunction associated with epilepsy. Caffeine is the world's most popular drug with ∼85% of people in the USA consuming it daily. Thus, persons with epilepsy are likely to have caffeine in their body and brain during seizures. This preclinical study investigated the effects of acute caffeine on local hippocampal tissue oxygenation pre and post seizure. We continuously measured local oxygen levels in the CA1 region of the hippocampus and utilized the electrical kindling model in rats. Rats were acutely administered either caffeine, or one of its metabolites, or agonists and antagonists at adenosine sub-receptor types or ryanodine receptors prior to the elicitation of seizures. Acute caffeine administration caused a significant drop in pre-seizure hippocampal pO2. Following a seizure, caffeine, as well as two of its metabolites paraxanthine, and theophylline, increased the time below the severe hypoxic threshold (10 mmHg). Likewise, the specific A2A receptor antagonist, SCH-58261, mimicked caffeine by causing a significant drop in pre-seizure pO2 and the area and time below the severe hypoxic threshold. Moreover, the A2A receptor agonist, CGS-21680 was able to prevent the effect of both caffeine and SCH-58261 adding further evidence that caffeine is likely acting through the A2A receptor. Clinical tracking and investigations are needed to determine the effect of caffeine on postictal symptomology and blood flow in persons with epilepsy.
Collapse
Affiliation(s)
- Thomas J Phillips
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Renaud C Gom
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marshal D Wolff
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
68
|
Apnea Associated with Brainstem Seizures in Cacna1a S218L Mice Is Caused by Medullary Spreading Depolarization. J Neurosci 2019; 39:9633-9644. [PMID: 31628185 DOI: 10.1523/jneurosci.1713-19.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023] Open
Abstract
Seizure-related apnea is common and can be lethal. Its mechanisms however remain unclear and preventive strategies are lacking. We postulate that brainstem spreading depolarization (SD), previously associated with lethal seizures in animal models, initiates apnea upon invasion of brainstem respiratory centers. To study this, we assessed effects of brainstem seizures on brainstem function and respiration in male and female mice carrying a homozygous S218L missense mutation that leads to gain-of-function of voltage-gated CaV2.1 Ca2+ channels and high risk for fatal seizures. Recordings of brainstem DC potential and neuronal activity, cardiorespiratory activity and local tissue oxygen were performed in freely behaving animals. Brainstem SD occurred during all spontaneous fatal seizures and, unexpectedly, during a subset of nonfatal seizures. Seizure-related SDs in the ventrolateral medulla correlated with respiratory suppression. Seizures induced by stimulation of the inferior colliculus could evoke SD that spread in a rostrocaudal direction, preceding local tissue hypoxia and apnea, indicating that invasion of SD into medullary respiratory centers initiated apnea and hypoxia rather than vice versa Fatal outcome was prevented by timely resuscitation. Moreover, NMDA receptor antagonists MK-801 and memantine prevented seizure-related SD and apnea, which supports brainstem SD as a prerequisite for brainstem seizure-related apnea in this animal model and has translational value for developing strategies that prevent fatal ictal apnea.SIGNIFICANCE STATEMENT Apnea during and following seizures is common, but also likely implicated in sudden unexpected death in epilepsy (SUDEP). This underlines the need to understand mechanisms for potentially lethal seizure-related apnea. In the present work we show, in freely behaving SUDEP-prone transgenic mice, that apnea is induced when spontaneous brainstem seizure-related spreading depolarization (SD) reaches respiratory nuclei in the ventrolateral medulla. We show that brainstem seizure-related medullary SD is followed by local hypoxia and recovers during nonfatal seizures, but not during fatal events. NMDA receptor antagonists prevented medullary SD and apnea, which may be of translational value.
Collapse
|
69
|
Loonen ICM, Jansen NA, Cain SM, Schenke M, Voskuyl RA, Yung AC, Bohnet B, Kozlowski P, Thijs RD, Ferrari MD, Snutch TP, van den Maagdenberg AMJM, Tolner EA. Brainstem spreading depolarization and cortical dynamics during fatal seizures in Cacna1a S218L mice. Brain 2019; 142:412-425. [PMID: 30649209 DOI: 10.1093/brain/awy325] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a fatal complication of epilepsy in which brainstem spreading depolarization may play a pivotal role, as suggested by animal studies. However, patiotemporal details of spreading depolarization occurring in relation to fatal seizures have not been investigated. In addition, little is known about behavioural and neurophysiological features that may discriminate spontaneous fatal from non-fatal seizures. Transgenic mice carrying the missense mutation S218L in the α1A subunit of Cav2.1 (P/Q-type) Ca2+ channels exhibit enhanced excitatory neurotransmission and increased susceptibility to spreading depolarization. Homozygous Cacna1aS218L mice show spontaneous non-fatal and fatal seizures, occurring throughout life, resulting in reduced life expectancy. To identify characteristics of fatal and non-fatal spontaneous seizures, we compared behavioural and electrophysiological seizure dynamics in freely-behaving homozygous Cacna1aS218L mice. To gain insight on the role of brainstem spreading depolarization in SUDEP, we studied the spatiotemporal distribution of spreading depolarization in the context of seizure-related death. Spontaneous and electrically-induced seizures were investigated by video monitoring and electrophysiological recordings in freely-behaving Cacna1aS218L and wild-type mice. Homozygous Cacna1aS218L mice showed multiple spontaneous tonic-clonic seizures and died from SUDEP in adulthood. Death was preceded by a tonic-clonic seizure terminating with hindlimb clonus, with suppression of cortical neuronal activity during and after the seizure. Induced seizures in freely-behaving homozygous Cacna1aS218L mice were followed by multiple spreading depolarizations and death. In wild-type or heterozygous Cacna1aS218L mice, induced seizures and spreading depolarization were never followed by death. To identify temporal and regional features of seizure-induced spreading depolarization related to fatal outcome, diffusion-weighted MRI was performed in anaesthetized homozygous Cacna1aS218L and wild-type mice. In homozygous Cacna1aS218L mice, appearance of seizure-related spreading depolarization in the brainstem correlated with respiratory arrest that was followed by cardiac arrest and death. Recordings in freely-behaving homozygous Cacna1aS218L mice confirmed brainstem spreading depolarization during spontaneous fatal seizures. These data underscore the value of the homozygous Cacna1aS218L mouse model for identifying discriminative features of fatal compared to non-fatal seizures, and support a key role for cortical neuronal suppression and brainstem spreading depolarization in SUDEP pathophysiology.
Collapse
Affiliation(s)
- Inge C M Loonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nico A Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stuart M Cain
- Michael Smith Laboratories and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, Canada
| | - Maarten Schenke
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob A Voskuyl
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew C Yung
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada
| | - Barry Bohnet
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada
| | - Piotr Kozlowski
- UBC MRI Research Center, University of British Columbia, Vancouver, Canada
| | - Roland D Thijs
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,SEIN Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, Canada
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
70
|
Mertz C, Krarup S, Jensen CD, Lindholm SEH, Kjær C, Pinborg LH, Bak LK. Aspects of cAMP Signaling in Epileptogenesis and Seizures and Its Potential as Drug Target. Neurochem Res 2019; 45:1247-1255. [PMID: 31414342 DOI: 10.1007/s11064-019-02853-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 12/19/2022]
Abstract
Epilepsy is one of the most common chronic neurological conditions. Today, close to 30 different medications to prevent epileptic seizures are in use; yet, far from all patients become seizure free upon medical treatment. Thus, there is a need for new pharmacological approaches including novel drug targets for the management of epilepsy. Despite the fact that a role for cAMP signaling in epileptogenesis and seizures was first suggested some four decades ago, none of the current medications target the cAMP signaling system. The reasons for this are probably many including limited knowledge of the underlying biology and pathology as well as difficulties in designing selective drugs for the different components of the cAMP signaling system. This review explores selected aspects of cAMP signaling in the context of epileptogenesis and seizures including cAMP response element binding (CREB)-mediated transcriptional regulation. We discuss the therapeutic potential of targeting cAMP signaling in epilepsy and point to an increased knowledge of the A-kinase anchoring protein-based signaling hubs as being of seminal importance for future drug discovery within the field. Further, in terms of targeting CREB, we argue that targeting upstream cAMP signals might be more fruitful than targeting CREB itself. Finally, we point to astrocytes as cellular targets in epilepsy since cAMP signals may regulate astrocytic K+ clearance affecting neuronal excitability.
Collapse
Affiliation(s)
- Christoffer Mertz
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Sara Krarup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Cecilie D Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Sandy E H Lindholm
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Christina Kjær
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.,Department of Technology, Faculty of Health and Technology, University College Copenhagen, 2200, Copenhagen, Denmark
| | - Lars H Pinborg
- Epilepsy Clinic & Neurobiology Research Unit, Copenhagen University Hospital, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
71
|
CT perfusion measurement of postictal hypoperfusion: localization of the seizure onset zone and patterns of spread. Neuroradiology 2019; 61:991-1010. [PMID: 31152191 DOI: 10.1007/s00234-019-02227-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Seizures are often followed by a period of transient neurological dysfunction and postictal alterations in cerebral blood flow may underlie these symptoms. Recent animal studies have shown reduced local cerebral blood flow at the seizure onset zone (SOZ) lasting approximately 1 h following seizures. Using arterial spin labelling (ASL) MRI, we observed postictal hypoperfusion at the SOZ in 75% of patients. The clinical implementation of ASL as a tool to identify the SOZ is hampered by the limited availability of MRI on short notice. Computed tomography perfusion (CTP) also measures blood flow and may circumvent the logistical limitations of MRI. Thus, we aimed to measure the extent of postictal hypoperfusion using CTP. METHODS Fourteen adult patients with refractory focal epilepsy admitted for presurgical evaluation were prospectively recruited and underwent CTP scanning within 80 min of a habitual seizure. Patients also underwent a baseline scan after they were seizure-free for > 24 h. The acquired scans were qualitatively assessed by two reviewers by visual inspection and quantitatively assessed through a subtraction pipeline to identify areas of significant postictal hypoperfusion. RESULTS Postictal blood flow reductions of > 15 ml/100 g-1/min-1 were seen in 12/13 patients using the quantitative method of analysis. In 10/12 patients, the location of the hypoperfusion was partially or fully concordant with the presumed SOZ. In all patients, additional areas of scattered hypoperfusion were seen in areas corresponding to seizure spread. CONCLUSION CTP can reliably measure postictal hypoperfusion which is maximal at the presumed SOZ.
Collapse
|
72
|
Subota A, Khan S, Josephson CB, Manji S, Lukmanji S, Roach P, Wiebe S, Buchhalter J, Federico P, Teskey GC, Lorenzetti DL, Jetté N. Signs and symptoms of the postictal period in epilepsy: A systematic review and meta-analysis. Epilepsy Behav 2019; 94:243-251. [PMID: 30978637 DOI: 10.1016/j.yebeh.2019.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/08/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The postictal period has many physical, behavioral, and cognitive manifestations associated with it. These signs and symptoms are common, can be quite debilitating, and can have a continued impact long after the seizure has ended. The purpose of this systematic review was to quantify the occurrence of postictal signs and symptoms, along with their frequency and duration in persons with epilepsy. METHODS Cochrane Database of Systematic Reviews, CINAHL, EMBASE, MEDLINE, PsycINFO, Web of Science, and Scopus were searched from inception to November 29, 2017. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting standards were followed. Search terms included subject headings and text words such as convulsion, epilepsy, seizure, postictal, post seizure, seizure recovery, seizure end, Todd's paresis, and Todd's paralysis. Standardized forms were used to collect various study variables. Abstract and full-text review, data abstraction, and quality assessment were all done in duplicate. Study heterogeneity was assessed using the I-squared test, and a random effects model was used to determine estimates. Publication bias was evaluated using funnel plots. RESULTS From 7811 abstracts reviewed, 78 articles met eligibility criteria, with 31 postictal manifestations (signs and/or symptoms) described and 45 studies included in the meta-analysis. The majority of studies described postictal headaches, migraines, and psychoses, with mean weighted frequency of 33.0% [95% confidence interval (CI) 26.0-40.0], 16.0% [95% CI 10.0-22.0], and 4.0% [95% CI 2.0-5.0], respectively. The mean weighted proportions of manifestations ranged from 0.5% (subacute postictal aggression) to 96.2% (postictal unresponsiveness) with symptom duration usually lasting <24 h but up to 2 months for physical and cognitive/behavioral symptoms respectively. SIGNIFICANCE Examining data on the various signs and symptoms of the postictal period will have practical applications for physicians by raising their awareness about these manifestations and informing them about the importance of optimizing their prevention and treatment in epilepsy.
Collapse
Affiliation(s)
- Ann Subota
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1195 1403-29 Street, NW Calgary, AB T2N 2T9, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3D10 - 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Sundus Khan
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1195 1403-29 Street, NW Calgary, AB T2N 2T9, Canada
| | - Colin B Josephson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1195 1403-29 Street, NW Calgary, AB T2N 2T9, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3D10 - 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; Hotchkiss Brain Institute, University of Calgary, Room 1A10 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; O'Brien Institute of Public Health, University of Calgary, 3rd Floor TRW Building 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Sofiya Manji
- Hotchkiss Brain Institute, University of Calgary, Room 1A10 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Sara Lukmanji
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1195 1403-29 Street, NW Calgary, AB T2N 2T9, Canada; Hotchkiss Brain Institute, University of Calgary, Room 1A10 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Pamela Roach
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1195 1403-29 Street, NW Calgary, AB T2N 2T9, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3D10 - 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; Hotchkiss Brain Institute, University of Calgary, Room 1A10 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1195 1403-29 Street, NW Calgary, AB T2N 2T9, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3D10 - 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; Hotchkiss Brain Institute, University of Calgary, Room 1A10 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; O'Brien Institute of Public Health, University of Calgary, 3rd Floor TRW Building 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Jeffrey Buchhalter
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1195 1403-29 Street, NW Calgary, AB T2N 2T9, Canada; The Alberta Children's Hospital Research Institute, Calgary, 293 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Paolo Federico
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1195 1403-29 Street, NW Calgary, AB T2N 2T9, Canada; Hotchkiss Brain Institute, University of Calgary, Room 1A10 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Room 1A10 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, HMRB 212 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Diane L Lorenzetti
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3D10 - 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; Health Sciences Library, University of Calgary, 1450 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Nathalie Jetté
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1195 1403-29 Street, NW Calgary, AB T2N 2T9, Canada; Icahn School of Medicine at Mount Sinai, Department of Neurology, One Gustave L. Levy Place, Box 1137, New York, NY 10029, USA; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3D10 - 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; Hotchkiss Brain Institute, University of Calgary, Room 1A10 - 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
73
|
Li X, Giri V, Cui Y, Yin M, Xian Z, Li J. LncRNA FTX inhibits hippocampal neuron apoptosis by regulating miR-21-5p/SOX7 axis in a rat model of temporal lobe epilepsy. Biochem Biophys Res Commun 2019; 512:79-86. [DOI: 10.1016/j.bbrc.2019.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/14/2022]
|
74
|
Farrell JS, Nguyen QA, Soltesz I. Resolving the Micro-Macro Disconnect to Address Core Features of Seizure Networks. Neuron 2019; 101:1016-1028. [PMID: 30897354 PMCID: PMC6430140 DOI: 10.1016/j.neuron.2019.01.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/14/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
Current drug treatments for epilepsy attempt to broadly restrict excitability to mask a symptom, seizures, with little regard for the heterogeneous mechanisms that underlie disease manifestation across individuals. Here, we discuss the need for a more complete view of epilepsy, outlining how key features at the cellular and microcircuit level can significantly impact disease mechanisms that are not captured by the most common methodology to study epilepsy, electroencephalography (EEG). We highlight how major advances in neuroscience tool development now enable multi-scale investigation of fundamental questions to resolve the currently controversial understanding of seizure networks. These findings will provide essential insight into what has emerged as a disconnect between the different levels of investigation and identify new targets and treatment options.
Collapse
Affiliation(s)
- Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Quynh-Anh Nguyen
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
75
|
Vilella L, Lacuey N, Hampson JP, Rani MRS, Loparo K, Sainju RK, Friedman D, Nei M, Strohl K, Allen L, Scott C, Gehlbach BK, Zonjy B, Hupp NJ, Zaremba A, Shafiabadi N, Zhao X, Reick-Mitrisin V, Schuele S, Ogren J, Harper RM, Diehl B, Bateman LM, Devinsky O, Richerson GB, Tanner A, Tatsuoka C, Lhatoo SD. Incidence, Recurrence, and Risk Factors for Peri-ictal Central Apnea and Sudden Unexpected Death in Epilepsy. Front Neurol 2019; 10:166. [PMID: 30890997 PMCID: PMC6413671 DOI: 10.3389/fneur.2019.00166] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/08/2019] [Indexed: 02/01/2023] Open
Abstract
Introduction: Peri-ictal breathing dysfunction was proposed as a potential mechanism for SUDEP. We examined the incidence and risk factors for both ictal (ICA) and post-convulsive central apnea (PCCA) and their relationship with potential seizure severity biomarkers (i. e., post-ictal generalized EEG suppression (PGES) and recurrence. Methods: Prospective, multi-center seizure monitoring study of autonomic, and breathing biomarkers of SUDEP in adults with intractable epilepsy and monitored seizures. Video EEG, thoraco-abdominal excursions, capillary oxygen saturation, and electrocardiography were analyzed. A subgroup analysis determined the incidences of recurrent ICA and PCCA in patients with ≥2 recorded seizures. We excluded status epilepticus and obscured/unavailable video. Central apnea (absence of thoracic-abdominal breathing movements) was defined as ≥1 missed breath, and ≥5 s. ICA referred to apnea preceding or occurring along with non-convulsive seizures (NCS) or apnea before generalized convulsive seizures (GCS). Results: We analyzed 558 seizures in 218 patients (130 female); 321 seizures were NCS and 237 were GCS. ICA occurred in 180/487 (36.9%) seizures in 83/192 (43.2%) patients, all with focal epilepsy. Sleep state was related to presence of ICA [RR 1.33, CI 95% (1.08–1.64), p = 0.008] whereas extratemporal epilepsy was related to lower incidence of ICA [RR 0.58, CI 95% (0.37–0.90), p = 0.015]. ICA recurred in 45/60 (75%) patients. PCCA occurred in 41/228 (18%) of GCS in 30/134 (22.4%) patients, regardless of epilepsy type. Female sex [RR 11.30, CI 95% (4.50–28.34), p < 0.001] and ICA duration [RR 1.14 CI 95% (1.05–1.25), p = 0.001] were related to PCCA presence, whereas absence of PGES was related to absence of PCCA [0.27, CI 95% (0.16–0.47), p < 0.001]. PCCA duration was longer in males [HR 1.84, CI 95% (1.06–3.19), p = 0.003]. In 9/17 (52.9%) patients, PCCA was recurrent. Conclusion: ICA incidence is almost twice the incidence of PCCA and is only seen in focal epilepsies, as opposed to PCCA, suggesting different pathophysiologies. ICA is likely to be a recurrent semiological phenomenon of cortical seizure discharge, whereas PCCA may be a reflection of brainstem dysfunction after GCS. Prolonged ICA or PCCA may, respectively, contribute to SUDEP, as evidenced by two cases we report. Further prospective cohort studies are needed to validate these hypotheses.
Collapse
Affiliation(s)
- Laura Vilella
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nuria Lacuey
- Epilepsy Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Johnson P Hampson
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - M R Sandhya Rani
- Department of Neurology, Case Western Reserve University, Cleveland, OH, United States
| | - Kenneth Loparo
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, United States
| | - Rup K Sainju
- Department of Neurology, University of Iowa School of Medicine, Iowa City, IA, United States
| | | | - Maromi Nei
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kingman Strohl
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Medical Center, Cleveland, OH, United States
| | - Luke Allen
- Institute of Neurology, University College London, London, United Kingdom
| | - Catherine Scott
- Institute of Neurology, University College London, London, United Kingdom
| | - Brian K Gehlbach
- Department of Neurology, University of Iowa School of Medicine, Iowa City, IA, United States
| | - Bilal Zonjy
- Department of Neurology, Case Western Reserve University, Cleveland, OH, United States
| | - Norma J Hupp
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Anita Zaremba
- Department of Neurology, Case Western Reserve University, Cleveland, OH, United States
| | - Nassim Shafiabadi
- Epilepsy Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Neurology, Case Western Reserve University, Cleveland, OH, United States
| | - Xiuhe Zhao
- Epilepsy Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Victoria Reick-Mitrisin
- Epilepsy Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Stephan Schuele
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jennifer Ogren
- Department of Neurobiology and the Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ronald M Harper
- Department of Neurobiology and the Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Beate Diehl
- Institute of Neurology, University College London, London, United Kingdom
| | - Lisa M Bateman
- Department of Neurology, Columbia University, New York, NY, United States
| | - Orrin Devinsky
- NYU Langone School of Medicine, New York, NY, United States
| | - George B Richerson
- Department of Neurology, University of Iowa School of Medicine, Iowa City, IA, United States
| | - Adriana Tanner
- Mercy Health St. Mary's Campus, Grand Rapids, MI, United States
| | - Curtis Tatsuoka
- Department of Neurology, Case Western Reserve University, Cleveland, OH, United States
| | - Samden D Lhatoo
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
76
|
Lee SM, Kwon S, Lee YJ. Diagnostic usefulness of arterial spin labeling in MR negative children with new onset seizures. Seizure 2019; 65:151-158. [PMID: 30718217 DOI: 10.1016/j.seizure.2019.01.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/25/2018] [Accepted: 01/25/2019] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Arterial spine labeling (ASL) magnetic resonance imaging (MRI) is the non-invasive measurement of cerebral blood flow that can localize the seizure focus in patients with epilepsy. The aim of this study was to identify its utility for localizing the seizure focus in children with no structural lesion on MRI. METHODS Forty-three consecutive children who underwent electroencephalography (EEG) and structural MRI, along with ASL for evaluation of newly developed seizures, were included. ASL abnormalities were classified as hypo/hyperperfusion, based on visual assessment, and compared with the seizure focus determined by clinical information and EEG. RESULTS Among the 43 patients (M 17: F 26, mean age, 6.3 ± 3.3 years), the seizure type was focal in 36 patients and generalized in seven patients. Twenty-five (58.1%) patients showed perfusion change. Out of 36 patients with focal seizure, 24 (66.7%) showed ASL abnormalities, and 19 (52.8%) showed concordance between ASL and clinical focus. Out of seven patients with generalized seizure, only one patient showed ASL abnormalities. The overall concordance revealed moderate agreement (k = 0.542). ASL acquisition within one day from seizure onset was the only significant associating factor with the concordance between the two (p = 0. 014). CONCLUSION To our knowledge, this is the first study to assess the usefulness of ASL MRI to assist in localizing the seizure focus in MR-negative children with new onset seizures. The combined use of ASL with EEG and structural MRI may play an important role in the evaluation of pediatric epilepsy.
Collapse
Affiliation(s)
- So Mi Lee
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Soonhak Kwon
- Department of Pediatric, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Yun Jeong Lee
- Department of Pediatric, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea.
| |
Collapse
|
77
|
Quantitatively detecting postictal hypoperfusion in patients with focal epilepsy using CT perfusion: Determining cross-modality comparisons and electrode artifacts. J Neurosci Methods 2019; 314:13-20. [PMID: 30658125 DOI: 10.1016/j.jneumeth.2019.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/20/2018] [Accepted: 01/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND We previously showed that CT perfusion (CTP) and arterial spin labelled (ASL) MRI can localize the seizure onset zone in humans via postictal perfusion patterns. As a step towards improving the feasibility/ease of collecting postictal CBF data, we determined whether EEG electrodes need to be removed for CTP data collection and whether a cross-modality comparison between baseline ASL and postictal CTP data is possible. NEW METHOD Five patients with epilepsy underwent postictal CTP scanning. Three patients had an interictal ASL scan; one patient had both an ASL and CTP interictal scan. Postictal CTP maps were quantitatively compared to 1) ASL maps averaged from 100 healthy controls, 2) each patient's baseline ASL map and 3) each patient's baseline CTP map. To assess for electrode artifacts, a phantom and one patient underwent CTP scanning with EEG electrodes in place. The acquired scans were assessed for artifacts and for postictal hypoperfusion. RESULTS Focal postictal hypoperfusion was observable only in intra-modality comparisons (CTP to CTP) and not in cross-modality comparisons (CTP to ASL). EEG electrodes produced streaking artifact that decreased image quality and precluded quantitative analysis. COMPARISON WITH EXISTING METHODS(S) An intra-modality comparison of baseline CTP to postictal CTP was the only comparison method that showed localized hypoperfusion. CONCLUSIONS Quantitative comparison between postictal CTP and baseline ASL scans is not feasible. Postictal hypoperfusion can be detected by CTP only when two CTP scans are collected and when metallic EEG electrodes are removed.
Collapse
|
78
|
Prager O, Kamintsky L, Hasam‐Henderson LA, Schoknecht K, Wuntke V, Papageorgiou I, Swolinsky J, Muoio V, Bar‐Klein G, Vazana U, Heinemann U, Friedman A, Kovács R. Seizure‐induced microvascular injury is associated with impaired neurovascular coupling and blood–brain barrier dysfunction. Epilepsia 2019; 60:322-336. [DOI: 10.1111/epi.14631] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Ofer Prager
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Lyna Kamintsky
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
- Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| | - Luisa A. Hasam‐Henderson
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Karl Schoknecht
- Neuroscience Research Center Charité—Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Vera Wuntke
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Ismini Papageorgiou
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Jutta Swolinsky
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Valeria Muoio
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Guy Bar‐Klein
- McKusick‐Nathans Institute of Genetic Medicine Johns Hopkins University School of Medicine Baltimore Maryland
- Howard Hughes Medical Institute Chevy Chase Maryland
| | - Udi Vazana
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | | | - Alon Friedman
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
- Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| | - Richard Kovács
- Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
79
|
Abstract
Changes in brain activity can entrain cerebrovascular dynamics, though this has not been extensively investigated in pathophysiology. We assessed whether pathological network activation (i.e. seizures) in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS) could alter dynamic fluctuations in local oxygenation. Spontaneous absence seizures in an epileptic rat model robustly resulted in brief dips in cortical oxygenation and increased spectral oxygen power at frequencies greater than 0.08 Hz. Filtering oxygen data for these fast dynamics was sufficient to distinguish epileptic vs. non-epileptic rats. Furthermore, this approach distinguished brain regions with seizures from seizure-free brain regions in the epileptic rat strain. We suggest that fast oxygen dynamics may be a useful biomarker for seizure network identification and could be translated to commonly used clinical tools that measure cerebral hemodynamics.
Collapse
|
80
|
Abstract
INTRODUCTION Neuroinflammation has a critical role in brain disorders. Cyclooxygenase (COX) is one of the principal drug targets for the reduction of neuroinflammation; however, studies have yielded mixed results for COX-inhibitors in the treatment of diverse acute and chronic models of epilepsy. AREAS COVERED The article covers the effects of COX-inhibitors in epilepsy disorders. A considerable emphasis has been placed on the antiepileptic and 'disease-modifying' properties of COX-1 and COX-2 inhibitors in various preclinical epilepsy models. EXPERT OPINION The effect of COX-inhibitors on epilepsy is inconclusive. Studies have indicated beneficial effects in preclinical models; however, proconvulsant or no effects have also been observed. These molecules may have a bidirectional role with early neuroprotective and delayed neurotoxic effects. Further systematic preclinical studies to establish the use of COX-inhibitors in epilepsy are necessary.
Collapse
Affiliation(s)
- Ashish Dhir
- a Department of Neurology, School of Medicine , University of California, Davis , Sacramento , CA , USA
| |
Collapse
|
81
|
Van Cauwenberge MG, Dekeyzer S, Nikoubashman O, Dafotakis M, Wiesmann M. Can perfusion CT unmask postictal stroke mimics? Neurology 2018; 91:e1918-e1927. [DOI: 10.1212/wnl.0000000000006501] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 08/03/2018] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo study the diagnostic value of volume perfusion CT (VPCT) in patients with transient focal neurologic deficits following and during epileptic seizures, that mimic symptoms of stroke.MethodsA retrospective case-control study was performed on 159 patients who presented with a seizure and received an emergency VPCT within the first 3.5 hours of admission, after being misjudged to have an acute stroke. The reference test was a clinical-based, EEG-supported diagnostic algorithm for seizure.ResultsWe included 133 patients: 94 stroke-mimicking cases with postictal focal neurologic deficits (“Todd phenomenon,” n = 67) or ongoing seizure on hospital admission (“ictal patients,” n = 27), and 39 postictal controls without focal neurologic deficits. Patients with Todd phenomenon showed normal perfusion (64%), hypoperfusion (21%), and hyperperfusion (14%) on early VPCT. Ictal patients displayed more hyperperfusion compared to postictal patients (p = 0.015). Test sensitivity of hyperperfusion for ictal patients is 38% (95% confidence interval [CI] 20.7%–57.7%), specificity 86% (95% CI 77.3%–91.7%), positive predictive value is 42% (95% CI 27.5%–58.7%), and the negative predictive value 83% (95% CI 78.6%–86.9%). A cortical distribution was seen in all hyperperfusion scans, compared to a cortico-subcortical pattern in hypoperfusion (p < 0.001). A history of complex focal seizure and age were associated with hyperperfusion (p = 0.046 and 0.038, respectively).ConclusionVPCT can differentiate ictal stroke mimics with hyperperfusion from acute ischemic stroke, but not postictal patients who display perfusion patterns overlapping with ischemic stroke.Classification of evidenceThis study provides Class IV evidence that VPCT accurately differentiates ictal stroke mimics from acute ischemic stroke.
Collapse
|
82
|
Kovács R, Gerevich Z, Friedman A, Otáhal J, Prager O, Gabriel S, Berndt N. Bioenergetic Mechanisms of Seizure Control. Front Cell Neurosci 2018; 12:335. [PMID: 30349461 PMCID: PMC6187982 DOI: 10.3389/fncel.2018.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.
Collapse
Affiliation(s)
- Richard Kovács
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Zoltan Gerevich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Siegrun Gabriel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Nikolaus Berndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Computational and Imaging Science in Cardiovascular Medicine, Berlin, Germany
| |
Collapse
|
83
|
Meletti S, Monti G, Mirandola L, Vaudano AE, Giovannini G. Neuroimaging of status epilepticus. Epilepsia 2018; 59 Suppl 2:113-119. [PMID: 30160066 DOI: 10.1111/epi.14499] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2017] [Indexed: 12/28/2022]
Abstract
In the past 2 decades we have observed an extensive use of different neuroimaging techniques to evaluate patients with status epilepticus. Magnetic resonance imaging (MRI) in particular may show a broad spectrum of abnormalities that are either the causes or the consequences of sustained epileptic activity. Neuroimaging techniques can offer a contribution both in the clinical management of individual patients, identifying hemodynamic patterns that support the diagnosis, and also in the recognition of periictal reversible or irreversible alterations. For the future it is necessary to develop larger and prospective studies in which imaging techniques and electroencephalography (EEG) recordings are acquired closely to understand which EEG patterns are related to imaging biomarkers of neuronal damage.
Collapse
Affiliation(s)
- Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neurosciences, OCSAE Hospital, AOU Modena, Modena, Italy
| | - Giulia Monti
- Department of Neurosciences, OCSAE Hospital, AOU Modena, Modena, Italy
| | - Laura Mirandola
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.,Department of Neurosciences, OCSAE Hospital, AOU Modena, Modena, Italy
| | - Anna Elisabetta Vaudano
- Department of Neurosciences, OCSAE Hospital, AOU Modena, Modena, Italy.,Department of Medicine and Surgery, Sleep Medicine Center, University of Parma, Parma, Italy
| | - Giada Giovannini
- Department of Neurosciences, OCSAE Hospital, AOU Modena, Modena, Italy
| |
Collapse
|
84
|
Ramirez JM, Severs LJ, Ramirez SC, Agosto‐Marlin IM. Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J Physiol 2018; 596:3043-3065. [PMID: 29742297 PMCID: PMC6068258 DOI: 10.1113/jp275890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mammals must continuously regulate the levels of O2 and CO2 , which is particularly important for the brain. Failure to maintain adequate O2 /CO2 homeostasis has been associated with numerous disorders including sleep apnoea, Rett syndrome and sudden infant death syndrome. But, O2 /CO2 homeostasis poses major regulatory challenges, even in the healthy brain. Neuronal activities change in a differentiated, spatially and temporally complex manner, which is reflected in equally complex changes in O2 demand. This raises important questions: is oxygen sensing an emergent property, locally generated within all active neuronal networks, and/or the property of specialized O2 -sensitive CNS regions? Increasing evidence suggests that the regulation of the brain's redox state involves properties that are intrinsic to many networks, but that specialized regions in the brainstem orchestrate the integrated control of respiratory and cardiovascular functions. Although the levels of O2 in arterial blood and the CNS are very different, neuro-glial interactions and purinergic signalling are critical for both peripheral and CNS chemosensation. Indeed, the specificity of neuroglial interactions seems to determine the differential responses to O2 , CO2 and the changes in pH.
Collapse
Affiliation(s)
- Jan Marino Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Liza J. Severs
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sanja C. Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| | - Ibis M. Agosto‐Marlin
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
85
|
Long non-coding RNA H19 contributes to apoptosis of hippocampal neurons by inhibiting let-7b in a rat model of temporal lobe epilepsy. Cell Death Dis 2018; 9:617. [PMID: 29795132 PMCID: PMC5966382 DOI: 10.1038/s41419-018-0496-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 01/09/2023]
Abstract
Temporal lobe epilepsy (TLE) is one of the most common types of intractable epilepsy, characterized by hippocampal neuron damage and hippocampal sclerosis. Long noncoding RNAs (lncRNAs) have been increasingly recognized as posttranscriptional regulators. However, their expression levels and functions in TLE remain largely unknown. In the present study, TLE rat model is used to explore the expression profiles of lncRNAs in the hippocampus of epileptic rats using microarray analysis. Our results demonstrate that H19 is the most pronouncedly differentiated lncRNA, significantly upregulated in the latent period of TLE. Moreover, the in vivo studies using gain- and loss-of-function approaches reveal that the overexpression of H19 aggravates SE-induced neuron apoptosis in the hippocampus, while inhibition of H19 protects the rats from SE-induced cellular injury. Finally, we show that H19 might function as a competing endogenous RNA to sponge microRNA let-7b in the regulation of cellular apoptosis. Overall, our study reveals a novel lncRNA H19-mediated mechanism in seizure-induced neural damage and provides a new target in developing lncRNA-based strategies to reduce seizure-induced brain injury.
Collapse
|
86
|
Assessment of brain oxygenation imbalance following soman exposure in rats. Neurotoxicology 2018; 65:28-37. [PMID: 29378300 DOI: 10.1016/j.neuro.2018.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
Abstract
Nerve agents (NAs) are potent organophosphorus (OP) compounds with applications in chemical warfare. OP compounds act by inhibiting acetylcholinesterase (AChE). Soman (O-pinacolyl methylphosphonofluoridate) is one of the most potent NAs. It is well known that small doses of NAs can be lethal, and that even non-lethal exposure leads to long-term mental debilitation/neurological damage. However, the neuropathology following exposure to sub-lethal nerve agents is not well understood. In this study, we examined changes in tissue oxygenation (pO2) in the cortex and hippocampus after a sub-lethal dose of soman [80-90 μg/kg; subcutaneous]. pO2 changes can provide information regarding oxygen delivery and utilization and may be indicative of a disruption in cerebral blood flow and/or metabolism. Changes in oxygenation were measured with chronically implanted oxygen sensors in awake and freely moving rats. Measurements were taken before, during, and after soman-induced convulsive seizures. Soman exposure resulted in an immediate increase in pO2 in the cortex, followed by an even greater increase that precedes the onset of soman-induced convulsive seizures. The rise in hippocampus pO2 was delayed relative to the cortex, although the general pattern of brain oxygenation between these two regions was similar. After convulsive seizures began, pO2 levels declined but usually remained hyperoxygenated. Following the decline in pO2, low frequency cycles of large amplitude changes were observed in both the cortex and hippocampus. This pattern is consistent with recurring seizures. Measuring real-time changes in brain pO2 provides new information on the physiological status of the brain following soman exposure. These results highlight that the measurement of brain oxygenation could provide a sensitive marker of nerve agent exposure and serve as a biomarker for treatment studies.
Collapse
|
87
|
Gaxiola-Valdez I, Singh S, Perera T, Sandy S, Li E, Federico P. Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI. Brain 2017; 140:2895-2911. [PMID: 29053782 DOI: 10.1093/brain/awx241] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/03/2017] [Indexed: 11/15/2022] Open
Abstract
Neurological dysfunction following epileptic seizures is a well-recognized phenomenon. Several potential mechanisms have been suggested to explain postictal dysfunction, with alteration in cerebral blood flow being one possibility. These vascular disturbances may be long lasting and localized to brain areas involved in seizure generation and propagation, as supported by both animal and human studies. Therefore, measuring perfusion changes in the postictal period may help localize the seizure onset zone. Arterial spin labelling is a non-invasive, rapid and reproducible magnetic resonance imaging technique that measures cerebral perfusion. To this end, we measured postictal perfusion in patients with drug resistant focal epilepsy who were admitted to our seizure-monitoring unit for presurgical evaluation. Twenty-one patients were prospectively recruited and underwent arterial spin labelling scanning within 90 min of a habitual seizure. Patients also underwent a similar scan in the interictal period, after they were seizure-free for at least 24 h. The acquired scans were subtracted to identify the areas of significant postictal hypoperfusion. The location of the maximal hypoperfusion was compared to the presumed seizure onset zone to assess for concordance. Also, the localizing value of this technique was compared to other structural and functional imaging modalities. Postictal perfusion reductions of >15 units (ml/100 g/l) were seen in 15/21 patients (71.4%). In 12/15 (80%) of these patients, the location of the hypoperfusion was partially or fully concordant with the location of the presumed seizure onset zone. This technique compared favourably to other neuroimaging modalities, being similar or superior to structural magnetic resonance imaging in 52% of cases, ictal single-photon emission computed tomography in 60% of cases and interictal positron emission tomography in 71% of cases. Better arterial spin labelling results were obtained in patients in whom the seizure onset zone was discernible based on non-invasive data. Thus, this technique is a safe, non-invasive and relatively inexpensive tool to detect postictal hypoperfusion that may provide useful data to localize the seizure onset zone. This technique may be incorporated into the battery of conventional investigations for presurgical evaluation of patients with drug resistant focal epilepsy.
Collapse
Affiliation(s)
- Ismael Gaxiola-Valdez
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Canada
| | - Shaily Singh
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Tefani Perera
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Canada
| | - Sherry Sandy
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Emmy Li
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Canada.,Department of Neuroscience, University of Calgary, Calgary, Canada
| | - Paolo Federico
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Seaman Family MR Research Centre, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.,Department of Neuroscience, University of Calgary, Calgary, Canada.,Department of Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
88
|
Bazzigaluppi P, Ebrahim Amini A, Weisspapir I, Stefanovic B, Carlen PL. Hungry Neurons: Metabolic Insights on Seizure Dynamics. Int J Mol Sci 2017; 18:ijms18112269. [PMID: 29143800 PMCID: PMC5713239 DOI: 10.3390/ijms18112269] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Epilepsy afflicts up to 1.6% of the population and the mechanisms underlying the appearance of seizures are still not understood. In past years, many efforts have been spent trying to understand the mechanisms underlying the excessive and synchronous firing of neurons. Traditionally, attention was pointed towards synaptic (dys)function and extracellular ionic species (dys)regulation. Recently, novel clinical and preclinical studies explored the role of brain metabolism (i.e., glucose utilization) of seizures pathophysiology revealing (in most cases) reduced metabolism in the inter-ictal period and increased metabolism in the seconds preceding and during the appearance of seizures. In the present review, we summarize the clinical and preclinical observations showing metabolic dysregulation during epileptogenesis, seizure initiation, and termination, and in the inter-ictal period. Recent preclinical studies have shown that 2-Deoxyglucose (2-DG, a glycolysis blocker) is a novel therapeutic approach to reduce seizures. Furthermore, we present initial evidence for the effectiveness of 2-DG in arresting 4-Aminopyridine induced neocortical seizures in vivo in the mouse.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Sunnybrook Research Institute, Medical Biophysics, Toronto, ON M4N 3M5, Canada.
| | - Azin Ebrahim Amini
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Iliya Weisspapir
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
| | - Bojana Stefanovic
- Sunnybrook Research Institute, Medical Biophysics, Toronto, ON M4N 3M5, Canada.
| | - Peter L Carlen
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Department of Medicine & Physiology, and Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
89
|
Farrell JS, Colangeli R, Wolff MD, Wall AK, Phillips TJ, George A, Federico P, Teskey GC. Postictal hypoperfusion/hypoxia provides the foundation for a unified theory of seizure-induced brain abnormalities and behavioral dysfunction. Epilepsia 2017. [DOI: 10.1111/epi.13827] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jordan S. Farrell
- Hotchkiss Brain Institute; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| | - Roberto Colangeli
- Hotchkiss Brain Institute; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| | - Marshal D. Wolff
- Hotchkiss Brain Institute; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| | - Alexandra K. Wall
- Hotchkiss Brain Institute; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| | - Thomas J. Phillips
- Hotchkiss Brain Institute; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| | - Antis George
- Hotchkiss Brain Institute; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| | - Paolo Federico
- Hotchkiss Brain Institute; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| | - G. Campbell Teskey
- Hotchkiss Brain Institute; Cumming School of Medicine; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
90
|
Zhu K, Hu M, Yuan B, Liu JX, Liu Y. Aspirin attenuates spontaneous recurrent seizures in the chronically epileptic mice. Neurol Res 2017; 39:744-757. [PMID: 28481152 DOI: 10.1080/01616412.2017.1326657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Neuroinflammatory processes are pathologic hallmarks of both experimental and human epilepsy, and could be implicated in the neuronal hyperexcitability. Aspirin represents one of the non-selective nonsteroidal anti-inflammatory drugs with fewer side effects in long-term application. This study was carried out to assess the anti-epileptic effects of aspirin when administered during the chronic stage of temporal lobe epilepsy [TLE] in mice. The alteration of hippocampal neurogenesis was also examined for raising a possible mechanism underlying the protective effect of anti-inflammatory treatment in the TLE. METHODS Two months after pilocarpine-induced status epilepticus, the chronically epileptic mice were treated with aspirin (20 mg, 60 mg or 80 mg/kg) once a day for 10 weeks. Spontaneous recurrent seizures were monitored by video camera for 2 weeks. To evaluate the profile of hippocampal neurogenesis, the newly generated cells in the dentate gyrus were labeled by the proliferation marker BrdU. The newborn neurons that extended axons to CA3 area were visualized by cholera toxin B subunit retrograde tracing. RESULTS Administration of aspirin with a dosage of 60 mg or 80 mg/kg initiated at 2 months after pilocarpine-induced status epilepticus significantly reduced the frequency and duration of spontaneous recurrent seizures. Aspirin treatment also increased the number of newborn neurons with anatomic integration through improving the survival of the newly generated cells. CONCLUSION Aspirin treatment during the chronic stage of TLE could attenuate the spontaneous recurrent seizures in mice. Promotion of hippocampal neurogenesis and inhibition of COX-PGE2 pathway might partly contribute to this anti-epileptic effect. Highlights • Aspirin attenuates spontaneous recurrent seizures of chronically epileptic mice • Aspirin increases neurogenesis of chronically epileptic hippocampus by improving the survival of newly generated cells • Promotion of hippocampal neurogenesis and inhibition of COX-PGE2 pathway might partly contribute to anti-epileptic effects of aspirin.
Collapse
Affiliation(s)
- Kun Zhu
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Ming Hu
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China.,b Department of Human Anatomy, Histology and Embryology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Bo Yuan
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Jian-Xin Liu
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Yong Liu
- a Institute of Neurobiology , School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center , Xi'an , China
| |
Collapse
|
91
|
Farrell JS, Wolff MD, Teskey GC. Neurodegeneration and Pathology in Epilepsy: Clinical and Basic Perspectives. ADVANCES IN NEUROBIOLOGY 2017; 15:317-334. [PMID: 28674987 DOI: 10.1007/978-3-319-57193-5_12] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epilepsy is commonly associated with a number of neurodegenerative and pathological alterations in those areas of the brain that are involved in repeated electrographic seizures. These most prominently include neuron loss and an increase in astrocyte number and size but may also include enhanced blood-brain barrier permeability, the formation of new capillaries, axonal sprouting, and central inflammation. In animal models in which seizures are either repeatedly elicited or are self-generated, a similar set of neurodegenerative and pathological alterations in brain anatomy are observed. The primary causal agent responsible for these alterations may be the cascade of events that follow a seizure and lead to an hypoperfusion/hypoxic episode. While epilepsy has long and correctly been considered an electrical disorder, the vascular system likely plays an important causal role in the neurodegeneration and pathology that occur as a consequence of repeated seizures.
Collapse
Affiliation(s)
- Jordan S Farrell
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Marshal D Wolff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|