51
|
Spencer NJ, Costa M, Hibberd TJ, Wood JD. Advances in colonic motor complexes in mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G12-G29. [PMID: 33085903 DOI: 10.1152/ajpgi.00317.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The primary functions of the gastrointestinal (GI) tract are to absorb nutrients, water, and electrolytes that are essential for life. This is accompanied by the capability of the GI tract to mix ingested content to maximize absorption and effectively excrete waste material. There have been major advances in understanding intrinsic neural mechanisms involved in GI motility. This review highlights major advances over the past few decades in our understanding of colonic motor complexes (CMCs), the major intrinsic neural patterns that control GI motility. CMCs are generated by rhythmic coordinated firing of large populations of myenteric neurons. Initially, it was thought that serotonin release from the mucosa was required for CMC generation. However, careful experiments have now shown that neither the mucosa nor endogenous serotonin are required, although, evidence suggests enteroendocrine (EC) cells modulate CMCs. The frequency and extent of propagation of CMCs are highly dependent on mechanical stimuli (circumferential stretch). In summary, the isolated mouse colon emerges as a good model to investigate intrinsic mechanisms underlying colonic motility and provides an excellent preparation to explore potential therapeutic agents on colonic motility, in a highly controlled in vitro environment. In addition, during CMCs, the mouse colon facilitates investigations into the emergence of dynamic assemblies of extensive neural networks, applicable to the nervous system of different organisms.
Collapse
Affiliation(s)
- N J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - M Costa
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - T J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - J D Wood
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
52
|
Meerschaert KA, Adelman PC, Friedman RL, Albers KM, Koerber HR, Davis BM. Unique Molecular Characteristics of Visceral Afferents Arising from Different Levels of the Neuraxis: Location of Afferent Somata Predicts Function and Stimulus Detection Modalities. J Neurosci 2020; 40:7216-7228. [PMID: 32817244 PMCID: PMC7534907 DOI: 10.1523/jneurosci.1426-20.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Viscera receive innervation from sensory ganglia located adjacent to multiple levels of the brainstem and spinal cord. Here we examined whether molecular profiling could be used to identify functional clusters of colon afferents from thoracolumbar (TL), lumbosacral (LS), and nodose ganglia (NG) in male and female mice. Profiling of TL and LS bladder afferents was also performed. Visceral afferents were back-labeled using retrograde tracers injected into proximal and distal regions of colon or bladder, followed by single-cell qRT-PCR and analysis via an automated hierarchical clustering method. Genes were chosen for assay (32 for bladder; 48 for colon) based on their established role in stimulus detection, regulation of sensitivity/function, or neuroimmune interaction. A total of 132 colon afferents (from NG, TL, and LS ganglia) and 128 bladder afferents (from TL and LS ganglia) were analyzed. Retrograde labeling from the colon showed that NG and TL afferents innervate proximal and distal regions of the colon, whereas 98% of LS afferents only project to distal regions. There were clusters of colon and bladder afferents, defined by mRNA profiling, that localized to either TL or LS ganglia. Mixed TL/LS clustering also was found. In addition, transcriptionally, NG colon afferents were almost completely segregated from colon TL and LS neurons. Furthermore, colon and bladder afferents expressed genes at similar levels, although different gene combinations defined the clusters. These results indicate that genes implicated in both homeostatic regulation and conscious sensations are found at all anatomic levels, suggesting that afferents from different portions of the neuraxis have overlapping functions.SIGNIFICANCE STATEMENT Visceral organs are innervated by sensory neurons whose cell bodies are located in multiple ganglia associated with the brainstem and spinal cord. For the colon, this overlapping innervation is proposed to facilitate visceral sensation and homeostasis, where sensation and pain are mediated by spinal afferents and fear and anxiety (the affective aspects of visceral pain) are the domain of nodose afferents. The transcriptomic analysis performed here reveals that genes implicated in both homeostatic regulation and pain are found in afferents across all ganglia types, suggesting that conscious sensation and homeostatic regulation are the result of convergence, and not segregation, of sensory input.
Collapse
Affiliation(s)
- Kimberly A Meerschaert
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | | | - Robert L Friedman
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Kathryn M Albers
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - H Richard Koerber
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Brian M Davis
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
53
|
Gonzales J, Le Berre-Scoul C, Dariel A, Bréhéret P, Neunlist M, Boudin H. Semaphorin 3A controls enteric neuron connectivity and is inversely associated with synapsin 1 expression in Hirschsprung disease. Sci Rep 2020; 10:15119. [PMID: 32934297 PMCID: PMC7492427 DOI: 10.1038/s41598-020-71865-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Most of the gut functions are controlled by the enteric nervous system (ENS), a complex network of enteric neurons located throughout the wall of the gastrointestinal tract. The formation of ENS connectivity during the perinatal period critically underlies the establishment of gastrointestinal motility, but the factors involved in this maturation process remain poorly characterized. Here, we examined the role of Semaphorin 3A (Sema3A) on ENS maturation and its potential implication in Hirschsprung disease (HSCR), a developmental disorder of the ENS with impaired colonic motility. We found that Sema3A and its receptor Neuropilin 1 (NRP1) are expressed in the rat gut during the early postnatal period. At the cellular level, NRP1 is expressed by enteric neurons, where it is particularly enriched at growth areas of developing axons. Treatment of primary ENS cultures and gut explants with Sema3A restricts axon elongation and synapse formation. Comparison of the ganglionic colon of HSCR patients to the colon of patients with anorectal malformation shows reduced expression of the synaptic molecule synapsin 1 in HSCR, which is inversely correlated with Sema3A expression. Our study identifies Sema3A as a critical regulator of ENS connectivity and provides a link between altered ENS connectivity and HSCR.
Collapse
Affiliation(s)
- Jacques Gonzales
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Catherine Le Berre-Scoul
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Anne Dariel
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France.,Pediatric Surgery Department, Hôpital Timone-Enfants, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Paul Bréhéret
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Michel Neunlist
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France
| | - Hélène Boudin
- Inserm UMR1235-TENS, University of Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, 1 rue Gaston Veil, 44035, Nantes, France.
| |
Collapse
|
54
|
Johnson AC, Louwies T, Ligon CO, Greenwood-Van Meerveld B. Enlightening the frontiers of neurogastroenterology through optogenetics. Am J Physiol Gastrointest Liver Physiol 2020; 319:G391-G399. [PMID: 32755304 PMCID: PMC7717115 DOI: 10.1152/ajpgi.00384.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neurogastroenterology refers to the study of the extrinsic and intrinsic nervous system circuits controlling the gastrointestinal (GI) tract. Over the past 5-10 yr there has been an explosion in novel methodologies, technologies and approaches that offer great promise to advance our understanding of the basic mechanisms underlying GI function in health and disease. This review focuses on the use of optogenetics combined with electrophysiology in the field of neurogastroenterology. We discuss how these technologies and tools are currently being used to explore the brain-gut axis and debate the future research potential and limitations of these techniques. Taken together, we consider that the use of these technologies will enable researchers to answer important questions in neurogastroenterology through fundamental research. The answers to those questions will shorten the path from basic discovery to new treatments for patient populations with disorders of the brain-gut axis affecting the GI tract such as irritable bowel syndrome (IBS), functional dyspepsia, achalasia, and delayed gastric emptying.
Collapse
Affiliation(s)
- Anthony C. Johnson
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma,3Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tijs Louwies
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Casey O. Ligon
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- 1Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma,4Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
55
|
Yu Z. Neuromechanism of acupuncture regulating gastrointestinal motility. World J Gastroenterol 2020; 26:3182-3200. [PMID: 32684734 PMCID: PMC7336328 DOI: 10.3748/wjg.v26.i23.3182] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/29/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acupuncture has been used in China for thousands of years and has become more widely accepted by doctors and patients around the world. A large number of clinical studies and animal experiments have confirmed that acupuncture has a benign adjustment effect on gastrointestinal (GI) movement; however, the mechanism of this effect is unclear, especially in terms of neural mechanisms, and there are still many areas that require further exploration. This article reviews the recent data on the neural mechanism of acupuncture on GI movements. We summarize the neural mechanism of acupuncture on GI movement from four aspects: acupuncture signal transmission, the sympathetic and parasympathetic nervous system, the enteric nervous system, and the central nervous system.
Collapse
Affiliation(s)
- Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
56
|
White AR, Werner CM, Holmes GM. Diminished enteric neuromuscular transmission in the distal colon following experimental spinal cord injury. Exp Neurol 2020; 331:113377. [PMID: 32526238 DOI: 10.1016/j.expneurol.2020.113377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
Abstract
Neurogenic bowel following spinal cord injury (SCI) leads to decreased colonic motility, remodeling of the neuromuscular compartment and results in chronic evacuation difficulties. The distal colon of the rat serves a dual role for fluid absorption and storage that is homologous to the descending colon of humans. Dysmotility of the descending colon is one component of neurogenic bowel. We investigated the integrity of the enteric neuromuscular transmission responsible for the generation of excitatory and inhibitory junction potentials (EJPs and IJPs, respectively) in the distal colon of rats. We previously demonstrated a chronic reduction in colonic enteric neurons from rats with acute and chronic high-thoracic (T3) SCI and hypothesized that neurogenic bowel following T3-SCI results from diminished enteric neuromuscular transmission. Immunohistochemical labeling for myenteric neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT) neurons demonstrated a significant loss of presumptive nitric oxide (NO) and acetylcholine (ACh) immunoreactive neurons in both 3-day and 3-week injured animals. Colonic neuromuscular transmission in response to transmural electrical stimulation of the colon was significantly reduced 3-days and 3-weeks following SCI in male rats. Specifically, cholinergic-mediated excitatory junction potentials (EJPs) and nitrergic-mediated slow inhibitory junction potentials (IJPs) were significantly reduced while ATP-mediated fast IJPs remained unaffected. We conclude that a reduction in excitatory and inhibitory enteric neuromuscular transmission contributes to neurogenic bowel observed following SCI, and that these loss-of-function changes involve enteric-mediated cholinergic and nitrergic pathways.
Collapse
Affiliation(s)
- Amanda R White
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America
| | - Claire M Werner
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States of America.
| |
Collapse
|
57
|
Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17:338-351. [PMID: 32152479 PMCID: PMC7474470 DOI: 10.1038/s41575-020-0271-2] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise. Knowledge of how distension or chemical stimulation of the bowel evokes sensory responses in the ENS and central nervous system have progressed, including critical elements that underlie the mechanotransduction of distension-evoked colonic peristalsis. Contrary to original thought, evidence suggests that mucosal serotonin is not required for peristalsis or colonic migrating motor complexes, although it can modulate their characteristics. Chemosensory stimuli applied to the lumen can release substances from enteroendocrine cells, which could subsequently modulate ENS activity. Advances have been made in optogenetic technologies, such that specific neurochemical classes of enteric neurons can be stimulated. A major focus of this Review will be the latest advances in our understanding of how intrinsic sensory neurons in the ENS detect and respond to sensory stimuli and how these mechanisms differ from extrinsic sensory nerve endings in the gut that underlie the gut-brain axis.
Collapse
Affiliation(s)
- Nick J Spencer
- College of Medicine and Public Health & Centre for Neuroscience, Flinders University, Adelaide, Australia.
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
58
|
Hung LY, Parathan P, Boonma P, Wu Q, Wang Y, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Antibiotic exposure postweaning disrupts the neurochemistry and function of enteric neurons mediating colonic motor activity. Am J Physiol Gastrointest Liver Physiol 2020; 318:G1042-G1053. [PMID: 32390463 PMCID: PMC7311661 DOI: 10.1152/ajpgi.00088.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The period during and immediately after weaning is an important developmental window when marked shifts in gut microbiota can regulate the maturation of the enteric nervous system (ENS). Because microbiota-derived signals that modulate ENS development are poorly understood, we examined the physiological impact of the broad spectrum of antibiotic, vancomycin-administered postweaning on colonic motility, neurochemistry of enteric neurons, and neuronal excitability. The functional impact of vancomycin on enteric neurons was investigated by Ca2+ imaging in Wnt1-Cre;R26R-GCaMP3 reporter mice to characterize alterations in the submucosal and the myenteric plexus, which contains the neuronal circuitry controlling gut motility. 16S rDNA sequencing of fecal specimens after oral vancomycin demonstrated significant deviations in microbiota abundance, diversity, and community composition. Vancomycin significantly increased the relative family rank abundance of Akkermansiaceae, Lactobacillaceae, and Enterobacteriaceae at the expense of Lachnospiraceae and Bacteroidaceae. In sharp contrast to neonatal vancomycin exposure, microbiota compositional shifts in weaned animals were associated with slower colonic migrating motor complexes (CMMCs) without mucosal serotonin biosynthesis being altered. The slowing of CMMCs is linked to disruptions in the neurochemistry of the underlying enteric circuitry. This included significant reductions in cholinergic and calbindin+ myenteric neurons, neuronal nitric oxide synthase+ submucosal neurons, neurofilament M+ enteric neurons, and increased proportions of cholinergic submucosal neurons. The antibiotic treatment also increased transmission and responsiveness in myenteric and submucosal neurons that may enhance inhibitory motor pathways, leading to slower CMMCs. Differential vancomycin responses during neonatal and weaning periods in mice highlight the developmental-specific impact of antibiotics on colonic enteric circuitry and motility.
Collapse
Affiliation(s)
- Lin Y. Hung
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Pavitha Parathan
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Prapaporn Boonma
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas,4Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Qinglong Wu
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Yi Wang
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony Haag
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Ruth Ann Luna
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Joel C. Bornstein
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Tor C. Savidge
- 2Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas,3Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas
| | - Jaime P. P. Foong
- 1Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
59
|
Obata Y, Castaño Á, Boeing S, Bon-Frauches AC, Fung C, Fallesen T, de Agüero MG, Yilmaz B, Lopes R, Huseynova A, Horswell S, Maradana MR, Boesmans W, Vanden Berghe P, Murray AJ, Stockinger B, Macpherson AJ, Pachnis V. Neuronal programming by microbiota regulates intestinal physiology. Nature 2020; 578:284-289. [PMID: 32025031 DOI: 10.1038/s41586-020-1975-8] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders1. Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility2-5, but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.
Collapse
Affiliation(s)
| | | | | | | | - Candice Fung
- Laboratory of Enteric Neuroscience (LENS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | | | - Mercedes Gomez de Agüero
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | | | | | | | | - Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter Vanden Berghe
- Laboratory of Enteric Neuroscience (LENS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | | | - Andrew J Macpherson
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
60
|
|
61
|
Spencer NJ, Travis L, Wiklendt L, Hibberd TJ, Costa M, Dinning P, Hu H. Diversity of neurogenic smooth muscle electrical rhythmicity in mouse proximal colon. Am J Physiol Gastrointest Liver Physiol 2020; 318:G244-G253. [PMID: 31790272 DOI: 10.1152/ajpgi.00317.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanisms underlying electrical rhythmicity in smooth muscle of the proximal colon are incompletely understood. Our aim was to identify patterns of electrical rhythmicity in smooth muscle of the proximal region of isolated whole mouse colon and characterize their mechanisms of origin. Two independent extracellular recording electrodes were used to record the patterns of electrical activity in smooth muscle of the proximal region of whole isolated mouse colon. Cross-correlation analysis was used to quantify spatial coordination of these electrical activities over increasing electrode separation distances. Four distinct neurogenic patterns of electrical rhythmicity were identified in smooth muscle of the proximal colon, three of which have not been identified and consisted of bursts of rhythmic action potentials at 1-2 Hz that were abolished by hexamethonium. These neurogenic patterns of electrical rhythmicity in smooth muscle were spatially and temporally synchronized over large separation distances (≥2 mm rosto-caudal axis). Myogenic slow waves could be recorded from the same preparations, but they showed poor spatial and temporal coordination over even short distances (≤1 mm rostro-caudal axis). It is not commonly thought that electrical rhythmicity in gastrointestinal smooth muscle is dependent upon the enteric nervous system. Here, we identified neurogenic patterns of electrical rhythmicity in smooth muscle of the proximal region of isolated mouse colon, which are dependent on synaptic transmission in the enteric nervous system. If the whole colon is studied in vitro, recordings can preserve novel neurogenic patterns of electrical rhythmicity in smooth muscle.NEW & NOTEWORTHY Previously, it has not often been thought that electrical rhythmicity in smooth muscle of the gastrointestinal tract is dependent upon the enteric nervous system. We identified patterns of electrical rhythmicity in smooth muscle of the mouse proximal colon that were abolished by hexamethonium and involved the temporal synchronization of smooth muscle membrane potential over large spatial fields. We reveal different patterns of electrical rhythmicity in colonic smooth muscle that are dependent on the ENS.
Collapse
Affiliation(s)
- Nick J Spencer
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - Lee Travis
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - Lukasz Wiklendt
- Department of Gastroenterology, Flinders Medical Center, Bedford Park, South Australia, Australia
| | - Timothy J Hibberd
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - Marcello Costa
- Visceral Neurophysiology Laboratory, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia, Australia
| | - Phil Dinning
- Department of Gastroenterology, Flinders Medical Center, Bedford Park, South Australia, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, Center for the Study of Itch, Washington University, St. Louis, Missouri
| |
Collapse
|
62
|
Gould TW, Swope WA, Heredia DJ, Corrigan RD, Smith TK. Activity within specific enteric neurochemical subtypes is correlated with distinct patterns of gastrointestinal motility in the murine colon. Am J Physiol Gastrointest Liver Physiol 2019; 317:G210-G221. [PMID: 31268770 PMCID: PMC6734370 DOI: 10.1152/ajpgi.00252.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enteric nervous system in the large intestine generates two important patterns relating to motility: 1) propagating rhythmic peristaltic smooth muscle contractions referred to as colonic migrating motor complexes (CMMCs) and 2) tonic inhibition, during which colonic smooth muscle contractions are suppressed. The precise neurobiological substrates underlying each of these patterns are unclear. Using transgenic animals expressing the genetically encoded calcium indicator GCaMP3 to monitor activity or the optogenetic actuator channelrhodopsin (ChR2) to drive activity in defined enteric neuronal subpopulations, we provide evidence that cholinergic and nitrergic neurons play significant roles in mediating CMMCs and tonic inhibition, respectively. Nitrergic neurons [neuronal nitric oxide synthase (nNOS)-positive neurons] expressing GCaMP3 exhibited higher levels of activity during periods of tonic inhibition than during CMMCs. Consistent with these findings, optogenetic activation of ChR2 in nitrergic neurons depressed ongoing CMMCs. Conversely, cholinergic neurons [choline acetyltransferase (ChAT)-positive neurons] expressing GCaMP3 markedly increased their activity during the CMMC. Treatment with the NO synthesis inhibitor Nω-nitro-l-arginine also augmented the activity of ChAT-GCaMP3 neurons, suggesting that the reciprocal patterns of activity exhibited by nitrergic and cholinergic enteric neurons during distinct phases of colonic motility may be related.NEW & NOTEWORTHY Correlating the activity of neuronal populations in the myenteric plexus to distinct periods of gastrointestinal motility is complicated by the difficulty of measuring the activity of specific neuronal subtypes. Here, using mice expressing genetically encoded calcium indicators or the optical actuator channelrhodopsin-2, we provide compelling evidence that cholinergic and nitrergic neurons play important roles in mediating coordinated propagating peristaltic contractions or tonic inhibition, respectively, in the murine colon.
Collapse
Affiliation(s)
- Thomas W. Gould
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - William A. Swope
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - Dante J. Heredia
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - Robert D. Corrigan
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| | - Terence K. Smith
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, Nevada
| |
Collapse
|
63
|
Swaminathan M, Hill-Yardin EL, Bornstein JC, Foong JPP. Endogenous Glutamate Excites Myenteric Calbindin Neurons by Activating Group I Metabotropic Glutamate Receptors in the Mouse Colon. Front Neurosci 2019; 13:426. [PMID: 31118881 PMCID: PMC6504831 DOI: 10.3389/fnins.2019.00426] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Glutamate is a classic excitatory neurotransmitter in the central nervous system (CNS), but despite several studies reporting the expression of glutamate together with its various receptors and transporters within the enteric nervous system (ENS), its role in the gut remains elusive. In this study, we characterized the expression of the vesicular glutamate transporter, vGluT2, and examined the function of glutamate in the myenteric plexus of the distal colon by employing calcium (Ca2+)-imaging on Wnt1-Cre; R26R-GCaMP3 mice which express a genetically encoded fluorescent Ca2+ indicator in all enteric neurons and glia. Most vGluT2 labeled varicosities contained the synaptic vesicle release protein, synaptophysin, but not vesicular acetylcholine transporter, vAChT, which labels vesicles containing acetylcholine, the primary excitatory neurotransmitter in the ENS. The somata of all calbindin (calb) immunoreactive neurons examined received close contacts from vGluT2 varicosities, which were more numerous than those contacting nitrergic neurons. Exogenous application of L-glutamic acid (L-Glu) and N-methyl-D-aspartate (NMDA) transiently increased the intracellular Ca2+ concentration [Ca2+]i in about 25% of myenteric neurons. Most L-Glu responsive neurons were calb immunoreactive. Blockade of NMDA receptors with APV significantly reduced the number of neurons responsive to L-Glu and NMDA, thus showing functional expression of NMDA receptors on enteric neurons. However, APV resistant responses to L-Glu and NMDA suggest that other glutamate receptors were present. APV did not affect [Ca2+]i transients evoked by electrical stimulation of interganglionic nerve fiber tracts, which suggests that NMDA receptors are not involved in synaptic transmission. The group I metabotropic glutamate receptor (mGluR) antagonist, PHCCC, significantly reduced the amplitude of [Ca2+]i transients evoked by a 20 pulse (20 Hz) train of electrical stimuli in L-Glu responsive neurons. This stimulus is known to induce slow synaptic depolarizations. Further, some neurons that had PHCCC sensitive [Ca2+]i transients were calb immunoreactive and received vGluT2 varicosities. Overall, we conclude that electrically evoked release of endogenous glutamate mediates slow synaptic transmission via activation of group I mGluRs expressed by myenteric neurons, particularly those immunoreactive for calb.
Collapse
Affiliation(s)
- Mathusi Swaminathan
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Elisa L Hill-Yardin
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Jaime P P Foong
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|