51
|
Woerman AL, Luk KC. Are Preformed Fibrils a Model of Parkinson's Disease? JOURNAL OF PARKINSON'S DISEASE 2024; 14:1095-1103. [PMID: 39031387 PMCID: PMC11380230 DOI: 10.3233/jpd-240228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Pre-formed fibrils (PFFs) made from recombinant α-synuclein are broadly used throughout the field in cellular and animal models of Parkinson's disease. However, their ability to successfully recapitulate disease biology is a controversial topic. In this article, two researchers debate this issue with Amanda Woerman taking the view that PFFs are a model of synucleinopathy but not Parkinson's disease, while Kelvin Luk defends their use as an important tool in the field.
Collapse
Affiliation(s)
- Amanda L. Woerman
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA
| | - Kelvin C. Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
52
|
Liu R, Dong X, Seroski DT, Soto Morales B, Wong KM, Robang AS, Melgar L, Angelini TE, Paravastu AK, Hall CK, Hudalla GA. Side-Chain Chemistry Governs Hierarchical Order of Charge-Complementary β-sheet Peptide Coassemblies. Angew Chem Int Ed Engl 2023; 62:e202314531. [PMID: 37931093 PMCID: PMC10841972 DOI: 10.1002/anie.202314531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Self-assembly of proteinaceous biomolecules into functional materials with ordered structures that span length scales is common in nature yet remains a challenge with designer peptides under ambient conditions. This report demonstrates how charged side-chain chemistry affects the hierarchical co-assembly of a family of charge-complementary β-sheet-forming peptide pairs known as CATCH(X+/Y-) at physiologic pH and ionic strength in water. In a concentration-dependent manner, the CATCH(6K+) (Ac-KQKFKFKFKQK-Am) and CATCH(6D-) (Ac-DQDFDFDFDQD-Am) pair formed either β-sheet-rich microspheres or β-sheet-rich gels with a micron-scale plate-like morphology, which were not observed with other CATCH(X+/Y-) pairs. This hierarchical order was disrupted by replacing D with E, which increased fibril twisting. Replacing K with R, or mutating the N- and C-terminal amino acids in CATCH(6K+) and CATCH(6D-) to Qs, increased observed co-assembly kinetics, which also disrupted hierarchical order. Due to the ambient assembly conditions, active CATCH(6K+)-green fluorescent protein fusions could be incorporated into the β-sheet plates and microspheres formed by the CATCH(6K+/6D-) pair, demonstrating the potential to endow functionality.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Xin Dong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695, USA
| | - Dillon T Seroski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Bethsymarie Soto Morales
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Kong M Wong
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Lucas Melgar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL-32611, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA-30332, USA
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC-27695, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL-32611, USA
| |
Collapse
|
53
|
Mishra S. Emerging Trends in Cryo-EM-based Structural Studies of Neuropathological Amyloids. J Mol Biol 2023; 435:168361. [PMID: 37949311 DOI: 10.1016/j.jmb.2023.168361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Tauopathies, synucleinopathies, Aβ amyloidosis, TDP-43 proteinopathies, and prion diseases- these neurodegenerative diseases have in common the formation of amyloid filaments rich in cross-β sheets. Cryo-electron microscopy now permits the visualization of amyloid assemblies at atomic resolution, ushering a wide range of structural studies on several of these poorly understood amyloidogenic proteins. Amyloids are polymorphic with minor modulations in reaction environment affecting the overall architecture of their assembly, making amyloids an extremely challenging venture for structure-based therapeutic intervention. In 2017, the first cryo-EM structure of tau filaments from an Alzheimer's disease-affected brain established that in vitro assemblies might not necessarily reflect the native amyloid fold. Since then, brain-derived amyloid structures for several proteins across many neurodegenerative diseases have uncovered the disease-relevant amyloid folds. It has now been shown for tauopathies, synucleinopathies and TDP-43 proteinopathies, that distinct amyloid folds of the same protein might be related to different diseases. Salient features of each of these brain-derived folds are discussed in detail. It was also recently observed that seeded aggregation does not necessarily replicate the brain-derived structural fold. Owing to high throughput structure determination, some of these native amyloid folds have also been successfully replicated in vitro. In vitro replication of disease-relevant filaments will aid development of imaging ligands and defibrillating drugs. Towards this direction, recent high-resolution structures of tau filaments with positron emission tomography tracers and a defibrillating drug are also discussed. This review summarizes and celebrates the recent advancements in structural understanding of neuropathological amyloid filaments using cryo-EM.
Collapse
Affiliation(s)
- Suman Mishra
- Molecular Biophysics Unit, Biological Sciences Division, Indian Institute of Science, Bengaluru 560 012, Karnataka, India.
| |
Collapse
|
54
|
Chisholm T, Hunter CA. Ligand Profiling to Characterize Different Polymorphic Forms of α-Synuclein Aggregates. J Am Chem Soc 2023; 145:27030-27037. [PMID: 38029411 PMCID: PMC10722502 DOI: 10.1021/jacs.3c10521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
The presence of amyloid fibrils is a characteristic feature of many diseases, most famously neurodegenerative disease. The supramolecular structure of these fibrils appears to be disease-specific. Identifying the unique morphologies of amyloid fibrils could, therefore, form the basis of a diagnostic tool. Here we report a method to characterize the morphology of α-synuclein (αSyn) fibrils based on profiling multiple different ligand binding sites that are present on the surfaces of fibrils. By employing various competition binding assays, seven different types of binding sites were identified on four different morphologies of αSyn fibrils. Similar binding sites on different fibrils were shown to bind ligands with significantly different affinities. We combined this information to construct individual profiles for different αSyn fibrils based on the distribution of binding sites and ligand interactions. These results demonstrate that ligand-based profiling can be used as an analytical method to characterize fibril morphologies with operationally simple fluorescence binding assays.
Collapse
Affiliation(s)
- Timothy
S. Chisholm
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christopher A. Hunter
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
55
|
Altay MF, Kumar ST, Burtscher J, Jagannath S, Strand C, Miki Y, Parkkinen L, Holton JL, Lashuel HA. Development and validation of an expanded antibody toolset that captures alpha-synuclein pathological diversity in Lewy body diseases. NPJ Parkinsons Dis 2023; 9:161. [PMID: 38062007 PMCID: PMC10703845 DOI: 10.1038/s41531-023-00604-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
The abnormal aggregation and accumulation of alpha-synuclein (aSyn) in the brain is a defining hallmark of synucleinopathies. Various aSyn conformations and post-translationally modified forms accumulate in pathological inclusions and vary in abundance among these disorders. Relying on antibodies that have not been assessed for their ability to detect the diverse forms of aSyn may lead to inaccurate estimations of aSyn pathology in human brains or disease models. To address this challenge, we developed and characterized an expanded antibody panel that targets different sequences and post-translational modifications along the length of aSyn, and that recognizes all monomeric, oligomeric, and fibrillar aSyn conformations. Next, we profiled aSyn pathology across sporadic and familial Lewy body diseases (LBDs) and reveal heterogeneous forms of aSyn pathology, rich in Serine 129 phosphorylation, Tyrosine 39 nitration and N- and C-terminal tyrosine phosphorylations, scattered both to neurons and glia. In addition, we show that aSyn can become hyperphosphorylated during processes of aggregation and inclusion maturation in neuronal and animal models of aSyn seeding and spreading. The validation pipeline we describe for these antibodies paves the way for systematic investigations into aSyn pathological diversity in the human brain, peripheral tissues, as well as in cellular and animal models of synucleinopathies.
Collapse
Affiliation(s)
- Melek Firat Altay
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Senthil T Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Somanath Jagannath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
| | - Yasuo Miki
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Laura Parkkinen
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland.
| |
Collapse
|
56
|
Li D, Jiang W. Classification of helical polymers with deep-learning language models. J Struct Biol 2023; 215:108041. [PMID: 37939748 PMCID: PMC10843845 DOI: 10.1016/j.jsb.2023.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Many macromolecules in biological systems exist in the form of helical polymers. However, the inherent polymorphism and heterogeneity of samples complicate the reconstruction of helical polymers from cryo-EM images. Currently, available 2D classification methods are effective at separating particles of interest from contaminants, but they do not effectively differentiate between polymorphs, resulting in heterogeneity in the 2D classes. As such, it is crucial to develop a method that can computationally divide a dataset of polymorphic helical structures into homogenous subsets. In this work, we utilized deep-learning language models to embed the filaments as vectors in hyperspace and group them into clusters. Tests with both simulated and experimental datasets have demonstrated that our method - HLM (Helical classification with Language Model) can effectively distinguish different types of filaments, in the presence of many contaminants and low signal-to-noise ratios. We also demonstrate that HLM can isolate homogeneous subsets of particles from a publicly available dataset, resulting in the discovery of a previously unreported filament variant with an extra density around the tau filaments.
Collapse
Affiliation(s)
- Daoyi Li
- Department of Biological Sciences, Purdue University
| | - Wen Jiang
- Department of Biological Sciences, Purdue University.
| |
Collapse
|
57
|
Sasanian N, Sharma R, Lubart Q, Kk S, Ghaeidamini M, Dorfman KD, Esbjörner EK, Westerlund F. Probing physical properties of single amyloid fibrils using nanofluidic channels. NANOSCALE 2023; 15:18737-18744. [PMID: 37953701 DOI: 10.1039/d3nr02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Amyloid fibril formation is central to the pathology of many diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Amyloid fibrils can also have functional and scaffolding roles, for example in bacterial biofilms, and have also been exploited as useful biomaterials. Despite being linear protein homopolymers, amyloid fibrils can exhibit significant structural and morphological polymorphism, making it relevant to study them on the single fibril level. We here introduce the concept of nanofluidic channel analysis to the study of single, fluorescently-labeled amyloid fibrils in solution, monitoring the extension and emission intensity of individual fibrils confined in nanochannels with a depth of 300 nm and a width that gradually increases from 300 to 3000 nm. The change in fibril extension with channel width permitted accurate determination of the persistence length of individual fibrils using Odijk's theory for strongly confined polymers. The technique was applied to amyloid fibrils prepared from the Alzheimer's related peptide amyloid-β(1-42) and the Parkinson's related protein α-synuclein, obtaining mean persistence lengths of 5.9 ± 4.5 μm and 3.0 ± 1.6 μm, respectively. The broad distributions of fibril persistence lengths indicate that amyloid fibril polymorphism can manifest in their physical properties. Interestingly, the α-synuclein fibrils had lower persistence lengths than the amyloid-β(1-42) fibrils, despite being thicker. Furthermore, there was no obvious within-sample correlation between the fluorescence emission intensity per unit length of the labelled fibrils and their persistence lengths, suggesting that stiffness may not be proportional to thickness. We foresee that the nanofluidics methodology established here will be a useful tool to study amyloid fibrils on the single fibril level to gain information on heterogeneity in their physical properties and interactions.
Collapse
Affiliation(s)
- Nima Sasanian
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Rajhans Sharma
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Quentin Lubart
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Sriram Kk
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Marziyeh Ghaeidamini
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave SE, Minneapolis, Minnesota 55455, USA
| | - Elin K Esbjörner
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Fredrik Westerlund
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.
| |
Collapse
|
58
|
Maurer M, Lazaridis T. Transmembrane β-Barrel Models of α-Synuclein Oligomers. J Chem Inf Model 2023; 63:7171-7179. [PMID: 37963823 DOI: 10.1021/acs.jcim.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The aggregation of α-synuclein is implicated in a number of neurodegenerative diseases, such as Parkinson's and Multiple System Atrophy, but the role of these aggregates in disease development is not clear. One possible mechanism of cytotoxicity is the disturbance or permeabilization of cell membranes by certain types of oligomers. However, no high-resolution structure of such membrane-embedded complexes has ever been determined. Here we construct and evaluate putative transmembrane β-barrels formed by this protein. Examination of the α-synuclein sequence reveals two regions that could form membrane-embedded β-hairpins: 64-92 (the NAC), and 35-56, which harbors many familial Parkinson's mutations. The stability of β-barrels formed by these hairpins is examined first in implicit membrane pores and then by multimicrosecond all-atom simulations. We find that a NAC region barrel remains stably inserted and hydrated for at least 10 μs. A 35-56 barrel remains stably inserted in the membrane but dehydrates and collapses if all His50 are neutral or if His50 is replaced by Q. If half of the His50 are doubly protonated, the barrel takes an oval shape but remains hydrated for at least 10 μs. Possible implications of these findings for α-synuclein pathology are discussed.
Collapse
Affiliation(s)
- Manuela Maurer
- Department of Chemistry & Biochemistry, City College of New York/CUNY, 160 Convent Ave, New York, New York 10031, United States
| | - Themis Lazaridis
- Department of Chemistry & Biochemistry, City College of New York/CUNY, 160 Convent Ave, New York, New York 10031, United States
| |
Collapse
|
59
|
Schulz CM, Pfitzer A, Hoyer W. Fibril core regions in engineered α-synuclein dimer are crucial for blocking of fibril elongation. BBA ADVANCES 2023; 4:100110. [PMID: 38053641 PMCID: PMC10694066 DOI: 10.1016/j.bbadva.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Synucleinopathies like Parkinson's disease are neurodegenerative diseases which are associated with the deposition of fibrillar aggregates of the endogenous protein α-synuclein (α-syn). The inhibition of the elongation of α-syn fibrils is of great scientific interest and an option in the design of therapeutic strategies. Previously, we developed a disulfide-containing mutant of α-syn, called CC48, which inhibits fibril elongation by blocking of fibril ends. Surprisingly, wildtype (WT) α-syn molecules supported the blocked state, and a fusion of CC48 with WT α-syn, denoted WT-CC48, exhibited increased inhibitory potential. Here, we studied which regions of WT-CC48 are responsible for the strong inhibitory effect. To this end, we investigated a set of truncated versions of WT-CC48 by kinetic elongation assays, density gradient centrifugation, and atomic force microscopy. We show that in both the WT and the CC48 part of the fusion construct the hairpin region (residue 32-60) and NAC region (61-95), but not N- and C-terminal regions, are required for strong inhibition of fibril elongation. The required regions correspond to the segments forming the β-sheet core of α-syn fibrils. As α-syn fibrils typically consist of two protofilaments, the dimeric construct WT-CC48 provides the critical regions sufficient to cover the full β-sheetcore interface exposed at the fibril end, which can explain its high inhibitory efficiency. We suggest a mechanistic model of CC48-mediated inhibition of fibril elongation in which CC48 and WT α-syn cooperatively form an oligomer-like cap at the amyloid fibril end.
Collapse
Affiliation(s)
- Celina M. Schulz
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anne Pfitzer
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
60
|
Allen SG, Meade RM, White Stenner LL, Mason JM. Peptide-based approaches to directly target alpha-synuclein in Parkinson's disease. Mol Neurodegener 2023; 18:80. [PMID: 37940962 PMCID: PMC10633918 DOI: 10.1186/s13024-023-00675-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Peptides and their mimetics are increasingly recognised as drug-like molecules, particularly for intracellular protein-protein interactions too large for inhibition by small molecules, and inaccessible to larger biologics. In the past two decades, evidence associating the misfolding and aggregation of alpha-synuclein strongly implicates this protein in disease onset and progression of Parkinson's disease and related synucleinopathies. The subsequent formation of toxic, intracellular, Lewy body deposits, in which alpha-synuclein is a major component, is a key diagnostic hallmark of the disease. To reach their therapeutic site of action, peptides must both cross the blood-brain barrier and enter dopaminergic neurons to prevent the formation of these intracellular inclusions. In this review, we describe and summarise the current efforts made in the development of peptides and their mimetics to directly engage with alpha-synuclein with the intention of modulating aggregation, and importantly, toxicity. This is a rapidly expanding field with great socioeconomic impact; these molecules harbour significant promise as therapeutics, or as early biomarkers during prodromal disease stages, or both. As these are age-dependent conditions, an increasing global life expectancy means disease prevalence is rising. No current treatments exist to either prevent or slow disease progression. It is therefore crucial that drugs are developed for these conditions before health care and social care capacities become overrun.
Collapse
Affiliation(s)
- Scott G Allen
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Richard M Meade
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Lucy L White Stenner
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
61
|
Li D, Liu C. Molecular rules governing the structural polymorphism of amyloid fibrils in neurodegenerative diseases. Structure 2023; 31:1335-1347. [PMID: 37657437 DOI: 10.1016/j.str.2023.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Amyloid fibrils are hallmarks of various neurodegenerative diseases. The structural polymorphism of amyloid fibrils holds significant pathological importance in diseases. This review aims to provide an in-depth overview on the complexity of amyloid fibrils' structural polymorphism and its implications in disease pathogenesis. We firstly decipher the molecular rules governing the structural polymorphism of amyloid fibrils. We then discuss pivotal factors that contribute to the assortment of fibril structural polymorphs, including post-translational modifications (PTMs), disease mutations, and interacting molecules, and elucidate the structural basis of how these determinants influence amyloid fibril polymorphism. Furthermore, we underscore the need for a comprehensive understanding of the relationship between diverse fibril polymorphs and pathological activities, as well as their potential roles in therapeutic applications.
Collapse
Affiliation(s)
- Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
62
|
Basu S, Song M, Adams L, Jeong I, Je G, Guhathakurta S, Jiang J, Boparai N, Dai W, Cardozo-Pelaez F, Tatulian SA, Han KY, Elliott J, Baum J, McLean PJ, Dickson DW, Kim YS. Transcriptional mutagenesis of α-synuclein caused by DNA oxidation in Parkinson's disease pathogenesis. Acta Neuropathol 2023; 146:685-705. [PMID: 37740734 PMCID: PMC10564827 DOI: 10.1007/s00401-023-02632-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Oxidative stress plays an essential role in the development of Parkinson's disease (PD). 8-oxo-7,8-dihydroguanine (8-oxodG, oxidized guanine) is the most abundant oxidative stress-mediated DNA lesion. However, its contributing role in underlying PD pathogenesis remains unknown. In this study, we hypothesized that 8-oxodG can generate novel α-synuclein (α-SYN) mutants with altered pathologic aggregation through a phenomenon called transcriptional mutagenesis (TM). We observed a significantly higher accumulation of 8-oxodG in the midbrain genomic DNA from PD patients compared to age-matched controls, both globally and region specifically to α-SYN. In-silico analysis predicted that forty-three amino acid positions can contribute to TM-derived α-SYN mutation. Here, we report a significantly higher load of TM-derived α-SYN mutants from the midbrain of PD patients compared to controls using a sensitive PCR-based technique. We found a novel Serine42Tyrosine (S42Y) α-SYN as the most frequently detected TM mutant, which incidentally had the highest predicted aggregation score amongst all TM variants. Immunohistochemistry of midbrain sections from PD patients using a newly characterized antibody for S42Y identified S42Y-laden Lewy bodies (LB). We further demonstrated that the S42Y TM variant significantly accelerates WT α-SYN aggregation by cell and recombinant protein-based assays. Cryo-electron tomography revealed that S42Y exhibits considerable conformational heterogeneity compared to WT fibrils. Moreover, S42Y exhibited higher neurotoxicity compared to WT α-SYN as shown in mouse primary cortical cultures and AAV-mediated overexpression in the substantia nigra of C57BL/6 J mice. To our knowledge, this is the first report describing the possible contribution of TM-generated mutations of α-SYN to LB formation and PD pathogenesis.
Collapse
Affiliation(s)
- Sambuddha Basu
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Minkyung Song
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Levi Adams
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Inhye Jeong
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Goun Je
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Subhrangshu Guhathakurta
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Jennifer Jiang
- Department of Cell Biology and Neuroscience, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Nikpreet Boparai
- Department of Cell Biology and Neuroscience, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Wei Dai
- Department of Cell Biology and Neuroscience, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Fernando Cardozo-Pelaez
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, 59812, USA
- Center for Structural and Functional Neurosciences, University of Montana, Missoula, MT, 59812, USA
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, 32816, USA
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Yoon-Seong Kim
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.
- Burnett School of Biomedical Sciences, UCF College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
63
|
Bigi A, Cascella R, Cecchi C. α-Synuclein oligomers and fibrils: partners in crime in synucleinopathies. Neural Regen Res 2023; 18:2332-2342. [PMID: 37282450 PMCID: PMC10360081 DOI: 10.4103/1673-5374.371345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
The misfolding and aggregation of α-synuclein is the general hallmark of a group of devastating neurodegenerative pathologies referred to as synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In such conditions, a range of different misfolded aggregates, including oligomers, protofibrils, and fibrils, are present both in neurons and glial cells. Growing experimental evidence supports the proposition that soluble oligomeric assemblies, formed during the early phases of the aggregation process, are the major culprits of neuronal toxicity; at the same time, fibrillar conformers appear to be the most efficient at propagating among interconnected neurons, thus contributing to the spreading of α-synuclein pathology. Moreover, α-synuclein fibrils have been recently reported to release soluble and highly toxic oligomeric species, responsible for an immediate dysfunction in the recipient neurons. In this review, we discuss the current knowledge about the plethora of mechanisms of cellular dysfunction caused by α-synuclein oligomers and fibrils, both contributing to neurodegeneration in synucleinopathies.
Collapse
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| |
Collapse
|
64
|
Havemeister F, Ghaeidamini M, Esbjörner EK. Monovalent cations have different effects on the assembly kinetics and morphology of α-synuclein amyloid fibrils. Biochem Biophys Res Commun 2023; 679:31-36. [PMID: 37660641 DOI: 10.1016/j.bbrc.2023.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Formation of α-synuclein amyloid fibrils is a pathological hallmark of Parkinson's disease and a phenomenon that is strongly modulated by environmental factors. Here, we compared effects of different monovalent cations (Li+, Na+, K+) on the formation and properties of α-synuclein amyloid fibrils. Na+ > Li+ were found to have concentration-dependent catalytic effects on primary nucleation whereas K+ ions acted inhibitory. We discuss this discrepancy in terms of a superior affinity of Na+ and Li+ to carboxylic protein groups, resulting in reduced Columbic repulsion and by considering K+ as an ion with poor protein binding and slight chaotropic character, which could promote random coil protein structure. K+ ions, furthermore, appeared to lower the β-sheet content of the fibrils and increase their persistence lengths, the latter we interpret as a consequence of lesser ion binding and hence higher line charge of the fibrils. The finding that Na+ and K+ have opposite effects on α-synuclein aggregation is intriguing in relation to the significant transient gradients of these ions across axonal membranes, but also important for the design and interpretation of biophysical assays where buffers containing these monovalent cations have been intermixedly used.
Collapse
Affiliation(s)
- Fritjof Havemeister
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-41296, Gothenburg, Sweden
| | - Marziyeh Ghaeidamini
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-41296, Gothenburg, Sweden
| | - Elin K Esbjörner
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-41296, Gothenburg, Sweden.
| |
Collapse
|
65
|
Chlebowicz J, Russ W, Chen D, Vega A, Vernino S, White CL, Rizo J, Joachimiak LA, Diamond MI. Saturation mutagenesis of α-synuclein reveals monomer fold that modulates aggregation. SCIENCE ADVANCES 2023; 9:eadh3457. [PMID: 37889966 PMCID: PMC10610913 DOI: 10.1126/sciadv.adh3457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
α-Synuclein (aSyn) aggregation underlies neurodegenerative synucleinopathies. aSyn seeds are proposed to replicate and propagate neuronal pathology like prions. Seeding of aSyn can be recapitulated in cellular systems of aSyn aggregation; however, the mechanism of aSyn seeding and its regulation are not well understood. We developed an mEos-based aSyn seeding assay and performed saturation mutagenesis to identify with single-residue resolution positive and negative regulators of aSyn aggregation. We not only found the core regions that govern aSyn aggregation but also identified mutants outside of the core that enhance aggregation. We identified local structure within the N terminus of aSyn that hinders the fibrillization propensity of its aggregation-prone core. Based on the screen, we designed a minimal aSyn fragment that shows a ~4-fold enhancement in seeding activity and enabled discrimination of synucleinopathies. Our study expands the basic knowledge of aSyn aggregation and advances the design of cellular systems of aSyn aggregation to diagnose synucleinopathies based on protein conformation.
Collapse
Affiliation(s)
- Julita Chlebowicz
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William Russ
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Evozyne Inc., Chicago, IL, USA
| | - Dailu Chen
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony Vega
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven Vernino
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles L. White
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lukasz A. Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc I. Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
66
|
Singh BP, Morris RJ, Kunath T, MacPhee CE, Horrocks MH. Lipid-induced polymorphic amyloid fibril formation by α-synuclein. Protein Sci 2023; 32:e4736. [PMID: 37515406 PMCID: PMC10521247 DOI: 10.1002/pro.4736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Many proteins that self-assemble into amyloid and amyloid-like fibers can adopt diverse polymorphic forms. These forms have been observed both in vitro and in vivo and can arise through variations in the steric-zipper interactions between β-sheets, variations in the arrangements between protofilaments, and differences in the number of protofilaments that make up a given fiber class. Different polymorphs arising from the same precursor molecule not only exhibit different levels of toxicity, but importantly can contribute to different disease conditions. However, the factors which contribute to formation of polymorphic forms of amyloid fibrils are not known. In this work, we show that in the presence of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine, a highly abundant lipid in the plasma membrane of neurons, the aggregation of α-synuclein is markedly accelerated and yields a diversity of polymorphic forms under identical experimental conditions. This morphological diversity includes thin and curly fibrils, helical ribbons, twisted ribbons, nanotubes, and flat sheets. Furthermore, the amyloid fibrils formed incorporate lipids into their structures, which corroborates the previous report of the presence of α-synuclein fibrils with high lipid content in Lewy bodies. Thus, the present study demonstrates that an interface, such as that provided by a lipid membrane, can not only modulate the kinetics of α-synuclein amyloid aggregation but also plays an important role in the formation of morphological variants by incorporating lipid molecules in the process of amyloid fibril formation.
Collapse
Affiliation(s)
- Bhanu P. Singh
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
- EaStCHEM School of Chemistry, The University of EdinburghEdinburghUK
| | - Ryan J. Morris
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
| | - Tilo Kunath
- Centre for Regenerative Medicine, School of Biological Sciences, The University of EdinburghEdinburghUK
| | - Cait E. MacPhee
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, The University of EdinburghEdinburghUK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of EdinburghEdinburghUK
| |
Collapse
|
67
|
Scheres SHW, Ryskeldi-Falcon B, Goedert M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 2023; 621:701-710. [PMID: 37758888 DOI: 10.1038/s41586-023-06437-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/14/2023] [Indexed: 09/29/2023]
Abstract
Abnormal assembly of tau, α-synuclein, TDP-43 and amyloid-β proteins into amyloid filaments defines most human neurodegenerative diseases. Genetics provides a direct link between filament formation and the causes of disease. Developments in cryo-electron microscopy (cryo-EM) have made it possible to determine the atomic structures of amyloids from postmortem human brains. Here we review the structures of brain-derived amyloid filaments that have been determined so far and discuss their impact on research into neurodegeneration. Whereas a given protein can adopt many different filament structures, specific amyloid folds define distinct diseases. Amyloid structures thus provide a description of neuropathology at the atomic level and a basis for studying disease. Future research should focus on model systems that replicate the structures observed in disease to better understand the molecular mechanisms of disease and develop improved diagnostics and therapies.
Collapse
Affiliation(s)
- Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | | | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
68
|
Huang D, Guo C. E46K Mutation of α-Synuclein Preorganizes the Intramolecular Interactions Crucial for Aggregation. J Chem Inf Model 2023; 63:4803-4813. [PMID: 37489886 DOI: 10.1021/acs.jcim.3c00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Aggregation of α-synuclein is central to the pathogenesis of Parkinson's disease. The most toxic familial mutation E46K accelerates the aggregation process by an unknown mechanism. Herein, we provide a clue by investigating the influence of E46K on monomeric α-synuclein and its relation to aggregation with molecular dynamics simulations. The E46K mutation suppresses β-sheet structures in the N-terminus while promoting those at the key fibrillization region named NACore. Even though WT and E46K monomers share conserved intramolecular interactions with fibrils, E46K abolishes intramolecular contacts within the N-terminus which are present in the WT monomer but absent in fibrils. Network analysis identifies residues 36-53 as the interaction core of the WT monomer. Upon mutation, residues 36-46 are expelled to water due to aggravated electrostatic repulsion in the 43KTKK46 segment. Instead, NACore (residues 68-78) becomes the interaction hub and connects preceding residues 47-56 and the C-terminus. Consequently, residues 47-95 which belong to the fibril core form more compact β-sheets. Overall, the interaction network of E46K is more like fibrils than WT, stabilizing the fibril-like conformations. Our work provides mechanistic insights into the faster aggregation of the E46K mutant. It implies a close link between monomeric conformations and fibrils, which would spur the development of therapeutic strategies.
Collapse
Affiliation(s)
- Defa Huang
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
69
|
Xiang J, Tao Y, Xia Y, Luo S, Zhao Q, Li B, Zhang X, Sun Y, Xia W, Zhang M, Kang SS, Ahn EH, Liu X, Xie F, Guan Y, Yang JJ, Bu L, Wu S, Wang X, Cao X, Liu C, Zhang Z, Li D, Ye K. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Cell 2023; 186:3350-3367.e19. [PMID: 37421950 PMCID: PMC10527432 DOI: 10.1016/j.cell.2023.06.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
Synucleinopathies are characterized by the accumulation of α-synuclein (α-Syn) aggregates in the brain. Positron emission tomography (PET) imaging of synucleinopathies requires radiopharmaceuticals that selectively bind α-Syn deposits. We report the identification of a brain permeable and rapid washout PET tracer [18F]-F0502B, which shows high binding affinity for α-Syn, but not for Aβ or Tau fibrils, and preferential binding to α-Syn aggregates in the brain sections. Employing several cycles of counter screenings with in vitro fibrils, intraneuronal aggregates, and neurodegenerative disease brain sections from several mice models and human subjects, [18F]-F0502B images α-Syn deposits in the brains of mouse and non-human primate PD models. We further determined the atomic structure of the α-Syn fibril-F0502B complex by cryo-EM and revealed parallel diagonal stacking of F0502B on the fibril surface through an intense noncovalent bonding network via inter-ligand interactions. Therefore, [18F]-F0502B is a promising lead compound for imaging aggregated α-Syn in synucleinopathies.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurobiology, Fourth Military Medical University, Xi'an, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Biomedical Sciences, School of Medicine, JiangHan University, #8, Sanjiaohu Rd., Wuhan 430056, China
| | - Shilin Luo
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bowei Li
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Science, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Mingming Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eun-Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Lihong Bu
- PET-CT/MRI Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shengxi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
70
|
Moore K, Sengupta U, Puangmalai N, Bhatt N, Kayed R. Polymorphic Alpha-Synuclein Oligomers: Characterization and Differential Detection with Novel Corresponding Antibodies. Mol Neurobiol 2023; 60:2691-2705. [PMID: 36707462 PMCID: PMC9883140 DOI: 10.1007/s12035-023-03211-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 01/29/2023]
Abstract
The pathological hallmark of many neurodegenerative diseases is the accumulation of characteristic proteinaceous aggregates. Parkinson's disease and dementia with Lewy bodies can be characterized as synucleinopathies due to the abnormal accumulation of the protein alpha-synuclein (α-Syn). Studies have shown amyloidogenic proteins such as α-Syn and tau can exist as polymorphic aggregates, a theory widely studied mostly in their fibrillar morphology. It is now well understood that an intermediate state of aggregates, oligomers, are the most toxic species. We have shown α-Syn, when modified by different physiological inducers, result in distinct oligomeric conformations of α-Syn. Polymorphic α-Syn oligomers exhibit distinct properties such as aggregate size, conformation, and differentially interact with tau. In this study, we confirm α-Syn oligomeric polymorphs furthermore using in-house novel α-Syn toxic conformation monoclonal antibodies (SynTCs). It is unclear the biological relevance of α-Syn oligomeric polymorphisms. Utilizing a combination of biochemical, biophysical, and cell-based assays, we characterize α-Syn oligomeric polymorphs. We found α-Syn oligomeric polymorphs exhibit distinct immunoreactivity and SynTCs exhibit differential selectivity and binding affinity for α-Syn species. Isothermal titration calorimetry experiments suggest distinct α-Syn:SynTC binding enthalpies in a species-specific manner. Additionally, we found SynTCs differentially reduce α-Syn oligomeric polymorph-mediated neurotoxicity and propagation in primary cortical neurons in a polymorph-specific manner. These studies demonstrate the biological significance of polymorphic α-Syn oligomers along with the importance of polymorph-specific antibodies that target toxic α-Syn aggregates. Monoclonal antibodies that can target the conformational heterogeneity of α-Syn oligomeric species and reduce their mediated toxicity have promising immunotherapeutic potential.
Collapse
Affiliation(s)
- Kenya Moore
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, Neuroscience and Cell Biology, Medical Research Building Room 10.138C, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1045, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, Neuroscience and Cell Biology, Medical Research Building Room 10.138C, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1045, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, Neuroscience and Cell Biology, Medical Research Building Room 10.138C, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1045, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA
- Department of Neurology, Neuroscience and Cell Biology, Medical Research Building Room 10.138C, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1045, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Neurology, Neuroscience and Cell Biology, Medical Research Building Room 10.138C, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555-1045, USA.
| |
Collapse
|
71
|
Roterman I, Stapor K, Konieczny L. Structural Specificity of Polymorphic Forms of α-Synuclein Amyloid. Biomedicines 2023; 11:biomedicines11051324. [PMID: 37238996 DOI: 10.3390/biomedicines11051324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The structural transformation producing amyloids is a phenomenon that sheds new light on the protein folding problem. The analysis of the polymorphic structures of the α-synuclein amyloid available in the PDB database allows analysis of the amyloid-oriented structural transformation itself, but also the protein folding process as such. The polymorphic amyloid structures of α-synuclein analyzed employing the hydrophobicity distribution (fuzzy oil drop model) reveal a differentiation with a dominant distribution consistent with the micelle-like system (hydrophobic core with polar shell). This type of ordering of the hydrophobicity distribution covers the entire spectrum from the example with all three structural units (single chain, proto-fibril, super-fibril) exhibiting micelle-like form, through gradually emerging examples of local disorder, to structures with an extremely different structuring pattern. The water environment directing protein structures towards the generation of ribbon micelle-like structures (concentration of hydrophobic residues in the center of the molecule forming a hydrophobic core with the exposure of polar residues on the surface) also plays a role in the amyloid forms of α-synuclein. The polymorphic forms of α-synuclein reveal local structural differentiation with a common tendency to accept the micelle-like structuralization in certain common fragments of the polypeptide chain of this protein.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Medyczna 7, 30-688 Krakow, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Leszek Konieczny
- Medical Biochemistry, Jagiellonian University-Medical College, Kopernika 7, 31-034 Krakow, Poland
| |
Collapse
|
72
|
Menon S, Mondal J. Conformational Plasticity in α-Synuclein and How Crowded Environment Modulates It. J Phys Chem B 2023; 127:4032-4049. [PMID: 37114769 DOI: 10.1021/acs.jpcb.3c00982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A 140-residue intrinsically disordered protein (IDP), α-synuclein (αS), is known to adopt conformations that are vastly plastic and susceptible to environmental cues and crowders. However, the inherently heterogeneous nature of αS has precluded a clear demarcation of its monomeric precursor between aggregation-prone and functionally relevant aggregation-resistant states and how a crowded environment could modulate their mutual dynamic equilibrium. Here, we identify an optimal set of distinct metastable states of αS in aqueous media by dissecting a 73 μs-long molecular dynamics ensemble via building a comprehensive Markov state model (MSM). Notably, the most populated metastable state corroborates with the dimension obtained from PRE-NMR studies of αS monomer, and it undergoes kinetic transition at diverse time scales with a weakly populated random-coil-like ensemble and a globular protein-like state. However, subjecting αS to a crowded environment results in a nonmonotonic compaction of these metastable conformations, thereby skewing the ensemble by either introducing new tertiary contacts or by reinforcing the innate contacts. The early stage of dimerization process is found to be considerably expedited in the presence of crowders, albeit promoting nonspecific interactions. Together with this, using an extensively sampled ensemble of αS, this exposition demonstrates that crowded environments can potentially modulate the conformational preferences of IDP that can either promote or inhibit aggregation events.
Collapse
Affiliation(s)
- Sneha Menon
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| |
Collapse
|
73
|
Zhao N, Zhang Q, Yu F, Yao X, Liu H. The α-Synuclein Monomer May Have Different Misfolding Mechanisms in the Induction of α-Synuclein Fibrils with Different Polymorphs. Biomolecules 2023; 13:biom13040682. [PMID: 37189428 DOI: 10.3390/biom13040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/19/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The aggregation of alpha-synuclein (α-Syn) is closely related to the occurrence of some neurodegenerative diseases such as Parkinson's disease. The misfolding of α-Syn monomer plays a key role in the formation of aggregates and extension of fibril. However, the misfolding mechanism of α-Syn remains elusive. Here, three different α-Syn fibrils (isolated from a diseased human brain, generated by in vitro cofactor-tau induction, and obtained by in vitro cofactor-free induction) were selected for the study. The misfolding mechanisms of α-Syn were uncovered by studying the dissociation of the boundary chains based on the conventional molecular dynamics (MD) and Steered MD simulations. The results showed that the dissociation paths of the boundary chains in the three systems were different. According to the reverse process of dissociation, we concluded that in the human brain system, the binding of the monomer and template starts from the C-terminal and gradually misfolds toward the N-terminal. In the cofactor-tau system, the monomer binding starts from residues 58-66 (contain β3), followed by the C-terminal coil (residues 67-79). Then, the N-terminal coil (residues 36-41) and residues 50-57 (contain β2) bind to the template, followed by residues 42-49 (contain β1). In the cofactor-free system, two misfolding paths were found. One is that the monomer binds to the N/C-terminal (β1/β6) and then binds to the remaining residues. The other one is that the monomer binds sequentially from the C- to N-terminal, similar to the human brain system. Furthermore, in the human brain and cofactor-tau systems, electrostatic interactions (especially from residues 58-66) are the main driving force during the misfolding process, whereas in the cofactor-free system, the contributions of electrostatic and van der Waals interactions are comparable. These results may provide a deeper understanding for the misfolding and aggregation mechanism of α-Syn.
Collapse
Affiliation(s)
- Nannan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qianqian Zhang
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China
| | - Fansen Yu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China
| |
Collapse
|
74
|
Yoon J, Lee M, Park Y, Lee K, Shin S. In silico investigation of the structural stability as the origin of the pathogenicity of α-synuclein protofibrils. J Biomol Struct Dyn 2023; 41:14103-14115. [PMID: 37036430 DOI: 10.1080/07391102.2023.2199077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 04/11/2023]
Abstract
α-Synuclein is a presynaptic neuronal protein. The fibril form of α-synuclein is a major constituent of the intraneuronal inclusion called Lewy body, a characteristic hallmark of Parkinson's disease. Recent ssNMR and cryo-EM experiments of wild-type α-synuclein fibrils have shown polymorphism and observed two major polymorphs, rod and twister. To associate the cytotoxicity of α-synuclein fibrils with their structural features, it is essential to understand the origins of their structural stability. In this study, we performed molecular dynamics simulations of the two major polymorphs of wild-type α-synuclein fibrils. The predominance of specific fibril polymorphs was rationalized in terms of relative structural stability in aqueous environments, which was attributed to the cooperative contributions of various stabilizing features. The results of the simulations indicated that highly stable structures in aqueous environments could be maintained by the cooperation of compact sidechain packing in the hydrophobic core, backbone geometry of the maximal β-sheet content wrapping the hydrophobic core, and solvent-exposed sidechains with large fluctuations maximizing the solvation entropy. The paired structure of the two protofilaments provides additional stability, especially at the interface region, by forming steric zipper interactions and hiding the hydrophobic residues from exposure to water. The sidechain interaction analyses and pulling simulations showed that the rod polymorph has stronger sidechain interactions and exhibits higher dissociation energy than the twister polymorph. It is expected that our study will provide a basis for understanding the pathogenic behaviors of diverse amyloid strains in terms of their structural properties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jeseong Yoon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - MinJun Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yunsu Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Kyunghee Lee
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| | - Seokmin Shin
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
75
|
Dervişoğlu R, Antonschmidt L, Nimerovsky E, Sant V, Kim M, Ryazanov S, Leonov A, Carlos Fuentes-Monteverde J, Wegstroth M, Giller K, Mathies G, Giese A, Becker S, Griesinger C, Andreas LB. Anle138b interaction in α-synuclein aggregates by dynamic nuclear polarization NMR. Methods 2023; 214:18-27. [PMID: 37037308 DOI: 10.1016/j.ymeth.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Small molecules that bind to oligomeric protein species such as membrane proteins and fibrils are of clinical interest for development of therapeutics and diagnostics. Definition of the binding site at atomic resolution via NMR is often challenging due to low binding stoichiometry of the small molecule. For fibrils and aggregation intermediates grown in the presence of lipids, we report atomic-resolution contacts to the small molecule at sub nm distance via solid-state NMR using dynamic nuclear polarization (DNP) and orthogonally labelled samples of the protein and the small molecule. We apply this approach to α-synuclein (αS) aggregates in complex with the small molecule anle138b, which is a clinical drug candidate for disease modifying therapy. The small central pyrazole moiety of anle138b is detected in close proximity to the protein backbone and differences in the contacts between fibrils and early intermediates are observed. For intermediate species, the 100 K condition for DNP helps to preserve the aggregation state, while for both fibrils and oligomers, the DNP enhancement is essential to obtain sufficient sensitivity.
Collapse
Affiliation(s)
- Rıza Dervişoğlu
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Leif Antonschmidt
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Evgeny Nimerovsky
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vrinda Sant
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Myeongkyu Kim
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sergey Ryazanov
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Andrei Leonov
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | | | - Melanie Wegstroth
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karin Giller
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, Munich, Germany
| | - Stefan Becker
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR based structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
76
|
Hindley N, Sanchez Avila A, Henstridge C. Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. Front Synaptic Neurosci 2023; 15:1130198. [PMID: 37008679 PMCID: PMC10050382 DOI: 10.3389/fnsyn.2023.1130198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.
Collapse
Affiliation(s)
- Nicole Hindley
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
| | - Anna Sanchez Avila
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Henstridge
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
77
|
Mondal S, Ghanta KP, Bandyopadhyay S. Microscopic Understanding of the Conformational Stability of the Aggregated Nonamyloid β Components of α-Synuclein. J Chem Inf Model 2023; 63:1542-1555. [PMID: 36866721 DOI: 10.1021/acs.jcim.2c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Self-association of α-synuclein peptides into oligomeric species and ordered amyloid fibrils is associated with Parkinson's disease, a progressive neurodegenerative disorder. In particular, the peptide domain formed between the residues Glu-61 (or E61) and Val-95 (or V95) of α-synuclein, typically termed the "nonamyloid β component" (NAC), is known to play critical roles in forming aggregated structures. In this work, we have employed molecular dynamics simulations to explore the conformational properties and relative stabilities of aggregated protofilaments of different orders, namely, tetramer (P(4)), hexamer (P(6)), octamer (P(8)), decamer (P(10)), dodecamer (P(12)), and tetradecamer (P(14)), formed by the NAC domains of α-synuclein. Besides, center-of-mass pulling and umbrella sampling simulation methods have also been employed to characterize the mechanistic pathway of peptide association/dissociation and the corresponding free energy profiles. Structural analysis showed that the disordered C-terminal loop and the central core regions of the peptide units lead to more flexible and distorted structures of the lower order protofilaments (P(4) and P(6)) as compared to the higher order ones. Interestingly, our calculation shows the presence of multiple distinctly populated conformational states for the lower order protofilament P(4), which may drive the oligomerization process along multiple pathways to form different polymorphic α-synuclein fibrillar structures. It is further observed that the nonpolar interaction between the peptides and the corresponding nonpolar solvation free energy play a dominant role in stabilizing the aggregated protofilaments. Importantly, our result showed that reduced cooperativity during the binding of a peptide unit beyond a critical size of the protofilament (P(12)) leads to less favorable binding free energy of a peptide.
Collapse
Affiliation(s)
- Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
78
|
Pálmadóttir T, Waudby CA, Bernfur K, Christodoulou J, Linse S, Malmendal A. Morphology-Dependent Interactions between α-Synuclein Monomers and Fibrils. Int J Mol Sci 2023; 24:5191. [PMID: 36982264 PMCID: PMC10049171 DOI: 10.3390/ijms24065191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Amyloid fibrils may adopt different morphologies depending on the solution conditions and the protein sequence. Here, we show that two chemically identical but morphologically distinct α-synuclein fibrils can form under identical conditions. This was observed by nuclear magnetic resonance (NMR), circular dichroism (CD), and fluorescence spectroscopy, as well as by cryo-transmission electron microscopy (cryo-TEM). The results show different surface properties of the two morphologies, A and B. NMR measurements show that monomers interact differently with the different fibril surfaces. Only a small part of the N-terminus of the monomer interacts with the fibril surface of morphology A, compared to a larger part of the monomer for morphology B. Differences in ThT binding seen by fluorescence titrations, and mesoscopic structures seen by cryo-TEM, support the conclusion of the two morphologies having different surface properties. Fibrils of morphology B were found to have lower solubility than A. This indicates that fibrils of morphology B are thermodynamically more stable, implying a chemical potential of fibrils of morphology B that is lower than that of morphology A. Consequently, at prolonged incubation time, fibrils of morphology B remained B, while an initially monomorphic sample of morphology A gradually transformed to B.
Collapse
Affiliation(s)
- Tinna Pálmadóttir
- Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.B.); (A.M.)
| | - Christopher A. Waudby
- Institute of Structural and Molecular Biology, University College and Birkbeck College, London WC1E 7HX, UK; (C.A.W.); (J.C.)
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Katja Bernfur
- Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.B.); (A.M.)
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College and Birkbeck College, London WC1E 7HX, UK; (C.A.W.); (J.C.)
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.B.); (A.M.)
| | - Anders Malmendal
- Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (K.B.); (A.M.)
- Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
79
|
Balana AT, Mahul-Mellier AL, Nguyen BA, Horvath M, Javed A, Hard ER, Jasiqi Y, Singh P, Afrin S, Pedretti R, Singh V, Lee VMY, Luk KC, Saelices L, Lashuel HA, Pratt MR. O-GlcNAc modification forces the formation of an α-Synuclein amyloid-strain with notably diminished seeding activity and pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531573. [PMID: 36945566 PMCID: PMC10028859 DOI: 10.1101/2023.03.07.531573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The process of amyloid fibril formation remains one of the primary targets for developing diagnostics and treatments for several neurodegenerative diseases (NDDs). Amyloid-forming proteins such α-Synuclein and Tau, which are implicated in the pathogenesis of Alzheimer's and Parkinson's disease, can form different types of fibril structure, or strains, that exhibit distinct structures, toxic properties, seeding activities, and pathology spreading patterns in the brain. Therefore, understanding the molecular and structural determinants contributing to the formation of different amyloid strains or their distinct features could open new avenues for developing disease-specific diagnostics and therapies. In this work, we report that O-GlcNAc modification of α-Synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by Cryo-EM, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-Synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that post-translational modifications, such as O-GlcNAc modification, of α-Synuclein are key determinants of α-Synuclein amyloid strains and pathogenicity. These findings have significant implications for how we investigate and target amyloids in the brain and could possibly explain the lack of correlation between amyloid burden and neurodegeneration or cognitive decline in some subtypes of NDDs.
Collapse
Affiliation(s)
- Aaron T. Balana
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
| | - Binh A Nguyen
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Mian Horvath
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Afraah Javed
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Eldon R. Hard
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
| | - Preeti Singh
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Shumaila Afrin
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Rose Pedretti
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Virender Singh
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Virginia M.-Y. Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelvin C. Luk
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorena Saelices
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
80
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
81
|
Zhao Q, Tao Y, Zhao K, Ma Y, Xu Q, Liu C, Zhang S, Li D. Structural Insights of Fe 3+ Induced α-synuclein Fibrillation in Parkinson's Disease. J Mol Biol 2023; 435:167680. [PMID: 35690099 DOI: 10.1016/j.jmb.2022.167680] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023]
Abstract
Amyloid aggregation of α-synuclein (α-syn) in Lewy bodies (LBs) is the pathological hallmark of Parkinson's disease (PD). Iron, especially Fe3+, is accumulated in substantia nigra of PD patients and co-deposited with α-syn in LBs. However, how Fe3+ modulates α-syn fibrillation at molecular level remains unclear. In this study, we found that Fe3+ can promote α-syn fibrillation at low concentration while inhibit its fibrillation at high concentration. NMR titration study shows poor interaction between α-syn monomer and Fe3+. Instead, we found that Fe3+ binds to α-syn fibrils. By using cryo-electron microscopy (cryo-EM), we further determined the atomic structure of α-syn fibril in complex with Fe3+ at the resolution of 2.7 Å. Strikingly, two extra electron densities adjacent to His50 and Glu57 were observed as putative binding sites of Fe3+ and water molecules, suggesting that Fe3+ binds to the negative cleft of the fibril and stabilizes the fibril structure for promoting α-syn aggregation. Further mutagenesis study shows mutation of His50 abolishes the Fe3+-facilitated fibrillation of α-syn. Our work illuminates the structural basis of the interaction of Fe3+ and α-syn in both monomeric and fibrillar forms, and sheds light on understanding the pathological role of Fe3+ in α-syn aggregation in PD.
Collapse
Affiliation(s)
- Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qianhui Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
82
|
Bell R, Castellana-Cruz M, Nene A, Thrush RJ, Xu CK, Kumita JR, Vendruscolo M. Effects of N-terminal Acetylation on the Aggregation of Disease-related α-synuclein Variants. J Mol Biol 2023; 435:167825. [PMID: 36099961 DOI: 10.1016/j.jmb.2022.167825] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 02/04/2023]
Abstract
Mutations in the SNCA gene, which encodes the protein α-synuclein, have been linked with early onset Parkinson's disease. The exact nature of this association, however, is still poorly understood. To investigate this problem, we started from the observation that α-synuclein is constitutively N-terminally acetylated, a post-translational modification that alters the charge and structure of α-synuclein molecules and affects their interaction with lipid membranes, as well as their aggregation process. We thus studied five N-terminal acetylated familial variants (A30P, E46K, H50Q, G51D and A53T) of α-synuclein through a wide range of biophysical assays to probe the microscopic steps in their aggregation process and the structures of the resulting aggregates. Our results reveal a great complexity in the combined effects of the disease-related mutations with N-terminal acetylation on the aggregation of α-synuclein, which underscores the great sensitivity to even relatively small perturbations of the behaviour of this protein.
Collapse
Affiliation(s)
- Rosie Bell
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Marta Castellana-Cruz
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Aishwarya Nene
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Rebecca J Thrush
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Catherine K Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Janet R Kumita
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| |
Collapse
|
83
|
Dhavale DD, Barclay AM, Borcik CG, Basore K, Gordon IR, Liu J, Milchberg MH, O’shea J, Rau MJ, Smith Z, Sen S, Summers B, Smith J, Warmuth OA, Chen Q, Fitzpatrick JAJ, Schwieters CD, Tajkhorshid E, Rienstra CM, Kotzbauer PT. Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523303. [PMID: 36711931 PMCID: PMC9882085 DOI: 10.1101/2023.01.09.523303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. We developed and validated a novel method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and used solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise two protofilaments with pseudo-21 helical screw symmetry, very low twist and an interface formed by antiparallel beta strands of residues 85-93. The fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural landscape of LBD Asyn fibrils and inform further studies of disease mechanisms, imaging agents and therapeutics targeting Asyn.
Collapse
Affiliation(s)
- Dhruva D. Dhavale
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander M. Barclay
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin G. Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine Basore
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Isabelle R. Gordon
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jialu Liu
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Moses H. Milchberg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer O’shea
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J. Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zachary Smith
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Soumyo Sen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brock Summers
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Owen A. Warmuth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - James A. J. Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles D. Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chad M. Rienstra
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul T. Kotzbauer
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
84
|
Wu S, Hernandez Villegas NC, Sirkis DW, Thomas-Wright I, Wade-Martins R, Schekman R. Unconventional secretion of α-synuclein mediated by palmitoylated DNAJC5 oligomers. eLife 2023; 12:e85837. [PMID: 36626307 PMCID: PMC9876576 DOI: 10.7554/elife.85837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Alpha-synuclein (α-syn), a major component of Lewy bodies found in Parkinson's disease (PD) patients, has been found exported outside of cells and may mediate its toxicity via cell-to-cell transmission. Here, we reconstituted soluble, monomeric α-syn secretion by the expression of DnaJ homolog subfamily C member 5 (DNAJC5) in HEK293T cells. DNAJC5 undergoes palmitoylation and anchors on the membrane. Palmitoylation is essential for DNAJC5-induced α-syn secretion, and the secretion is not limited by substrate size or unfolding. Cytosolic α-syn is actively translocated and sequestered in an endosomal membrane compartment in a DNAJC5-dependent manner. Reduction of α-syn secretion caused by a palmitoylation-deficient mutation in DNAJC5 can be reversed by a membrane-targeting peptide fusion-induced oligomerization of DNAJC5. The secretion of endogenous α-syn mediated by DNAJC5 is also found in a human neuroblastoma cell line, SH-SY5Y, differentiated into neurons in the presence of retinoic acid, and in human-induced pluripotent stem cell-derived midbrain dopamine neurons. We propose that DNAJC5 forms a palmitoylated oligomer to accommodate and export α-syn.
Collapse
Affiliation(s)
- Shenjie Wu
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | | | - Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Iona Thomas-Wright
- Oxford Parkinson’s Disease Centre, Department of Physiology, Anatomy and Genetics and Kavli Institute for Nanoscience Discovery, University of OxfordOxfordUnited Kingdom
| | - Richard Wade-Martins
- Oxford Parkinson’s Disease Centre, Department of Physiology, Anatomy and Genetics and Kavli Institute for Nanoscience Discovery, University of OxfordOxfordUnited Kingdom
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
85
|
Ge WY, Deng X, Shi WP, Lin WJ, Chen LL, Liang H, Wang XT, Zhang TD, Zhao FZ, Guo WH, Yin DC. Amyloid Protein Cross-Seeding Provides a New Perspective on Multiple Diseases In Vivo. Biomacromolecules 2023; 24:1-18. [PMID: 36507729 DOI: 10.1021/acs.biomac.2c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid protein cross-seeding is a peculiar phenomenon of cross-spreading among different diseases. Unlike traditional infectious ones, diseases caused by amyloid protein cross-seeding are spread by misfolded proteins instead of pathogens. As a consequence of the interactions among misfolded heterologous proteins or polypeptides, amyloid protein cross-seeding is considered to be the crucial cause of overlapping pathological transmission between various protein misfolding disorders (PMDs) in multiple tissues and cells. Here, we briefly review the phenomenon of cross-seeding among amyloid proteins. As an interesting example worth mentioning, the potential links between the novel coronavirus pneumonia (COVID-19) and some neurodegenerative diseases might be related to the amyloid protein cross-seeding, thus may cause an undesirable trend in the incidence of PMDs around the world. We then summarize the theoretical models as well as the experimental techniques for studying amyloid protein cross-seeding. Finally, we conclude with an outlook on the challenges and opportunities for basic research in this field. Cross-seeding of amyloid opens up a new perspective in our understanding of the process of amyloidogenesis, which is crucial for the development of new treatments for diseases. It is therefore valuable but still challenging to explore the cross-seeding system of amyloid protein as well as to reveal the structural basis and the intricate processes.
Collapse
Affiliation(s)
- Wan-Yi Ge
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen-Pu Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen-Juan Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huan Liang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue-Ting Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Feng-Zhu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Non-commissioned Officer School, Army Medical University, Shijiazhuang 050081, China
| | - Wei-Hong Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
86
|
Conformational change of α-synuclein fibrils in cerebrospinal fluid from different clinical phases of Parkinson's disease. Structure 2023; 31:78-87.e5. [PMID: 36513068 DOI: 10.1016/j.str.2022.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/14/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
α-Synuclein (α-syn) has been shown to form various conformational fibrils associated with different synucleinopathies. But whether the conformation of α-syn fibrils changes during disease progression is unclear. Here, we amplified α-syn aggregates from the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD) staged in preclinical PD (pre-PD), middle- to late-stage PD (mid-PD), and late-stage PD (late-PD). Our results show that α-syn fibrils derived from the late-PD patient are most potent in inducing endogenous α-syn aggregation in primary neurons, followed by the mid-PD and pre-PD fibrils. By using cryo-electron microscopy, we further determined the high-resolution structures of the CSF-amplified fibrils. The structures exhibit remarkable differences in a minor but significant population of conformational species in different staged samples. Our work demonstrates structural and pathological differences between α-syn fibrils derived from PD patients at a spectrum of clinical stages, which suggests potential conformational transition of α-syn fibrils during the progression of PD.
Collapse
|
87
|
Bousset L, Alik A, Arteni A, Böckmann A, Meier BH, Melki R. α-Synuclein Fibril, Ribbon and Fibril-91 Amyloid Polymorphs Generation for Structural Studies. Methods Mol Biol 2023; 2551:345-355. [PMID: 36310214 DOI: 10.1007/978-1-0716-2597-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The human α-synuclein protein, identified as one of the main markers of Parkinson's disease, is a 140-amino acid thermostable protein that can easily be overexpressed in E. coli. The purification protocol determines the ability of the protein to assemble into amyloid fibrils of well-defined structures. Here, we describe the purification and assembly protocols to obtain three well-characterized amyloid forms (ribbon, fibrils, and fibril-91) used to assess their activity in biochemical and cellular assays or to investigate their atomic structure by cryo-electron microscopy and solid-state NMR.
Collapse
Affiliation(s)
- Luc Bousset
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France.
| | - Ania Alik
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Ana Arteni
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Ronald Melki
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| |
Collapse
|
88
|
Estaun-Panzano J, Arotcarena ML, Bezard E. Monitoring α-synuclein aggregation. Neurobiol Dis 2023; 176:105966. [PMID: 36527982 PMCID: PMC9875312 DOI: 10.1016/j.nbd.2022.105966] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Synucleinopathies, including Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA), are characterized by the misfolding and subsequent aggregation of alpha-synuclein (α-syn) that accumulates in cytoplasmic inclusions bodies in the cells of affected brain regions. Since the seminal report of likely-aggregated α-syn presence within the Lewy bodies by Spillantini et al. in 1997, the keyword "synuclein aggregation" has appeared in over 6000 papers (Source: PubMed October 2022). Studying, observing, describing, and quantifying α-syn aggregation is therefore of paramount importance, whether it happens in tubo, in vitro, in post-mortem samples, or in vivo. The past few years have witnessed tremendous progress in understanding aggregation mechanisms and identifying various polymorphs. In this context of growing complexity, it is of utmost importance to understand what tools we possess, what exact information they provide, and in what context they may be applied. Nonetheless, it is also crucial to rationalize the relevance of the information and the limitations of these methods for gauging the final result. In this review, we present the main techniques that have shaped the current views about α-syn structure and dynamics, with particular emphasis on the recent breakthroughs that may change our understanding of synucleinopathies.
Collapse
Affiliation(s)
| | | | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, United Kingdom.
| |
Collapse
|
89
|
Meier BH, Böckmann A. Solid-State NMR Structure of Amyloid-β Fibrils. Methods Mol Biol 2023; 2551:53-62. [PMID: 36310196 DOI: 10.1007/978-1-0716-2597-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Amyloid fibrils are involved in a number of diseases and notably play a role in neurodegeneration, where they are present in plaques in the brain. Their structure determination might help in finding ways to interfere with their formation, and ultimately prevent disease, by revealing the structure-function relationship and helping to design molecules targeting initial assembly steps and further propagation. Here, we describe the different steps in NMR protocols which allowed the 3D structure determination of amyloid-β fibrils.
Collapse
Affiliation(s)
- Beat H Meier
- Physical Chemistry, ETH Zurich, Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, Lyon, France.
| |
Collapse
|
90
|
Pancoe SX, Wang YJ, Shimogawa M, Perez RM, Giannakoulias S, Petersson EJ. Effects of Mutations and Post-Translational Modifications on α-Synuclein In Vitro Aggregation. J Mol Biol 2022; 434:167859. [PMID: 36270580 PMCID: PMC9922159 DOI: 10.1016/j.jmb.2022.167859] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Fibrillar aggregates of the α-synuclein (αS) protein are the hallmark of Parkinson's Disease and related neurodegenerative disorders. Characterization of the effects of mutations and post-translational modifications (PTMs) on the αS aggregation rate can provide insight into the mechanism of fibril formation, which remains elusive in spite of intense study. A comprehensive collection (375 examples) of mutant and PTM aggregation rate data measured using the fluorescent probe thioflavin T is presented, as well as a summary of the effects of fluorescent labeling on αS aggregation (20 examples). A curated set of 131 single mutant de novo aggregation experiments are normalized to wild type controls and analyzed in terms of structural data for the monomer and fibrillar forms of αS. These tabulated data serve as a resource to the community to help in interpretation of aggregation experiments and to potentially be used as inputs for computational models of aggregation.
Collapse
Affiliation(s)
- Samantha X Pancoe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Yanxin J Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Ryann M Perez
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
91
|
Tao Y, Sun Y, Lv S, Xia W, Zhao K, Xu Q, Zhao Q, He L, Le W, Wang Y, Liu C, Li D. Heparin induces α-synuclein to form new fibril polymorphs with attenuated neuropathology. Nat Commun 2022; 13:4226. [PMID: 35869048 PMCID: PMC9307803 DOI: 10.1038/s41467-022-31790-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstractα-Synuclein (α-syn), as a primary pathogenic protein in Parkinson’s disease (PD) and other synucleinopathies, exhibits a high potential to form polymorphic fibrils. Chemical ligands have been found to involve in the assembly of α-syn fibrils in patients’ brains. However, how ligands influence the fibril polymorphism remains vague. Here, we report the near-atomic structures of α-syn fibrils in complex with heparin, a representative glycosaminoglycan (GAG), determined by cryo-electron microscopy (cryo-EM). The structures demonstrate that the presence of heparin completely alters the fibril assembly via rearranging the charge interactions of α-syn both at the intramolecular and the inter-protofilamental levels, which leads to the generation of four fibril polymorphs. Remarkably, in one of the fibril polymorphs, α-syn folds into a distinctive conformation that has not been observed previously. Moreover, the heparin-α-syn complex fibrils exhibit diminished neuropathology in primary neurons. Our work provides the structural mechanism for how heparin determines the assembly of α-syn fibrils, and emphasizes the important role of biological polymers in the conformational selection and neuropathology regulation of amyloid fibrils.
Collapse
|
92
|
Holec SAM, Lee J, Oehler A, Batia L, Wiggins-Gamble A, Lau J, Ooi FK, Merz GE, Wang M, Mordes DA, Olson SH, Woerman AL. The E46K mutation modulates α-synuclein prion replication in transgenic mice. PLoS Pathog 2022; 18:e1010956. [PMID: 36454879 PMCID: PMC9714912 DOI: 10.1371/journal.ppat.1010956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022] Open
Abstract
In multiple system atrophy (MSA), the α-synuclein protein misfolds into a self-templating prion conformation that spreads throughout the brain, leading to progressive neurodegeneration. While the E46K mutation in α-synuclein causes familial Parkinson's disease (PD), we previously discovered that this mutation blocks in vitro propagation of MSA prions. Recent studies by others indicate that α-synuclein adopts a misfolded conformation in MSA in which a Greek key motif is stabilized by an intramolecular salt bridge between residues E46 and K80. Hypothesizing that the E46K mutation impedes salt bridge formation and, therefore, exerts a selective pressure that can modulate α-synuclein strain propagation, we asked whether three distinct α-synuclein prion strains could propagate in TgM47+/- mice, which express human α-synuclein with the E46K mutation. Following intracranial injection of these strains, TgM47+/- mice were resistant to MSA prion transmission, whereas recombinant E46K preformed fibrils (PFFs) transmitted neurological disease to mice and induced the formation of phosphorylated α-synuclein neuropathology. In contrast, heterotypic seeding following wild-type (WT) PFF-inoculation resulted in preclinical α-synuclein prion propagation. Moreover, when we inoculated TgM20+/- mice, which express WT human α-synuclein, with E46K PFFs, we observed delayed transmission kinetics with an incomplete attack rate. These findings suggest that the E46K mutation constrains the number of α-synuclein prion conformations that can propagate in TgM47+/- mice, expanding our understanding of the selective pressures that impact α-synuclein prion replication.
Collapse
Affiliation(s)
- Sara A. M. Holec
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst; Amherst, Massachusetts, United States of America
| | - Jisoo Lee
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Lyn Batia
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Aryanna Wiggins-Gamble
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst; Amherst, Massachusetts, United States of America
| | - Jeffrey Lau
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Felicia K. Ooi
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Gregory E. Merz
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco; San Francisco, California, United States of America
| | - Man Wang
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Daniel A. Mordes
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco; San Francisco, California, United States of America
| | - Steven H. Olson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco; San Francisco, California, United States of America
| | - Amanda L. Woerman
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst; Amherst, Massachusetts, United States of America
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco; San Francisco, California, United States of America
| |
Collapse
|
93
|
Kulenkampff K, Emin D, Staats R, Zhang YP, Sakhnini L, Kouli A, Rimon O, Lobanova E, Williams-Gray CH, Aprile FA, Sormanni P, Klenerman D, Vendruscolo M. An antibody scanning method for the detection of α-synuclein oligomers in the serum of Parkinson's disease patients. Chem Sci 2022; 13:13815-13828. [PMID: 36544716 PMCID: PMC9710209 DOI: 10.1039/d2sc00066k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/16/2022] [Indexed: 01/16/2023] Open
Abstract
Misfolded α-synuclein oligomers are closely implicated in the pathology of Parkinson's disease and related synucleinopathies. The elusive nature of these aberrant assemblies makes it challenging to develop quantitative methods to detect them and modify their behavior. Existing detection methods use antibodies to bind α-synuclein aggregates in biofluids, although it remains challenging to raise antibodies against α-synuclein oligomers. To address this problem, we used an antibody scanning approach in which we designed a panel of 9 single-domain epitope-specific antibodies against α-synuclein. We screened these antibodies for their ability to inhibit the aggregation process of α-synuclein, finding that they affected the generation of α-synuclein oligomers to different extents. We then used these antibodies to investigate the size distribution and morphology of soluble α-synuclein aggregates in serum and cerebrospinal fluid samples from Parkinson's disease patients. Our results indicate that the approach that we present offers a promising route for the development of antibodies to characterize soluble α-synuclein aggregates in biofluids.
Collapse
Affiliation(s)
- Klara Kulenkampff
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Derya Emin
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- UK Dementia Research Institute, University of Cambridge Cambridge CB2 0XY UK
| | - Roxine Staats
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Yu P Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Laila Sakhnini
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Antonina Kouli
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge UK
| | - Oded Rimon
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Evgeniia Lobanova
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- UK Dementia Research Institute, University of Cambridge Cambridge CB2 0XY UK
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge UK
| | - Francesco A Aprile
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Pietro Sormanni
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- UK Dementia Research Institute, University of Cambridge Cambridge CB2 0XY UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
94
|
Li X, Zhang S, Liu Z, Tao Y, Xia W, Sun Y, Liu C, Le W, Sun B, Li D. Subtle change of fibrillation condition leads to substantial alteration of recombinant Tau fibril structure. iScience 2022; 25:105645. [PMID: 36505939 PMCID: PMC9732399 DOI: 10.1016/j.isci.2022.105645] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/22/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
In vitro assembly of amyloid fibrils that recapitulate those in human brains is very useful for fundamental and applied research on the amyloid formation, pathology, and clinical detection. Recent success in the assembly of Tau fibrils in vitro enables the recapitulation of the paired helical filament (PHF) of Tau extracted from brains of patients with Alzheimer's disease (AD). However, following the protocol, we observed that Tau constructs including 297-391 and a mixture of 266-391 (3R)/297-391, which are expected to predominantly form PHF-like fibrils, form highly heterogeneous fibrils instead. Moreover, the seemingly PHF-like fibril formed by Tau 297-391 exhibits a distinctive atomic structure with a spindle-like fold, that is neither PHF-like or similar to any known Tau fibril structures revealed by cryo-electron microscopy (cryo-EM). Our work highlights the high sensitivity of amyloid fibril formation to subtle conditional changes and suggests high-resolution structural characterization to in vitro assembled fibrils prior to further laboratory use.
Collapse
Affiliation(s)
- Xiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhengtao Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China,State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu 610072, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China,WLA Laboratories, World Laureates Association, Shanghai 201203, China,Corresponding author
| |
Collapse
|
95
|
Rafiei Y, Salmani B, Mirzaei-Behbahani B, Taleb M, Meratan AA, Ramezani M, Nikfarjam N, Becker S, Rezaei-Ghaleh N. Polyphenols-Based Nanosheets of Propolis Modulate Cytotoxic Amyloid Fibril Assembly of α-Synuclein. ACS Chem Neurosci 2022; 13:3168-3179. [PMID: 36314062 DOI: 10.1021/acschemneuro.2c00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Natural compounds with anti-aggregation capacity are increasingly recognized as viable candidates against neurodegenerative diseases. Recently, the polyphenolic fraction of propolis (PFP), a complex bee product, has been shown to inhibit amyloid aggregation of a model protein especially in the nanosheet form. Here, we examine the aggregation-modulating effects of the PFP nanosheets on α-synuclein (α-syn), an intrinsically disordered protein involved in the pathogenesis of Parkinson's disease. Based on a range of biophysical data including intrinsic and extrinsic fluorescence, circular dichroism (CD) data, and nuclear magnetic resonance spectroscopy, we propose a model for the interaction of α-syn with PFP nanosheets, where the positively charged N-terminal and the middle non-amyloid component regions of α-syn act as the main binding sites with the negatively charged PFP nanosheets. The Thioflavin T (ThT) fluorescence, Congo red absorbance, and CD data reveal a prominent dose-dependent inhibitory effect of PFP nanosheets on α-syn amyloid aggregation, and the microscopy images and MTT assay data suggest that the PFP nanosheets redirect α-syn aggregation toward nontoxic off-pathway oligomers. When preformed α-syn amyloid fibrils are present, fluorescence images show co-localization of PFP nanosheets and ThT, further confirming the binding of PFP nanosheets with α-syn amyloid fibrils. Taken together, our results demonstrate the binding and anti-aggregation activity of PFP nanosheets in a disease-related protein system and propose them as potential nature-based tools for probing and targeting pathological protein aggregates in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yasin Rafiei
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Bahram Salmani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Behnaz Mirzaei-Behbahani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mahshid Taleb
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mohammad Ramezani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, Göttingen D-37077, Germany
| | - Nasrollah Rezaei-Ghaleh
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, Göttingen D-37077, Germany.,Institute of Physical Biology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf D-40225, Germany.,Institute of Biological Information Processing (IBI-7): Structural Biochemistry, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, Jülich D-52428, Germany
| |
Collapse
|
96
|
Iyer A, Sidhu A, Subramaniam V. How important is the N-terminal acetylation of alpha-synuclein for its function and aggregation into amyloids? Front Neurosci 2022; 16:1003997. [PMID: 36466161 PMCID: PMC9709446 DOI: 10.3389/fnins.2022.1003997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
N-α-acetylation is a frequently occurring post-translational modification in eukaryotic proteins. It has manifold physiological consequences on the regulation and function of several proteins, with emerging studies suggesting that it is a global regulator of stress responses. For decades, in vitro biochemical investigations into the precise role of the intrinsically disordered protein alpha-synuclein (αS) in the etiology of Parkinson's disease (PD) were performed using non-acetylated αS. The N-terminus of α-synuclein is now unequivocally known to be acetylated in vivo, however, there are many aspects of this post-translational modifications that are not understood well. Is N-α-acetylation of αS a constitutive modification akin to most cellular proteins, or is it spatio-temporally regulated? Is N-α-acetylation of αS relevant to the as yet elusive function of αS? How does the N-α-acetylation of αS influence the aggregation of αS into amyloids? Here, we provide an overview of the current knowledge and discuss prevailing hypotheses on the impact of N-α-acetylation of αS on its conformational, oligomeric, and fibrillar states. The extent to which N-α-acetylation of αS is vital for its function, membrane binding, and aggregation into amyloids is also explored here. We further discuss the overall significance of N-α-acetylation of αS for its functional and pathogenic implications in Lewy body formation and synucleinopathies.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Arshdeep Sidhu
- Nitte University Centre for Science Education and Research, Nitte University (DU), Mangalore, India
| | | |
Collapse
|
97
|
Phase separation and other forms of α-Synuclein self-assemblies. Essays Biochem 2022; 66:987-1000. [DOI: 10.1042/ebc20220055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Abstract
α-Synuclein (α-Syn) is a natively unstructured protein, which self-assembles into higher-order aggregates possessing serious pathophysiological implications. α-Syn aberrantly self-assembles into protein aggregates, which have been widely implicated in Parkinson’s disease (PD) pathogenesis and other synucleinopathies. The self-assembly of α-Syn involves the structural conversion of soluble monomeric protein into oligomeric intermediates and eventually fibrillar aggregates of amyloids with cross-β-sheet rich conformation. These aggregated α-Syn species majorly constitute the intraneuronal inclusions, which is a hallmark of PD neuropathology. Self-assembly/aggregation of α-Syn is not a single-state conversion process as unfolded protein can access multiple conformational states through the formation of metastable, transient pre-fibrillar intermediate species. Recent studies have indicated that soluble oligomers are the potential neurotoxic species responsible for cell death in PD pathogenesis. The heterogeneous and transient nature of oligomers formed during the early stage of aggregation pathway limit their detailed study in understanding the structure–toxicity relationship. Moreover, the precise molecular events occurring in the early stage of α-Syn aggregation process majorly remain unsolved. Recently, liquid–liquid phase separation (LLPS) of α-Syn has been designated as an alternate nucleation mechanism, which occurs in the early lag phase of the aggregation pathway leading to the formation of dynamic supramolecular assemblies. The stronger self-association among the protein molecules triggers the irreversible liquid-to-solid transition of these supramolecular assemblies into the amyloid-like hydrogel, which may serve as a reservoir entrapping toxic oligomeric intermediates and fibrils. This review strives to provide insights into different modes of α-Syn self-assemblies including LLPS-mediated self-assembly and its recent advancements.
Collapse
|
98
|
Abstract
α-synuclein misfolding and aggregation into fibrils is a common feature of α-synucleinopathies, such as Parkinson's disease, in which α-synuclein fibrils are a characteristic hallmark of neuronal inclusions called Lewy bodies. Studies on the composition of Lewy bodies extracted postmortem from brain tissue of Parkinson's patients revealed that lipids and membranous organelles are also a significant component. Interactions between α-synuclein and lipids have been previously identified as relevant for Parkinson's disease pathology, however molecular insights into their interactions have remained elusive. Here we present cryo-electron microscopy structures of six α-synuclein fibrils in complex with lipids, revealing specific lipid-fibril interactions. We observe that phospholipids promote an alternative protofilament fold, mediate an unusual arrangement of protofilaments, and fill the central cavities of the fibrils. Together with our previous studies, these structures also indicate a mechanism for fibril-induced lipid extraction, which is likely to be involved in the development of α-synucleinopathies. Specifically, one potential mechanism for the cellular toxicity is the disruption of intracellular vesicles mediated by fibrils and oligomers, and therefore the modulation of these interactions may provide a promising strategy for future therapeutic interventions.
Collapse
|
99
|
Lashuel HA, Mahul-Mellier AL, Novello S, Hegde RN, Jasiqi Y, Altay MF, Donzelli S, DeGuire SM, Burai R, Magalhães P, Chiki A, Ricci J, Boussouf M, Sadek A, Stoops E, Iseli C, Guex N. Revisiting the specificity and ability of phospho-S129 antibodies to capture alpha-synuclein biochemical and pathological diversity. NPJ Parkinsons Dis 2022; 8:136. [PMID: 36266318 PMCID: PMC9584898 DOI: 10.1038/s41531-022-00388-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Antibodies against phosphorylated alpha-synuclein (aSyn) at S129 have emerged as the primary tools to investigate, monitor, and quantify aSyn pathology in the brain and peripheral tissues of patients with Parkinson's disease and other neurodegenerative diseases. Herein, we demonstrate that the co-occurrence of multiple pathology-associated C-terminal post-translational modifications (PTMs) (e.g., phosphorylation at Tyrosine 125 or truncation at residue 133 or 135) differentially influences the detection of pS129-aSyn species by pS129-aSyn antibodies. These observations prompted us to systematically reassess the specificity of the most commonly used pS129 antibodies against monomeric and aggregated forms of pS129-aSyn in mouse brain slices, primary neurons, mammalian cells and seeding models of aSyn pathology formation. We identified two antibodies that are insensitive to pS129 neighboring PTMs. Although most pS129 antibodies showed good performance in detecting aSyn aggregates in cells, neurons and mouse brain tissue containing abundant aSyn pathology, they also showed cross-reactivity towards other proteins and often detected non-specific low and high molecular weight bands in aSyn knock-out samples that could be easily mistaken for monomeric or high molecular weight aSyn species. Our observations suggest that not all pS129 antibodies capture the biochemical and morphological diversity of aSyn pathology, and all should be used with the appropriate protein standards and controls when investigating aSyn under physiological conditions. Finally, our work underscores the need for more pS129 antibodies that are not sensitive to neighboring PTMs and more thorough characterization and validation of existing and new antibodies.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ramanath Narayana Hegde
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Melek Firat Altay
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sonia Donzelli
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sean M DeGuire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ritwik Burai
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pedro Magalhães
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jonathan Ricci
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Manel Boussouf
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ahmed Sadek
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 94, Ghent, Belgium
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
100
|
Anionic lipid vesicles have differential effects on the aggregation of early onset-associated α-synuclein missense mutants. J Biol Chem 2022; 298:102565. [PMID: 36208776 PMCID: PMC9694135 DOI: 10.1016/j.jbc.2022.102565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/05/2022] Open
Abstract
α-synuclein (αS) is the key component of synucleinopathies such as Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. αS was first linked to PD through the identification of point mutations in the SNCA gene, causing single amino acid substitutions within αS and familial autosomal dominant forms of PD that profoundly accelerated disease onset by up to several decades. At least eight single-point mutations linked to familial PD (A30G/P, E46K, H50Q, G51D, and A53T/E/V) are located in proximity of the region preceding the non-β amyloid component (preNAC) region, strongly implicating its pathogenic role in αS-mediated cytotoxicity. Furthermore, lipids are known to be important for native αS function, where they play a key role in the regulation of synaptic vesicle docking to presynaptic membranes and dopamine transmission. However, the role of lipids in the function of mutant αS is unclear. Here, we studied αS aggregation properties of WT αS and five of the most predominant single-point missense mutants associated with early onset PD in the presence of anionic 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine lipid vesicles. Our results highlight significant differences between aggregation rates, the number of aggregates produced, and overall fibril morphologies of WT αS and the A30P, E46K, H50Q, G51D, and A53T missense mutants in the presence of lipid vesicles. These findings have important implications regarding the interplay between the lipids required for αS function and the individual point mutations known to accelerate PD and related diseases.
Collapse
|