951
|
Ma W, Hu S, Yao G, Xie S, Ni M, Liu Q, Gao X, Zhang J, Huang X, Zhang Y. An androgen receptor-microrna-29a regulatory circuitry in mouse epididymis. J Biol Chem 2013; 288:29369-81. [PMID: 23960076 DOI: 10.1074/jbc.m113.454066] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs are involved in a number of cellular processes; thus, their deregulation is usually apt to the occurrence of diverse diseases. Previous studies indicate that abnormally up-regulated miR-29a is associated with several diseases, such as human acute myeloid leukemia and diabetes; therefore, the proper level of miR-29a is critical for homeostasis. Herein, we observed that miR-29a was repressed by androgen/androgen receptor signaling in mouse epididymis by targeting a conserved androgen response element located 8 kb upstream of miR-29b1a loci. It is well known that multiple regulatory programs often form a complicated network. Here, we found that miR-29a reversibly suppressed androgen receptor and its target genes by targeting IGF1 and p53 pathways. miR-29b1a-overexpressing transgenic mice displayed epididymis hypoplasia partially similar to the phenotype of those mice with an impaired androgen-androgen receptor signal system. Taken together, the results demonstrated that there is a regulatory circuitry between the androgen signaling pathway and miR-29a in mouse epididymis that may be vital for epididymal development and functions.
Collapse
Affiliation(s)
- Wubin Ma
- From the Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
952
|
Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ 2013; 20:1558-68. [PMID: 23933812 DOI: 10.1038/cdd.2013.110] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/26/2013] [Accepted: 07/12/2013] [Indexed: 01/08/2023] Open
Abstract
In addition to protein-coding genes, the human genome makes a large amount of noncoding RNAs, including microRNAs and long noncoding RNAs (lncRNAs). Both microRNAs and lncRNAs have been shown to have a critical role in the regulation of cellular processes such as cell growth and apoptosis, as well as cancer progression and metastasis. Although it is well known that microRNAs can target a large number of protein-coding genes, little is known whether microRNAs can also target lncRNAs. In the present study, we determine whether miR-21 can regulate lncRNA expression. Using the lncRNA RT-PCR (reverse transcription-polymerase chain reaction) array carrying 83 human disease-related lncRNAs, we show that miR-21 is capable of suppressing the lncRNA growth arrest-specific 5 (GAS5). This negative correlation between miR-21 and GAS5 is also seen in breast tumor specimens. Of interest, GAS5 can also repress miR-21 expression. Whereas ectopic expression of GAS5 suppresses, GAS5-siRNA increases miR-21 expression. Importantly, there is a putative miR-21-binding site in exon 4 of GAS5; deletion of the miR-21-binding site abolishes this activity. Experiments with in vitro cell culture and xenograft mouse model suggest that GAS5 functions as a tumor suppressor. We further show that the biotin-labeled GAS5-RNA probe is able to pull down the key component (AGO2) of the RNA-induced silencing complex (RISC) and we subsequently identify miR-21 in this GAS5-RISC complex, implying that miR-21 and GAS5 may regulate each other in a way similar to the microRNA-mediated silencing of target mRNAs. Together, these results suggest that miR-21 targets not only tumor-suppressive protein-coding genes but also lncRNA GAS5.
Collapse
|
953
|
Liu Q, Huang J, Zhou N, Zhang Z, Zhang A, Lu Z, Wu F, Mo YY. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res 2013; 41:4976-87. [PMID: 23558749 PMCID: PMC3643595 DOI: 10.1093/nar/gkt182] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein-coding genes account for only a small part of the human genome, whereas the vast majority of transcripts make up the non-coding RNAs including long non-coding RNAs (lncRNAs). Accumulating evidence indicates that lncRNAs could play a critical role in regulation of cellular processes such as cell growth and apoptosis as well as cancer progression and metastasis. LncRNA loc285194 was previously shown to be within a tumor suppressor unit in osteosarcoma and to suppress tumor cell growth. However, it is unknown regarding the regulation of loc285194. Moreover, the underlying mechanism by which loc285194 functions as a potential tumor suppressor is elusive. In this study, we show that loc285194 is a p53 transcription target; ectopic expression of loc285194 inhibits tumor cell growth both in vitro and in vivo. Through deletion analysis, we identify an active region responsible for tumor cell growth inhibition within exon 4, which harbors two miR-211 binding sites. Importantly, this loc285194-mediated growth inhibition is in part due to specific suppression of miR-211. We further demonstrate a reciprocal repression between loc285194 and miR-211; in contrast to loc285194, miR-211 promotes cell growth. Finally, we detect downregulation of loc285194 in colon cancer specimens by quantitative PCR arrays and in situ hybridization of tissue microarrays. Together, these results suggest that loc285194 is a p53-regulated tumor suppressor, which acts in part through repression of miR-211.
Collapse
Affiliation(s)
- Qian Liu
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
954
|
Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D, Lu Z, Bai C, Watabe K, Mo YY. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res 2012. [PMID: 23208419 PMCID: PMC3587705 DOI: 10.1038/cr.2012.164] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It is well known that upon stress, the level of the tumor suppressor p53 is remarkably elevated. However, despite extensive studies, the underlying mechanism involving important inter-players for stress-induced p53 regulation is still not fully understood. We present evidence that the human lincRNA-RoR (RoR) is a strong negative regulator of p53. Unlike MDM2 that causes p53 degradation through the ubiquitin-proteasome pathway, RoR suppresses p53 translation through direct interaction with the heterogeneous nuclear ribonucleoprotein I (hnRNP I). Importantly, a 28-base RoR sequence carrying hnRNP I binding motifs is essential and sufficient for p53 repression. We further show that RoR inhibits p53-mediated cell cycle arrest and apoptosis. Finally, we demonstrate a RoR-p53 autoregulatory feedback loop where p53 transcriptionally induces RoR expression. Together, these results suggest that the RoR-hnRNP I-p53 axis may constitute an additional surveillance network for the cell to better respond to various stresses.
Collapse
Affiliation(s)
- Ali Zhang
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794-9621, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
955
|
Quantitative analysis of microRNAs in tissue microarrays by in situ hybridization. Biotechniques 2012; 52:235-45. [PMID: 22482439 DOI: 10.2144/000113837] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/03/2012] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as key regulators in the pathogenesis of cancers where they can act as either oncogenes or tumor suppressors. Most miRNA measurement methods require total RNA extracts which lack critical spatial information and present challenges for standardization. We have developed and validated a method for the quantitative analysis of miRNA expression by in situ hybridization (ISH) allowing for the direct assessment of tumor epithelial expression of miRNAs. This co-localization based approach (called qISH) utilizes DAPI and cytokeratin immunofluorescence to establish subcellular compartments in the tumor epithelia, then multiplexed with the miRNA ISH, allows for quantitative measurement of miRNA expression within these compartments. We use this approach to assess miR-21, miR-92a, miR-34a, and miR-221 expression in 473 breast cancer specimens on tissue microarrays. We found that miR-221 levels are prognostic in breast cancer illustrating the high-throughput method and confirming that miRNAs can be valuable biomarkers in cancer. Furthermore, in applying this method we found that the inverse relationship between miRNAs and proposed target proteins is difficult to discern in large population cohorts. Our method demonstrates an approach for large cohort, tissue microarray-based assessment of miRNA expression.
Collapse
|
956
|
Mikaelian I, Scicchitano M, Mendes O, Thomas RA, Leroy BE. Frontiers in preclinical safety biomarkers: microRNAs and messenger RNAs. Toxicol Pathol 2012; 41:18-31. [PMID: 22659243 DOI: 10.1177/0192623312448939] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The measurement of plasma microRNAs (miRNAs) and messenger RNAs (mRNAs) is the most recent effort to identify novel biomarkers in preclinical safety. These genomic markers often display tissue-specific expression, may be released from the tissues into the plasma during toxic events, change early and with high magnitude in tissues and in the blood during specific organ toxicities, and can be measured using multiplex formats. Their validation as biomarkers has been challenged by the technical difficulties. In particular, the concentration of miRNAs in the plasma depends on contamination by miRNAs originating from blood cells and platelets, and the relative fraction of miRNAs in complexes with Argonaute 2, high-density lipoproteins, and in exosomes and microvesicles. In spite of these hurdles, considerable progress has recently been made in assessing the potential value of miRNAs in the clinic, especially in cancer patients and cardiovascular diseases. The future of miRNAs and mRNAs as biomarkers of disease and organ toxicity depends on our ability to characterize their kinetics and to establish robust collection and measurement methods. This review covers the basic biology of miRNAs and the published literature on the use of miRNAs and mRNAs as biomarkers of specific target organ toxicity.
Collapse
|
957
|
Sachdeva M, Liu Q, Cao J, Lu Z, Mo YY. Negative regulation of miR-145 by C/EBP-β through the Akt pathway in cancer cells. Nucleic Acids Res 2012; 40:6683-92. [PMID: 22495929 PMCID: PMC3413133 DOI: 10.1093/nar/gks324] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs are master gene regulators that can also be under the control of transcriptional regulation. We have previously shown that miR-145 is a tumor suppressor capable of silencing c-Myc and the tumor suppressor p53 induces miR-145 by directly binding to the miR-145 promoter, demonstrating the role of miR-145 in p53-mediated c-Myc repression. However, little is known as to why miR-145 is often downregulated in tumors. In this study, we identify CCAAT/enhancer binding protein beta (C/EBP-β) as a negative regulator for miR-145 expression by direct interaction with the putative C/EBP-β binding site in the miR-145 promoter. In the wild-type p53 background, C/EBP-β counteracts the ability of p53 to induce miR-145. Moreover, C/EBP-β is able to suppress miR-145 in the mutant p53 background, suggesting the p53 independent regulation of miR-145. Of interest, both the large isoform (LAP-2) and the small isoform (LIP) of C/EBP-β can exert suppressive function for miR-145. Finally, we further show that, like serum starvation and PI3K inhibitor LY29, the antioxidant resveratrol suppresses pAkt and phosphorylation of C/EBP-β and at the same time, it induces miR-145. Together, these results suggest a miR-145 regulatory system involving the Akt and C/EBP-β, which may contribute to the downregulation of miR-145 in cancer cells.
Collapse
Affiliation(s)
- Mohit Sachdeva
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | | | | | | | | |
Collapse
|
958
|
Sempere LF. Integrating contextual miRNA and protein signatures for diagnostic and treatment decisions in cancer. Expert Rev Mol Diagn 2012; 11:813-27. [PMID: 22022944 DOI: 10.1586/erm.11.69] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The promise of personalized medicine is highly dependent on the identification of biomarkers that inform diagnostic decisions and treatment options, as well as on the accurate, rapid and cost-effective detection and interpretation of these biomarkers. miRNAs, which are short noncoding regulatory RNAs, are rapidly emerging as a novel class of biomarkers with a unique set of biological and chemical properties that makes them very appealing candidates for theranostic applications in cancer. Since the utility of some protein-encoding gene biomarkers is already exploited in routine clinical practice, it will be important to identify areas in which miRNAs provide complementary or superior information to these existing (and other translational) biomarkers to enhance the diagnostic, prognostic and predictive power of molecular characterization of tumors. In this article, the challenges and opportunities for integration of miRNA-based assays in the clinical toolkit to improve care and management of patients afflicted with solid tumors will be discussed.
Collapse
Affiliation(s)
- Lorenzo F Sempere
- Department of Medicine, Rubin 763 HB7936, Norris Cotton Cancer Center, 1 Medical Center Drive, Lebanon, NH 03756-1000, USA.
| |
Collapse
|
959
|
Ma W, Xie S, Ni M, Huang X, Hu S, Liu Q, Liu A, Zhang J, Zhang Y. MicroRNA-29a inhibited epididymal epithelial cell proliferation by targeting nuclear autoantigenic sperm protein (NASP). J Biol Chem 2011; 287:10189-10199. [PMID: 22194605 DOI: 10.1074/jbc.m111.303636] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cell proliferation often decreases gradually during postnatal development of some organs. However, the underlying molecular mechanisms remain unclear. Epididymis, playing important roles in sperm maturation, is a typical organ of this type, which displays a decreased proliferation during postnatal development and even ceased at the adult stage. Here, epididymis was employed as a model to explore the underlying mechanisms. We profiled the microRNA and mRNA expression of newborn (1 day) and adult (90 day) rat epididymis by microarray analysis, and found that the level of miR-29a was dramatically up-regulated during postnatal development of rat epididymis. Subsequent investigations demonstrated that overexpression of miR-29a inhibited the proliferation of epididymal epithelial cells in vitro. The nuclear autoantigenic sperm protein (NASP), a novel target of miR-29a, was significantly down-regulated during postnatal development of rat epididymis. Further analysis showed that silence of NASP mimicked the anti-proliferation effect of miR-29a, whereas overexpression of this protein attenuated the effect of miR-29a. As in rat epididymis, miR-29a was up-regulated and Nasp was down-regulated during postnatal development of mouse epididymis, heart, liver, and lung. Moreover, miR-29a can also inhibit the proliferation of cancer cells by targeting Nasp. Thus, an increase of miR-29a, and hence decrease of Nasp, may contribute to inhibit cell proliferation during postnatal organ development.
Collapse
Affiliation(s)
- Wubin Ma
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031,; Graduate School, Chinese Academy of Sciences, Shanghai 200031
| | - Shengsong Xie
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031,; Graduate School, Chinese Academy of Sciences, Shanghai 200031
| | - Minjie Ni
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031
| | - Xingxu Huang
- Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Shuanggang Hu
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031,; Graduate School, Chinese Academy of Sciences, Shanghai 200031
| | - Qiang Liu
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031
| | - Aihua Liu
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031
| | - Jinsong Zhang
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031
| | - Yonglian Zhang
- Shanghai Key Laboratory for Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031,; Shanghai Institute of Planned Parenthood Research, Shanghai 200032, China.
| |
Collapse
|