951
|
Abstract
In this issue of Cell Metabolism, Daniel Drucker and colleagues (Yusta et al., 2006) explore how the incretin mimetic exendin-4 improves beta cell function and survival during ER stress. Their findings suggest that protein kinase A signaling elicited by GLP-1 receptor activation differentially modulates one arm of the unfolded protein response (UPR). Regulation of this UPR pathway leads to enhanced translational expression of ATF4, a transcription factor central for stress remedy and cell survival.
Collapse
Affiliation(s)
- Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
952
|
Yusta B, Baggio LL, Estall JL, Koehler JA, Holland DP, Li H, Pipeleers D, Ling Z, Drucker DJ. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab 2006; 4:391-406. [PMID: 17084712 DOI: 10.1016/j.cmet.2006.10.001] [Citation(s) in RCA: 326] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 08/16/2006] [Accepted: 10/06/2006] [Indexed: 01/09/2023]
Abstract
Perturbation of endoplasmic reticulum (ER) homeostasis impairs insulin biosynthesis, beta cell survival, and glucose homeostasis. We show that a murine model of diabetes is associated with the development of ER stress in beta cells and that treatment with the GLP-1R agonist exendin-4 significantly reduced biochemical markers of islet ER stress in vivo. Exendin-4 attenuated translational downregulation of insulin and improved cell survival in purified rat beta cells and in INS-1 cells following induction of ER stress in vitro. GLP-1R agonists significantly potentiated the induction of ATF-4 by ER stress and accelerated recovery from ER stress-mediated translational repression in INS-1 beta cells in a PKA-dependent manner. The effects of exendin-4 on the induction of ATF-4 were mediated via enhancement of ER stress-stimulated ATF-4 translation. Moreover, exendin-4 reduced ER stress-associated beta cell death in a PKA-dependent manner. These findings demonstrate that GLP-1R signaling directly modulates the ER stress response leading to promotion of beta cell adaptation and survival.
Collapse
Affiliation(s)
- Bernardo Yusta
- Department of Medicine, Banting and Best Diabetes Centre, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
953
|
Clase AC, Dimcheff DE, Favara C, Dorward D, McAtee FJ, Parrie LE, Ron D, Portis JL. Oligodendrocytes are a major target of the toxicity of spongiogenic murine retroviruses. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1026-38. [PMID: 16936275 PMCID: PMC1698807 DOI: 10.2353/ajpath.2006.051357] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neurovirulent retroviruses FrCasE and Moloney MLV-ts1 cause noninflammatory spongiform neurodegeneration in mice, manifested clinically by progressive spasticity and paralysis. Neurons have been thought to be the primary target of toxicity of these viruses. However the neurons themselves appear not to be infected, and the possible indirect mechanisms driving the neuronal toxicity have remained enigmatic. Here we have re-examined the cells that are damaged by these viruses, using lineage-specific markers. Surprisingly, these cells expressed the basic helix-loop-helix transcription factor Olig2, placing them in the oligodendrocyte lineage. Olig2+ cells were found to be infected, and many of these cells exhibited focal cytoplasmic vacuolation, suggesting that infection by spongiogenic retroviruses is directly toxic to these cells. As cytoplasmic vacuolation progressed, however, signs of viral protein expression appeared to wane, although residual viral RNA was detectable by in situ hybridization. Cells with the most advanced cytoplasmic effacement expressed the C/EBP-homologous protein (CHOP). This protein is up-regulated as a late event in a cellular response termed the integrated stress response. This observation may link the cellular pathology observed in the brain with cellular stress responses known to be induced by these viruses. The relevance of these observations to oligodendropathy in humans is discussed.
Collapse
Affiliation(s)
- Amanda C Clase
- Laboratory of Persistent Viral Diseases, The Microscopy Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
954
|
Wójcik C, Rowicka M, Kudlicki A, Nowis D, McConnell E, Kujawa M, DeMartino GN. Valosin-containing protein (p97) is a regulator of endoplasmic reticulum stress and of the degradation of N-end rule and ubiquitin-fusion degradation pathway substrates in mammalian cells. Mol Biol Cell 2006; 17:4606-18. [PMID: 16914519 PMCID: PMC1635394 DOI: 10.1091/mbc.e06-05-0432] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Valosin-containing protein (VCP; p97; cdc48 in yeast) is a hexameric ATPase of the AAA family (ATPases with multiple cellular activities) involved in multiple cellular functions, including degradation of proteins by the ubiquitin (Ub)-proteasome system (UPS). We examined the consequences of the reduction of VCP levels after RNA interference (RNAi) of VCP. A new stringent method of microarray analysis demonstrated that only four transcripts were nonspecifically affected by RNAi, whereas approximately 30 transcripts were affected in response to reduced VCP levels in a sequence-independent manner. These transcripts encoded proteins involved in endoplasmic reticulum (ER) stress, apoptosis, and amino acid starvation. RNAi of VCP promoted the unfolded protein response, without eliciting a cytosolic stress response. RNAi of VCP inhibited the degradation of R-GFP (green fluorescent protein) and Ub-(G76V)-GFP, two cytoplasmic reporter proteins degraded by the UPS, and of alpha chain of the T-cell receptor, an established substrate of the ER-associated degradation (ERAD) pathway. Surprisingly, RNAi of VCP had no detectable effect on the degradation of two other ERAD substrates, alpha1-antitrypsin and deltaCD3. These results indicate that VCP is required for maintenance of normal ER structure and function and mediates the degradation of some proteins via the UPS, but is dispensable for the UPS-dependent degradation of some ERAD substrates.
Collapse
Affiliation(s)
- Cezary Wójcik
- *Department of Anatomy and Cell Biology, Indiana University School of Medicine, Evansville, IN 47712
- Departments of Physiology and
| | - Maga Rowicka
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Andrzej Kudlicki
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Dominika Nowis
- *Department of Anatomy and Cell Biology, Indiana University School of Medicine, Evansville, IN 47712
| | - Elizabeth McConnell
- *Department of Anatomy and Cell Biology, Indiana University School of Medicine, Evansville, IN 47712
| | - Marek Kujawa
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | | |
Collapse
|
955
|
Al-Fageeh M, Smales C. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 2006; 397:247-59. [PMID: 16792527 PMCID: PMC1513281 DOI: 10.1042/bj20060166] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although the cold-shock response has now been studied in a number of different organisms for several decades, it is only in the last few years that we have begun to understand the molecular mechanisms that govern adaptation to cold stress. Notably, all organisms from prokaryotes to plants and higher eukaryotes respond to cold shock in a comparatively similar manner. The general response of cells to cold stress is the elite and rapid overexpression of a small group of proteins, the so-called CSPs (cold-shock proteins). The most well characterized CSP is CspA, the major CSP expressed in Escherichia coli upon temperature downshift. More recently, a number of reports have shown that exposing yeast or mammalian cells to sub-physiological temperatures (<30 or <37 degrees C respectively) invokes a co-ordinated cellular response involving modulation of transcription, translation, metabolism, the cell cycle and the cell cytoskeleton. In the present review, we summarize the regulation and role of cold-shock genes and proteins in the adaptive response upon decreased temperature with particular reference to yeast and in vitro cultured mammalian cells. Finally, we present an integrated model for the co-ordinated responses required to maintain the viability and integrity of mammalian cells upon mild hypothermic cold shock.
Collapse
Affiliation(s)
- Mohamed B. Al-Fageeh
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, U.K
| | - C. Mark Smales
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
956
|
Papp LV, Lu J, Striebel F, Kennedy D, Holmgren A, Khanna KK. The redox state of SECIS binding protein 2 controls its localization and selenocysteine incorporation function. Mol Cell Biol 2006; 26:4895-910. [PMID: 16782878 PMCID: PMC1489162 DOI: 10.1128/mcb.02284-05] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 12/21/2005] [Accepted: 04/15/2006] [Indexed: 11/20/2022] Open
Abstract
Selenoproteins are central controllers of cellular redox homeostasis. Incorporation of selenocysteine (Sec) into selenoproteins employs a unique mechanism to decode the UGA stop codon. The process requires the Sec insertion sequence (SECIS) element, tRNASec, and protein factors including the SECIS binding protein 2 (SBP2). Here, we report the characterization of motifs within SBP2 that regulate its subcellular localization and function. We show that SBP2 shuttles between the nucleus and the cytoplasm via intrinsic, functional nuclear localization signal and nuclear export signal motifs and that its nuclear export is dependent on the CRM1 pathway. Oxidative stress induces nuclear accumulation of SBP2 via oxidation of cysteine residues within a redox-sensitive cysteine-rich domain. These modifications are efficiently reversed in vitro by human thioredoxin and glutaredoxin, suggesting that these antioxidant systems might regulate redox status of SBP2 in vivo. Depletion of SBP2 in cell lines using small interfering RNA results in a decrease in Sec incorporation, providing direct evidence for its requirement for selenoprotein synthesis. Furthermore, Sec incorporation is reduced substantially after treatment of cells with agents that cause oxidative stress, suggesting that nuclear sequestration of SBP2 under such conditions may represent a mechanism to regulate the expression of selenoproteins.
Collapse
Affiliation(s)
- Laura V Papp
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland 4029, Australia
| | | | | | | | | | | |
Collapse
|
957
|
Gaccioli F, Huang CC, Wang C, Bevilacqua E, Franchi-Gazzola R, Gazzola GC, Bussolati O, Snider MD, Hatzoglou M. Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. J Biol Chem 2006; 281:17929-40. [PMID: 16621798 DOI: 10.1074/jbc.m600341200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nutritional stress caused by amino acid starvation involves a coordinated cellular response that includes the global decrease of protein synthesis and the increased production of cell defense proteins. Part of this response is the induction of transport system A for neutral amino acids that leads to the recovery of cell volume and amino acid levels once extracellular amino acid availability is restored. Hypertonic stress also increases system A activity as a mechanism to promote a rapid recovery of cell volume. Both a starvation-dependent and a hypertonic increase of system A transport activity are due to the induction of SNAT2, the ubiquitous member of SLC38 family. The molecular mechanisms underlying SNAT2 induction were investigated in tissue culture cells. We show that the increase in system A transport activity and SNAT2 mRNA levels upon amino acid starvation were blunted in cells with a mutant eIF2alpha that cannot be phosphorylated. In contrast, the induction of system A activity and SNAT2 mRNA levels by hypertonic stress were independent of eIF2alpha phosphorylation. The translational control of the SNAT2 mRNA during amino acid starvation was also investigated. It is shown that the 5'-untranslated region contains an internal ribosome entry site that is constitutively active in amino acid-fed and -deficient cells and in a cell-free system. We also show that amino acid starvation caused a 2.5-fold increase in mRNA and protein expression from a reporter construct containing both the SNAT2 intronic amino acid response element and the SNAT2-untranslated region. We conclude that the adaptive response of system A activity to amino acid starvation requires eukaryotic initiation factor 2alpha phosphorylation, increased gene transcription, and internal ribosome entry site-mediated translation. In contrast, the response to hypertonic stress does not involve eukaryotic initiation factor 2alpha phosphorylation, suggesting that SNAT2 expression can be modulated by specific signaling pathways in response to different stresses.
Collapse
Affiliation(s)
- Francesca Gaccioli
- Departments of Nutrition and Biochemistry, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
958
|
Scheper GC, Proud CG, van der Knaap MS. Defective translation initiation causes vanishing of cerebral white matter. Trends Mol Med 2006; 12:159-66. [PMID: 16545608 DOI: 10.1016/j.molmed.2006.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/06/2006] [Accepted: 02/28/2006] [Indexed: 01/19/2023]
Abstract
Leukoencephalopathy with vanishing white matter (VWM) is one of the most prevalent inherited white-matter disorders, especially in Caucasian populations. VWM is unusual because of its sensitivity to febrile infections and minor head trauma. The basic defect of this enigmatic brain disease resides in the regulation of initiation of protein synthesis. Recently, undue activation of the unfolded-protein response has emerged as an important factor in the pathophysiology of VWM. Here, we discuss the mechanisms that might be responsible for the selective involvement of the brain white matter in VWM. At present, VWM research is in need of an animal model to study disease mechanisms and therapeutic interventions.
Collapse
Affiliation(s)
- Gert C Scheper
- Department of Pediatrics, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|