951
|
Castro FVV, Tutt AL, White AL, Teeling JL, James S, French RR, Glennie MJ. CD11c provides an effective immunotarget for the generation of both CD4 and CD8 T cell responses. Eur J Immunol 2008; 38:2263-73. [PMID: 18651710 DOI: 10.1002/eji.200838302] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The magnitude and quality of T cell responses generated when Ag is targeted to receptors on DC is influenced by both the specific receptor targeted and its distribution among DC subsets. Here we examine the targeting of the model Ag OVA to potential DC targets, including CD11c, CD205, MHC class II, CD40, TLR2 and FcgammaRII/III, using a panel of (Fab' x OVA) conjugates. In vitro studies identified CD11c, CD205 and MHC class II as superior and comparably effective immunotargets for the delivery of OVA to APC for presentation to T cells. In vivo studies, however, showed a marked advantage of targeting Ag to CD11c for both CD4 (OT-II) and CD8 (OT-I) responses, with robust stimulation after a single, low dose (equivalent to 0.5 microg OVA); in contrast, (anti-CD205 x OVA) and (anti-MHC class II x OVA) resulted in markedly less proliferation of both OT-I and OT-II cells. Biodistribution and immunohistochemical studies suggest that the exceptional ability of CD11c to capture Ag in lymphoid tissues may, at least partially, explain its ability to promote T cell responses. These results suggest that targeting antigen via CD11c offers a previously unappreciated strategy for vaccine development which, unlike most targets, delivers robust responses of both CD4 and CD8 T cells.
Collapse
Affiliation(s)
- Fernanda V V Castro
- Tenovus Research Laboratory, Cancer Sciences Division, Southampton University School of Medicine, Southampton, UK
| | | | | | | | | | | | | |
Collapse
|
952
|
Dalai SK, Mirshahidi S, Morrot A, Zavala F, Sadegh-Nasseri S. Anergy in memory CD4+ T cells is induced by B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3221-31. [PMID: 18713993 PMCID: PMC3075114 DOI: 10.4049/jimmunol.181.5.3221] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Induction of tolerance in memory T cells has profound implications in the treatment of autoimmune diseases and transplant rejection. Previously, we reported that the presentation of low densities of agonist peptide/MHC class II complexes induced anergy in memory CD4(+) T cells. In the present study, we address the specific interaction of different types of APCs with memory CD4(+) T cells. A novel ex vivo anergy assay first suggested that B cells induce anergy in memory T cells, and an in vivo cell transfer assay further confirmed those observations. We demonstrated that B cells pulsed with defined doses of Ag anergize memory CD4 cells in vivo. We established that CD11c(+) dendritic cells do not contribute to anergy induction to CD4 memory T cells, because diphtheria toxin receptor-transgenic mice that were conditionally depleted of dendritic cells optimally induced anergy in memory CD4(+) T cells. Moreover, B cell-deficient muMT mice did not induce anergy in memory T cells. We showed that B2 follicular B cells are the specific subpopulation of B cells that render memory T cells anergic. Furthermore, we present data showing that anergy in this system is mediated by CTLA-4 up-regulation on T cells. This is the first study to demonstrate formally that B cells are the APCs that induce anergy in memory CD4(+) T cells.
Collapse
Affiliation(s)
- Sarat K. Dalai
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore MD 21205
| | - Saied Mirshahidi
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore MD 21205
| | - Alexandre Morrot
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD 21205
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD 21205
| | | |
Collapse
|
953
|
Surface coating of PLGA microparticles with protamine enhances their immunological performance through facilitated phagocytosis. J Control Release 2008; 130:161-7. [DOI: 10.1016/j.jconrel.2008.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 11/18/2022]
|
954
|
Weinstein JS, Nacionales DC, Lee PY, Kelly-Scumpia KM, Yan XJ, Scumpia PO, Vale-Cruz DS, Sobel E, Satoh M, Chiorazzi N, Reeves WH. Colocalization of antigen-specific B and T cells within ectopic lymphoid tissue following immunization with exogenous antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3259-67. [PMID: 18713997 PMCID: PMC2769209 DOI: 10.4049/jimmunol.181.5.3259] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chronic inflammation promotes the formation of ectopic lymphoid tissue morphologically resembling secondary lymphoid tissues, though it is unclear whether this is a location where Ag-specific immune responses develop or merely a site of lymphocyte accumulation. Ectopic lymphoid tissue formation is associated with many humoral autoimmune diseases, including lupus induced by tetramethylpecadentane in mice. We examined whether an immune response to 4-hydroxy-3-nitrophenyl acetyl-keyhole limpet hemocyanin (NP-KLH) and NP-OVA develops within ectopic lymphoid tissue ("lipogranulomas") induced by tetramethylpecadentane in C57BL/6 mice. Following primary immunization, NP-specific B cells bearing V186.2 and related heavy chains as well as lambda-light chains accumulated within ectopic lymphoid tissue. The number of anti-NP-secreting B cells in the ectopic lymphoid tissue was greatly enhanced by immunization with NP-KLH. Remarkably, the H chain sequences isolated from individual lipogranulomas from these mice were diverse before immunization, whereas individual lipogranulomas from single immunized mice had unique oligo- or monoclonal populations of presumptive NP-specific B cells. H chain CDR sequences bore numerous replacement mutations, consistent with an Ag-driven and T cell-mediated response. In mice adoptively transferred with OT-II or DO11 T cells, there was a striking accumulation of OVA-specific T cells in lipogranulomas after s.c. immunization with NP-OVA. The selective colocalization of proliferating, Ag-specific T and B lymphocytes in lipogranulomas from tetramethylpecadentane-treated mice undergoing primary immunization implicates ectopic lymphoid tissue as a site where Ag-specific humoral immune responses can develop. This has implications for understanding the strong association of humoral autoimmunity with lymphoid neogenesis, which may be associated with deficient censoring of autoreactive cells.
Collapse
Affiliation(s)
- Jason S. Weinstein
- Division of Rheumatology & Clinical Immunology and Center for Autoimmune Disease University of Florida, Gainesville, FL 32610-0221
| | - Dina C. Nacionales
- Division of Rheumatology & Clinical Immunology and Center for Autoimmune Disease University of Florida, Gainesville, FL 32610-0221
| | - Pui Y. Lee
- Division of Rheumatology & Clinical Immunology and Center for Autoimmune Disease University of Florida, Gainesville, FL 32610-0221
| | - Kindra M. Kelly-Scumpia
- Division of Rheumatology & Clinical Immunology and Center for Autoimmune Disease University of Florida, Gainesville, FL 32610-0221
| | - Xiao-Jie Yan
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Philip O. Scumpia
- Department of Surgery, University of Florida, Gainesville, FL 32610-0221
| | - Dustin S. Vale-Cruz
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610-0221
| | - Eric Sobel
- Division of Rheumatology & Clinical Immunology and Center for Autoimmune Disease University of Florida, Gainesville, FL 32610-0221
| | - Minoru Satoh
- Division of Rheumatology & Clinical Immunology and Center for Autoimmune Disease University of Florida, Gainesville, FL 32610-0221
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, NY 11030
| | - Westley H. Reeves
- Division of Rheumatology & Clinical Immunology and Center for Autoimmune Disease University of Florida, Gainesville, FL 32610-0221
| |
Collapse
|
955
|
Ota T, Aoki-Ota M, Tsunoda K, Nishikawa T, Koyasu S, Amagai M. Autoreactive B-cell elimination by pathogenic IgG specific for the same antigen: implications for peripheral tolerance. Int Immunol 2008; 20:1351-60. [DOI: 10.1093/intimm/dxn095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
956
|
Hou B, Reizis B, DeFranco AL. Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity 2008; 29:272-82. [PMID: 18656388 PMCID: PMC2847796 DOI: 10.1016/j.immuni.2008.05.016] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/13/2008] [Accepted: 05/23/2008] [Indexed: 01/24/2023]
Abstract
Toll-like receptors (TLRs) play prominent roles in initiating immune responses to infection, but their roles in particular cell types in vivo are not established. Here we report the generation of mice selectively lacking the crucial TLR-signaling adaptor MyD88 in dendritic cells (DCs). In these mice, the early production of inflammatory cytokines, especially IL-12, was substantially reduced after TLR stimulation. Whereas the innate interferon-gamma response of natural killer cells and of natural killer T cells and the Th1 polarization of antigen-specific CD4(+) T cells were severely compromised after treatment with a soluble TLR9 ligand, they were largely intact after administration of an aggregated TLR9 ligand. These results demonstrate that the physical form of a TLR ligand affects which cells can respond to it and that DCs and other innate immune cells can respond via TLRs and collaborate in promoting Th1 adaptive immune responses to an aggregated stimulus.
Collapse
Affiliation(s)
- Baidong Hou
- Department of Microbiology & Immunology, University of California, San Francisco, CA, 94143, USA
| | | | | |
Collapse
|
957
|
McBurney WT, Lendemans DG, Myschik J, Hennessy T, Rades T, Hook S. In vivo activity of cationic immune stimulating complexes (PLUSCOMs). Vaccine 2008; 26:4549-56. [DOI: 10.1016/j.vaccine.2008.06.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/10/2008] [Accepted: 06/10/2008] [Indexed: 11/17/2022]
|
958
|
Effector CD4+ T-cell involvement in clearance of infectious herpes simplex virus type 1 from sensory ganglia and spinal cords. J Virol 2008; 82:9678-88. [PMID: 18667492 DOI: 10.1128/jvi.01159-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In primary infection, CD8(+) T cells are important for clearance of infectious herpes simplex virus (HSV) from sensory ganglia. In this study, evidence of CD4(+) T-cell-mediated clearance of infectious HSV type 1 (HSV-1) from neural tissues was also detected. In immunocompetent mice, HSV-specific CD4(+) T cells were present in sensory ganglia and spinal cords coincident with HSV-1 clearance from these sites and remained detectable at least 8 months postinfection. Neural CD4(+) T cells isolated at the peak of neural infection secreted gamma interferon, tumor necrosis factor alpha, interleukin-2 (IL-2), or IL-4 after stimulation with HSV antigen. HSV-1 titers in neural tissues were greatly reduced over time in CD8(+) T-cell-deficient and CD8(+) T-cell-depleted mice, suggesting that CD4(+) T cells could mediate clearance of HSV-1 from neural tissue. To examine possible mechanisms by which CD4(+) T cells resolved neural infection, CD8(+) T cells were depleted from perforin-deficient or FasL-defective mice. Clearance of infectious virus from neural tissues was not significantly different in perforin-deficient or FasL-defective mice compared to wild-type mice. Further, in spinal cords and brains after vaginal HSV-1 challenge of chimeric mice expressing both perforin and Fas or neither perforin nor Fas, virus titers were significantly lower than in control mice. Thus, perforin and Fas were not required for clearance of infectious virus from neural tissues. These results suggest that HSV-specific CD4(+) T cells are one component of a long-term immune cell presence in neural tissues following genital HSV-1 infection and play a role in clearance of infectious HSV-1 at neural sites, possibly via a nonlytic mechanism.
Collapse
|
959
|
Calbo S, Delagrèverie H, Arnoult C, Authier FJ, Tron F, Boyer O. Functional tolerance of CD8+ T cells induced by muscle-specific antigen expression. THE JOURNAL OF IMMUNOLOGY 2008; 181:408-17. [PMID: 18566407 DOI: 10.4049/jimmunol.181.1.408] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Skeletal muscles account for more than 30% of the human body, yet mechanisms of immunological tolerance to this tissue remain mainly unexplored. To investigate the mechanisms of tolerance to muscle-specific proteins, we generated transgenic mice expressing the neo-autoantigen OVA exclusively in skeletal muscle (SM-OVA mice). SM-OVA mice were bred with OT-I or OT-II mice that possess a transgenic TCR specific for OVA peptides presented by MHC class I or class II, respectively. Tolerance to OVA did not involve clonal deletion, anergy or an increased regulatory T cell compartment. Rather, CD4+ T cell tolerance resulted from a mechanism of ignorance revealed by their response following OVA immunization. In marked contrast, CD8+ T cells exhibited a loss of OVA-specific cytotoxic activity associated with up-regulation of the immunoregulatory programmed death-1 molecule. Adoptive transfer experiments further showed that OVA expression in skeletal muscle was required to maintain this functional tolerance. These results establish a novel asymmetric model of immunological tolerance to muscle autoantigens involving Ag ignorance for CD4+ T cells, whereas muscle autoantigens recognized by CD8+ T cells results in blockade of their cytotoxic function. These observations may be helpful for understanding the breakage of tolerance in autoimmune muscle diseases.
Collapse
Affiliation(s)
- Sébastien Calbo
- Institut National de la Santé et de la Recherche Médicale, Unité 905, University of Rouen, and Department of Immunology, Rouen University Hospital, Rouen, France.
| | | | | | | | | | | |
Collapse
|
960
|
Sawatani Y, Miyamoto T, Nagai S, Maruya M, Imai J, Miyamoto K, Fujita N, Ninomiya K, Suzuki T, Iwasaki R, Toyama Y, Shinohara M, Koyasu S, Suda T. The role of DC-STAMP in maintenance of immune tolerance through regulation of dendritic cell function. Int Immunol 2008; 20:1259-68. [PMID: 18653699 DOI: 10.1093/intimm/dxn082] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulation of dendritic cell (DC) function is critical for maintaining self-tolerance and preventing autoimmunity. The dendritic cell-specific transmembrane protein (DC-STAMP) plays a key role in cell-cell fusion of osteoclasts and foreign body giant cells, but though originally identified in DCs, its specific roles there remain undefined. Here, we report that aged DC-STAMP-deficient mice display several systemic autoimmune symptoms such as spontaneous lymphoproliferation, splenomegaly associated with infiltration of T cells in several organs and increased serum anti-double-stranded DNA antibody production. Although a lack of DC-STAMP did not inhibit DC differentiation or proliferation, antigen presentation activity of DC-STAMP-deficient DCs was significantly up-regulated in both class I and II pathways through increased phagocytotic activity compared with wild-type DCs, an activity likely leading to autoimmunity. Our results indicate that DC-STAMP is required for proper regulation of DC activity and maintenance of immune self-tolerance.
Collapse
Affiliation(s)
- Yumi Sawatani
- Department of Cell Differentiation, Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
961
|
Shime H, Yabu M, Akazawa T, Kodama K, Matsumoto M, Seya T, Inoue N. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. THE JOURNAL OF IMMUNOLOGY 2008; 180:7175-83. [PMID: 18490716 DOI: 10.4049/jimmunol.180.11.7175] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IL-23 is a proinflammatory cytokine consisting of a p19 subunit and a p40 subunit that is shared with IL-12. IL-23 is overexpressed in and around tumor tissues, where it induces local inflammation and promotes tumor development. Many tumor cells produce large amounts of lactic acid by altering their glucose metabolism. In this study, we show that lactic acid secreted by tumor cells enhances the transcription of IL-23p19 and IL-23 production in monocytes/macrophages and in tumor-infiltrating immune cells that are stimulated with TLR2 and 4 ligands. DNA elements responsible for this enhancing activity of lactic acid were detected in a 2.7-kb 5'-flanking region of the human IL-23p19 gene. The effect of lactic acid was strictly regulated by extracellular pH. Furthermore, by inducing IL-23 overproduction, lactic acid facilitated the Ag-dependent secretion of proinflammatory cytokine IL-17 but not IFN-gamma by TLR ligand-stimulated mouse splenocytes. Interestingly, this effect was observed even in the absence of TLR ligand stimulation. These results suggest that rather than just being a terminal metabolite, lactic acid is a proinflammatory mediator that is secreted by tumor cells to activate the IL-23/IL-17 proinflammatory pathway but not the Th1 pathway. Targeting the lactic acid-induced proinflammatory response may be a useful approach for treating cancer.
Collapse
Affiliation(s)
- Hiroaki Shime
- Department of Molecular Genetics, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
962
|
Repressor of GATA regulates TH2-driven allergic airway inflammation and airway hyperresponsiveness. J Allergy Clin Immunol 2008; 122:512-20.e11. [PMID: 18620745 DOI: 10.1016/j.jaci.2008.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Studies of human asthma and of animal models of allergic inflammation/asthma highlight a crucial role for T(H)2 cells in the pathogenesis of allergic asthma. Repressor of GATA (ROG) is a POZ (BTB) domain-containing Kruppel-type zinc finger family (or POK family) repressor. A repressive function to GATA3, a master transcription factor for T(H)2 cell differentiation, is indicated. OBJECTIVE The aim of this study was to clarify the regulatory roles of ROG in the pathogenesis of T(H)2-driven allergic diseases, such as allergic asthma. METHODS We examined allergic airway inflammation and airway hyperresponsiveness (AHR) in 3 different mouse models, which use either ROG-deficient (ROG(-/-)) mice, ROG transgenic mice, or adoptive transfer of cells. RESULTS In ROG(-/-) mice T(H)2 cell differentiation, T(H)2 responses, eosinophilic airway inflammation, and AHR were enhanced. In ROG transgenic mice the levels of eosinophilic airway inflammation and AHR were dramatically reduced. Furthermore, adoptive transfer of T(H)2 cells with increased or decreased levels of ROG expression into the asthmatic mice resulted in reduced or enhanced airway inflammation, respectively. CONCLUSION These results indicate that ROG regulates allergic airway inflammation and AHR in a negative manner, and thus ROG might represent another potential therapeutic target for the treatment of asthmatic patients.
Collapse
|
963
|
Na SY, Cao Y, Toben C, Nitschke L, Stadelmann C, Gold R, Schimpl A, Hünig T. Naive CD8 T-cells initiate spontaneous autoimmunity to a sequestered model antigen of the central nervous system. ACTA ACUST UNITED AC 2008; 131:2353-65. [PMID: 18669487 DOI: 10.1093/brain/awn148] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In multiple sclerosis, CD8 T-cells are thought play a key pathogenetic role, but mechanistic evidence from rodent models is limited. Here, we have tested the encephalitogenic potential of CD8 T-cells specific for the model antigen ovalbumin (OVA) sequestered in oligodendrocytes as a cytosolic molecule. We show that in these 'ODC-OVA' mice, the neo-self antigen remains invisible to CD4 cells expressing the OVA-specific OT-II receptor. In contrast, OVA is accessible to naïve CD8 T-cells expressing the OT-I T-cell receptor, during the first 10 days of life, resulting in antigen release into the periphery. Introduction of OT-I as a second transgene leads to fulminant demyelinating experimental autoimmune encephalomyelitis with multiple sclerosis-like lesions, affecting cerebellum, brainstem, optic nerve and spinal cord. OVA-transgenic oligodendrocytes activate naïve OT-I cells in vitro, and both major histocompatibility complex class I expression and the OT-I response are further up-regulated by interferon-gamma (IFN-gamma). Release of IFN-gamma into the circulation of ODC-OVA/OT-I double transgenic mice precedes disease manifestation, and pathogenicity of OT-I cells transferred into ODC-OVA mice is largely IFN-gamma dependent. In conclusion, naïve CD8 T-cells gaining access to an 'immune-privileged' organ can initiate autoimmunity via an IFN-gamma-assisted amplification loop even if the self-antigen in question is not spontaneously released for presentation by professional antigen presenting cells.
Collapse
Affiliation(s)
- Shin-Young Na
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
964
|
Takahashi H, Amagai M, Nishikawa T, Fujii Y, Kawakami Y, Kuwana M. Novel System Evaluating In Vivo Pathogenicity of Desmoglein 3-Reactive T Cell Clones Using Murine Pemphigus Vulgaris. THE JOURNAL OF IMMUNOLOGY 2008; 181:1526-35. [DOI: 10.4049/jimmunol.181.2.1526] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
965
|
George-Chandy A, Nordström I, Nygren E, Jonsson IM, Postigo J, Collins LV, Eriksson K. Th17 development and autoimmune arthritis in the absence of reactive oxygen species. Eur J Immunol 2008; 38:1118-26. [PMID: 18383034 DOI: 10.1002/eji.200737348] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dendritic cells (DC) express a functional NADPH oxidase and produce reactive oxygen species (ROS) upon interaction with microbes and T cells. Exposure to ROS leads to DC activation and maturation, as evidenced by phenotypic and functional changes. We have evaluated how endogenous ROS production affects the cytokine secretion pattern and T cell-activating capacity of bone marrow-derived murine DC. DC treated with ROS scavengers, as well as DC from mice that lack a functional NADPH oxidase (and thereby inherently deficient in ROS production) produced significantly increased levels of IL-1beta, IL-6, TNF-alpha and TGF-beta in response to microbial activation. DC deficient in ROS production induced high levels of IFN-gamma and IL-17 in responding T cells after Ag-specific or superantigen-induced activation. Finally, we show that ROS deficiency affected the induction of a T cell-dependent inflammatory condition, collagen-induced arthritis (CIA). C57BL/6 mice that lack a functional NADPH oxidase developed a severe and erosive CD4-dependent CIA, whereas the majority of the congenic wild-type animals remained healthy. These data suggest that ROS act as immunomodulators in DC-driven T cell activation and perhaps also in T cell-dependent immunopathology.
Collapse
Affiliation(s)
- Annie George-Chandy
- Department of Rheumatology and Inflammation Research, Division of Medicine, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
966
|
Abstract
The regulation of CD4 T-cell numbers during an immune response should take account of the amount of antigen (Ag), the initial frequency of Ag-specific T cells, the mix of naive versus experienced cells, and (ideally) the diversity of the repertoire. Here we describe a novel mechanism of T-cell regulation that potentially deals with all of these parameters. We found that CD4 T cells establish a negative feedback loop by capturing their cognate major histocompatibility class (MHC)/peptide complexes from Ag-presenting cells and presenting them to Ag-experienced CD4 T cells, thereby inhibiting their recruitment into the response while allowing recruitment of naive T cells. The inhibition is Ag specific, begins at day 2 (long before Ag disappearance), and cannot be overcome by providing new Ag-loaded dendritic cells. In this way, CD4 T-cell proliferation is regulated in a functional relationship to the amount of Ag, while allowing naive T cells to generate repertoire variety.
Collapse
|
967
|
Abstract
The identification of novel helper T (Th) cell subsets, i.e., IL-17-producing Th cells (Th17 cells) and regulatory T cells (Treg cells), provided new insight into our understanding of the molecular mechanisms involved in the development of infectious and autoimmune diseases as well as immune responses, and thus led to revision of the classic Th1/Th2 paradigm. Several current lines of evidence from gene-deficient mice indicate that IL-17 and Th17 cells, but not IFN-gamma and Th1 cells, are responsible for the development of autoimmune diseases such as murine arthritis and encephalomyelitis, which have classically been considered to be Th1-mediated disorders. Th17 cells may also contribute to the pathogenesis of classically recognized Th2-mediated allergic disorders. In this review, we summarize the current knowledge regarding IL-17 and Th17 cells and discuss their potential roles in the pathogenesis of allergic disorders.
Collapse
Affiliation(s)
- Keisuke Oboki
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Toyko, Japan
| | | | | | | |
Collapse
|
968
|
Shi M, Lin TH, Appell KC, Berg LJ. Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity 2008; 28:763-73. [PMID: 18549798 PMCID: PMC2587400 DOI: 10.1016/j.immuni.2008.04.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 01/06/2023]
Abstract
Differentiation of naive CD4+ T cells into T helper type 1 (Th1) effector cells requires both T cell receptor (TCR) signaling and cytokines such as interleukin-12 and interferon gamma (IFN-gamma). Here, we report that a third cytokine signal, mediated by the Janus family tyrosine kinase 3 (Jak3) and signal transducer and activator of transcription 5 (STAT5) pathway, is also required for Th1 cell differentiation. In the absence of Jak3-dependent signals, naive CD4+ T cells proliferate robustly but produce little IFN-gamma after Th1 cell polarization in vitro. This defect is not due to reduced activation of STAT1 or STAT4 or to impaired upregulation of the transcription factor T-bet. Instead, we find that T-bet binding to the Ifng promoter is greatly diminished in the absence of Jak3-dependent signals, correlating with a decrease in Ifng promoter accessibility and histone acetylation. These data indicate that Jak3 regulates epigenetic modification and chromatin remodeling of the Ifng locus during Th1 cell differentiation.
Collapse
Affiliation(s)
- Min Shi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
969
|
Shaw CA, Starnbach MN. Both CD4+ and CD8+ T cells respond to antigens fused to anthrax lethal toxin. Infect Immun 2008; 76:2603-11. [PMID: 18347032 PMCID: PMC2423103 DOI: 10.1128/iai.01718-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/21/2008] [Accepted: 03/10/2008] [Indexed: 12/16/2022] Open
Abstract
The lethal toxin produced by Bacillus anthracis is a bipartite toxin in which the first protein, protective antigen (PA), transports the second protein, lethal factor, across the host cell membrane. We have previously shown that CD8(+) T-cell epitopes fused to a nontoxic derivative of lethal factor (LFn) are delivered into the host cell cytosol in a PA-dependent manner. Delivery of these antigens targets them to the intracellular major histocompatibility complex (MHC) class I processing and presentation pathway and leads to the stimulation of antigen-specific CD8(+) T cells in vivo. In this report, we describe the generation and characterization of LFn fusion proteins that include not only a CD8(+) T-cell epitope but also a CD4(+) T-cell epitope. We first show that these fusion proteins induce antigen-specific CD4(+) T-cell responses following incubation with dendritic cells in vitro or injection into mice. Stimulation of CD4(+) T cells by LFn fusion proteins does not require PA but is enhanced by PA in vitro. We also show that a single LFn fusion protein and PA can deliver antigen to both the MHC class II and the MHC class I pathways, resulting in the simultaneous induction of antigen-specific CD4(+) T cells and antigen-specific CD8(+) T cells in the same mouse. These results suggest that this toxin delivery system is capable of stimulating protective immune responses where effective immunization requires stimulation of both classes of T cells.
Collapse
Affiliation(s)
- Christine A Shaw
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
970
|
Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 2008; 9:769-76. [PMID: 18516037 DOI: 10.1038/ni.1622] [Citation(s) in RCA: 592] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 05/05/2008] [Indexed: 11/08/2022]
Abstract
The intestinal cell types responsible for defense against pathogenic organisms remain incompletely characterized. Here we identify a subset of CD11c(hi)CD11b(hi) lamina propria dendritic cells (LPDCs) that expressed Toll-like receptor 5 (TLR5) in the small intestine. When stimulated by the TLR5 ligand flagellin, TLR5(+) LPDCs induced the differentiation of naive B cells into immunoglobulin A-producing plasma cells by a mechanism independent of gut-associated lymphoid tissue. In addition, by a mechanism dependent on TLR5 stimulation, these LPDCs promoted the differentiation of antigen-specific interleukin 17-producing T helper cells and type 1 T helper cells. Unlike spleen DCs, the LPDCs specifically produced retinoic acid, which, in a dose-dependent way, supported the generation and retention of immunoglobulin A-producing cells in the lamina propria and positively regulated the differentiation interleukin 17-producing T helper cells. Our findings demonstrate unique properties of LPDCs and the importance of TLR5 for adaptive immunity in the intestine.
Collapse
|
971
|
Abstract
We demonstrate that apolipoprotein E -deficient (ApoE(-/-)) mice are highly susceptible to tuberculosis and that their susceptibility depends on the severity of hypercholesterolemia. Wild-type (WT) mice and ApoE(-/-) mice fed a low-cholesterol (LC) or high-cholesterol (HC) diet were infected with approximately 50 CFU Mycobacterium tuberculosis Erdman by aerosol. ApoE(-/-) LC mice were modestly more susceptible to tuberculosis than WT LC mice. In contrast, ApoE(-/-) HC mice were extremely susceptible, as evidenced by 100% mortality after 4 weeks with tuberculosis. The lung pathology of ApoE(-/-) HC mice was remarkable for giant abscess-like lesions, massive infiltration by granulocytes, elevated inflammatory cytokine production, and a mean bacterial load approximately 2 log units higher than that of WT HC mice. Compared to WT HC mice, the gamma interferon response of splenocytes restimulated ex vivo with M. tuberculosis culture filtrate protein was delayed in ApoE(-/-) HC mice, and they failed to control M. tuberculosis growth in the lung. OT-II cells adoptively transferred into uninfected ApoE(-/-) HC mice had a weak proliferative response to their antigen, indicating impaired priming of the adaptive immune response. Our studies show that ApoE(-/-) deficiency is associated with delayed expression of adaptive immunity to tuberculosis caused by defective priming of the adaptive immune response and that elevated serum cholesterol is responsible for this effect.
Collapse
|
972
|
Su MA, Giang K, Žumer K, Jiang H, Oven I, Rinn JL, DeVoss JJ, Johannes KP, Lu W, Gardner J, Chang A, Bubulya P, Chang HY, Peterlin BM, Anderson MS. Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. J Clin Invest 2008; 118:1712-26. [PMID: 18414681 PMCID: PMC2293336 DOI: 10.1172/jci34523] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 02/27/2008] [Indexed: 01/08/2023] Open
Abstract
Homozygous loss-of-function mutations in AIRE cause autoimmune polyglandular syndrome type 1 (APS 1), which manifests in a classic triad of hypoparathyroidism, adrenal insufficiency, and candidiasis. Interestingly, a kindred with a specific G228W AIRE variant presented with an autosomal dominant autoimmune phenotype distinct from APS 1. We utilized a novel G228W-knockin mouse model to show that this variant acted in a dominant-negative manner to cause a unique autoimmunity syndrome. In addition, the expression of a large number of Aire-regulated thymic antigens was partially inhibited in these animals, demonstrating the importance of quantitative changes in thymic antigen expression in determining organ-specific autoimmunity. Furthermore, the dominant-negative effect of the G228W variant was exerted through recruitment of WT Aire away from active sites of transcription in the nucleus of medullary thymic epithelial cells in vivo. Together, these results may demonstrate a mechanism by which autoimmune predisposition to phenotypes distinct from APS 1 can be mediated in a dominant-negative fashion by Aire.
Collapse
Affiliation(s)
- Maureen A. Su
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Karen Giang
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Kristina Žumer
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Huimin Jiang
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Irena Oven
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - John L. Rinn
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Jason J. DeVoss
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Kellsey P.A. Johannes
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Wen Lu
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - James Gardner
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Angela Chang
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Paula Bubulya
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Howard Y. Chang
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - B. Matija Peterlin
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Mark S. Anderson
- Diabetes Center,
Department of Pediatrics, and
Department of Medicine, UCSF, San Francisco, California, USA.
Program in Epithelial Biology, Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.
Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
973
|
Germain RN, Bajénoff M, Castellino F, Chieppa M, Egen JG, Huang AYC, Ishii M, Koo LY, Qi H. Making friends in out-of-the-way places: how cells of the immune system get together and how they conduct their business as revealed by intravital imaging. Immunol Rev 2008; 221:163-81. [PMID: 18275481 DOI: 10.1111/j.1600-065x.2008.00591.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A central characteristic of the immune system is the constantly changing location of most of its constituent cells. Lymphoid and myeloid cells circulate in the blood, and subsets of these cells enter, move, and interact within, then leave organized lymphoid tissues. When inflammation is present, various hematopoietic cells also exit the vasculature and migrate within non-lymphoid tissues, where they carry out effector functions that support host defense or result in autoimmune pathology. Effective innate and adaptive immune responses involve not only the action of these individual cells but also productive communication among them, often requiring direct membrane contact between rare antigen-specific or antigen-bearing cells. Here, we describe our ongoing studies using two-photon intravital microscopy to probe the in situ behavior of the cells of the immune system and their interactions with non-hematopoietic stromal elements. We emphasize the importance of non-random cell migration within lymphoid tissues and detail newly established mechanisms of traffic control that operate at multiple organizational scales to facilitate critical cell contacts. We also describe how the methods we have developed for imaging within lymphoid sites are being applied to other tissues and organs, revealing dynamic details of host-pathogen interactions previously inaccessible to direct observation.
Collapse
Affiliation(s)
- Ronald N Germain
- Laboratory of Immunology, Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
974
|
Morel C, Badell E, Abadie V, Robledo M, Setterblad N, Gluckman JC, Gicquel B, Boudaly S, Winter N. Mycobacterium bovis BCG-infected neutrophils and dendritic cells cooperate to induce specific T cell responses in humans and mice. Eur J Immunol 2008; 38:437-47. [PMID: 18203135 DOI: 10.1002/eji.200737905] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neutrophils are increasingly thought to modulate dendritic cell (DC) functions. We investigated the role of the neutrophil-DC partnership in the response to Mycobacterium bovis BCG-the vaccine used against tuberculosis. We compared neutrophil-DC crosstalk in humans and mice, searching for functional differences. In both species, neutrophils captured fluorescent BCG-enhanced green fluorescent protein (EGFP) and were more phagocytic than DC. Non-apoptotic BCG-infected neutrophils clustered with immature DC, establishing intimate contacts with dendrites, at which fluorescent intact bacilli were observed. Physical interactions between neutrophils and DC were required for DC activation. Human BCG-infected DC produced interleukin (IL)-10, an inhibitory cytokine, whereas DC exposed to BCG-infected neutrophils produced low to undetectable amounts of the cytokine. Mouse BCG-infected neutrophils induced sustained IL-2 production by DC. Human DC exposed to BCG-infected neutrophils stimulated recall T cell reactivity from vaccinated donors. Mouse DC infected with recombinant ovalbumin (OVA)-producing BCG (rBCG(ova)) elicited proliferation of TCR-OVA-transgenic CD4 and CD8 T cells. Moreover, exposing DC to rBCG(ova)-infected neutrophils enhanced OVA presentation. Thus, in mice and humans, neutrophils help DC to cross-present BCG antigens to T cells. Our results suggest that this "ménage à trois" involving neutrophils, DC and T cells plays a major role in the immune response to BCG.
Collapse
Affiliation(s)
- Céline Morel
- Unité Mixte de Recherche 7151 CNRS, Université Paris 7, Laboratoire d'immunologie cellulaire et immunopathologie de l'Ecole Pratique des Hautes Etudes, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
975
|
Yin-Yang 1 regulates effector cytokine gene expression and T(H)2 immune responses. J Allergy Clin Immunol 2008; 122:195-201, 201.e1-5. [PMID: 18423564 DOI: 10.1016/j.jaci.2008.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 03/06/2008] [Accepted: 03/10/2008] [Indexed: 01/09/2023]
Abstract
BACKGROUND The transcription factor Yin-Yang 1 (YY-1) binds to the promoter regions of several T-cell cytokine genes, but the expression and contribution of this factor to cytokine gene expression and T-cell activation in vivo is not clear. OBJECTIVE We sought to better define the role of YY-1 in T-cell gene regulation and allergic immune responses. METHODS We studied cytokine gene expression in T lymphocytes isolated from wild-type mice and heterozygous littermates bearing 1 targeted yy-1 allele (yy-1(+/-) mice). T cells were stimulated with anti-T-cell receptor (anti-TCR) plus CD28 antibodies or with peptide antigen plus antigen-presenting cells by using newly generated yy-1(+/-) TCR transgenic mice. We also studied ovalbumin-driven allergic immune responses in a mouse model of asthma and YY-1 expression in lung tissue from human asthmatic subjects. RESULTS CD4(+) T cells from yy-1(+/-) mice secreted significantly less IL-4 and IFN-gamma compared with wild-type littermates after TCR-dependent activation, whereas IL-2 production was not significantly affected. Both airway inflammation and recall splenocyte IL-4 production were inhibited in yy-1(+/-) mice, as was antigen-driven T-cell proliferation. YY-1 expression was higher in airway biopsy specimens from asthmatic compared with control subjects. CONCLUSION These data indicate that YY-1 regulates T-cell cytokine gene expression and allergic immune responses in a gene dose-dependent manner.
Collapse
|
976
|
Hisaeda H, Tetsutani K, Imai T, Moriya C, Tu L, Hamano S, Duan X, Chou B, Ishida H, Aramaki A, Shen J, Ishii KJ, Coban C, Akira S, Takeda K, Yasutomo K, Torii M, Himeno K. Malaria parasites require TLR9 signaling for immune evasion by activating regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:2496-503. [PMID: 18250459 DOI: 10.4049/jimmunol.180.4.2496] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Malaria is still a life-threatening infectious disease that continues to produce 2 million deaths annually. Malaria parasites have acquired immune escape mechanisms and prevent the development of sterile immunity. Regulatory T cells (Tregs) have been reported to contribute to immune evasion during malaria in mice and humans, suggesting that activating Tregs is one of the mechanisms by which malaria parasites subvert host immune systems. However, little is known about how these parasites activate Tregs. We herein show that TLR9 signaling to dendritic cells (DCs) is crucial for activation of Tregs. Infection of mice with the rodent malaria parasite Plasmodium yoelii activates Tregs, leading to enhancement of their suppressive function. In vitro activation of Tregs requires the interaction of DCs with parasites in a TLR9-dependent manner. Furthermore, TLR9(-/-) mice are partially resistant to lethal infection, and this is associated with impaired activation of Tregs and subsequent development of effector T cells. Thus, malaria parasites require TLR9 to activate Tregs for immune escape.
Collapse
Affiliation(s)
- Hajime Hisaeda
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
977
|
Agarwal RK, Horai R, Viley AM, Silver PB, Grajewski RS, Su SB, Yazdani AT, Zhu W, Kronenberg M, Murray PJ, Rutschman RL, Chan CC, Caspi RR. Abrogation of anti-retinal autoimmunity in IL-10 transgenic mice due to reduced T cell priming and inhibition of disease effector mechanisms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:5423-9. [PMID: 18390724 PMCID: PMC2442578 DOI: 10.4049/jimmunol.180.8.5423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Experimental autoimmune uveitis (EAU) induced by immunization of animals with retinal Ags is a model for human uveitis. The immunosuppressive cytokine IL-10 regulates EAU susceptibility and may be a factor in genetic resistance to EAU. To further elucidate the regulatory role of endogenous IL-10 in the mouse model of EAU, we examined transgenic (Tg) mice expressing IL-10 either in activated T cells (inducible) or in macrophages (constitutive). These IL-10-Tg mice and non-Tg wild-type controls were immunized with a uveitogenic regimen of the retinal Ag interphotoreceptor retinoid-binding protein. Constitutive expression of IL-10 in macrophages abrogated disease and reduced Ag-specific immunological responses. These mice had detectable levels of IL-10 in sera and in ocular extracts. In contrast, expression of IL-10 in activated T cells only partially protected from EAU and marginally reduced Ag-specific responses. All IL-10-Tg lines showed suppression of Ag-specific effector cytokines. APC from Tg mice constitutively expressing IL-10 in macrophages exhibited decreased ability to prime naive T cells, however, Ag presentation to already primed T cells was not compromised. Importantly, IL-10-Tg mice that received interphotoreceptor retinoid-binding protein-specific uveitogenic T cells from wild-type donors were protected from EAU. We suggest that constitutively produced endogenous IL-10 ameliorates the development of EAU by suppressing de novo priming of Ag-specific T cells and inhibiting the recruitment and/or function of inflammatory leukocytes, rather than by inhibiting local Ag presentation within the eye.
Collapse
Affiliation(s)
- Rajeev K. Agarwal
- The Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Reiko Horai
- The Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Angelia M. Viley
- The Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Phyllis B. Silver
- The Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rafael S. Grajewski
- The Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shao Bo Su
- The Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Arrash T. Yazdani
- The Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Wei Zhu
- The Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Peter J. Murray
- Department of Infectious Diseases, St. Jude Children's Hospital, Memphis, TN 38105
| | - Robert L. Rutschman
- Department of Infectious Diseases, St. Jude Children's Hospital, Memphis, TN 38105
| | - Chi-Chao Chan
- The Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rachel R. Caspi
- The Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
978
|
Jones SC, Clise-Dwyer K, Huston G, Dibble J, Eaton S, Haynes L, Swain SL. Impact of post-thymic cellular longevity on the development of age-associated CD4+ T cell defects. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:4465-75. [PMID: 18354168 PMCID: PMC2366213 DOI: 10.4049/jimmunol.180.7.4465] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Elderly people are at higher risk for infections due to declining cellular and humoral immune responses. Central to this dysfunction is the reduced responsiveness of the naive CD4(+) T cell compartment. Previous data from our laboratory suggest that although defects in the aged naive CD4(+) T cell response are apparent in recent thymic emigrant populations, additional defects develop during extended post-thymic longevity in the periphery. To further investigate the factors that lead to aging defects, we took advantage of the OT-II TCR-transgenic (Tg) mouse model. We show that because of an apparent superantigen-mediated loss of naive Vbeta5(+) Tg CD4(+) T cells from the periphery of aging OT-II mice, this compartment becomes enriched for cells of reduced post-thymic longevity, resulting in a frequency of recent thymic emigrants in aged mice that is similar to that of young mice. Purification and functional analysis of aged OT-II cells with reduced post-thymic longevity reveal that they have an age-associated decrease in expansion and IL-2 production in response to Ag in vitro. However, the in vivo expansion, IL-2 production, and cognate B cell helper ability of these cells are similar to those of cells from young mice. In contrast, T cells from aged HNT Tg mice demonstrate extended post-thymic longevity and exhibit severe defects in the same in vitro and in vivo models. These data support a correlation between the requirement for increased post-thymic longevity and the development of the most severe naive CD4(+) T cell-aging defects.
Collapse
|
979
|
AlphaPIX Rho GTPase guanine nucleotide exchange factor regulates lymphocyte functions and antigen receptor signaling. Mol Cell Biol 2008; 28:3776-89. [PMID: 18378701 DOI: 10.1128/mcb.00507-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AlphaPIX is a Rho GTPase guanine nucleotide exchange factor domain-containing signaling protein that associates with other proteins involved in cytoskeletal-membrane complexes. It has been shown that PIX proteins play roles in some immune cells, including neutrophils and T cells. In this study, we report the immune system phenotype of alphaPIX knockout mice. We extended alphaPIX expression experiments and found that whereas alphaPIX was specific to immune cells, its homolog betaPIX was expressed in a wider range of cells. Mice lacking alphaPIX had reduced numbers of mature lymphocytes and defective immune responses. Antigen receptor-directed proliferation of alphaPIX(-) T and B cells was also reduced, but basal migration was enhanced. Accompanying these defects, formation of T-cell-B-cell conjugates and recruitment of PAK and Lfa-1 integrin to the immune synapse were impaired in the absence of alphaPIX. Proximal antigen receptor signaling was largely unaffected, with the exception of reduced phosphorylation of PAK and expression of GIT2 in both T cells and B cells. These results reveal specific roles for alphaPIX in the immune system and suggest that redundancy with betaPIX precludes a more severe immune phenotype.
Collapse
|
980
|
Golden JM, LaCasse CJ, Simova DV, Murphy TR, Kurt RA. Differential mediator production by dendritic cells upon toll-like receptor stimulation does not impact T cell cytokine expression. Immunol Lett 2008; 118:30-5. [PMID: 18403024 DOI: 10.1016/j.imlet.2008.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/08/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
Dendritic cells are key components of successful immunological responses bridging innate and adaptive defenses. In this study we wanted to know whether ligation of toll-like receptors (TLR) expressed by dendritic cells would induce differential proinflammatory mediator expression and whether these dendritic cells would differentially impact T cell function. For this purpose bone marrow-derived dendritic cells from OTII mice were used. The dendritic cells showed detectable levels of TLR1, 2, 4, 6, 7, 8 and 9, with TLR2 and TLR4 expressed at the highest levels. To determine whether TLR ligation differentially influenced proinflammatory mediator expression the dendritic cells were stimulated with peptidoglycan (PGN) or lipopolysaccharide (LPS) for TLR2 or TLR4, respectively. Comparisons were made to dendritic cells exposed to TNF-alpha or saline as controls. Whereas, both LPS and PGN were equally effective at inducing CXCL1 and TNF-alpha expression from the dendritic cells, LPS was unique at inducing CCL2 expression, and PGN was unique at inducing IL-1beta expression. Despite these differences, LPS and PGN treated dendritic cells were equally effective at eliciting IFN-gamma expression from T cells in an antigen-specific manner. These data indicate that ligation of TLR by components of Gram+ and Gram- bacteria differentially influence dendritic cell proinflammatory mediator expression, and that differential mediator production by dendritic cells upon TLR stimulation does not impact T cell cytokine production.
Collapse
|
981
|
Stoitzner P, Green LK, Jung JY, Price KM, Tripp CH, Malissen B, Kissenpfennig A, Hermans IF, Ronchese F. Tumor immunotherapy by epicutaneous immunization requires langerhans cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:1991-8. [PMID: 18209098 DOI: 10.4049/jimmunol.180.3.1991] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A role for Langerhans cells (LC) in the induction of immune responses in the skin has yet to be conclusively demonstrated. We used skin immunization with OVA protein to induce immune responses against OVA-expressing melanoma cells. Mice injected with OVA-specific CD8(+) T cells and immunized with OVA onto barrier-disrupted skin had increased numbers of CD8(+) T cells in the blood that produced IFN-gamma and killed target cells. These mice generated accelerated cytotoxic responses after secondary immunization with OVA. Prophylactic or therapeutic immunization with OVA onto barrier-disrupted skin inhibited the growth of B16.OVA tumors. LC played a critical role in the immunization process because depletion of LC at the time of skin immunization dramatically reduced the tumor-protective effect. The topically applied Ag was presented by skin-derived LC in draining lymph nodes to CD8(+) T cells. Thus, targeting of tumor Ags to LC in vivo is an effective strategy for tumor immunotherapy.
Collapse
|
982
|
Bystander B cells rapidly acquire antigen receptors from activated B cells by membrane transfer. Proc Natl Acad Sci U S A 2008; 105:4259-64. [PMID: 18337504 DOI: 10.1073/pnas.0800259105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The B cell antigen receptor (BCR) efficiently facilitates the capture and processing of a specific antigen for presentation on MHC class II molecules to antigen-specific CD4(+) T cells (1). Despite this, the majority of B cells are thought to play only a limited role in CD4(+) T cell activation because BCRs are clonotypically expressed. Here, we show, however, that activated B cells can, both in vitro and in vivo, rapidly donate their BCR to bystander B cells, a process that is mediated by direct membrane transfer between adjacent B cells and is amplified by the interaction of the BCR with a specific antigen. This results in a dramatic expansion in the number of antigen-binding B cells in vivo, with the transferred BCR endowing recipient B cells with the ability to present a specific antigen to antigen-specific CD4(+) T cells.
Collapse
|
983
|
Daubeuf S, Aucher A, Sampathkumar SG, Preville X, Yarema KJ, Hudrisier D. Chemical labels metabolically installed into the glycoconjugates of the target cell surface can be used to track lymphocyte/target cell interplay via trogocytosis: comparisons with lipophilic dyes and biotin. Immunol Invest 2008; 36:687-712. [PMID: 18161525 DOI: 10.1080/08820130701674596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Trogocytosis, the process whereby lymphocytes capture membrane components from the cells they interact with, is classically evidenced by the transfer of fluorescent lipophilic compounds or biotinylated proteins from target cells to T or B cells. A particular class of molecules, not studied explicitly so far in the context of trogocytosis is glycoconjugates. Here, we used a method to metabolically install chemical labels in target cell glycoconjugates. Working with those target cells, we describe the conditions allowing CTL to be detected based on glycoconjugate trogocytosis triggered by antigen or stimulatory antibodies. Accordingly, we used this method to monitor the CTL response triggered in mice after vaccination. In addition, we documented the applicability of this approach to the detection of CD4(+) T and B cells. Overall, glycoconjugates were transferred between target cells and lymphocytes during trogocytosis with efficiencies comparable or higher than measured for biotinylated proteins or lipophilic dyes incorporated into general membrane lipids. From a technological point of view, our approach can be employed to detect reactive lymphocytes via glycoconjugate trogocytosis. More generally, we believe that the ever-growing ability to employ chemistry in living systems to label particular compounds will be powerful in unraveling the contributions of glycosylation to various aspects of T and B cells biology.
Collapse
|
984
|
Burmeister Y, Lischke T, Dahler AC, Mages HW, Lam KP, Coyle AJ, Kroczek RA, Hutloff A. ICOS controls the pool size of effector-memory and regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:774-82. [PMID: 18178815 DOI: 10.4049/jimmunol.180.2.774] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ICOS is an important regulator of T cell effector function. ICOS-deficient patients as well as knockout mice show severe defects in T cell-dependent B cell responses. Several in vitro and in vivo studies attributed this phenomenon to impaired up-regulation of cell surface communication molecules and cytokine synthesis by ICOS-deficient T cells. However, we now could show with Ag-specific T cells in a murine adoptive transfer system that signaling via ICOS does not significantly affect early T cell activation. Instead, ICOS substantially contributes to the survival and expansion of effector T cells upon local challenge with Ag and adjuvant. Importantly, the observed biological function of ICOS also extends to FoxP3+ regulatory T cells, as can be observed after systemic Ag delivery without adjuvant. In line with these findings, absence of ICOS under homeostatic conditions of nonimmunized mice leads to a reduced number of both effector-memory and FoxP3+ regulatory T cells. Based on these results, we propose a biological role for ICOS as a costimulatory, agonistic molecule for a variety of effector T cells with differing and partly opposing functional roles. This concept may reconcile a number of past in vivo studies with seemingly contradictory results on ICOS function.
Collapse
|
985
|
Pargmann D, Yücel R, Kosan C, Saba I, Klein-Hitpass L, Schimmer S, Heyd F, Dittmer U, Möröy T. Differential impact of the transcriptional repressor Gfi1 on mature CD4+ and CD8+ T lymphocyte function. Eur J Immunol 2008; 37:3551-63. [PMID: 18034420 DOI: 10.1002/eji.200737130] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The transcriptional repressor Gfi1 is a nuclear zinc-finger protein that is expressed in T cell precursors in the thymus, but is down-regulated in mature, resting T cells. Gfi1 expression rises transiently to levels seen in thymocytes upon antigenic activation. We show here that lack of Gfi1 causes delayed cell cycle entry and apoptosis after antigenic stimulation in both mature CD4+ and CD8+ T cells ex vivo. DNA micro-array analysis demonstrated that this correlated with an up-regulation of the death receptor CD95, the proapoptotic factors Bad and Apaf1 and the cell cycle inhibitor p21, and a down-regulation of Bcl-2 expression in Gfi1-/- T cells. Surprisingly, while Gfi1-deficient CD4+ T cells showed the same defective behavior in vivo, Gfi1-deficient CD8+ T cells showed no aberration in vivo and were fully able to mount an anti-viral immune response. This indicates that Gfi1 exerts different functions in CD4+ and CD8+ T cells very likely by maintaining different genetic programs in both cell types, and appears to be essential for the CD4 helper T cell immune response but dispensable for the function of cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Denise Pargmann
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
986
|
Beyersdorf N, Ding X, Tietze JK, Hanke T. Characterization of mouse CD4 T cell subsets defined by expression of KLRG1. Eur J Immunol 2008; 37:3445-54. [PMID: 18034419 DOI: 10.1002/eji.200737126] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mouse killer cell lectin-like receptor G1 (KLRG1) is an inhibitory receptor known to be expressed on a subset of NK cells and antigen-experienced CD8 T cells. Here, we have characterized expression of KLRG1 on CD4+ T cells from normal mice. While a polyclonal TCR repertoire suggests thymic origin of KLRG1+ CD4+ cells, KLRG1 expression was found to be restricted to peripheral CD4+ T cells. Based on phenotypic analyses, a minority of KLRG1+ CD4+ cells are effector/memory cells with a proliferative history. The majority of KLRG1+ CD4+ cells are, however, bona fide Treg cells that depend on IL-2 and/or CD28 and express both FoxP3 and high levels of intracellular CD152. KLRG1-expressing Treg are contained within the CD38+ subset but are only partially overlapping with the CD25+ CD4+ Treg subset. In functional assays, KLRG1+ CD4+ cells were anergic to TCR stimulation with respect to proliferation, and sorted KLRG1+ CD25+ CD4+ cells were equal or superior to KLRG1+ CD25- CD4+ cells, which were more potent than KLRG1- CD25+ CD4+ cells in suppressing responder cell proliferation. Together, our results demonstrate that KLRG1 expression defines novel and distinctive subsets of senescent effector/memory and potent regulatory CD4+ T cells.
Collapse
Affiliation(s)
- Niklas Beyersdorf
- University of Würzburg, Institute for Virology and Immunobiology, Würzburg, Germany
| | | | | | | |
Collapse
|
987
|
Selective suicide of cross-presenting CD8+ dendritic cells by cytochrome c injection shows functional heterogeneity within this subset. Proc Natl Acad Sci U S A 2008; 105:3029-34. [PMID: 18272486 DOI: 10.1073/pnas.0712394105] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cross-presentation as a fundamental pathway of activating CD8(+) T cells has been well established. So far the application of this concept in vivo is limited, and the mechanisms that specialize CD8(+) dendritic cells (DCs) for this task are not fully understood. Here we take advantage of the specific cytosolic export feature of cross-presenting DCs together with the property of cytosolic cytochrome c (cyt c) in initiating Apaf-1-dependent apoptosis selectively in cross-presenting DCs. A single i.v. injection of cyt c in B6 mice produced a 2- to 3-fold reduction in splenic CD8(+) DCs but not in Apaf-1-deficient mice. Functional studies both in vivo and in vitro showed that cyt c profoundly abrogated OVA-specific CD8(+) T cell proliferation through its apoptosis-inducing effect on cross-presenting DCs. More importantly, in vivo injection of cyt c abolished the induction of cytotoxic T lymphocytes to exogenous antigen and reduced subsequent immunity to tumor challenge. In addition, only a proportion of CD8(+) DCs that express abundant IL-12 and Toll-like receptor 3 were efficient cross-presenters. Our data support the hypothesis that cross-presentation in vivo requires cytosolic diversion of endocytosed proteins, conferring cross-presentation specialization to a proportion of CD8(+) DCs. We propose that DCs incapable of such transfer, even within the CD8(+) DC subset, are unable to cross-present. Our model opens an avenue to specifically target cross-presenting DCs in vivo for manipulating cytotoxic T lymphocyte responses toward infections, tumors, and transplants.
Collapse
|
988
|
Tallóczy Z, Martinez J, Joset D, Ray Y, Gácser A, Toussi S, Mizushima N, Nosanchuk J, Goldstein H, Loike J, Sulzer D, Santambrogio L. Methamphetamine inhibits antigen processing, presentation, and phagocytosis. PLoS Pathog 2008; 4:e28. [PMID: 18282092 PMCID: PMC2242831 DOI: 10.1371/journal.ppat.0040028] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 12/28/2007] [Indexed: 12/04/2022] Open
Abstract
Methamphetamine (Meth) is abused by over 35 million people worldwide. Chronic Meth abuse may be particularly devastating in individuals who engage in unprotected sex with multiple partners because it is associated with a 2-fold higher risk for obtaining HIV and associated secondary infections. We report the first specific evidence that Meth at pharmacological concentrations exerts a direct immunosuppressive effect on dendritic cells and macrophages. As a weak base, Meth collapses the pH gradient across acidic organelles, including lysosomes and associated autophagic organelles. This in turn inhibits receptor-mediated phagocytosis of antibody-coated particles, MHC class II antigen processing by the endosomal-lysosomal pathway, and antigen presentation to splenic T cells by dendritic cells. More importantly Meth facilitates intracellular replication and inhibits intracellular killing of Candida albicans and Cryptococcus neoformans, two major AIDS-related pathogens. Meth exerts previously unreported direct immunosuppressive effects that contribute to increased risk of infection and exacerbate AIDS pathology.
Collapse
Affiliation(s)
- Zsolt Tallóczy
- Department of Neurology, Columbia University, New York, New York, United States of America
| | - Jose Martinez
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Danielle Joset
- Department of Physiology, Columbia University, New York, New York, United States of America
| | - Yonaton Ray
- Department of Physiology, Columbia University, New York, New York, United States of America
| | - Attila Gácser
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sima Toussi
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Noboru Mizushima
- Department of Bioregulation and Metabolism, The Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo, Japan
| | - Josh Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Harris Goldstein
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - John Loike
- Department of Physiology, Columbia University, New York, New York, United States of America
| | - David Sulzer
- Department of Neurology, Columbia University, New York, New York, United States of America
- Department of Psychiatry, Columbia University, New York, New York, United States of America
- Department of Pharmacology, Columbia University, New York, New York, United States of America
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
989
|
Yin X, Ladi E, Chan SW, Li O, Killeen N, Kappes DJ, Robey EA. CCR7 expression in developing thymocytes is linked to the CD4 versus CD8 lineage decision. THE JOURNAL OF IMMUNOLOGY 2008; 179:7358-64. [PMID: 18025179 DOI: 10.4049/jimmunol.179.11.7358] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During thymic development, T cell progenitors undergo positive selection based on the ability of their T cell Ag receptors (TCR) to bind MHC ligands on thymic epithelial cells. Positive selection determines T cell fate, in that thymocytes whose TCR bind MHC class I (MHC-I) develop as CD8-lineage T cells, whereas those that bind MHC class II (MHC-II) develop as CD4 T cells. Positive selection also induces migration from the cortex to the medulla driven by the chemokine receptor CCR7. In this study, we show that CCR7 is up-regulated in a larger proportion of CD4(+)CD8(+) thymocytes undergoing positive selection on MHC-I compared with MHC-II. Mice bearing a mutation of Th-POK, a key CD4/CD8-lineage regulator, display increased expression of CCR7 among MHC-II-specific CD4(+)CD8(+) thymocytes. In addition, overexpression of CCR7 results in increased development of CD8 T cells bearing MHC-II-specific TCR. These findings suggest that the timing of CCR7 expression relative to coreceptor down-regulation is regulated by lineage commitment signals.
Collapse
Affiliation(s)
- Xinye Yin
- Department of Molecular and Cell Biology, Division of Immunology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
990
|
Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 2008; 28:271-84. [PMID: 18261937 PMCID: PMC2390753 DOI: 10.1016/j.immuni.2007.12.010] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/01/2007] [Accepted: 12/13/2007] [Indexed: 02/08/2023]
Abstract
Granulomas play a key role in host protection against mycobacterial pathogens, with their breakdown contributing to exacerbated disease. To better understand the initiation and maintenance of these structures, we employed both high-resolution multiplex static imaging and intravital multiphoton microscopy of Mycobacterium bovis BCG-induced liver granulomas. We found that Kupffer cells directly capture blood-borne bacteria and subsequently nucleate formation of a nascent granuloma by recruiting both uninfected liver-resident macrophages and blood-derived monocytes. Within the mature granuloma, these myeloid cell populations formed a relatively immobile cellular matrix that interacted with a highly dynamic effector T cell population. The efficient recruitment of these T cells was highly dependent on TNF-alpha-derived signals, which also maintained the granuloma structure through preferential effects on uninfected macrophage populations. By characterizing the migration of both innate and adaptive immune cells throughout the process of granuloma development, these studies provide a new perspective on the cellular events involved in mycobacterial containment and escape.
Collapse
Affiliation(s)
- Jackson G. Egen
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Antonio Gigliotti Rothfuchs
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carl G. Feng
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nathalie Winter
- Mycobacterial Genetics Unit, Institut Pasteur, Paris, France
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
991
|
Garçon F, Patton DT, Emery JL, Hirsch E, Rottapel R, Sasaki T, Okkenhaug K. CD28 provides T-cell costimulation and enhances PI3K activity at the immune synapse independently of its capacity to interact with the p85/p110 heterodimer. Blood 2008; 111:1464-71. [PMID: 18006698 DOI: 10.1182/blood-2007-08-108050] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of PI3K is among the earliest signaling events observed in T cells after conjugate formation with antigen-presenting cells (APCs). The relevant PI3K catalytic isoform and relative contribution of the TcR and CD28 to PI3K activity at the immune synapse have not been determined unequivocally. Using a quantitative imaging-based assay, we show that the PI3K activity at the T cell-APC contact area is dependent on the p110delta, but not the p110gamma, isoform of PI3K. CD28 enhanced PIP3 production at the T-cell synapse independently of its YMNM PI3K-recruitment motif that instead was required for efficient PKC recruitment. CD28 could partially compensate for the lack of p110delta activity during T-cell activation, which indicates that CD28 and p110delta act in parallel and complementary pathways to activate T cells. Consistent with this, CD28 and p110delta double-deficient mice were severely immune compromised. We therefore suggest that combined pharmaceutic targeting of p110delta activity and CD28 costimulation has potent therapeutic potential.
Collapse
Affiliation(s)
- Fabien Garçon
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
992
|
Ikehara Y, Shiuchi N, Kabata-Ikehara S, Nakanishi H, Yokoyama N, Takagi H, Nagata T, Koide Y, Kuzushima K, Takahashi T, Tsujimura K, Kojima N. Effective induction of anti-tumor immune responses with oligomannose-coated liposome targeting to intraperitoneal phagocytic cells. Cancer Lett 2008; 260:137-45. [DOI: 10.1016/j.canlet.2007.10.038] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/22/2007] [Accepted: 10/29/2007] [Indexed: 11/30/2022]
|
993
|
Abstract
Citrobacter rodentium, a murine model pathogen for enteropathogenic Escherichia coli, colonizes the colon utilizing attaching and effacing lesions to adhere specifically to the surfaces of intestinal epithelial cells and cause mucosal inflammation. CD4+ T cells, B cells, and immunoglobulin G (IgG), but not secretory IgA or IgM, play a critical role in eradicating this pathogen. Consistent with the importance of IgG in C. rodentium eradication, IgG transport by the neonatal Fc receptor for IgG within the intestinal epithelium also has a critical role in the regulation of C. rodentium infection. It remains to be determined, however, whether Fcgamma receptors (FcgammaRs), the receptors for the Fc portion of IgG, regulate this bacterial infection within mucosal tissues. Therefore, we investigated the roles of FcgammaRs during C. rodentium infection. Fc receptor common gamma chain (FcRgamma)-deficient mice were more susceptible to C. rodentium-induced colitis. This occurred through decreased efficiency of FcR-mediated endocytosis and maturation of dendritic cells and consequently T-cell activation of antigen-specific T cells. Moreover, in the absence of FcgammaRs, phagocytosis by macrophages was significantly diminished. Therefore, activating FcgammaRs play an important role in defending against C. rodentium infection, indicating that the critical role played by IgG in this infection is not mediated by IgG alone but is dependent upon this class of receptors.
Collapse
|
994
|
Edgtton KL, Kausman JY, Li M, O'Sullivan K, Lo C, Hutchinson P, Yagita H, Holdsworth SR, Kitching AR. Intrarenal antigens activate CD4+ cells via co-stimulatory signals from dendritic cells. J Am Soc Nephrol 2008; 19:515-26. [PMID: 18184859 DOI: 10.1681/asn.2007030386] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells in the kidney take up antigens, but little is known about their role in providing co-stimulatory signals for the activation of CD4(+) cells. This study examined the phenotype of dendritic cells in the renal interstitium and in the lymph node draining the kidney before and after intrarenal ovalbumin injection. After intrarenal injection of the antigen, expression of the co-stimulatory molecules CD86 and programmed cell death ligand 1 (PD-L1) increased on renal dendritic cells, whereas expression of only CD86 increased on dendritic cells of the draining lymph node. The activation and proliferation of antigen-specific CD4(+) cells in the lymph node were assessed by transfer of naïve, fluorescently labeled ovalbumin-specific T cell receptor transgenic cells to mice before antigen administration. Blocking both CD86 and CD80 profoundly inhibited CD4(+) cell proliferation, but CD86 was the dominant CD28 ligand in the early proliferative response of CD4(+) cells. Conversely, activation of PD-1, the receptor expressed on CD4(+) cells that binds PD-L1 and PD-L2, reduced the proliferation of CD4(+) cells in the draining lymph node. Comparing subcutaneous and intrarenal administration of antigen, it was found that CD4(+) cell activation was slower and the effects of combined CD80 and CD86 blockade were more profound when antigen was presented via the kidney compared with the skin. In summary, renal dendritic cells take up antigen and participate in the control of antigen-specific CD4(+) cell proliferation by upregulating co-stimulatory molecules such as CD86 that stimulate CD4(+) cell proliferation and by signaling through PD-1, which prevents an inappropriately exuberant immune response.
Collapse
Affiliation(s)
- Kristy L Edgtton
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
995
|
Dzierszinski FS, Hunter CA. Advances in the use of genetically engineered parasites to study immunity to Toxoplasma gondii. Parasite Immunol 2008; 30:235-44. [PMID: 18194347 DOI: 10.1111/j.1365-3024.2007.01016.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studying in vivo biology and the host immune response to Toxoplasma gondii has yielded many insights into the pathogenesis of this parasitic organism. It is recognized that this infection in immune competent hosts elicits a strong Th1-type response, which is characterized by the generation of parasite-specific CD4(+) and CD8(+) T cells that produce IFN-gamma and provide protective immunity. One of the problems associated with studying resistance to Toxoplasma has been the lack of reagents to track parasite-specific T cell responses with a high degree of specificity. To overcome this difficulty, it is possible to use a combination of transgenic parasites that are engineered to express well-characterized heterologous reporters or antigens, and T cell hybridomas or naïve T cells that express a T cell receptor specific for the processed peptide. These approaches have provided new insights into parasite dissemination, antigen presentation, as well as immune regulation.
Collapse
Affiliation(s)
- F S Dzierszinski
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Canada.
| | | |
Collapse
|
996
|
Wang L, Toda M, Saito K, Hori T, Horii T, Shiku H, Kuribayashi K, Kato T. Post-immune UV irradiation induces Tr1-like regulatory T cells that suppress humoral immune responses. Int Immunol 2008; 20:57-70. [PMID: 18006879 DOI: 10.1093/intimm/dxm124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well documented that UV radiation present in sunlight suppresses immune responses, especially T(h)1-driven cellular immune responses, resulting in the exacerbation of skin cancer and infectious diseases. However, the effects of UV irradiation on humoral immune responses remain less clearly defined. In addition, the majority of studies documenting immunosuppressive effects of UV irradiation has been demonstrated in animals exposed to UV radiation before immunization. In the present study, therefore, we examined the effects of UV irradiation on humoral immune responses in mice that had been immunized before UV irradiation. Both T(h)1- and T(h)2-associated Ig responses were significantly suppressed by UV irradiation given 7 days after immunization in an antigen-specific manner. Adoptive transfer experiments revealed that CD4(+) T cells from UV-irradiated mice are responsible for the UV-induced suppression of antibody responses. These CD4(+) regulatory T cells suppressed proliferation of conventional CD4(+) T cells in vivo and in vitro and contained IL-10-producing cells that did not express Foxp3. Mice depleted of CD25(+) cells also exhibited reduced antibody responses by UV irradiation. Finally, we showed that CD4(+) T cells from UV-irradiated mice treated with anti-IL-10 mAb failed to suppress antibody responses upon transfer. These results indicate that UV irradiation after immunization suppresses T(h)1- and T(h)2-mediated humoral immunity via the generation of Tr1-like regulatory T cells, in the process of which IL-10 appears to be important. Possible detrimental effects of UV irradiation after vaccination are also discussed.
Collapse
Affiliation(s)
- Linan Wang
- Department of Bioregulation, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
997
|
Pham THM, Okada T, Matloubian M, Lo CG, Cyster JG. S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity 2008; 28:122-33. [PMID: 18164221 PMCID: PMC2691390 DOI: 10.1016/j.immuni.2007.11.017] [Citation(s) in RCA: 348] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/18/2007] [Accepted: 11/20/2007] [Indexed: 12/11/2022]
Abstract
The mechanism by which sphingosine-1-phosphate receptor-1 (S1P1) acts to promote lymphocyte egress from lymphoid organs is not defined. Here, we showed that CCR7-deficient T cells left lymph nodes more rapidly than wild-type cells did, whereas CCR7-overexpressing cells were retained for longer. After treatment with FTY720, an agonist that causes downmodulation of lymphocyte S1P1, CCR7-deficient T cells were less effectively retained than wild-type T cells. Moreover, treatment with pertussis toxin to inactivate signaling via G alpha i-protein-coupled receptors restored egress competence to S1P1-deficient lymphocytes. We also found that T cell accumulation in lymph node cortical sinusoids required intrinsic S1P1 expression and was antagonized by CCR7. These findings suggest a model where S1P1 acts in the lymphocyte to promote lymph node egress by overcoming retention signals mediated by CCR7 and additional G alpha i-coupled receptors. Furthermore, by simultaneously upregulating S1P1 and downregulating CCR7, T cells that have divided multiple times switch to a state favoring egress over retention.
Collapse
Affiliation(s)
- Trung H. M. Pham
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, CA 94143, USA
| | | | | | | | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, CA 94143, USA
| |
Collapse
|
998
|
Therapeutic B cell depletion impairs adaptive and autoreactive CD4+ T cell activation in mice. Proc Natl Acad Sci U S A 2007; 104:20878-83. [PMID: 18093919 DOI: 10.1073/pnas.0709205105] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
CD20 antibody depletion of B lymphocytes effectively ameliorates multiple T cell-mediated autoimmune diseases through mechanisms that remain unclear. To address this, a mouse CD20 antibody that depletes >95% of mature B cells in mice with otherwise intact immune systems was used to assess the role of B cells in CD4(+) and CD8(+) T cell activation and expansion in vivo. B cell depletion had no direct effect on T cell subsets or the activation status of CD4(+) and CD8(+) T cells in naive mice. However, B cell depletion impaired CD4(+) T cell activation and clonal expansion in response to protein antigens and pathogen challenge, whereas CD8(+) T cell activation was not affected. In vivo dendritic cell ablation, along with CD20 immunotherapy, revealed that optimal antigen-specific CD4(+) T cell priming required both B cells and dendritic cells. Most importantly, B cell depletion inhibited antigen-specific CD4(+) T cell expansion in both collagen-induced arthritis and autoimmune diabetes mouse models. These results provide direct evidence that B cells contribute to T cell activation and expansion in vivo and offer insights into the mechanism of action for B cell depletion therapy in the treatment of autoimmunity.
Collapse
|
999
|
Price JD, Simpfendorfer KR, Mantena RR, Holden J, Heath WR, van Rooijen N, Strugnell RA, Wijburg OLC. Gamma interferon-independent effects of interleukin-12 on immunity to Salmonella enterica serovar Typhimurium. Infect Immun 2007; 75:5753-62. [PMID: 17875635 PMCID: PMC2168367 DOI: 10.1128/iai.00971-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/20/2007] [Accepted: 09/02/2007] [Indexed: 11/20/2022] Open
Abstract
Interleukin-12 (IL-12) and IL-18 are both central to the induction of gamma interferon (IFN-gamma), and various roles for IL-12 and IL-18 in control of intracellular microbial infections have been demonstrated. We used IL-12p40(-/-) and IL-18(-/-) mice to further investigate the role of IL-12 and IL-18 in control of Salmonella enterica serovar Typhimurium. While C57BL/6 and IL-18(-/-) mice were able to resolve attenuated S. enterica serovar Typhimurium infections, the IL-12p40(-/-) mice succumbed to a high bacterial burden after 60 days. Using ovalbumin (OVA)-specific T-cell receptor transgenic T cells (OT-II cells), we demonstrated that following oral infection with recombinant S. enterica serovar Typhimurium expressing OVA, the OT-II cells proliferated in the mesenteric lymph nodes of C57BL/6 and IL-18(-/-) mice but not in IL-12p40(-/-) mice. In addition, we demonstrated by flow cytometry that equivalent or increased numbers of T cells produced IFN-gamma in IL-12p40(-/-) mice compared with the numbers of T cells that produced IFN-gamma in C57BL/6 and IL-18(-/-) mice. Finally, we demonstrated that removal of macrophages from S. enterica serovar Typhimurium-infected C57BL/6 and IL-12p40(-/-) mice did not affect the bacterial load, suggesting that impaired control of S. enterica serovar Typhimurium infection in the absence of IL-12p40 is not due to reduced macrophage bactericidal activities, while IL-18(-/-) mice did rely on the presence of macrophages for control of the infection. Our results suggest that IL-12p40, but not IL-18, is critical to resolution of infections with attenuated S. enterica serovar Typhimurium and that especially the effects of IL-12p40 on proliferative responses of CD4+ T cells, but not the ability of these cells to produce IFN-gamma, are important in the resolution of infection by this intracellular bacterial pathogen.
Collapse
Affiliation(s)
- Jason D Price
- CRC for Vaccine Technology and Department of Microbiology & Immunology, The University of Melbourne, Parkville VIC3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
1000
|
Wells JW, Cowled CJ, Darling D, Guinn BA, Farzaneh F, Noble A, Galea-Lauri J. Semi-allogeneic dendritic cells can induce antigen-specific T-cell activation, which is not enhanced by concurrent alloreactivity. Cancer Immunol Immunother 2007; 56:1861-73. [PMID: 17487489 PMCID: PMC11030391 DOI: 10.1007/s00262-007-0328-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 04/11/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alloreactive T-cell responses are known to result in the production of large amounts of proinflammatory cytokines capable of activating and maturing dendritic cells (DC). However, it is unclear whether these allogeneic responses could also act as an adjuvant for concurrent antigen-specific responses. OBJECTIVE To examine effects of simultaneous alloreactive and antigen-specific T-cell responses induced by semi-allogeneic DC. METHODS Semi-allogeneic DC were generated from the F(1) progeny of inbred strains of mice (C57BL/6 and C3H, or C57BL/6 and DBA). We directly primed antigen-specific CD8(+) and CD4(+) T-cells from OT-I and OT-II mice, respectively, in the absence of allogeneic responses, in vitro, and in the presence or absence of alloreactivity in vivo. RESULTS In vitro, semi-allogeneic DC cross-presented ovalbumin (OVA) to naïve CD8(+) OT-I transgenic T-cells, primed naïve CD4(+) OT-II transgenic T-cells and could stimulate strong alloreactive T-cell proliferation in a primary mixed lymphocyte reaction (MLR). In vivo, semi-allogeneic DC migrated efficiently to regional lymph nodes but did not survive there as long as autologous DC. In addition, they were not able to induce cytotoxic T-lymphocyte (CTL) activity to a target peptide, and only weakly stimulated adoptively transferred OT-II cells. The CD4(+) response was unchanged in allo-tolerized mice, indicating that alloreactive T-cell responses could not provide help for concurrently activated antigen-specific responses. In an EL4 tumour-treatment model, vaccination with semi-allogeneic DC/EL4 fusion hybrids, but not allogeneic DC/EL4 hybrids, significantly increased mouse survival. CONCLUSION Expression of self-Major histocompatibility complex (MHC) by semi-allogeneic DC can cause the induction of antigen-specific immunity, however, concurrently activated allogeneic bystander responses do not provide helper or adjuvant effects.
Collapse
Affiliation(s)
- James W. Wells
- Department of Haematological and Molecular Medicine, King’s College London, The Rayne Institute, London, SE5 9NU UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, 5th Floor Thomas Guy House, Guy’s Hospital, London, SE1 9RT UK
| | - Chris J. Cowled
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, 5th Floor Thomas Guy House, Guy’s Hospital, London, SE1 9RT UK
| | - David Darling
- Department of Haematological and Molecular Medicine, King’s College London, The Rayne Institute, London, SE5 9NU UK
| | - Barbara-Ann Guinn
- Department of Haematological and Molecular Medicine, King’s College London, The Rayne Institute, London, SE5 9NU UK
| | - Farzin Farzaneh
- Department of Haematological and Molecular Medicine, King’s College London, The Rayne Institute, London, SE5 9NU UK
| | - Alistair Noble
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, 5th Floor Thomas Guy House, Guy’s Hospital, London, SE1 9RT UK
| | - Joanna Galea-Lauri
- Department of Haematological and Molecular Medicine, King’s College London, The Rayne Institute, London, SE5 9NU UK
| |
Collapse
|