951
|
Zhou MH, Zheng H, Si H, Jin Y, Peng JM, He L, Zhou Y, Muñoz-Garay C, Zawieja DC, Kuo L, Peng X, Zhang SL. Stromal interaction molecule 1 (STIM1) and Orai1 mediate histamine-evoked calcium entry and nuclear factor of activated T-cells (NFAT) signaling in human umbilical vein endothelial cells. J Biol Chem 2014; 289:29446-56. [PMID: 25190815 DOI: 10.1074/jbc.m114.578492] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histamine is an important immunomodulator involved in allergic reactions and inflammatory responses. In endothelial cells, histamine induces Ca(2+) mobilization by releasing Ca(2+) from the endoplasmic reticulum and eliciting Ca(2+) entry across the plasma membrane. Herein, we show that histamine-evoked Ca(2+) entry in human umbilical vein endothelial cells (HUVECs) is sensitive to blockers of Ca(2+) release-activated Ca(2+) (CRAC) channels. RNA interference against STIM1 or Orai1, the activating subunit and the pore-forming subunit of CRAC channels, respectively, abolishes this histamine-evoked Ca(2+) entry. Furthermore, overexpression of dominant-negative CRAC channel subunits inhibits while co-expression of both STIM1 and Orai1 enhances histamine-induced Ca(2+) influx. Interestingly, gene silencing of STIM1 or Orai1 also interrupts the activation of calcineurin/nuclear factor of activated T-cells (NFAT) pathway and the production of interleukin 8 triggered by histamine in HUVECs. Collectively, these results suggest a central role of STIM1 and Orai1 in mediating Ca(2+) mobilization linked to inflammatory signaling of endothelial cells upon histamine stimulation.
Collapse
Affiliation(s)
| | | | | | - Yixin Jin
- From the Departments of Medical Physiology and
| | | | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, and
| | - Yubin Zhou
- From the Departments of Medical Physiology and Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, and
| | - Carlos Muñoz-Garay
- Materials Science and Biophysics Department, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad S/N, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | | | - Lih Kuo
- From the Departments of Medical Physiology and Surgery, Baylor Scott & White Health, College of Medicine, Texas A&M Health Science Center, Temple, Texas 76504,
| | - Xu Peng
- From the Departments of Medical Physiology and
| | | |
Collapse
|
952
|
Abstract
According to the World Health Organization, cardiovascular disease accounts for approximately 30% of all deaths in the United States, and is the worldwide leading cause of morbidity and mortality. Over the last several years, microRNAs have emerged as critical regulators of physiological homeostasis in multiple organ systems, including the cardiovascular system. The focus of this review is to provide an overview of the current state of knowledge of the molecular mechanisms contributing to the multiple causes of cardiovascular disease with respect to regulation by microRNAs. A major challenge in understanding the roles of microRNAs in the pathophysiology of cardiovascular disease is that cardiovascular disease may arise from perturbations in intracellular signaling in multiple cell types including vascular smooth muscle and endothelial cells, cardiac myocytes and fibroblasts, as well as hepatocytes, pancreatic β-cells, and others. Additionally, perturbations in intracellular signaling cascades may also have profound effects on heterocellular communication via secreted cytokines and growth factors. There has been much progress in recent years to identify the microRNAs that are both dysregulated under pathological conditions, as well as the signaling pathway(s) regulated by an individual microRNA. The goal of this review is to summarize what is currently known about the mechanisms whereby microRNAs maintain cardiovascular homeostasis and to attempt to identify some key unresolved questions that require further study.
Collapse
Affiliation(s)
- Ronald L Neppl
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| | - Da-Zhi Wang
- Boston Children's Hospital, Department of Cardiology ; Harvard Medical School, Department of Pediatrics Boston MA, 02115
| |
Collapse
|
953
|
Stapor P, Wang X, Goveia J, Moens S, Carmeliet P. Angiogenesis revisited - role and therapeutic potential of targeting endothelial metabolism. J Cell Sci 2014; 127:4331-41. [PMID: 25179598 DOI: 10.1242/jcs.153908] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clinically approved therapies that target angiogenesis in tumors and ocular diseases focus on controlling pro-angiogenic growth factors in order to reduce aberrant microvascular growth. Although research on angiogenesis has revealed key mechanisms that regulate tissue vascularization, therapeutic success has been limited owing to insufficient efficacy, refractoriness and tumor resistance. Emerging concepts suggest that, in addition to growth factors, vascular metabolism also regulates angiogenesis and is a viable target for manipulating the microvasculature. Recent studies show that endothelial cells rely on glycolysis for ATP production, and that the key glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) regulates angiogenesis by controlling the balance of tip versus stalk cells. As endothelial cells acquire a tip cell phenotype, they increase glycolytic production of ATP for sprouting. Furthermore, pharmacological blockade of PFKFB3 causes a transient, partial reduction in glycolysis, and reduces pathological angiogenesis with minimal systemic harm. Although further assessment of endothelial cell metabolism is necessary, these results represent a paradigm shift in anti-angiogenic therapy from targeting angiogenic factors to focusing on vascular metabolism, warranting research on the metabolic pathways that govern angiogenesis.
Collapse
Affiliation(s)
- Peter Stapor
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Xingwu Wang
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Jermaine Goveia
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Stijn Moens
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, B-3000 Leuven, Belgium Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
954
|
Garcia SB, Stopper H, Kannen V. The contribution of neuronal-glial-endothelial-epithelial interactions to colon carcinogenesis. Cell Mol Life Sci 2014; 71:3191-7. [PMID: 24848584 PMCID: PMC11113209 DOI: 10.1007/s00018-014-1642-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/21/2022]
Abstract
Several different cell types constitute the intestinal wall and interact in different manners to maintain tissue homeostasis. Elegant reports have explored these physiological cellular interactions revealing that glial cells and neurons not only modulate peristalsis and mechanical stimulus in the intestines but also control epithelial proliferation and sub-epithelial angiogenesis. Although colon carcinoma arises from epithelial cells, different sub-epithelial cell phenotypes are known to support the manifestation and development of tumors from their early steps on. Therefore, new perspectives in cancer research have been proposed, in which neurons and glial cells not only lead to higher cancer cell proliferation at the tumor invasion front but also further enhance angiogenesis and neurogenesis in tumors. Transformation of physiological neural activity into a pro-cancer event is thus discussed for colon carcinogenesis herein.
Collapse
Affiliation(s)
- Sergio Britto Garcia
- Department of Pathology, Medical School of Ribeirão Preto, University of Sao Paulo, Av. Bandeirantes 3900, 14, Ribeirão Preto, 049-900 Brazil
| | - Helga Stopper
- Department of Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Vinicius Kannen
- Department of Pathology, Medical School of Ribeirão Preto, University of Sao Paulo, Av. Bandeirantes 3900, 14, Ribeirão Preto, 049-900 Brazil
| |
Collapse
|
955
|
Secord AA, Nixon AB, Hurwitz HI. The search for biomarkers to direct antiangiogenic treatment in epithelial ovarian cancer. Gynecol Oncol 2014; 135:349-58. [PMID: 25178997 DOI: 10.1016/j.ygyno.2014.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/18/2014] [Accepted: 08/24/2014] [Indexed: 01/05/2023]
Abstract
Antiangiogenic agents have demonstrated improved progression-free survival in women with primary and recurrent epithelial ovarian cancer (EOC). Biomarkers that predict outcomes in patients treated with antiangiogenic agents are being investigated to rationally direct therapy for women most likely to benefit from these agents. Among the most promising plasma-based biomarkers are vascular endothelial growth factor (VEGF)-A, fibroblast growth factor, platelet-derived growth factor, angiopoietin-2, and VEGF receptor-2. While these biomarkers have been correlated with prognosis, they have not been shown to predict benefit, specifically from anti-VEGF therapy, highlighting the need for alternative biomarkers, including molecular and clinical factors, which may be predictive of outcome in women with ovarian cancer treated with antiangiogenic agents. Biomarkers are currently being investigated as secondary outcomes in several ongoing phase II and phase III clinical trials of antiangiogenic agents in patients with EOC. Molecular techniques, such as microarray analyses, and imaging techniques, such as dynamic contrast-enhanced magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography, are also being explored in this field. In this review, we provide a comprehensive overview of current biomarker research, with an emphasis on angiogenic biomarkers associated with EOC.
Collapse
|
956
|
Bisdas S, Smrdel U, Bajrovic FF, Surlan-Popovic K. Assessment of Progression-Free-Survival in Glioblastomas by Intratreatment Dynamic Contrast-Enhanced MRI. Clin Neuroradiol 2014; 26:39-45. [DOI: 10.1007/s00062-014-0328-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
|
957
|
Evading anti-angiogenic therapy: resistance to anti-angiogenic therapy in solid tumours. Br J Cancer 2014. [DOI: 10.1038/bjc.2014.439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
958
|
Lagerlöf JH, Kindblom J, Bernhardt P. Oxygen distribution in tumors: A qualitative analysis and modeling study providing a novel Monte Carlo approach. Med Phys 2014; 41:094101. [DOI: 10.1118/1.4892386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
959
|
Lee K, Agrawal V, Kim K, Kim J, Park H, Lee S, Kim YM, Suh YG, Kwon YG. Combined effect of vascular-leakage-blocker Sac-1004 and antiangiogenic drug sunitinib on tumor angiogenesis. Biochem Biophys Res Commun 2014; 450:1320-6. [DOI: 10.1016/j.bbrc.2014.06.139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
|
960
|
Patel MB, Pothula SP, Xu Z, Lee AK, Goldstein D, Pirola RC, Apte MV, Wilson JS. The role of the hepatocyte growth factor/c-MET pathway in pancreatic stellate cell-endothelial cell interactions: antiangiogenic implications in pancreatic cancer. Carcinogenesis 2014; 35:1891-1900. [PMID: 24876152 DOI: 10.1093/carcin/bgu122] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Activated cancer-associated human pancreatic stellate cells (CAhPSCs, which produce the collagenous stroma of pancreatic cancer [PC]) are known to play a major role in PC progression. Apart from inducing cancer cell proliferation and migration, CAhPSCs have also been implicated in neoangiogenesis in PC. However, the mechanisms mediating the observed angiogenic effects of CAhPSCs are unknown. A candidate pathway that may be involved in this process is the hepatocyte growth factor (HGF)/c-MET pathway and its helper molecule, urokinase-type plasminogen activator (uPA). This study investigated the effects of CAhPSC secretions on endothelial cell function in the presence and absence of HGF, c-MET and uPA inhibitors. HGF levels in CAhPSC secretions were quantified using ELISA. CAhPSC secretions were then incubated with human microvascular endothelial cells (HMEC-1) and angiogenesis assessed by quantifying HMEC-1 tube formation and proliferation. CAhPSC-secreted HGF significantly increased HMEC-1 tube formation and proliferation; notably, these effects were downregulated by inhibition of HGF, its receptor c-MET and uPA. Phosphorylation of p38 mitogen-activated protein kinase was downregulated during inhibition of the HGF/c-MET pathway, whereas phosphatidylinositol-3 kinase and ERK1/2 remained unaffected. Our studies have shown for the first time that CAhPSCs induce proliferation and tube formation of HMEC-1 and that the HGF/c-MET pathway plays a major role in this induction. Given that standard antiangiogenic treatment targeting vascular endothelial growth factor has had limited success in the clinical setting, the findings of the current study provide strong support for a novel, alternative antiangiogenic approach targeting the HGF/c-MET and uPA pathways in PC.
Collapse
Affiliation(s)
- Mishaal B Patel
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| | - Srinivasa P Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| | - Alexandra K Lee
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| | - David Goldstein
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| | - Romano C Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia.
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Ingham Institute for Applied Medical Research and the School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2170, Australia
| |
Collapse
|
961
|
Masunaga SI, Sanada Y, Moriwaki T, Tano K, Sakurai Y, Tanaka H, Suzuki M, Kondo N, Narabayashi M, Watanabe T, Nakagawa Y, Maruhashi A, Ono K. Significance of Fractionated Administration of Thalidomide Combined With γ-Ray Irradiation in Terms of Local Tumor Response and Lung Metastasis. World J Oncol 2014; 5:155-165. [PMID: 29147396 PMCID: PMC5649741 DOI: 10.14740/wjon855w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2014] [Indexed: 12/02/2022] Open
Abstract
Background The aim of this study was to evaluate the significance of fractionated administration of thalidomide combined with γ-ray irradiation in terms of local tumor response and lung metastatic potential, referring to the response of intratumor quiescent (Q) cells. Methods B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells. The tumor-bearing mice then received γ-ray irradiation after thalidomide treatment through a single or two consecutive daily intraperitoneal administrations up to a total dose of 400 mg/kg in combination with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH). Immediately after the irradiation, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days after irradiation, macroscopic lung metastases were enumerated. Results Thalidomide raised the sensitivity of the total cell population more remarkably than Q cells in both single and daily administrations. Daily administration of thalidomide elevated the sensitivity of both the total and Q cell populations, but especially the total cell population, compared with single administration. Daily administration, especially combined with MTH, decreased the number of lung metastases. Conclusion Daily fractionated administration of thalidomide in combination with γ-ray irradiation was thought to be more promising than single administration because of its potential to enhance local tumor response and repress lung metastatic potential.
Collapse
Affiliation(s)
- Shin-Ichiro Masunaga
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Yu Sanada
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Takahiro Moriwaki
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Keizo Tano
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Yoshinori Sakurai
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Hiroki Tanaka
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Minoru Suzuki
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Natsuko Kondo
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Masaru Narabayashi
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Tsubasa Watanabe
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Yosuke Nakagawa
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Akira Maruhashi
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Koji Ono
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
962
|
Gacche RN, Meshram RJ. Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta Rev Cancer 2014; 1846:161-79. [DOI: 10.1016/j.bbcan.2014.05.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022]
|
963
|
Grafström J, Stone-Elander S. Comparison of methods for evaluating radiolabelled Annexin A5 uptake in pre-clinical PET oncological studies. Nucl Med Biol 2014; 41:793-800. [PMID: 25156038 DOI: 10.1016/j.nucmedbio.2014.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE The uptakes of radiolabel led AnnexinA5 (AnxA5) and a size-matched control protein in experimental tumours were evaluated by kinetic analyses and compared with standard uptake values (SUVs) to investigate whether the method of analysis may impact on the conclusions that can be drawn. PROCEDURES PET scans of the (11)C-labelled proteins performed in untreated and doxorubicin-treated mice with head and neck carcinoma xenografts were retrospectively analysed. The appropriateness of using the Logan graphical analyses for reversibly binding radiotracers in these models was evaluated and confirmed. Distribution volume ratios (DVRs) of the regions of interest to reference muscle tissue were compared to those based on the image-derived input function from arterial blood. SUVs were calculated in the same individuals. RESULTS DVRs based on reference muscle tissue gave results similar to those based on the arterial blood and may be preferred since they are simpler to calculate. In the inter-group comparisons of baseline versus chemotherapy treatment or AnxA5 versus control protein, differences in DVR quantifications had a 20- to 40-fold higher statistical significance than differences in SUVs. As quantified using the control protein, the amount of free ligand in the vascular space of tumours may be large due to enhanced permeability and retention (EPR) contributions at baseline and affected during treatment, which has implications for quantifications of the specifically bound radioligand. CONCLUSIONS These results demonstrate that the quantification method as well as the controls used can be important for interpreting the uptake in tumours of the medium-sized protein ligand AnxA5 and its use in monitoring the effects of therapy on cell death in the tumours. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE These results provide additional support for the recognition that more detailed investigations on the effects of the tumour microenvironment on the targeting capability of imaging radiopharmaceuticals are needed.
Collapse
Affiliation(s)
- Jonas Grafström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sharon Stone-Elander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; PET Radiochemistry, Neuroradiology Department, R3:00, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
964
|
Genes involved in pericyte-driven tumor maturation predict treatment benefit of first-line FOLFIRI plus bevacizumab in patients with metastatic colorectal cancer. THE PHARMACOGENOMICS JOURNAL 2014; 15:69-76. [PMID: 25069475 DOI: 10.1038/tpj.2014.40] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/13/2014] [Accepted: 06/04/2014] [Indexed: 01/12/2023]
Abstract
Pericytes are crucial for angiogenesis. The impact of pericyte function to bevacizumab efficacy in mCRC treatment has not been comprehensively examined. This retrospective study investigated germline polymorphisms in genes related to early pericyte maturation to predict bevacizumab efficacy in 424 patients of two clinical trials treated first line with FOLFIRI+bevacizumab. Eight single-nucleotide polymorphisms (SNPs) were tested for potential biomarker value: RGS5 (regulator of G-protein signaling 5; rs1056515, rs2661280), PDGFR-β (platelet-derived growth factor receptor-β; rs2229562, rs2302273), CSPG4 (chondroitin sulfate proteoglycan NG2; rs8023621, rs1127648) and RALBP1 (RalA binding protein 1; rs10989, rs329007). For progression-free survival (PFS), PDGFR-β (rs2302273) was able to define significantly different patient cohorts in uni- and multivariate testing. RALPB1 (rs329007) showed predictive value for tumor response. The C allele in RGS5 (rs2661280) predicted longer overall survival and CSPG4 rs1127648 was associated with differences in PFS, but for both value was lost when multivariate analysis was applied. A comprehensive statistical analysis revealed that the biomarker value of the SNPs was dependent on primary tumor location. This is the first study to identify pericyte germline polymorphisms associated with clinical outcome in mCRC patients treated first line with FOLFIRI+bevacizumab. The differences seen with regard to primary tumor location may lead to further research to understand the clinical outcome differences seen in right- and left-sided colon cancer.
Collapse
|
965
|
Kunos CA, Sherertz TM. Long-Term Disease Control with Triapine-Based Radiochemotherapy for Patients with Stage IB2-IIIB Cervical Cancer. Front Oncol 2014; 4:184. [PMID: 25105092 PMCID: PMC4109518 DOI: 10.3389/fonc.2014.00184] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/30/2014] [Indexed: 01/27/2023] Open
Abstract
Background: National Cancer Institute phase I #7336 and phase II #8327 clinical trials explored the safety and efficacy of triapine (NSC #663249) added to cisplatin radiochemotherapy in untreated patients with advanced-stage cervical cancer. Triapine inhibits ribonucleotide reductase, the rate-limiting enzyme responsible for DNA-building deoxyribonucleotides, and thereby, enhances radiochemosensitivity by prolonging DNA repair time. Here, we report 3-year efficacy endpoints of pelvic locoregional relapse rate, disease-free, and overall survivals. Methods: Eligible patients with bulky IB–IIIB cervical cancer underwent three-times weekly triapine (25 or 50 mg/m2), once-weekly cisplatin (40 mg/m2), and conventional daily pelvic radiation followed by brachytherapy. A cumulative incidence method estimated pelvic locoregional relapse rates. Disease-free survival was measured from radiochemotherapy start date to the date of first relapse or cancer-related death. Overall survival was measured from radiochemotherapy start date to the date of any-cause death. The Kaplan–Meier method estimated survivals. Findings: Between 2006 and 2011, 24 untreated patients with cervical cancer met criteria for reporting in this study. A median 3.4 years of follow-up time (range, 0.3–7.6 years) has been observed. All had squamous cancers and the majority had either node-positive stage IB–IIA (33%) or stage IIIB (42%) disease. The 3-year pelvic locoregional relapse rate, disease-free survival, and overall survival were 4% [95% confidence interval (CI), 0–20%], 80% (95% CI: 71–89%), and 82% (95% CI: 74–90%), respectively. Interpretation: Triapine radiochemotherapy was safe, active, and effective in patients with untreated advanced-stage cervical cancer, worthy of randomized clinical trial study.
Collapse
Affiliation(s)
- Charles A Kunos
- Department of Radiation Oncology, Summa Cancer Institute, Summa Health System , Akron, OH , USA
| | - Tracy M Sherertz
- Department of Radiation Oncology, CASE Comprehensive Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| |
Collapse
|
966
|
Bhatnagar S, Deschenes E, Liao J, Cilliers C, Thurber GM. Multichannel imaging to quantify four classes of pharmacokinetic distribution in tumors. J Pharm Sci 2014; 103:3276-86. [PMID: 25048378 DOI: 10.1002/jps.24086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/31/2023]
Abstract
Low and heterogeneous delivery of drugs and imaging agents to tumors results in decreased efficacy and poor imaging results. Systemic delivery involves a complex interplay of drug properties and physiological factors, and heterogeneity in the tumor microenvironment makes predicting and overcoming these limitations exceptionally difficult. Theoretical models have indicated that there are four different classes of pharmacokinetic behavior in tissue, depending on the fundamental steps in distribution. In order to study these limiting behaviors, we used multichannel fluorescence microscopy and stitching of high-resolution images to examine the distribution of four agents in the same tumor microenvironment. A validated generic partial differential equation model with a graphical user interface was used to select fluorescent agents exhibiting these four classes of behavior, and the imaging results agreed with predictions. BODIPY-FL exhibited higher concentrations in tissue with high blood flow, cetuximab gave perivascular distribution limited by permeability, high plasma protein and target binding resulted in diffusion-limited distribution for Hoechst 33342, and Integrisense 680 was limited by the number of binding sites in the tissue. Together, the probes and simulations can be used to investigate distribution in other tumor models, predict tumor drug distribution profiles, and design and interpret in vivo experiments.
Collapse
Affiliation(s)
- Sumit Bhatnagar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109
| | | | | | | | | |
Collapse
|
967
|
Ackerman D, Simon MC. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol 2014; 24:472-8. [PMID: 24985940 DOI: 10.1016/j.tcb.2014.06.001] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 12/22/2022]
Abstract
Solid tumors typically develop hostile microenvironments characterized by irregular vascularization and poor oxygen (O2) and nutrient supply. Whereas normal cells modulate anabolic and catabolic pathways in response to changes in nutrient availability, cancer cells exhibit unregulated growth even under nutrient scarcity. Recent studies have demonstrated that constitutive activation of growth-promoting pathways results in dependence on unsaturated fatty acids for survival under O2 deprivation. In cancer cells, this dependence represents a critical metabolic vulnerability that could be exploited therapeutically. Here we review how this dependence on unsaturated lipids is affected by the microenvironmental conditions faced by cancer cells.
Collapse
Affiliation(s)
- Daniel Ackerman
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, 456 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, 456 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA; Howard Hughes Medical Institute, Perelman School of Medicine, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
968
|
Klein D, Meissner N, Kleff V, Jastrow H, Yamaguchi M, Ergün S, Jendrossek V. Nestin(+) tissue-resident multipotent stem cells contribute to tumor progression by differentiating into pericytes and smooth muscle cells resulting in blood vessel remodeling. Front Oncol 2014; 4:169. [PMID: 25019063 PMCID: PMC4072089 DOI: 10.3389/fonc.2014.00169] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/11/2014] [Indexed: 12/14/2022] Open
Abstract
Tumor vessels with resistance to anti-angiogenic therapy are characterized by the normalization of the vascular structures through integration of mature pericytes and smooth muscle cells (SMC) into the vessel wall, a process termed vessel stabilization. Unfortunately, stabilization-associated vascular remodeling can result in reduced sensitivity to subsequent anti-angiogenic therapy. We show here that blockade of VEGF by bevacizumab induces stabilization of angiogenic tumor blood vessels in human tumor specimen by recruiting Nestin-positive cells, whereas mature vessels down-regulated Nestin-expression. Using xenograft tumors growing on bone-marrow (BM) chimera of C57Bl/6 wildtype and Nestin-GFP transgenic mice, we show for first time that Nestin(+) cells inducing the maturation of tumor vessels do not originate from the BM but presumably reside within the adventitia of adult blood vessels. Complementary ex vivo experiments using explants of murine aortas revealed that Nestin(+) multipotent stem cells (MPSCs) are mobilized from their niche and differentiated into pericytes and SMC through the influence of tumor-cell-secreted factors. We conclude that tissue-resident Nestin(+) cells are more relevant than BM-derived cells for vessel stabilization and therefore have to be considered in future strategies for anti-angiogenic therapy. The identification of proteins mediating recruitment or differentiation of local Nestin(+) cells with potential stem cell character to angiogenic blood vessels may allow the definition of new therapeutic targets to reduce tumor resistance against anti-angiogenic drugs.
Collapse
Affiliation(s)
- Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Nicole Meissner
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Veronika Kleff
- Institute of Anatomy, University Hospital, University of Duisburg-Essen , Essen , Germany
| | - Holger Jastrow
- Institute of Anatomy, University Hospital, University of Duisburg-Essen , Essen , Germany
| | - Masahiro Yamaguchi
- Department of Physiology, Graduate School of Medicine, University of Tokyo , Tokyo , Japan
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg , Würzburg , Germany
| | - Verena Jendrossek
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
969
|
Affiliation(s)
- Mary Jo Mulligan-Kehoe
- From the Department of Surgery, Vascular Section, Geisel School of Medicine at Dartmouth, Lebanon, NH (M.J.M.-K.); and Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (M.S.)
| | - Michael Simons
- From the Department of Surgery, Vascular Section, Geisel School of Medicine at Dartmouth, Lebanon, NH (M.J.M.-K.); and Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (M.S.)
| |
Collapse
|
970
|
Lacout A, Marcy PY, Thariat J, Sellier J, El Hajjam M, Lacombe P. Roles of cyclooxygenase 2 and hepatic venous flow in patients with HHT or hepatopulmonary syndrome. Med Hypotheses 2014; 83:302-5. [PMID: 24986705 DOI: 10.1016/j.mehy.2014.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/27/2014] [Accepted: 06/01/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) and hepatopulmonary syndrome are disorders characterized by the development of multiple pulmonary arteriovenous malformations (PAVM). PRESENTATION OF THE HYPOTHESIS COX2 may be at the origin of a cascade of pro inflammatory events to favour angiogenesis and PAVM development. TESTING THE HYPOTHESIS HHT and hepatopulmonary syndrome mouse models may be used to show its effects on PAVM formation. Anti COX-2 therapy could also be tested in human individuals, particularly in patients presenting a hepatopulmonary syndrome or HHT with small PAVM. IMPLICATION OF THE HYPOTHESIS PAVMs are one of the main causes of morbidity in patients presenting with HHT disease, owing to the risks of rupture as well as paradoxical embolism exposing to stroke and/or cerebral abscess. Percutaneous embolization has become the treatment of choice of PAVM. Anti COX2 may prevent from PAVM development and subsequent related complications and avoid either surgery and/or percutaneous embolization and thus subsequent related complication.
Collapse
Affiliation(s)
- Alexis Lacout
- Pluridisciplinary HHT team, Ambroise Paré Hospital, Groupement des Hôpitaux Ile-de-France Ouest, Assistance Publique Hôpitaux de Paris, Université de Versailles Saint Quentin en Yvelines, 9, Avenue Charles de GAULLE, 92100 Boulogne Billancourt, France.
| | - Pierre Yves Marcy
- Pluridisciplinary HHT team, Ambroise Paré Hospital, Groupement des Hôpitaux Ile-de-France Ouest, Assistance Publique Hôpitaux de Paris, Université de Versailles Saint Quentin en Yvelines, 9, Avenue Charles de GAULLE, 92100 Boulogne Billancourt, France
| | - Juliette Thariat
- Pluridisciplinary HHT team, Ambroise Paré Hospital, Groupement des Hôpitaux Ile-de-France Ouest, Assistance Publique Hôpitaux de Paris, Université de Versailles Saint Quentin en Yvelines, 9, Avenue Charles de GAULLE, 92100 Boulogne Billancourt, France
| | - Jacques Sellier
- Pluridisciplinary HHT team, Ambroise Paré Hospital, Groupement des Hôpitaux Ile-de-France Ouest, Assistance Publique Hôpitaux de Paris, Université de Versailles Saint Quentin en Yvelines, 9, Avenue Charles de GAULLE, 92100 Boulogne Billancourt, France
| | - Mostafa El Hajjam
- Pluridisciplinary HHT team, Ambroise Paré Hospital, Groupement des Hôpitaux Ile-de-France Ouest, Assistance Publique Hôpitaux de Paris, Université de Versailles Saint Quentin en Yvelines, 9, Avenue Charles de GAULLE, 92100 Boulogne Billancourt, France
| | - Pascal Lacombe
- Pluridisciplinary HHT team, Ambroise Paré Hospital, Groupement des Hôpitaux Ile-de-France Ouest, Assistance Publique Hôpitaux de Paris, Université de Versailles Saint Quentin en Yvelines, 9, Avenue Charles de GAULLE, 92100 Boulogne Billancourt, France
| |
Collapse
|
971
|
Fox NS, Starmans MHW, Haider S, Lambin P, Boutros PC. Ensemble analyses improve signatures of tumour hypoxia and reveal inter-platform differences. BMC Bioinformatics 2014; 15:170. [PMID: 24902696 PMCID: PMC4061774 DOI: 10.1186/1471-2105-15-170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 05/27/2014] [Indexed: 12/24/2022] Open
Abstract
Background The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that this is in-part caused by differential error-structure between datasets, and their incomplete removal by pre-processing algorithms. Methods To test this hypothesis, we systematically assessed the effects of pre-processing on biomarker classification using 24 different pre-processing methods and 15 distinct signatures of tumour hypoxia in 10 datasets (2,143 patients). Results We confirm strong pre-processing effects for all datasets and signatures, and find that these differ between microarray versions. Importantly, exploiting different pre-processing techniques in an ensemble technique improved classification for a majority of signatures. Conclusions Assessing biomarkers using an ensemble of pre-processing techniques shows clear value across multiple diseases, datasets and biomarkers. Importantly, ensemble classification improves biomarkers with initially good results but does not result in spuriously improved performance for poor biomarkers. While further research is required, this approach has the potential to become a standard for transcriptomic biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Paul C Boutros
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, Canada.
| |
Collapse
|
972
|
Ueda S, Kuji I, Shigekawa T, Takeuchi H, Sano H, Hirokawa E, Shimada H, Suzuki H, Oda M, Osaki A, Saeki T. Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients. PLoS One 2014; 9:e98715. [PMID: 24905225 PMCID: PMC4048242 DOI: 10.1371/journal.pone.0098715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/07/2014] [Indexed: 11/18/2022] Open
Abstract
Purpose Optical imaging techniques for measuring tissue hemoglobin concentration have been recently accepted as a way to assess tumor vascularity and oxygenation. We investigated the correlation between early optical response to single-agent bevacizumab and treatment outcome. Methods Seven patients with advanced or metastatic breast cancer were treated with single-agent bevacizumab followed by addition of weekly paclitaxel. Optical imaging of patient's breasts was performed to measure tumor total hemoglobin concentration (tHb) and oxygen saturation (stO2) at baseline and on days 1, 3, 6, 8, and 13 after the first infusion of bevacizumab. To assess early metabolic response, 2-deoxy-2-(18F)-fluoro-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT), 18F-fluoromisonidazole (FMISO)-PET/CT, and magnetic resonance imaging were performed at baseline and after two cycles of the regimen. Results Seven patients were grouped as responders (n = 4) and nonresponders (n = 3) on the basis of metabolic response measured by FDG-PET/CT. The responders showed remarkable tumor shrinkage and low accumulations of FMISO tracer relative to those of the nonresponders at the completion of two cycles of chemotherapy. Tumors of both groups showed remarkable attenuation of mean tHb as early as day 1 after therapy initiation. The nonresponders had lower baseline stO2 levels compared with adjacent breast tissue stO2 levels along with a pattern of steadily low stO2 levels during the observation window. On the other hand, the responders appeared to sustain high stO2 levels with temporal fluctuation. Conclusions Low tumor stO2 level after single-agent bevacizumab treatment was characteristic of the nonresponders. Tumor stO2 level could be a predictor of an additional benefit of bevacizumab over that provided by paclitaxel.
Collapse
Affiliation(s)
- Shigeto Ueda
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
- * E-mail:
| | - Ichiei Kuji
- Department of Nuclear Medicine, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Takashi Shigekawa
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Hideki Takeuchi
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Hiroshi Sano
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Eiko Hirokawa
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Hiroko Shimada
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Hiroaki Suzuki
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita-ku, Hamamatsu, Japan
| | - Motoki Oda
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita-ku, Hamamatsu, Japan
| | - Akihiko Osaki
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Toshiaki Saeki
- Department of Breast Oncology, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
973
|
Dittmer J, Leyh B. The impact of tumor stroma on drug response in breast cancer. Semin Cancer Biol 2014; 31:3-15. [PMID: 24912116 DOI: 10.1016/j.semcancer.2014.05.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
In the last two decades the breast cancer mortality rate has steadily declined, in part, due to the availability of better treatment options. However, drug resistance still remains a major challenge. Resistance can be an inherent feature of breast cancer cells, but can also arise from the tumor microenvironment. This review aims to focus on the modulatory effect of the tumor microenvironment on the differing response of breast cancer subtypes to targeted drugs and chemotherapy.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, University of Halle, Halle/Saale, Germany.
| | - Benjamin Leyh
- Clinic for Gynecology, University of Halle, Halle/Saale, Germany
| |
Collapse
|
974
|
Combination of intra-arterial therapies and sorafenib: is there a clinical benefit? Radiol Med 2014; 119:476-82. [PMID: 24894921 DOI: 10.1007/s11547-014-0413-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/13/2014] [Indexed: 12/21/2022]
Abstract
Intra-arterial therapies (IATs) play a major role in the treatment of patients with unresectable hepatocellular carcinoma. Over the last three decades, multiple loco-regional approaches such as transarterial chemoembolization or radioembolization were shown to effectively achieve local tumor control, offering significant survival benefits for selected patients with intermediate to advanced-stage disease (Barcelona Clinic Liver Cancer stage B and C). These therapies provide a dual benefit of safely delivering a highly cytotoxic payload directly to the tumor while reducing systemic toxicity. This capability maintained the advantage of IATs over conventional systemic chemotherapy. The introduction of sorafenib as a systemically applicable drug, the first of its kind to provide survival benefits by means of oral monotherapy, contributed to a paradigm change. The idea of combining this novel agent with IATs seemed intriguing, and a variety of national and international clinical trials were initiated to explore the potential benefits of this exciting new option. A plethora of preliminary data has been made available throughout the last 5 years, and the interpretation of the inhomogeneously designed protocols proved difficult. In this review, we will provide a brief state-of-the-art update on the most frequently used intra-arterial modalities and discuss the molecular mechanism, potential biomarkers as well as the safety profile of sorafenib. Furthermore, we will discuss the role of the sequence of administration in combined therapies. Finally, this review will examine the evidence for clinical outcomes for the combination of different IATs with sorafenib.
Collapse
|
975
|
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch:: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694. [PMID: 25097804 PMCID: PMC4091053 DOI: 10.4161/onci.28694] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses are natural or genetically modified viral species that selectively infect and kill neoplastic cells. Such an innate or exogenously conferred specificity has generated considerable interest around the possibility to employ oncolytic viruses as highly targeted agents that would mediate cancer cell-autonomous anticancer effects. Accumulating evidence, however, suggests that the therapeutic potential of oncolytic virotherapy is not a simple consequence of the cytopathic effect, but strongly relies on the induction of an endogenous immune response against transformed cells. In line with this notion, superior anticancer effects are being observed when oncolytic viruses are engineered to express (or co-administered with) immunostimulatory molecules. Although multiple studies have shown that oncolytic viruses are well tolerated by cancer patients, the full-blown therapeutic potential of oncolytic virotherapy, especially when implemented in the absence of immunostimulatory interventions, remains unclear. Here, we cover the latest advances in this active area of translational investigation, summarizing high-impact studies that have been published during the last 12 months and discussing clinical trials that have been initiated in the same period to assess the therapeutic potential of oncolytic virotherapy in oncological indications.
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Norma Bloy
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France ; INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Université Pierre et Marie Curie/Paris VI; Paris, France ; INSERM, UMRS1138; Paris, France ; Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | | | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France ; INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France ; Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
976
|
Cabibbo G, Tremosini S, Galati G, Mazza G, Gadaleta-Caldarola G, Lombardi G, Antonucci M, Sacco R. Transarterial chemoembolization and sorafenib in hepatocellular carcinoma. Expert Rev Anticancer Ther 2014; 14:831-45. [PMID: 24850249 DOI: 10.1586/14737140.2014.920694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transarterial chemoembolization (TACE) is considered as the standard therapy for patients with intermediate-stage hepatocellular carcinoma. However, given the high heterogeneity of this population, no common strategy or protocol standardization has been defined yet. In the last few years TACE treatment has been combined with sorafenib systemic therapy, reporting overall positive results both in terms of safety and efficacy. This systematic review presents and critically discusses the evidence available on the use of TACE in combination (concomitant or sequential) with sorafenib, focusing also on clinical trials currently ongoing to better define an optimal therapeutic strategy for this group of patients.
Collapse
Affiliation(s)
- Giuseppe Cabibbo
- Section of Gastroenterology, DIBIMIS, University of Palermo, 90127 Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
977
|
Jackson MW, Rusthoven CG, Fisher CM, Schefter TE. Clinical potential of bevacizumab in the treatment of metastatic and locally advanced cervical cancer: current evidence. Onco Targets Ther 2014; 7:751-9. [PMID: 24876784 PMCID: PMC4037327 DOI: 10.2147/ott.s49429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The addition of bevacizumab to established therapies for metastatic and locally advanced cervical cancer is an area of evolving research and a potential strategy toward improving historically suboptimal outcomes for women with advanced disease. Bevacizumab, when added to first-line chemotherapy, has now been shown to improve overall survival among women with metastatic cervical cancer, and recent Phase II data suggests it is safe and effective for patients with locally advanced disease treated with curative intent. Here we review the rationale and current evidence for bevacizumab in clinical practice, with an emphasis on the emerging role of bevacizumab in the treatment of metastatic and locally advanced cervical cancer.
Collapse
Affiliation(s)
- Matthew W Jackson
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| | - Christine M Fisher
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| | - Tracey E Schefter
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| |
Collapse
|
978
|
Perentes JY, Wang Y, Wang X, Abdelnour E, Gonzalez M, Decosterd L, Wagnieres G, van den Bergh H, Peters S, Ris HB, Krueger T. Low-Dose Vascular Photodynamic Therapy Decreases Tumor Interstitial Fluid Pressure, which Promotes Liposomal Doxorubicin Distribution in a Murine Sarcoma Metastasis Model. Transl Oncol 2014; 7:S1936-5233(14)00045-X. [PMID: 24836648 PMCID: PMC4145392 DOI: 10.1016/j.tranon.2014.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/24/2014] [Accepted: 03/26/2014] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION Solid tumors are known to have an abnormal vasculature that limits the distribution of chemotherapy. We have recently shown that tumor vessel modulation by low-dose photodynamic therapy (L-PDT) could improve the uptake of macromolecular chemotherapeutic agents such as liposomal doxorubicin (Liporubicin) administered subsequently. However, how this occurs is unknown. Convection, the main mechanism for drug transport between the intravascular and extravascular spaces, is mostly related to interstitial fluid pressure (IFP) and tumor blood flow (TBF). Here, we determined the changes of tumor and surrounding lung IFP and TBF before, during, and after vascular L-PDT. We also evaluated the effect of these changes on the distribution of Liporubicin administered intravenously (IV) in a lung sarcoma metastasis model. MATERIALS AND METHODS A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the lung of Fischer rats. Tumor/surrounding lung IFP and TBF changes induced by L-PDT were determined using the wick-in-needle technique and laser Doppler flowmetry, respectively. The spatial distribution of Liporubicin in tumor and lung tissues following IV drug administration was then assessed in L-PDT-pretreated animals and controls (no L-PDT) by epifluorescence microscopy. RESULTS L-PDT significantly decreased tumor but not lung IFP compared to controls (no L-PDT) without affecting TBF. These conditions were associated with a significant improvement in Liporubicin distribution in tumor tissues compared to controls (P < .05). DISCUSSION L-PDT specifically enhanced convection in blood vessels of tumor but not of normal lung tissue, which was associated with a significant improvement of Liporubicin distribution in tumors compared to controls.
Collapse
Affiliation(s)
- Jean Yannis Perentes
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Yabo Wang
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Xingyu Wang
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Etienne Abdelnour
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michel Gonzalez
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Laurent Decosterd
- Department of Clinical Pharmacology and Toxicology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Georges Wagnieres
- Laboratory of Organometallic and Medicinal Chemistry, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hubert van den Bergh
- Laboratory of Organometallic and Medicinal Chemistry, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Hans-Beat Ris
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thorsten Krueger
- Division of Thoracic and Vascular Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
979
|
Ueda S, Saeki T. Near-infrared optical imaging of cancer vascular remodeling after antiangiogenic therapy. Breast Cancer 2014; 21:776-9. [PMID: 24795075 DOI: 10.1007/s12282-014-0534-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/07/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Near-infrared diffuse optical imaging (DOSI) has been recently accepted as a method to assess tumor vascularity and oxygenation by measuring tissue hemoglobin (Hb) concentration. It is expected that DOSI could be used to monitor changes in vascularity after antiangiogenic therapy. METHODS A patient with advanced breast cancer was treated with single-agent bevacizumab followed by addition of weekly paclitaxel to it. DOSI was performed in the tumor-bearing breast and contralateral normal breast at baseline, 3, 6, 12, 24 h, and then daily for 1 week. Images of a tumor-to-normal ratio of tHb (rtHb) were constructed for identifying a tumor lesion. RESULTS Serial images of rtHb showed a tumor lesion which corresponded to a hot spot. The level of rtHb rapidly decreased within several hours after administration of single-agent bevacizumab and then persisted at low levels during treatment. From day 2, the value of rtHb gradually increased and peaked on day 5. CONCLUSION This trend may be explained considering sequential images of rtHb indicating the inhibition of angiogenesis due to antiangiogenic therapy. We conducted a clinical study using single-agent bevacizumab followed by neoadjuvant chemotherapy in primary breast cancer patients to understand vascular remodeling after antiangiogenic agent at very early time points using DOSI.
Collapse
Affiliation(s)
- Shigeto Ueda
- Department of Breast Oncology, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan,
| | | |
Collapse
|
980
|
Kitahara S, Suzuki Y, Morishima M, Yoshii A, Kikuta S, Shimizu K, Morikawa S, Sato Y, Ezaki T. Vasohibin-2 modulates tumor onset in the gastrointestinal tract by normalizing tumor angiogenesis. Mol Cancer 2014; 13:99. [PMID: 24885408 PMCID: PMC4113181 DOI: 10.1186/1476-4598-13-99] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/22/2014] [Indexed: 01/31/2023] Open
Abstract
Background Vasohibin-2 (VASH2) has been identified as an endogenous and vascular endothelial growth factor (VEGF)-independent angiogenic factor that is highly expressed in tumor cells. In the present study, we aimed to determine whether pre-existing vascular changes can be used to predict tumor transformation as benign or malignant. We sought to characterize microvascular changes and tumor development in the intestinal tract of ApcMin/+ mice and ApcMin/+/Vash2-/- mice. Methods ApcMin/+ mice provide a unique orthotopic model for the development of spontaneous adenomatous polyposis and subsequent carcinomas, a phenomenon termed the adenoma-carcinoma sequence. ApcMin/+ mice were mated with Vash2-/- mice with a mixed C57BL/6 background and the resulting pups were screened for the Min mutation and for the Vash2-/- gene by PCR. Intestinal tumors from ApcMin/+ mice and ApcMin/+/Vash2-/- mice were removed and either frozen or epon-embedded for subsequent analyses. For 3-dimensional imaging using confocal laser-scanning microscopy and transmission electron microscopy, cryosections were made, and immunofluorescent staining for various markers was performed. Results We found that structural abnormalities in tumor vessels from benign tumors resembled those in malignant tumors. In addition, a novel angiogenic factor, vasohibin-2 (VASH2) protein, was detected around tumor blood vessels in late-stage adenomas and adenocarcinomas, but was absent from early-stage adenomas in ApcMin/+ mice. Tumors used to examine endogenous VASH2 (derived from CMT93 colon carcinomas) were less vascularized in Vash2-/- mice and were more regular than those seen in wild-type (WT) mice. In addition, tumors in Vash2-/- mice were smaller than those in WT mice. Furthermore, cross-breeding of mice homozygous for a deletion of Vash2 with mice heterozygous for the APC mutation resulted in animals that showed a significant decrease in the number of polyps in the small intestine. Conclusion We propose that VASH2 may modulate the onset of tumors in the gastrointestinal tract by regulating tumor angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taichi Ezaki
- Department of Anatomy and Developmental Biology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
981
|
Arrieta O, Blake M, de la Mata-Moya MD, Corona F, Turcott J, Orta D, Alexander-Alatorre J, Gallardo-Rincón D. Phase II study. Concurrent chemotherapy and radiotherapy with nitroglycerin in locally advanced non-small cell lung cancer. Radiother Oncol 2014; 111:311-5. [DOI: 10.1016/j.radonc.2014.01.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/25/2022]
|
982
|
Oliveira de Oliveira LB, Faccin Bampi V, Ferreira Gomes C, Braga da Silva JL, Encarnação Fiala Rechsteiner SM. Morphological characterization of sprouting and intussusceptive angiogenesis by SEM in oral squamous cell carcinoma. SCANNING 2014; 36:293-300. [PMID: 23801220 DOI: 10.1002/sca.21104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
The word angiogenesis indicates the formation of new vascular segments from existing vessels such as capillaries and venules. Blood vessel formation in tumors is the result of rapid, disorganized vascular growth through two distinct mechanisms: sprouting and intussusceptive angiogenesis. The objective of this study was to elucidate the morphological aspects of these two vascular growth mechanisms in oral squamous cell carcinoma induced in hamster buccal pouch. Eight Syrian golden hamsters had their right buccal pouch treated with DMBA 0.5% and 10% carbamide peroxide for 90 days in order to produce squamous cell carcinoma in this site. Next, buccal pouches of the animals were submitted to the vascular corrosion technique and then analyzed by scanning electron microscopy. The vascular figures of sprouts were observed in the entire vascular network of the buccal pouches, as opposed to the intussusceptive angiogenesis that was predominantly observed in the sub-epithelial network. It was possible to differentiate the figures of sprouts from artifacts by the analysis of the blind ending of these structures. Intussusceptive angiogenesis was identified by the presence of holes trespassing the lumen of the capillaries. Vascular expansion occurred through intussusceptive angiogenesis in two ways: by the fusion of the pillars to form a new capillary and, by increasing the girth of the pillar to form meshes. The method of corrosion associated with scanning electron microscopy proved to be an excellent tool to study the two types of angiogenesis in oral squamous cell carcinoma in the hamster buccal pouch.
Collapse
|
983
|
Hayano K, Lee SH, Yoshida H, Zhu AX, Sahani DV. Fractal analysis of CT perfusion images for evaluation of antiangiogenic treatment and survival in hepatocellular carcinoma. Acad Radiol 2014; 21:654-660. [PMID: 24703479 DOI: 10.1016/j.acra.2014.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 12/18/2022]
Abstract
RATIONALE AND OBJECTIVES Tumor vascular heterogeneity is a recognized biomarker for cancer progression. Our purpose was to assess the tumor perfusion heterogeneity during antiangiogenic therapy in hepatocellular carcinoma (HCC) by means of fractal analysis on computed tomography perfusion (CTP) images. MATERIALS AND METHODS Twenty-two patients (15 men and 7 women; mean age: 61.5 years) with advanced HCC underwent CTP at baseline and 2 weeks after administration of bevacizumab. Perfusion maps of blood flow (BF) were generated by the adiabatic approximation to the tissue homogeneity model with a motion registration, and fractal analyses were applied to gray-scale perfusion maps using a plugin tool on ImageJ software (NIH, Bethesda, MD). A differential box-counting method was applied, and the fractal dimension (FD) was calculated as a heterogeneity parameter. RESULTS Patients were grouped into favorable progression-free survival (PFS) group (PFS>6 months, 11 patients) and unfavorable PFS group (PFS≤6, 11 patients). After 2 weeks of antiangiogenic therapy, the BF decreased significantly (P < .0001), whereas the FD showed no significant change (P = .69). The percent change of the FD in tumor BF was significantly different between patients with favorable PFS and those without (-2.52% vs. 3.72%, P = .01), whereas the change of tumor BF showed no significant difference between them (-28.93% vs. -25.47%, P = .64). In Kaplan-Meier analysis, patients with greater reduction in the percent change of FD and lower baseline FD in tumor BF showed significantly longer overall survival (P = .009, P = .005). CONCLUSIONS Fractal analysis of tumor BF can be a biomarker for antiangiogenic therapy.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Bevacizumab
- Carcinoma, Hepatocellular/diagnostic imaging
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/mortality
- Female
- Fractals
- Humans
- Liver Neoplasms/diagnostic imaging
- Liver Neoplasms/drug therapy
- Liver Neoplasms/mortality
- Male
- Middle Aged
- Neovascularization, Pathologic/diagnostic imaging
- Neovascularization, Pathologic/drug therapy
- Pattern Recognition, Automated/methods
- Perfusion Imaging/methods
- Prognosis
- Radiographic Image Interpretation, Computer-Assisted/methods
- Reproducibility of Results
- Sensitivity and Specificity
- Survival Analysis
- Survival Rate
- Tomography, X-Ray Computed/methods
- Treatment Outcome
Collapse
Affiliation(s)
- Koichi Hayano
- Department of Radiology, Division of Abdominal Imaging and Intervention, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114.
| | - Sang Ho Lee
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hiroyuki Yoshida
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew X Zhu
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Dushyant V Sahani
- Department of Radiology, Division of Abdominal Imaging and Intervention, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114
| |
Collapse
|
984
|
Belani CP, Yamamoto N, Bondarenko IM, Poltoratskiy A, Novello S, Tang J, Bycott P, Niethammer AG, Ingrosso A, Kim S, Scagliotti GV. Randomized phase II study of pemetrexed/cisplatin with or without axitinib for non-squamous non-small-cell lung cancer. BMC Cancer 2014; 14:290. [PMID: 24766732 PMCID: PMC4017965 DOI: 10.1186/1471-2407-14-290] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/17/2014] [Indexed: 12/21/2022] Open
Abstract
Background The efficacy and safety of axitinib, a potent and selective second-generation inhibitor of vascular endothelial growth factor receptors 1, 2, and 3 in combination with pemetrexed and cisplatin was evaluated in patients with advanced non-squamous non–small-cell lung cancer (NSCLC). Methods Overall, 170 patients were randomly assigned to receive axitinib at a starting dose of 5-mg twice daily continuously plus pemetrexed 500 mg/m2 and cisplatin 75 mg/m2 on day 1 of up to six 21-day cycles (arm I); axitinib on days 2 through 19 of each cycle plus pemetrexed/cisplatin (arm II); or pemetrexed/cisplatin alone (arm III). The primary endpoint was progression-free survival (PFS). Results Median PFS was 8.0, 7.9, and 7.1 months in arms I, II, and III, respectively (hazard ratio: arms I vs. III, 0.89 [P = 0.36] and arms II vs. III, 1.02 [P = 0.54]). Median overall survival was 17.0 months (arm I), 14.7 months (arm II), and 15.9 months (arm III). Objective response rates (ORRs) for axitinib-containing arms were 45.5% (arm I) and 39.7% (arm II) compared with 26.3% for pemetrexed/cisplatin alone (arm III). Gastrointestinal disorders and fatigue were frequently reported across all treatment arms. The most common all-causality grade ≥3 adverse events were hypertension in axitinib-containing arms (20% and 17%, arms I and II, respectively) and fatigue with pemetrexed/cisplatin alone (16%). Conclusion Axitinib in combination with pemetrexed/cisplatin was generally well tolerated. Axitinib combinations resulted in non-significant differences in PFS and numerically higher ORR compared with chemotherapy alone in advanced NSCLC. Trial registration ClinicalTrials.gov: NCT00768755 (October 7, 2008).
Collapse
Affiliation(s)
- Chandra P Belani
- Penn State Milton S, Hershey Medical Center, Penn State Hershey Cancer Institute, Hershey, PA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
985
|
Heylman C, Sobrino A, Shirure VS, Hughes CC, George SC. A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening. Exp Biol Med (Maywood) 2014; 239:1240-54. [PMID: 24740872 DOI: 10.1177/1535370214525295] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality around the world. Despite some success, traditional anticancer drugs developed to reduce tumor growth face important limitations primarily due to undesirable bone marrow and cardiovascular toxicity. Many drugs fail in clinical development after showing promise in preclinical trials, suggesting that the available in vitro and animal models are poor predictors of drug efficacy and toxicity in humans. Thus, novel models that more accurately mimic the biology of human organs are necessary for high-throughput drug screening. Three-dimensional (3D) microphysiological systems can utilize induced pluripotent stem cell technology, tissue engineering, and microfabrication techniques to develop tissue models of human tumors, cardiac muscle, and bone marrow on the order of 1 mm(3) in size. A functional network of human capillaries and microvessels to overcome diffusion limitations in nutrient delivery and waste removal can also nourish the 3D microphysiological tissues. Importantly, the 3D microphysiological tissues are grown on optically clear platforms that offer non-invasive and non-destructive image acquisition with subcellular resolution in real time. Such systems offer a new paradigm for high-throughput drug screening and will significantly improve the efficiency of identifying new drugs for cancer treatment that minimize cardiac and bone marrow toxicity.
Collapse
Affiliation(s)
- Christopher Heylman
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92697, USA
| | - Agua Sobrino
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92697, USA
| | - Christopher Cw Hughes
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92697, USA Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92697, USA Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
986
|
Cebulla J, Kim E, Rhie K, Zhang J, Pathak AP. Multiscale and multi-modality visualization of angiogenesis in a human breast cancer model. Angiogenesis 2014; 17:695-709. [PMID: 24719185 DOI: 10.1007/s10456-014-9429-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
Angiogenesis in breast cancer helps fulfill the metabolic demands of the progressing tumor and plays a critical role in tumor metastasis. Therefore, various imaging modalities have been used to characterize tumor angiogenesis. While micro-CT (μCT) is a powerful tool for analyzing the tumor microvascular architecture at micron-scale resolution, magnetic resonance imaging (MRI) with its sub-millimeter resolution is useful for obtaining in vivo vascular data (e.g. tumor blood volume and vessel size index). However, integration of these microscopic and macroscopic angiogenesis data across spatial resolutions remains challenging. Here we demonstrate the feasibility of 'multiscale' angiogenesis imaging in a human breast cancer model, wherein we bridge the resolution gap between ex vivo μCT and in vivo MRI using intermediate resolution ex vivo MR microscopy (μMRI). To achieve this integration, we developed suitable vessel segmentation techniques for the ex vivo imaging data and co-registered the vascular data from all three imaging modalities. We showcase two applications of this multiscale, multi-modality imaging approach: (1) creation of co-registered maps of vascular volume from three independent imaging modalities, and (2) visualization of differences in tumor vasculature between viable and necrotic tumor regions by integrating μCT vascular data with tumor cellularity data obtained using diffusion-weighted MRI. Collectively, these results demonstrate the utility of 'mesoscopic' resolution μMRI for integrating macroscopic in vivo MRI data and microscopic μCT data. Although focused on the breast tumor xenograft vasculature, our imaging platform could be extended to include additional data types for a detailed characterization of the tumor microenvironment and computational systems biology applications.
Collapse
Affiliation(s)
- Jana Cebulla
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | |
Collapse
|
987
|
Kelley LC, Lohmer LL, Hagedorn EJ, Sherwood DR. Traversing the basement membrane in vivo: a diversity of strategies. ACTA ACUST UNITED AC 2014; 204:291-302. [PMID: 24493586 PMCID: PMC3912525 DOI: 10.1083/jcb.201311112] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The basement membrane is a dense, highly cross-linked, sheet-like extracellular matrix that underlies all epithelia and endothelia in multicellular animals. During development, leukocyte trafficking, and metastatic disease, cells cross the basement membrane to disperse and enter new tissues. Based largely on in vitro studies, cells have been thought to use proteases to dissolve and traverse this formidable obstacle. Surprisingly, recent in vivo studies have uncovered a remarkably diverse range of cellular- and tissue-level strategies beyond proteolysis that cells use to navigate through the basement membrane. These fascinating and unexpected mechanisms have increased our understanding of how cells cross this matrix barrier in physiological and disease settings.
Collapse
Affiliation(s)
- Laura C Kelley
- Department of Biology, Duke University, Durham, NC 27708
| | | | | | | |
Collapse
|
988
|
Young EWK. Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol (Camb) 2014; 5:1096-109. [PMID: 23799587 DOI: 10.1039/c3ib40076j] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transition to increasingly sophisticated microfluidic systems has led to the emergence of "organ-on-chip" technology that can faithfully recapitulate organ-level function. Given the rapid progress at the interface between microfluidics and cell biology, there is need to provide a focused evaluation of the state-of-the-art in microfluidic systems for cancer research to advance development, accelerate discovery of novel insights, and facilitate cooperation between engineers, biologists and oncologists in the clinic. Here, we provide a focused review of microfluidics technology from cells- and tissues- to organs-on-chips with application toward studying the tumor microenvironment. Key aspects of the tumor microenvironment including angiogenesis, hypoxia, biochemical gradients, tumor-stromal interactions, and the extracellular matrix are summarized for both solid tumors and non-solid hematologic malignancies. An overview of microfluidic systems designed specifically to answer questions related to different aspects of the tumor microenvironment is provided, followed by an examination of how these systems offer new opportunities to study outstanding challenges related to the major cancer hallmarks. Challenges also remain for microfluidics engineers, but it is hoped that cooperation between engineers and biologists at the intersection of their respective fields will lead to significant impact on the utility of organs-on-chips in cancer research.
Collapse
Affiliation(s)
- Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, MC314B, Toronto, ON M5S 3G8, Canada.
| |
Collapse
|
989
|
Holley AK, Miao L, St Clair DK, St Clair WH. Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxid Redox Signal 2014; 20:1567-89. [PMID: 24094070 PMCID: PMC3942704 DOI: 10.1089/ars.2012.5000] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. RECENT ADVANCES ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. CRITICAL ISSUES Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. FUTURE DIRECTIONS Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation.
Collapse
Affiliation(s)
- Aaron K Holley
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | |
Collapse
|
990
|
Seo BR, DelNero P, Fischbach C. In vitro models of tumor vessels and matrix: engineering approaches to investigate transport limitations and drug delivery in cancer. Adv Drug Deliv Rev 2014; 69-70:205-216. [PMID: 24309015 DOI: 10.1016/j.addr.2013.11.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/14/2013] [Accepted: 11/24/2013] [Indexed: 12/12/2022]
Abstract
Tumor-stroma interactions have emerged as critical determinants of drug efficacy. However, the underlying biological and physicochemical mechanisms by which the microenvironment regulates therapeutic response remain unclear, due in part to a lack of physiologically relevant in vitro platforms to accurately interrogate tissue-level phenomena. Tissue-engineered tumor models are beginning to address this shortcoming. By allowing selective incorporation of microenvironmental complexity, these platforms afford unique access to tumor-associated signaling and transport dynamics. This review will focus on engineering approaches to study drug delivery as a function of tumor-associated changes of the vasculature and extracellular matrix (ECM). First, we review current biological understanding of these components and discuss their impact on transport processes. Then, we evaluate existing microfluidic, tissue engineering, and materials science strategies to recapitulate vascular and ECM characteristics of tumors, and finish by outlining challenges and future directions of the field that may ultimately improve anti-cancer therapies.
Collapse
|
991
|
Zeng J, Yuan D, Liu H, Song Y. [Vascular normalization and cancer immunotherapy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:273-6. [PMID: 24667268 PMCID: PMC6019376 DOI: 10.3779/j.issn.1009-3419.2014.03.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
免疫治疗是一种颇有前景的抗肿瘤策略。然而,肿瘤中的免疫抑制微环境阻碍了免疫治疗的发展。异常肿瘤血管造成的缺氧,使免疫细胞趋向免疫抑制。并且异常血管通过分泌生长因子及细胞因子,改变免疫细胞的增殖、分化及功能,最终形成免疫抑制的微环境。因此,有效的利用血管生成及肿瘤免疫之间的相互作用,适当的抑制血管形成,促进肿瘤血管正常化,可以改变肿瘤的免疫抑制微环境,成为改善免疫治疗的新策略。现就血管正常化与肿瘤免疫的关系,及二者的联合治疗进行综述。。
Collapse
Affiliation(s)
- Junli Zeng
- Graduate School, Nanfang Medical University, 510515 Guangzhou, China;Department of Respiratory Medicine, Nanjing General Hospital of Nanjing Command, Nanjing 210002, China
| | - Dongmei Yuan
- Department of Respiratory Medicine, Nanjing General Hospital of Nanjing Command, Nanjing 210002, China
| | - Hongbing Liu
- Department of Respiratory Medicine, Nanjing General Hospital of Nanjing Command, Nanjing 210002, China
| | - Yong Song
- Department of Respiratory Medicine, Nanjing General Hospital of Nanjing Command, Nanjing 210002, China
| |
Collapse
|
992
|
Ciocâlteu A, Săftoiu A, Cârţână T, Gruionu LG, Pirici D, Georgescu CC, Georgescu CV, Gheonea DI, Gruionu G. Evaluation of new morphometric parameters of neoangiogenesis in human colorectal cancer using confocal laser endomicroscopy (CLE) and targeted panendothelial markers. PLoS One 2014; 9:e91084. [PMID: 24614504 PMCID: PMC3948726 DOI: 10.1371/journal.pone.0091084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/07/2014] [Indexed: 12/17/2022] Open
Abstract
The tumor microcirculation is characterized by an abnormal vascular network with dilated, tortuous and saccular vessels. Therefore, imaging the tumor vasculature and determining its morphometric characteristics represent a critical goal for optimizing the cancer treatment that targets the blood vessels (i.e. antiangiogenesis therapy). The aim of this study was to evaluate new vascular morphometric parameters in colorectal cancer, difficult to achieve through conventional immunohistochemistry, by using the confocal laser endomicroscopy method. Fresh biopsies from tumor and normal tissue were collected during colonoscopy from five patients with T3 colorectal carcinoma without metastasis and were marked with fluorescently labeled anti-CD31 antibodies. A series of optical slices spanning 250 µm inside the tissue were immediately collected for each sample using a confocal laser endomicroscope. All measurements were expressed as the mean ± standard error. The mean diameter of tumor vessels was significantly larger than the normal vessels (9.46±0.4 µm vs. 7.60±0.3 µm, p = 0.0166). The vessel density was also significantly higher in the cancer vs. normal tissue samples (5541.05±262.81 vs. 3755.79±194.96 vessels/mm3, p = 0.0006). These results were confirmed by immunohistochemistry. In addition, the tortuosity index and vessel lengths were not significantly different (1.05±0.016 and 28.30±3.27 µm in normal tissue, vs. 1.07±0.008 and 26.49±3.18 µm in tumor tissue respectively, p = 0.5357 and p = 0.7033). The daughter/mother ratio (ratio of the sum of the squares of daughter vessel radii over the square of the mother vessel radius) was 1.15±0.09 in normal tissue, and 1.21±0.08 in tumor tissue (p = 0.6531). The confocal laser endomicroscopy is feasible for measuring more vascular parameters from fresh tumor biopsies than conventional immunohistochemistry alone. Provided new contrast agents will be clinically available, future in vivo use of CLE could lead to identification of novel biomarkers based on the morphometric characteristics of tumor vasculature.
Collapse
Affiliation(s)
- Adriana Ciocâlteu
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Adrian Săftoiu
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Tatiana Cârţână
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Lucian Gheorghe Gruionu
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Department of Mechanical Engineering, University of Craiova, Craiova, Romania
| | - Daniel Pirici
- Department of Histology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Corneliu Cristian Georgescu
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Department of Anesthesiology and Intensive Care, Emergency County Hospital, Craiova, Romania
| | | | - Dan Ionuţ Gheonea
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Gabriel Gruionu
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Edwin L. Steele Laboratory of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
993
|
Komar-Stossel C, Gross E, Dery E, Corchia N, Meir K, Fried I, Abramovitch R. TL-118 and gemcitabine drug combination display therapeutic efficacy in a MYCN amplified orthotopic neuroblastoma murine model--evaluation by MRI. PLoS One 2014; 9:e90224. [PMID: 24603724 PMCID: PMC3946152 DOI: 10.1371/journal.pone.0090224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/31/2014] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common extra-cranial pediatric solid tumor with up to 50% of NB patients classified as having high-risk disease with poor long-term survival rates. The poor clinical outcome and aggressiveness of high-risk NB strongly correlates with enhanced angiogenesis, suggesting anti-angiogenic agents as attractive additions to the currently insufficient therapeutics. TL-118, a novel drug combination has been recently developed to inhibit tumor angiogenesis. In the current study, we used the SK-N-BE (2) cell line to generate orthotopic NB tumors in order to study the combinational therapeutic potential of TL-118 with either Gemcitabine (40 mg/kg; IP) or Retinoic acid (40 mg/kg; IP). We show that TL-118 treatment (n = 9) significantly inhibited tumor growth, increased cell apoptosis, reduced proliferation and extended mouse survival. Moreover, the reciprocal effect of TL-118 and Gemcitabine treatment (n = 10) demonstrated improved anti-tumor activity. The synergistic effect of these drugs in combination was more effective than either TL or Gemcitabine alone (n = 9), via significantly reduced cell proliferation (p<0.005), increased apoptosis (p<0.05) and significantly prolonged survival (2-fold; p<0.00001). To conclude, we demonstrate that the novel drug combination TL-118 has the ability to suppress the growth of an aggressive NB tumor. The promising results with TL-118 in this aggressive animal model may imply that this drug combination has therapeutic potential in the clinical setting.
Collapse
Affiliation(s)
- Chani Komar-Stossel
- The Goldyne Savad Institute for Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; MRI/MRS lab HBRC, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Eitan Gross
- Pediatric Surgery, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Elia Dery
- The Goldyne Savad Institute for Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; MRI/MRS lab HBRC, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Nathalie Corchia
- The Goldyne Savad Institute for Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; MRI/MRS lab HBRC, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Karen Meir
- Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Iris Fried
- Pediatric Hemato-Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Rinat Abramovitch
- The Goldyne Savad Institute for Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel; MRI/MRS lab HBRC, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
994
|
Agoulnik SI, Kawano S, Taylor N, Oestreicher J, Matsui J, Chow J, Oda Y, Funahashi Y. Eribulin mesylate exerts specific gene expression changes in pericytes and shortens pericyte-driven capillary network in vitro. Vasc Cell 2014; 6:3. [PMID: 24581301 PMCID: PMC4016419 DOI: 10.1186/2045-824x-6-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/24/2014] [Indexed: 02/06/2023] Open
Abstract
Background Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B. Eribulin is a tubulin-binding drug and approved in many countries worldwide for treatment of certain patients with advanced breast cancer. Here we investigated antiproliferative and antiangiogenic effects of eribulin on vascular cells, human umbilical vein endothelial cells (HUVECs) and human brain vascular pericytes (HBVPs), in vitro in comparison with another tubulin-binding drug, paclitaxel. Methods HUVECs and HBVPs were treated with either eribulin or paclitaxel and their antiproliferative effects were evaluated. Global gene expression profiling changes caused by drug treatments were studied using Affymetrix microarray platform and custom TaqMan Low Density Cards. To examine effects of the drugs on pericyte-driven in vitro angiogenesis, we compared lengths of capillary networks in co-cultures of HUVECs with HBVPs. Results Both eribulin and paclitaxel showed potent activities in in vitro proliferation of HUVECs and HBVPs, with the half-maximal inhibitory concentrations (IC50) in low- to sub-nmol/L concentrations. When gene expression changes were assessed in HUVECs, the majority of affected genes overlapped for both treatments (59%), while in HBVPs, altered gene signatures were drug-dependent and the overlap was limited to just 12%. In HBVPs, eribulin selectively affected 11 pathways (p < 0.01) such as Cell Cycle Control of Chromosomal Replication. In contrast, paclitaxel was tended to regulate 27 pathways such as PI3K/AKT. Only 5 pathways were commonly affected by both treatments. In in vitro pericyte-driven angiogenesis model, paclitaxel showed limited activity while eribulin shortened the formed capillary networks of HUVECs driven by HBVPs at low nmol/L concentrations starting at day 3 after treatments. Conclusions Our findings suggest that pericytes, but not endothelial cells, responded differently, to two mechanistically-distinct tubulin-binding drugs, eribulin and paclitaxel. While eribulin and paclitaxel induced similar changes in gene expression in endothelial cells, in pericytes their altered gene expression was unique and drug-specific. In the functional endothelial-pericyte co-culture assay, eribulin, but not paclitaxel showed strong efficacy not only as a cytotoxic drug but also as a potent antivascular agent that affected pericyte-driven in vitro angiogenesis.
Collapse
Affiliation(s)
| | - Satoshi Kawano
- Eisai Co., Ltd, Tokodai 5-1-3, Tsukuba, Ibaraki 300-2635, Japan
| | - Noel Taylor
- Eisai Inc, 4 Corporate Drive, Andover, MA 01810, USA
| | - Judith Oestreicher
- Eisai Inc, 4 Corporate Drive, Andover, MA 01810, USA.,Present address: Infinity Pharmaceuticals, 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Junji Matsui
- Eisai Co., Ltd, Tokodai 5-1-3, Tsukuba, Ibaraki 300-2635, Japan
| | - Jesse Chow
- Eisai Inc, 4 Corporate Drive, Andover, MA 01810, USA
| | - Yoshiya Oda
- Eisai Inc, 4 Corporate Drive, Andover, MA 01810, USA
| | | |
Collapse
|
995
|
Brooks SA, Brannon AR, Parker JS, Fisher JC, Sen O, Kattan MW, Hakimi AA, Hsieh JJ, Choueiri TK, Tamboli P, Maranchie JK, Hinds P, Miller CR, Nielsen ME, Rathmell WK. ClearCode34: A prognostic risk predictor for localized clear cell renal cell carcinoma. Eur Urol 2014; 66:77-84. [PMID: 24613583 DOI: 10.1016/j.eururo.2014.02.035] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/13/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Gene expression signatures have proven to be useful tools in many cancers to identify distinct subtypes of disease based on molecular features that drive pathogenesis, and to aid in predicting clinical outcomes. However, there are no current signatures for kidney cancer that are applicable in a clinical setting. OBJECTIVE To generate a signature biomarker for the clear cell renal cell carcinoma (ccRCC) good risk (ccA) and poor risk (ccB) subtype classification that could be readily applied to clinical samples to develop an integrated model for biologically defined risk stratification. DESIGN, SETTING, AND PARTICIPANTS A set of 72 ccRCC sample standards was used to develop a 34-gene classifier (ClearCode34) for assigning ccRCC tumors to subtypes. The classifier was applied to RNA-sequencing data from 380 nonmetastatic ccRCC samples from the Cancer Genome Atlas (TCGA), and to 157 formalin-fixed clinical samples collected at the University of North Carolina. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Kaplan-Meier analyses were performed on the individual cohorts to calculate recurrence-free survival (RFS), cancer-specific survival (CSS), and overall survival (OS). Training and test sets were randomly selected from the combined cohorts to assemble a risk prediction model for disease recurrence. RESULTS AND LIMITATIONS The subtypes were significantly associated with RFS (p<0.01), CSS (p<0.01), and OS (p<0.01). Hazard ratios for subtype classification were similar to those of stage and grade in association with recurrence risk, and remained significant in multivariate analyses. An integrated molecular/clinical model for RFS to assign patients to risk groups was able to accurately predict CSS above established, clinical risk-prediction algorithms. CONCLUSIONS The ClearCode34-based model provides prognostic stratification that improves upon established algorithms to assess risk for recurrence and death for nonmetastatic ccRCC patients. PATIENT SUMMARY We developed a 34-gene subtype predictor to classify clear cell renal cell carcinoma tumors according to ccA or ccB subtypes and built a subtype-inclusive model to analyze patient survival outcomes.
Collapse
Affiliation(s)
| | - A Rose Brannon
- UNC Lineberger Cancer Center, Chapel Hill, NC, USA; Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Oishee Sen
- UNC Lineberger Cancer Center, Chapel Hill, NC, USA
| | - Michael W Kattan
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - A Ari Hakimi
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - James J Hsieh
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Toni K Choueiri
- Department of Medical Oncology and Kidney Cancer Center, Dana Farber Cancer Institute, Boston, MA, USA
| | - Pheroze Tamboli
- Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jodi K Maranchie
- Department of Urologic Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Peter Hinds
- Department of Urologic Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - C Ryan Miller
- UNC Lineberger Cancer Center, Chapel Hill, NC, USA; Department of Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew E Nielsen
- UNC Lineberger Cancer Center, Chapel Hill, NC, USA; Department of Urology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - W Kimryn Rathmell
- UNC Lineberger Cancer Center, Chapel Hill, NC, USA; Department of Medicine, Division of Hematology and Oncology, and Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
996
|
Thurber GM, Reiner T, Yang KS, Kohler RH, Weissleder R. Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors. Mol Cancer Ther 2014; 13:986-95. [PMID: 24552776 DOI: 10.1158/1535-7163.mct-13-0801] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging, given the complex tumor microenvironment including intra- and intertumor heterogeneity. The difficulty in studying this distribution is even more significant for small-molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small-molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model.
Collapse
Affiliation(s)
- Greg M Thurber
- Authors' Affiliations: Center for Systems Biology, Massachusetts General Hospital; and Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
997
|
Ashton JR, Clark DP, Moding EJ, Ghaghada K, Kirsch DG, West JL, Badea CT. Dual-energy micro-CT functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: a validation study. PLoS One 2014; 9:e88129. [PMID: 24520351 PMCID: PMC3919743 DOI: 10.1371/journal.pone.0088129] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Purpose To provide additional functional information for tumor characterization, we investigated the use of dual-energy computed tomography for imaging murine lung tumors. Tumor blood volume and vascular permeability were quantified using gold and iodine nanoparticles. This approach was compared with a single contrast agent/single-energy CT method. Ex vivo validation studies were performed to demonstrate the accuracy of in vivo contrast agent quantification by CT. Methods Primary lung tumors were generated in LSL-KrasG12D; p53FL/FL mice. Gold nanoparticles were injected, followed by iodine nanoparticles two days later. The gold accumulated in tumors, while the iodine provided intravascular contrast. Three dual-energy CT scans were performed–two for the single contrast agent method and one for the dual contrast agent method. Gold and iodine concentrations in each scan were calculated using a dual-energy decomposition. For each method, the tumor fractional blood volume was calculated based on iodine concentration, and tumor vascular permeability was estimated based on accumulated gold concentration. For validation, the CT-derived measurements were compared with histology and inductively-coupled plasma optical emission spectroscopy measurements of gold concentrations in tissues. Results Dual-energy CT enabled in vivo separation of gold and iodine contrast agents and showed uptake of gold nanoparticles in the spleen, liver, and tumors. The tumor fractional blood volume measurements determined from the two imaging methods were in agreement, and a high correlation (R2 = 0.81) was found between measured fractional blood volume and histology-derived microvascular density. Vascular permeability measurements obtained from the two imaging methods agreed well with ex vivo measurements. Conclusions Dual-energy CT using two types of nanoparticles is equivalent to the single nanoparticle method, but allows for measurement of fractional blood volume and permeability with a single scan. As confirmed by ex vivo methods, CT-derived nanoparticle concentrations are accurate. This method could play an important role in lung tumor characterization by CT.
Collapse
Affiliation(s)
- Jeffrey R. Ashton
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Darin P. Clark
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Everett J. Moding
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ketan Ghaghada
- The Edward B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - David G. Kirsch
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Cristian T. Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
998
|
Wu Y, Zheng Y, Shen Z, Ge W, Xie Y, Li C. Endostar combined with radiotherapy increases radiation sensitivity by decreasing the expression of TGF-β1, HIF-1α and bFGF. Exp Ther Med 2014; 7:911-916. [PMID: 24669250 PMCID: PMC3965127 DOI: 10.3892/etm.2014.1526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 01/16/2014] [Indexed: 01/22/2023] Open
Abstract
The aim of the present study was to determine how Endostar inhibits tumor angiogenesis and increases radiation sensitivity when combined with radiotherapy. In vitro studies were conducted to analyze the expression levels of transforming growth factor-β1 (TGF-β1), hypoxia-inducible factor 1 (HIF-1α) and basic fibroblast growth factor (bFGF) in lung adenocarcinoma A549 cells, using the antiangiogenesis drug Endostar combined with radiotherapy. In addition, lung adenocarcinoma A549 cell apoptosis was detected via Hoechst staining. The combination of Endostar with radiotherapy was investigated and the results indicated that this combination significantly inhibited tumor cell proliferation and TGF-β1, HIF-1α and bFGF expression. Changes in gene expression were found to promote apoptosis, thus, enhancing the inhibition of tumor angiogenesis and ultimately inhibiting tumor cell growth, invasion and metastasis.
Collapse
Affiliation(s)
- Yaogui Wu
- Department of Oncology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Yongfa Zheng
- Department of Oncology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Zhixiang Shen
- Department of Gastroenterology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Wei Ge
- Department of Oncology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Yishan Xie
- Department of Oncology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Changhu Li
- Department of Oncology, Wuhan University, Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
999
|
Maeda A, DaCosta RS. Optimization of the dorsal skinfold window chamber model and multi-parametric characterization of tumor-associated vasculature. INTRAVITAL 2014; 3:e27935. [PMID: 28243506 PMCID: PMC5312716 DOI: 10.4161/intv.27935] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 11/21/2022]
Abstract
The dorsal skinfold window chamber (DSWC) model is a unique tool that enables analysis of various aspects of tumor biology and therapeutic response. Although the protocol for the murine DSWC model is standardized, certain tumors fail to grow or require a particular environment to promote growth. Given such limitations, we optimized the DSWC model for a slow-growing tumor that regresses spontaneously in the standard protocol. We further characterized the vascular network in the tumor model compared with that of non-tumor-bearing mice and observed significant differences in multiple parameters related to vascular structure and function.
Collapse
Affiliation(s)
- Azusa Maeda
- Ontario Cancer Institute; University Health Network; Toronto, ON Canada; Department of Medical Biophysics; University of Toronto; Toronto, ON Canada
| | - Ralph S DaCosta
- Ontario Cancer Institute; University Health Network; Toronto, ON Canada; Department of Medical Biophysics; University of Toronto; Toronto, ON Canada
| |
Collapse
|
1000
|
Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells. Neoplasia 2014; 15:815-25. [PMID: 23814493 DOI: 10.1593/neo.13550] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/29/2022] Open
Abstract
The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD) motif targeting endothelial cells (ECs). We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2(+) perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.
Collapse
|