99951
|
Polke M, Jacobsen ID. A Flow-assay for Farnesol Removal from Adherent Candida albicans Cultures. Bio Protoc 2017; 7:e2562. [PMID: 34595247 DOI: 10.21769/bioprotoc.2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/29/2017] [Accepted: 09/04/2017] [Indexed: 11/02/2022] Open
Abstract
Here, we describe a protocol for a continuous flow system for C. albicans cultures growing adherent to a plastic surface. The protocol was adapted from a previous method established to simulate blood flow on endothelial cells (Wilson and Hube, 2010). The adapted protocol was used by us for the removal of molecules in C. albicans supernatants, especially farnesol, which accumulate over the time course of incubation and cannot be specifically depleted. The system used, however, allows various applications including the simulation of physiological flow conditions. Several example applications are given on the manufacturer's website (https://ibidi.com/perfusion-system/112-ibidi-pump-system.html).
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| |
Collapse
|
99952
|
Complete Genome Sequence of Bacillus kochii Oregon-R-modENCODE Strain BDGP4, Isolated from Drosophila melanogaster Gut. GENOME ANNOUNCEMENTS 2017; 5:5/40/e01074-17. [PMID: 28983001 PMCID: PMC5629058 DOI: 10.1128/genomea.01074-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus kochii Oregon-R-modENCODE strain BDGP4 was isolated from the gut of Drosophila melanogaster for functional host microbial interaction studies. The complete genome comprised a single chromosomal circle of 4,557,232 bp with a G+C content of 37% and a single plasmid of 137,143 bp.
Collapse
|
99953
|
Abstract
The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology.
Collapse
|
99954
|
N-Terminal Pfs230 Domain Produced in Baculovirus as a Biological Active Transmission-Blocking Vaccine Candidate. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00140-17. [PMID: 28747311 PMCID: PMC5629673 DOI: 10.1128/cvi.00140-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/23/2017] [Indexed: 12/13/2022]
Abstract
Transmission-blocking vaccines have the potential to accelerate malaria parasite elimination by inducing antibodies that block parasite transmission from humans to mosquitoes. Pfs230, a gametocyte surface protein involved in gamete function, has long been a promising candidate. Due to the large size (3,135 amino acids), complex domains, and repeating 6-cysteine (6-Cys) motifs with a multitude of disulfide bonds, the feasibility of expression of a full-length protein has been difficult. A priority focus, therefore, has been on the generation of single domains, including N-terminal fragments. Here we utilized a heterologous expression system, baculovirus, to produce an N-terminal domain of Pfs230 (Pfs230C1). Pfs230C1 (amino acids 443 to 731) with a polyhistidine affinity tag was expressed in Super Sf9 cells. Since the native host lacks glycosylation machinery, a single N585Q mutation was made to eliminate potential N-linked glycosylation. The expressed protein, purified by nickel affinity, ion exchange, and size exclusion chromatography to >90% purity, was present in monomeric form with an observed mass of 33,510 Da (matching oxidized form). Peptide mapping and disulfide analysis confirmed the proper formation of predicted disulfide bonds. Antibodies, generated against Pfs230C1 in mice, bound to the gametocyte in an immunofluorescence assay (IFA) and demonstrated functional activity in both the standard membrane feeding assay (SMFA) and the exflagellation assay (EXA). The biochemical, biophysical, and immunological results reported herein support the continued advancement of an N-terminal Pfs230 antigen (Pfs230C1) as a component of a transmission-blocking vaccine. Our results also support the continued use of the scalable baculovirus expression system for the generation of complex Plasmodium proteins.
Collapse
|
99955
|
Venkat S, Gregory C, Gan Q, Fan C. Biochemical Characterization of the Lysine Acetylation of Tyrosyl-tRNA Synthetase in Escherichia coli. Chembiochem 2017; 18:1928-1934. [PMID: 28741290 PMCID: PMC5629106 DOI: 10.1002/cbic.201700343] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play essential roles in protein synthesis. As a member of the aaRS family, the tyrosyl-tRNA synthetase (TyrRS) in Escherichia coli has been shown in proteomic studies to be acetylated at multiple lysine residues. However, these putative acetylation targets have not yet been biochemically characterized. In this study, we applied a genetic-code-expansion strategy to site-specifically incorporate Nϵ -acetyl-l-lysine into selected positions of TyrRS for in vitro characterization. Enzyme assays demonstrated that acetylation at K85, K235, and K238 could impair the enzyme activity. In vitro deacetylation experiments showed that most acetylated lysine residues in TyrRS were sensitive to the E. coli deacetylase CobB but not YcgC. In vitro acetylation assays indicated that 25 members of the Gcn5-related N-acetyltransferase family in E. coli, including YfiQ, could not acetylate TyrRS efficiently, whereas TyrRS could be acetylated chemically by acetyl-CoA or acetyl-phosphate (AcP) only. Our in vitro characterization experiments indicated that lysine acetylation could be a possible mechanism for modulating aaRS enzyme activities, thus affecting translation.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Caroline Gregory
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 727011, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
99956
|
Werner N, Zibek S. Biotechnological production of bio-based long-chain dicarboxylic acids with oleogenious yeasts. World J Microbiol Biotechnol 2017; 33:194. [PMID: 28983758 DOI: 10.1007/s11274-017-2360-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/26/2017] [Indexed: 01/15/2023]
Abstract
Long-chain α,ω-dicarboxylic acids (DCAs) are versatile chemical intermediates of industrial importance used as building blocks for the production of polymers, lubricants, or adhesives. The majority of industrial long-chain DCAs is produced from petro-chemical resources. An alternative is their biotechnological production from renewable materials like plant oil fatty acids by microbial fermentation using oleogenious yeasts. Oleogenious yeasts are natural long-chain DCA producers, which have to be genetically engineered for high-yield DCA production. Although, some commercialized fermentation processes using engineered yeasts are reported, bio-based long-chain DCAs are still far from being a mass product. Further progress in bioprocess engineering and rational strain design is necessary to advance their further commercialization. The present article reviews the basic strategies, as well as novel approaches in the strain design of oleogenious yeasts, such as the combination of traditional metabolic engineering with system biology strategies for high-yield long-chain DCA production. Therefore a detailed overview of the involved metabolic processes for the biochemical long-chain DCA synthesis is given.
Collapse
Affiliation(s)
- Nicole Werner
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany.
| |
Collapse
|
99957
|
Bury K, Wegrzyn K, Konieczny I. Handcuffing reversal is facilitated by proteases and replication initiator monomers. Nucleic Acids Res 2017; 45:3953-3966. [PMID: 28335002 PMCID: PMC5397158 DOI: 10.1093/nar/gkx166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Specific nucleoprotein complexes are formed strictly to prevent over-initiation of DNA replication. An example of those is the so-called handcuff complex, in which two plasmid molecules are coupled together with plasmid-encoded replication initiation protein (Rep). In this work, we elucidate the mechanism of the handcuff complex disruption. In vitro tests, including dissociation progress analysis, demonstrate that the dimeric variants of plasmid RK2 replication initiation protein TrfA are involved in assembling the plasmid handcuff complex which, as we found, reveals high stability. Particular proteases, namely Lon and ClpAP, disrupt the handcuff by degrading TrfA, thus affecting plasmid stability. Moreover, our data demonstrate that TrfA monomers are able to dissociate handcuffed plasmid molecules. Those monomers displace TrfA molecules, which are involved in handcuff formation, and through interaction with the uncoupled plasmid replication origins they re-initiate DNA synthesis. We discuss the relevance of both Rep monomers and host proteases for plasmid maintenance under vegetative and stress conditions.
Collapse
Affiliation(s)
- Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| |
Collapse
|
99958
|
Yamamoto M, Takahashi T, Serada S, Sugase T, Tanaka K, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Nakajima K, Takiguchi S, Naka T, Mori M, Doki Y. Overexpression of leucine-rich α2-glycoprotein-1 is a prognostic marker and enhances tumor migration in gastric cancer. Cancer Sci 2017; 108:2052-2060. [PMID: 28746773 PMCID: PMC5623762 DOI: 10.1111/cas.13329] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is one of the most common malignant tumors. Although improvement in chemotherapy has been achieved, the clinical prognosis of advanced gastric cancer remains poor. Therefore, it is increasingly important to predict the prognosis and determine whether patients should or should not receive neoadjuvant or adjuvant chemotherapy. Leucine‐rich α2‐glycoprotein‐1 (LRG1) is overexpressed during inflammation and is associated with various malignancies. In this study, we assessed LRG1 expression in cancer specimens and in the sera of patients with cancer to clarify the usefulness of LRG1 as a biomarker in gastric cancer. This study enrolled 239 (for immunohistochemical staining; IHC) and 184 (for ELISA) patients with gastric cancer. Results of IHC showed that LRG1 expression was significantly associated with histological type, lymphatic and venous invasion, tumor and node factors, and disease stage. Overall survival was significantly worse in the high LRG1 expression group than in the low LRG1 group (P = 0.0003). Cox multivariate analysis of overall survival revealed that LRG1 expression was an independent prognostic factor (P = 0.0258). Serum LRG1 was significantly higher in gastric cancer patients than in healthy volunteers, and increased as the pathological stage progressed. Furthermore, a significant correlation was revealed between serum LRG1 level and LRG1 expression with IHC (P < 0.0001). Inhibition of LRG1 significantly decreased cell proliferation in vitro (migratory and invasive capacity of gastric cancer cells). These results suggest that LRG1 expression in tumors and serum may be a useful prognostic marker in gastric cancer patients.
Collapse
Affiliation(s)
- Masaaki Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Takahito Sugase
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Testsuji Naka
- Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
99959
|
Immunogenicity of Nontypeable Haemophilus influenzae Outer Membrane Vesicles and Protective Ability in the Chinchilla Model of Otitis Media. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00138-17. [PMID: 28768669 DOI: 10.1128/cvi.00138-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022]
Abstract
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria are enriched in several outer membrane components, including major and minor outer membrane proteins and lipooligosaccharide. We assessed the functional activity of nontypeable Haemophilus influenzae (NTHi) OMV-specific antisera and the protective ability of NTHi OMVs as vaccine antigens in the chinchilla otitis media model. OMVs were purified from three HMW1/HMW2-expressing NTHi strains, two of which were also engineered to overexpress Hia proteins. OMV-specific antisera raised in guinea pigs were assessed for their ability to mediate killing of representative NTHi in an opsonophagocytic assay. The three OMV-specific antisera mediated killing of 18 of 65, 24 of 65, and 30 of 65 unrelated HMW1/HMW2-expressing NTHi strains. Overall, they mediated killing of 39 of 65 HMW1/HMW2-expressing strains. The two Hia-expressing OMV-specific antisera mediated killing of 17 of 25 and 14 of 25 unrelated Hia-expressing NTHi strains. Overall, they mediated killing of 20 of 25 Hia-expressing strains. OMVs from prototype NTHi strain 12 were used to immunize chinchillas and the course of middle ear infection was monitored following intrabullar challenge with the homologous strain. All control animals developed culture-positive otitis media, as did two of three HMW1/HMW2-immunized animals. All OMV-immunized animals, with or without supplemental HMW1/HMW2 immunization, were completely protected against otitis media. NTHi OMVs are the first immunogens examined in this model that provided complete protection with sterile immunity after NTHi strain 12 challenge. These data suggest that NTHi OMVs hold significant potential as components of protective NTHi vaccines, possibly in combination with HMW1/HMW2 proteins.
Collapse
|
99960
|
Increased LOH due to Defective Sister Chromatid Cohesion Is due Primarily to Chromosomal Aneuploidy and not Recombination. G3-GENES GENOMES GENETICS 2017; 7:3305-3315. [PMID: 28983067 PMCID: PMC5633381 DOI: 10.1534/g3.117.300091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss of heterozygosity (LOH) is an important factor in cancer, pathogenic fungi, and adaptation to changing environments. The sister chromatid cohesion process (SCC) suppresses aneuploidy and therefore whole chromosome LOH. SCC is also important to channel recombinational repair to sister chromatids, thereby preventing LOH mediated by allelic recombination. There is, however, insufficient information about the relative roles that the SCC pathway plays in the different modes of LOH. Here, we found that the cohesin mutation mcd1-1, and other mutations in SCC, differentially affect the various types of LOH. The greatest effect, by three orders of magnitude, was on whole chromosome loss (CL). In contrast, there was little increase in recombination-mediated LOH, even for telomeric markers. Some of the LOH events that were increased by SCC mutations were complex, i.e., they were the result of several chromosome transactions. Although these events were independent of POL32, the most parsimonious way to explain the formation of at least some of them was break-induced replication through the centromere. Interestingly, the mcd1-1 pol32Δ double mutant showed a significant reduction in the rate of CL in comparison with the mcd1-1 single mutant. Our results show that defects in SCC allow the formation of complex LOH events that, in turn, can promote drug or pesticide resistance in diploid microbes that are pathogenic to humans or plants.
Collapse
|
99961
|
Hess GT, Tycko J, Yao D, Bassik MC. Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes. Mol Cell 2017; 68:26-43. [PMID: 28985508 PMCID: PMC5997582 DOI: 10.1016/j.molcel.2017.09.029] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022]
Abstract
The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology.
Collapse
Affiliation(s)
- Gaelen T Hess
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
| | - Josh Tycko
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
| | - David Yao
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics and Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, CA, USA.
| |
Collapse
|
99962
|
Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity. Curr Genet 2017; 64:345-351. [PMID: 28983718 DOI: 10.1007/s00294-017-0757-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/26/2023]
Abstract
This review attempts to analyze the mechanism of action and immunity of class IIa bacteriocins. These peptides are promising alternative food preservatives and they have a great potential application in medical sciences. Class IIa bacteriocins act on the cytoplasmic membrane of Gram-positive cells dissipating the transmembrane electrical potential by forming pores. However, their toxicity and immunity mechanism remains elusive. Here we discuss the role of the mannose phosphotransferase system (man-PTS) as the receptor for class IIa bacteriocins and the influence of the membrane composition on the activity of these antimicrobial peptides. A model that is consistent with experimental results obtained by different researchers involves the non-specific binding of the bacteriocin to the negatively charged membrane of target bacteria. This step would facilitate a specific binding to the receptor protein, altering its functionality and forming an independent pore in which the bacteriocin is inserted in the membrane. An immunity protein could specifically recognize and block the pore. Bacteriocins function in bacterial ecosystems and energetic costs associated with their production are also discussed. Theoretical models based on solid experimental evidence are vital to understand bacteriocins mechanism of action and to promote new technological developments.
Collapse
|
99963
|
Burnham CJ, English NJ. Electropumping of Water Through Human Aquaporin 4 by Circularly Polarized Electric Fields: Dramatic Enhancement and Control Revealed by Non-Equilibrium Molecular Dynamics. J Phys Chem Lett 2017; 8:4646-4651. [PMID: 28905623 DOI: 10.1021/acs.jpclett.7b02323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An extensive suite of nonequilibrium molecular-dynamics (NEMD) simulations have been performed for ∼60 ns of human aquaporin 4 in externally applied circularly polarized (CP) electric fields, applied axially along channels. These external fields were 0.05 V/Å in intensity and 100 GHz in frequency. This has the effect of "electro-pumping" the water through the pores as prototypical biochannels, from conversion of molecules' spin angular momentum to linear momentum in the asymmetric heterogeneous-frictional environment of the pores, thus inducing overall net flow. Water's osmotic permeability was enhanced very substantially (doubled) vis-à-vis the zero-field case. This raises the tantalizing possibility of CP-field-mediated control of water permeability in aquaporins, or other biological (or biomimetic) channels as a potential viable and competitive water-treatment technology.
Collapse
Affiliation(s)
- Christian J Burnham
- School of Chemical and Bioprocess Engineering, University College Dublin , Belfield, Dublin 4, Ireland
| | - Niall J English
- School of Chemical and Bioprocess Engineering, University College Dublin , Belfield, Dublin 4, Ireland
| |
Collapse
|
99964
|
Boroda S, Takkellapati S, Lawrence RT, Entwisle SW, Pearson JM, Granade ME, Mullins GR, Eaton JM, Villén J, Harris TE. The phosphatidic acid-binding, polybasic domain is responsible for the differences in the phosphoregulation of lipins 1 and 3. J Biol Chem 2017; 292:20481-20493. [PMID: 28982975 DOI: 10.1074/jbc.m117.786574] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/23/2017] [Indexed: 11/06/2022] Open
Abstract
Lipins 1, 2, and 3 are Mg2+-dependent phosphatidic acid phosphatases and catalyze the penultimate step of triacylglycerol synthesis. We have previously investigated the biochemistry of lipins 1 and 2 and shown that di-anionic phosphatidic acid (PA) augments their activity and lipid binding and that lipin 1 activity is negatively regulated by phosphorylation. In the present study, we show that phosphorylation does not affect the catalytic activity of lipin 3 or its ability to associate with PA in vitro The lipin proteins each contain a conserved polybasic domain (PBD) composed of nine lysine and arginine residues located between the conserved N- and C-terminal domains. In lipin 1, the PBD is the site of PA binding and sensing of the PA electrostatic charge. The specific arrangement and number of the lysines and arginines of the PBD vary among the lipins. We show that the different PBDs of lipins 1 and 3 are responsible for the presence of phosphoregulation on the former but not the latter enzyme. To do so, we generated lipin 1 that contained the PBD of lipin 3 and vice versa. The lipin 1 enzyme with the lipin 3 PBD lost its ability to be regulated by phosphorylation but remained downstream of phosphorylation by mammalian target of rapamycin. Conversely, the presence of the lipin 1 PBD in lipin 3 subjected the enzyme to negative intramolecular control by phosphorylation. These results indicate a mechanism for the observed differences in lipin phosphoregulation in vitro.
Collapse
Affiliation(s)
- Salome Boroda
- From the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908 and
| | - Sankeerth Takkellapati
- From the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908 and
| | - Robert T Lawrence
- the Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Samuel W Entwisle
- the Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Jennifer M Pearson
- From the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908 and
| | - Mitchell E Granade
- From the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908 and
| | - Garrett R Mullins
- From the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908 and
| | - James M Eaton
- From the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908 and
| | - Judit Villén
- the Department of Genome Sciences, University of Washington, Seattle, Washington 98195
| | - Thurl E Harris
- From the Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908 and
| |
Collapse
|
99965
|
Millette K, Georgia S. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development. Curr Diab Rep 2017; 17:116. [PMID: 28980194 DOI: 10.1007/s11892-017-0947-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW This review will focus on the multiple approaches to gene editing and address the potential use of genetically modified human pluripotent stem cell-derived beta cells (SC-β) as a tool to study human beta-cell development and model their function in diabetes. We will explore how new variations of CRISPR/Cas9 gene editing may accelerate our understanding of beta-cell developmental biology, elucidate novel mechanisms that establish and regulate beta-cell function, and assist in pioneering new therapeutic modalities for treating diabetes. RECENT FINDINGS Improvements in CRISPR/Cas9 target specificity and homology-directed recombination continue to advance its use in engineering stem cells to model and potentially treat disease. We will review how CRISPR/Cas9 gene editing is informing our understanding of beta-cell development and expanding the therapeutic possibilities for treating diabetes and other diseases. Here we focus on the emerging use of gene editing technology, specifically CRISPR/Cas9, as a means of manipulating human gene expression to gain novel insights into the roles of key factors in beta-cell development and function. Taken together, the combined use of SC-β cells and CRISPR/Cas9 gene editing will shed new light on human beta-cell development and function and accelerate our progress towards developing new therapies for patients with diabetes.
Collapse
Affiliation(s)
- Katelyn Millette
- Center for Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Senta Georgia
- Center for Endocrinology, Diabetes and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Departments of Pediatrics and Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
99966
|
Chatterjee M, D'Morris S, Paul V, Warrier S, Vasudevan AK, Vanuopadath M, Nair SS, Paul-Prasanth B, Mohan CG, Biswas R. Mechanistic understanding of Phenyllactic acid mediated inhibition of quorum sensing and biofilm development in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2017; 101:8223-8236. [PMID: 28983655 DOI: 10.1007/s00253-017-8546-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa depends on its quorum sensing (QS) system for its virulence factors' production and biofilm formation. Biofilms of P. aeruginosa on the surface of indwelling catheters are often resistant to antibiotic therapy. Alternative approaches that employ QS inhibitors alone or in combination with antibiotics are being developed to tackle P. aeruginosa infections. Here, we have studied the mechanism of action of 3-Phenyllactic acid (PLA), a QS inhibitory compound produced by Lactobacillus species, against P. aeruginosa PAO1. Our study revealed that PLA inhibited the expression of virulence factors such as pyocyanin, protease, and rhamnolipids that are involved in the biofilm formation of P. aeruginosa PAO1. Swarming motility, another important criterion for biofilm formation of P. aeruginosa PAO1, was also inhibited by PLA. Gene expression, mass spectrometric, functional complementation assays, and in silico data indicated that the quorum quenching and biofilm inhibitory activities of PLA are attributed to its ability to interact with P. aeruginosa QS receptors. PLA antagonistically binds to QS receptors RhlR and PqsR with a higher affinity than its cognate ligands N-butyryl-L-homoserine lactone (C4-HSL) and 2-heptyl-3,4-dihydroxyquinoline (PQS; Pseudomonas quinolone signal). Using an in vivo intraperitoneal catheter-associated medaka fish infection model, we proved that PLA inhibited the initial attachment of P. aeruginosa PAO1 on implanted catheter tubes. Our in vitro and in vivo results revealed the potential of PLA as anti-biofilm compound against P. aeruginosa.
Collapse
Affiliation(s)
- Maitrayee Chatterjee
- Centre for Nanosciences and Molecular Medicine, Amrita University, Cochin, Kerala, 682041, India
| | - Sharon D'Morris
- Centre for Nanosciences and Molecular Medicine, Amrita University, Cochin, Kerala, 682041, India
| | - Vinod Paul
- Centre for Nanosciences and Molecular Medicine, Amrita University, Cochin, Kerala, 682041, India
| | - Sruthi Warrier
- Centre for Nanosciences and Molecular Medicine, Amrita University, Cochin, Kerala, 682041, India
| | - Anil Kumar Vasudevan
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Centre, Amrita University, Cochin, Kerala, 682041, India
| | | | | | - Bindhu Paul-Prasanth
- Centre for Nanosciences and Molecular Medicine, Amrita University, Cochin, Kerala, 682041, India
| | - C Gopi Mohan
- Centre for Nanosciences and Molecular Medicine, Amrita University, Cochin, Kerala, 682041, India
| | - Raja Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita University, Cochin, Kerala, 682041, India.
| |
Collapse
|
99967
|
Human TorsinA can function in the yeast cytosol as a molecular chaperone. Biochem J 2017; 474:3439-3454. [PMID: 28871039 PMCID: PMC5628414 DOI: 10.1042/bcj20170395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 11/17/2022]
Abstract
TorsinA (TorA) is an AAA+ (ATPases associated with diverse cellular activities) ATPase linked to dystonia type 1 (DYT1), a neurological disorder that leads to uncontrollable muscular movements. Although DYT1 is linked to a 3 bp deletion in the C-terminus of TorA, the biological function of TorA remains to be established. Here, we use the yeast Saccharomyces cerevisiae as a tractable in vivo model to explore TorA function. We demonstrate that TorA can protect yeast cells against different forms of environmental stress and show that in the absence of the molecular disaggregase Hsp104, TorA can refold heat-denatured luciferase in vivo in an ATP-dependent manner. However, this activity requires TorA to be translocated to the cytoplasm from the endoplasmic reticulum in order to access and process cytoplasmic protein aggregates. Furthermore, mutational or chemical inactivation of the ATPase activity of TorA blocks this activity. We also find that TorA can inhibit the propagation of certain conformational variants of [PSI+], the aggregated prion form of the endogenous Sup35 protein. Finally, we show that while cellular localisation remains unchanged in the dystonia-linked TorA mutant ΔE302-303, the ability of this mutant form of TorA to protect against cellular stress and to facilitate protein refolding is impaired, consistent with it being a loss-of-function mutation.
Collapse
|
99968
|
Liu P, Wu Z, Xue H, Zhao X. Antibiotics trigger initiation of SCCmec transfer by inducing SOS responses. Nucleic Acids Res 2017; 45:3944-3952. [PMID: 28334919 PMCID: PMC5397144 DOI: 10.1093/nar/gkx153] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/22/2017] [Indexed: 11/28/2022] Open
Abstract
The rise of antimicrobial resistance limits therapeutic options for infections by methicillin-resistant staphylococci. The staphylococcal cassette chromosome mec (SCCmec) is a mobile genetic element as the only carrier of the methicillin-resistance determinants, the mecA or mecC gene. The use of antibiotics increases the spread of antibiotic resistance, but the mechanism by which antibiotics promote horizontal dissemination of SCCmec is largely unknown. In this study, we demonstrate that many antibiotics, including β-lactams, can induce the expression of ccrC1 and SCCmec excision from the bacterial chromosome. In particular, three widely used antibiotics targeting DNA replication and repair (sulfamethoxazole, ciprofloxacin and trimethoprim) induced higher levels of ccrC1 expression and higher rates of SCCmec excision even at low concentrations (1/8 × minimum inhibitory concentration). LexA was identified as a repressor of ccrC1 and ccrAB by binding to the promoter regions of ccrC1 and ccrAB. The activation of RecA after antibiotic induction alleviated the repression by LexA and increased the expression of ccrC1 or ccrAB, consequently increasing the excision frequency of the SCCmec for SCCmec transfer. These findings lead us to propose a mechanism by which antimicrobial agents can promote horizontal gene transfer of the mecA gene and facilitate the spread of methicillin resistance.
Collapse
Affiliation(s)
- Pilong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaowei Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huping Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.,Department of Animal Science, McGill University, Ste Anne de Bellevue, Quebec H9X3V9, Canada
| |
Collapse
|
99969
|
Naimah AK, Al-Manhel AJA, Al-Shawi MJ. Isolation, Purification and Characterization of Antimicrobial Peptides Produced from Saccharomyces boulardii. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9632-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
99970
|
Wang Y, Lazor KM, DeMeester KE, Liang H, Heiss TK, Grimes CL. Postsynthetic Modification of Bacterial Peptidoglycan Using Bioorthogonal N-Acetylcysteamine Analogs and Peptidoglycan O-Acetyltransferase B. J Am Chem Soc 2017; 139:13596-13599. [PMID: 28898061 PMCID: PMC5837961 DOI: 10.1021/jacs.7b06820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacteria have the natural ability to install protective postsynthetic modifications onto its bacterial peptidoglycan (PG), the coat woven into bacterial cell wall. Peptidoglycan O-acetyltransferase B (PatB) catalyzes the O-acetylation of PG in Gram (-) bacteria, which aids in bacterial survival, as it prevents autolysins such as lysozyme from cleaving the PG. We explored the mechanistic details of PatB's acetylation function and determined that PatB has substrate specificity for bioorthgonal short N-acetyl cysteamine (SNAc) donors. A variety of functionality including azides and alkynes were installed on tri-N-acetylglucosamine (NAG)3, a PG mimic, as well as PG isolated from various Gram (+) and Gram (-) bacterial species. The bioorthogonal modifications protect the isolated PG against lysozyme degradation in vitro. We further demonstrate that this postsynthetic modification of PG can be extended to use click chemistry to fluorescently label the mature PG in whole bacterial cells of Bacillus subtilis. Modifying PG postsynthetically can aid in the development of antibiotics and immune modulators by expanding the understanding of how PG is processed by lytic enzymes.
Collapse
Affiliation(s)
- Yiben Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Klare M. Lazor
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kristen E. DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Hai Liang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Tyler K. Heiss
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- Department of Biological Chemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
99971
|
Birhanu AG, Yimer SA, Holm-Hansen C, Norheim G, Aseffa A, Abebe M, Tønjum T. N ε- and O-Acetylation in Mycobacterium tuberculosis Lineage 7 and Lineage 4 Strains: Proteins Involved in Bioenergetics, Virulence, and Antimicrobial Resistance Are Acetylated. J Proteome Res 2017; 16:4045-4059. [PMID: 28920697 DOI: 10.1021/acs.jproteome.7b00429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing evidence demonstrates that lysine acetylation is involved in Mycobacterium tuberculosis (Mtb) virulence and pathogenesis. However, previous investigations in Mtb have only monitored acetylation at lysine residues using selected reference strains. We analyzed the global Nε- and O-acetylation of three Mtb isolates: two lineage 7 clinical isolates and the lineage 4 H37Rv reference strain. Quantitative acetylome analysis resulted in identification of 2490 class-I acetylation sites, 2349 O-acetylation and 141 Nε-acetylation sites, derived from 953 unique proteins. Mtb O-acetylation was thereby significantly more abundant than Nε-acetylation. The acetylated proteins were found to be involved in central metabolism, translation, stress responses, and antimicrobial drug resistance. Notably, 261 acetylation sites on 165 proteins were differentially regulated between lineage 7 and lineage 4 strains. A total of 257 acetylation sites on 161 proteins were hypoacetylated in lineage 7 strains. These proteins are involved in Mtb growth, virulence, bioenergetics, host-pathogen interactions, and stress responses. This study provides the first global analysis of O-acetylated proteins in Mtb. This quantitative acetylome data expand the current understanding regarding the nature and diversity of acetylated proteins in Mtb and open a new avenue of research for exploring the role of protein acetylation in Mtb physiology.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Department of Microbiology, University of Oslo , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway.,Addis Ababa University , Institute of Biotechnology, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Solomon Abebe Yimer
- Department of Microbiology, University of Oslo , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway.,Department of Microbiology, Oslo University Hospital , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Carol Holm-Hansen
- Infection Control and Environmental Health, Norwegian Institute of Public Health , P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Gunnstein Norheim
- Infection Control and Environmental Health, Norwegian Institute of Public Health , P.O. Box 4404, Nydalen, NO-0403 Oslo, Norway
| | - Abraham Aseffa
- Armauer Hansen Research Institute , Jimma Road, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute , Jimma Road, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Tone Tønjum
- Department of Microbiology, University of Oslo , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway.,Department of Microbiology, Oslo University Hospital , P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| |
Collapse
|
99972
|
Gene Conversion Facilitates Adaptive Evolution on Rugged Fitness Landscapes. Genetics 2017; 207:1577-1589. [PMID: 28978673 DOI: 10.1534/genetics.117.300350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/30/2017] [Indexed: 01/11/2023] Open
Abstract
Gene conversion is a ubiquitous phenomenon that leads to the exchange of genetic information between homologous DNA regions and maintains coevolving multi-gene families in most prokaryotic and eukaryotic organisms. In this paper, we study its implications for the evolution of a single functional gene with a silenced duplicate, using two different models of evolution on rugged fitness landscapes. Our analytical and numerical results show that, by helping to circumvent valleys of low fitness, gene conversion with a passive duplicate gene can cause a significant speedup of adaptation, which depends nontrivially on the frequency of gene conversion and the structure of the landscape. We find that stochastic effects due to finite population sizes further increase the likelihood of exploiting this evolutionary pathway. A universal feature appearing in both deterministic and stochastic analysis of our models is the existence of an optimal gene conversion rate, which maximizes the speed of adaptation. Our results reveal the potential for duplicate genes to act as a "scratch paper" that frees evolution from being limited to strictly beneficial mutations in strongly selective environments.
Collapse
|
99973
|
Ikeda Y, Okada Y, Sato A, Kanai T, Tomita M, Atomi H, Kanai A. An archaeal RNA binding protein, FAU-1, is a novel ribonuclease related to rRNA stability in Pyrococcus and Thermococcus. Sci Rep 2017; 7:12674. [PMID: 28978920 PMCID: PMC5627344 DOI: 10.1038/s41598-017-13062-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
Abstract
Ribosome biogenesis and turnover are processes necessary for cell viability and proliferation, and many kinds of proteins are known to regulate these processes. However, many questions still remain, especially in the Archaea. Generally, several ribonucleases are required to process precursor rRNAs to their mature forms, and to degrade rRNAs for quality control. Here, we found that FAU-1, which is known to be an RNA binding protein, possesses an RNase activity against precursor 5S rRNA derived from P. furiosus and T. kodakarensis in the order Thermococcales in vitro. An in vitro analysis revealed that UA sequences in the upstream of 5S rRNA were preferentially degraded by addition of FAU-1. Moreover, a fau-1 gene deletion mutant of T. kodakarensis showed a delay of exponential phase, reduction of maximum cell number and significant changes in the nucleotide sequence lengths of its 5S, 16S, and 23S rRNAs in early exponential phase. Our results suggest that FAU-1 is a potential RNase involved in rRNA stability through maturation and/or degradation processes.
Collapse
Affiliation(s)
- Yoshiki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan.
| | - Yasuhiro Okada
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Asako Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| | - Tamotsu Kanai
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| | - Haruyuki Atomi
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| |
Collapse
|
99974
|
Characteristics and genetic diversity of multi-drug resistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from bovine mastitis. Oncotarget 2017; 8:90144-90163. [PMID: 29163817 PMCID: PMC5685738 DOI: 10.18632/oncotarget.21496] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022] Open
Abstract
A characterization of the drug resistance profiles, identification of PCR-based replicon typing, and multilocus sequence typing (MLST) and analysis of 46 ESBL-producing Escherichia coli from cows with mastitis are described. All multidrug-resistant isolates of various phylogenetic groups (A = 31, B1= 3, B2 = 2, D = 10) were ESBL-producers of genotypes CTX-M-15 (29), CTX-M-55 (4), CTX-M-14 (4), CTX-M-3 (1), CTX-M-1 (1), TEM (22) and SHV (8) that were found on conjugative plasmids of diverse incompatibility groups (primarily IncF). Transconjugation experiments indicated successful (100%) trans-conjugation, which was verified phenotypically and genotypically. A total of 28 sequence types (ST) were identified, with 10% of isolates being ST410, and 9 other ST that were assigned arbitrary numbers, reflecting the degree of diversity. Multilocus sequence analysis revealed two lineages, a dominant and a small lineage. Split-decomposition showed intraspecies recombination clearly contributed in genetic recombination generating genotypic diversity among the isolates, and a lack of interspecies recombination. This coherent analysis on genetic structure of multidrug-resistant pathogenic E. coli population isolated from mastitic-milk weaponized with resistance elements from a large, rapidly developing country will be a helpful contribution for epidemiology and surveillance of drug resistance patterns, and understanding their global diversity.
Collapse
|
99975
|
Svensson CM, Medyukhina A, Belyaev I, Al-Zaben N, Figge MT. Untangling cell tracks: Quantifying cell migration by time lapse image data analysis. Cytometry A 2017; 93:357-370. [DOI: 10.1002/cyto.a.23249] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carl-Magnus Svensson
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI); Jena Germany
| | - Anna Medyukhina
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI); Jena Germany
| | - Ivan Belyaev
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI); Jena Germany
- Friedrich Schiller University; Jena Germany
| | - Naim Al-Zaben
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI); Jena Germany
- Friedrich Schiller University; Jena Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI); Jena Germany
- Friedrich Schiller University; Jena Germany
| |
Collapse
|
99976
|
Tong X, Leung MHY, Wilkins D, Lee PKH. City-scale distribution and dispersal routes of mycobiome in residences. MICROBIOME 2017; 5:131. [PMID: 28978345 PMCID: PMC5628474 DOI: 10.1186/s40168-017-0346-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 09/20/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Pathogenic and allergenic bacteria and fungi within the indoors can bring detrimental health effects on the occupants. We previously studied the bacterial communities found in households located throughout Hong Kong as well as the skin surfaces of the occupants. As a complementary study, here, we investigated the fungal communities (mycobiome) in the same residences and occupants and identified factors that are important in shaping their diversity, composition, distribution, and dispersal patterns. RESULTS We observed that common skin and environmental fungal taxa dominated air, surface, and skin samples. Individual and touch frequency strongly and respectively shaped the fungal community structure on occupant skin and residential surfaces. Cross-domain analysis revealed positive correlations between bacterial and fungal community diversity and composition, especially for skin samples. SourceTracker prediction suggested that some fungi can be transferred bidirectionally between surfaces and skin sites, but bacteria showed a stronger dispersal potential. In addition, we detected a modest but significant association between indoor airborne bacterial composition and geographic distance on a city-wide scale, a pattern not observed for fungi. However, the distance-decay effects were more pronounced at shorter local scale for both communities, and airflow might play a prominent role in driving the spatial variation of the indoor airborne mycobiome. CONCLUSIONS Our study suggests that occupants exert a weaker influence on surface fungal communities compared to bacterial communities, and local environmental factors, including air currents, appear to be stronger determinants of indoor airborne mycobiome than ventilation strategy, human occupancy, and room type.
Collapse
Affiliation(s)
- Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Marcus H. Y. Leung
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - David Wilkins
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Patrick K. H. Lee
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
99977
|
Mou Q, Leung PHM. Differential expression of virulence genes in Legionella pneumophila growing in Acanthamoeba and human monocytes. Virulence 2017; 9:185-196. [PMID: 28873330 PMCID: PMC5955191 DOI: 10.1080/21505594.2017.1373925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires’ disease, is widely distributed throughout natural and artificial water systems and can replicate in macrophages and amoebae. Amoebae are the natural hosts of L. pneumophila, whereas macrophages are incidentally infected. The life cycle of L. pneumophila comprises a replicative phase within the Legionella-containing vacuole (LCV) and a transmissive phase during which bacterial cells become motile and are released via killing of the host. Although the host death mechanisms induced by L. pneumophila have been studied, the expression patterns of related L. pneumophila genes have not been reported. The present study compared the expression patterns of host cell death-associated genes in L. pneumophila grown in the human monocytic cell line THP-1 and Acanthamoeba castellanii. Notably, when L. pneumophila was grown in THP-1, expression of the gene flaA, which is involved in the induction of pyroptosis, was downregulated during the course of infection. In contrast, sdhA associated indirectly with host death, was upregulated. Expression of the genes vipD and sidF, which are involved in the induction and suppression of apoptosis, changed by less than 2-fold. Notably, a lower percentage of pyroptotic cells was observed among infected THP-1 cells relative to uninfected cells, and the latter exhibited stronger expression of caspase-1. A different pattern was observed when L. pneumophila was grown in A. castellanii: flaA and vipD were activated, whereas sdhA and sidF were downregulated during the later stage of replication. The percentage of non-viable (annexin-V+ PI+ or annexin-V+PI−) A. castellanii organisms increased with Legionella infection, and the expression of metacaspase-1, which is involved in encystation was up-regulated at late infection time. In summary, L. pneumophila can multiply intracellularly in both amoebae and macrophages to induce cell death and secondary infection, and this characteristic is essential for its survival in water and the lungs. The gene expression profiles observed in this study indicated the increased cytotoxicity of L. pneumophila in A. castellanii, suggesting an increased adaptation of Legionella to this host.
Collapse
Affiliation(s)
- Qianqian Mou
- a Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Kowloon , Hong Kong , China
| | - Polly H M Leung
- a Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Kowloon , Hong Kong , China
| |
Collapse
|
99978
|
Structural Characterization of Clostridium sordellii Spores of Diverse Human, Animal, and Environmental Origin and Comparison to Clostridium difficile Spores. mSphere 2017; 2:mSphere00343-17. [PMID: 28989969 PMCID: PMC5628289 DOI: 10.1128/msphere.00343-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 01/26/2023] Open
Abstract
Clostridium sordellii is a significant pathogen with mortality rates approaching 100%. It is the bacterial spore that is critical in initiating infection and disease. An understanding of spore structures as well as spore morphology across a range of strains may lead to a better understanding of C. sordellii infection and disease. However, the structural characteristics of the C. sordellii spores are limited. In this work, we have addressed this lack of detail and characterized the C. sordellii spore morphology. The use of traditional and advanced microscopy techniques has provided detailed new observations of C. sordellii spore structural features, which serve as a reference point for structural studies of spores from other bacterial species. Clostridium sordellii is an often-lethal bacterium causing human and animal disease. Crucial to the infectious cycle of C. sordellii is its ability to produce spores, which can germinate into toxin-producing vegetative bacteria under favorable conditions. However, structural details of the C. sordellii spore are lacking. Here, we used a range of electron microscopy techniques together with superresolution optical microscopy to characterize the C. sordellii spore morphology with an emphasis on the exosporium. The C. sordellii spore is made up of multiple layers with the exosporium presenting as a smooth balloon-like structure that is open at the spore poles. Focusing on the outer spore layers, we compared the morphologies of C. sordellii spores derived from different strains and determined that there is some variation between the spores, most notably with spores of some strains having tubular appendages. Since Clostridium difficile is a close relative of C. sordellii, their spores were compared by electron microscopy and their exosporia were found to be distinctly different from each other. This study therefore provides new structural details of the C. sordellii spore and offers insights into the physical structure of the exosporium across clostridial species. IMPORTANCEClostridium sordellii is a significant pathogen with mortality rates approaching 100%. It is the bacterial spore that is critical in initiating infection and disease. An understanding of spore structures as well as spore morphology across a range of strains may lead to a better understanding of C. sordellii infection and disease. However, the structural characteristics of the C. sordellii spores are limited. In this work, we have addressed this lack of detail and characterized the C. sordellii spore morphology. The use of traditional and advanced microscopy techniques has provided detailed new observations of C. sordellii spore structural features, which serve as a reference point for structural studies of spores from other bacterial species.
Collapse
|
99979
|
|
99980
|
Prebiotics Mediate Microbial Interactions in a Consortium of the Infant Gut Microbiome. Int J Mol Sci 2017; 18:ijms18102095. [PMID: 28976925 PMCID: PMC5666777 DOI: 10.3390/ijms18102095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Composition of the gut microbiome is influenced by diet. Milk or formula oligosaccharides act as prebiotics, bioactives that promote the growth of beneficial gut microbes. The influence of prebiotics on microbial interactions is not well understood. Here we investigated the transformation of prebiotics by a consortium of four representative species of the infant gut microbiome, and how their interactions changed with dietary substrates. First, we optimized a culture medium resembling certain infant gut parameters. A consortium containing Bifidobacterium longum subsp. infantis, Bacteroides vulgatus, Escherichia coli and Lactobacillus acidophilus was grown on fructooligosaccharides (FOS) or 2′-fucosyllactose (2FL) in mono- or co-culture. While Bi. infantis and Ba. vulgatus dominated growth on 2FL, their combined growth was reduced. Besides, interaction coefficients indicated strong competition, especially on FOS. While FOS was rapidly consumed by the consortium, B. infantis was the only microbe displaying significant consumption of 2FL. Acid production by the consortium resembled the metabolism of microorganisms dominating growth in each substrate. Finally, the consortium was tested in a bioreactor, observing similar predominance but more pronounced acid production and substrate consumption. This study indicates that the chemical nature of prebiotics modulate microbial interactions in a consortium of infant gut species.
Collapse
|
99981
|
Wang X, Brandão HB, Le TBK, Laub MT, Rudner DZ. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 2017; 355:524-527. [PMID: 28154080 DOI: 10.1126/science.aai8982] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/05/2017] [Indexed: 01/18/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes play critical roles in chromosome dynamics in virtually all organisms, but how they function remains poorly understood. In the bacterium Bacillus subtilis, SMC-condensin complexes are topologically loaded at centromeric sites adjacent to the replication origin. Here we provide evidence that these ring-shaped assemblies tether the left and right chromosome arms together while traveling from the origin to the terminus (>2 megabases) at rates >50 kilobases per minute. Condensin movement scales linearly with time, providing evidence for an active transport mechanism. These data support a model in which SMC complexes function by processively enlarging DNA loops. Loop formation followed by processive enlargement provides a mechanism by which condensin complexes compact and resolve sister chromatids in mitosis and by which cohesin generates topologically associating domains during interphase.
Collapse
Affiliation(s)
- Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Hugo B Brandão
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Tung B K Le
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
99982
|
Bird AJ, Labbé S. The Zap1 transcriptional activator negatively regulates translation of the RTC4 mRNA through the use of alternative 5' transcript leaders. Mol Microbiol 2017; 106:673-677. [PMID: 28971534 DOI: 10.1111/mmi.13856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022]
Abstract
The zinc-responsive transcription activator Zap1 plays a central role in zinc homeostasis in the budding yeast Saccharomyces cerevisiae. In zinc-deficient cells, Zap1 binds to zinc responsive elements in target gene promoters and activates gene expression. In most cases, Zap1-dependent gene activation results in increased levels of mRNAs and proteins. However, Zap1-dependent activation of RTC4 results in increased levels of the RTC4 mRNA and decreased levels of the Rtc4 protein. This atypical regulation results from Zap1-mediated changes in the transcriptional start site for RTC4 and the production of a RTC4 transcript with a longer 5' leader. This long RTC4 transcript contains small upstream open reading frames that prevent translation of the downstream RTC4 ORF. The new studies with Zap1 highlight how a transcriptional activator can facilitate decreased protein expression.
Collapse
Affiliation(s)
- Amanda J Bird
- Departments of Human Nutrition and Molecular Genetics, The Ohio State University, 1787 Neil Avenue, Columbus, OH 43210, USA
| | - Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Pavillon Z-8, 3201, Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
99983
|
Gan HM, Lee YP, Austin CM. Nanopore Long-Read Guided Complete Genome Assembly of Hydrogenophaga intermedia, and Genomic Insights into 4-Aminobenzenesulfonate, p-Aminobenzoic Acid and Hydrogen Metabolism in the Genus Hydrogenophaga. Front Microbiol 2017; 8:1880. [PMID: 29046667 PMCID: PMC5632844 DOI: 10.3389/fmicb.2017.01880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/14/2017] [Indexed: 11/13/2022] Open
Abstract
We improved upon the previously reported draft genome of Hydrogenophaga intermedia strain PBC, a 4-aminobenzenesulfonate-degrading bacterium, by supplementing the assembly with Nanopore long reads which enabled the reconstruction of the genome as a single contig. From the complete genome, major genes responsible for the catabolism of 4-aminobenzenesulfonate in strain PBC are clustered in two distinct genomic regions. Although the catabolic genes for 4-sulfocatechol, the deaminated product of 4-aminobenzenesulfonate, are only found in H. intermedia, the sad operon responsible for the first deamination step of 4-aminobenzenesulfonate is conserved in various Hydrogenophaga strains. The absence of pabB gene in the complete genome of H. intermedia PBC is consistent with its p-aminobenzoic acid (pABA) auxotrophy but surprisingly comparative genomics analysis of 14 Hydrogenophaga genomes indicate that pABA auxotrophy is not an uncommon feature among members of this genus. Of even more interest, several Hydrogenophaga strains do not possess the genomic potential for hydrogen oxidation, calling for a revision to the taxonomic description of Hydrogenophaga as "hydrogen eating bacteria."
Collapse
Affiliation(s)
- Han M Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Malaysia.,School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yin P Lee
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Malaysia.,School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Christopher M Austin
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway, Malaysia.,School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
99984
|
Rom JS, Atwood DN, Beenken KE, Meeker DG, Loughran AJ, Spencer HJ, Lantz TL, Smeltzer MS. Impact of Staphylococcus aureus regulatory mutations that modulate biofilm formation in the USA300 strain LAC on virulence in a murine bacteremia model. Virulence 2017; 8:1776-1790. [PMID: 28910576 PMCID: PMC5810510 DOI: 10.1080/21505594.2017.1373926] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus causes acute and chronic forms of infection, the latter often associated with formation of a biofilm. It has previously been demonstrated that mutation of atl, codY, rot, sarA, and sigB limits biofilm formation in the USA300 strain LAC while mutation of agr, fur, and mgrA has the opposite effect. Here we used a murine sepsis model to assess the impact of these same loci in acute infection. Mutation of agr, atl, and fur had no impact on virulence, while mutation of mgrA and rot increased virulence. In contrast, mutation of codY, sarA, and sigB significantly attenuated virulence. Mutation of sigB resulted in reduced accumulation of AgrA and SarA, while mutation of sarA resulted in reduced accumulation of AgrA, but this cannot account for the reduced virulence of sarA or sigB mutants because the isogenic agr mutant was not attenuated. Indeed, as assessed by accumulation of alpha toxin and protein A, all of the mutants we examined exhibited unique phenotypes by comparison to an agr mutant and to each other. Attenuation of the sarA, sigB and codY mutants was correlated with increased production of extracellular proteases and global changes in extracellular protein profiles. These results suggest that the inability to repress the production of extracellular proteases plays a key role in attenuating the virulence of S. aureus in acute as well as chronic, biofilm-associated infections, thus opening up the possibility that strategies aimed at the de-repression of protease production could be used to broad therapeutic advantage. They also suggest that the impact of codY, sarA, and sigB on protease production occurs via an agr-independent mechanism.
Collapse
Affiliation(s)
- Joseph S Rom
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Danielle N Atwood
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Karen E Beenken
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Daniel G Meeker
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Allister J Loughran
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Horace J Spencer
- b Department of Biostatistics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Tamara L Lantz
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Mark S Smeltzer
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,c Department of Orthopaedic Surgery , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,d Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
99985
|
The role of EscD in supporting EscC polymerization in the type III secretion system of enteropathogenic Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:384-395. [PMID: 28988128 DOI: 10.1016/j.bbamem.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 11/23/2022]
Abstract
The type III secretion system (T3SS) is a multi-protein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. In enteropathogenic Escherichia coli, a prevalent cause of diarrheal diseases, the needle complex base of the T3SS is formed by multi-rings: two concentric inner-membrane rings made by the two oligomerizing proteins (EscD and EscJ), and an outer ring made of a single oligomerizing protein (EscC). Although the oligomerization activity of these proteins is critical for their function and can, therefore, affect the virulence of the pathogen, the mechanisms underlying the oligomerization of these proteins have yet to be identified. In this study, we report that the proteins forming the inner-membrane T3SS rings, EscJ and EscD proteins, are crucial for the oligomerization of EscC. Moreover, we elucidate the oligomerization process of EscD and determine the contribution of individual regions of the protein to its self-oligomerization activity. We show that the oligomerization motif of EscD is located at its N-terminal portion and that its transmembrane domain can self-oligomerize, thus contributing to the self-oligomerization of the full-length EscD.
Collapse
|
99986
|
The transcription fidelity factor GreA impedes DNA break repair. Nature 2017; 550:214-218. [PMID: 28976965 PMCID: PMC5654330 DOI: 10.1038/nature23907] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/07/2017] [Indexed: 01/07/2023]
Abstract
Homologous recombination repairs DNA double-strand breaks and must function even on actively transcribed DNA. Because break repair prevents chromosome loss, the completion of repair is expected to outweigh the transcription of broken templates. Yet, the interplay between DNA break repair and transcription processivity is unclear. Here we show that the transcription factor GreA inhibits break repair in Escherichia coli. GreA restarts backtracked RNA polymerase (RNAP) and hence promotes transcription fidelity. We report that removal of GreA results in dramatically enhanced break repair via the classical RecBCD-RecA pathway. Using a deep-sequencing method to measure chromosomal exonucleolytic degradation (XO-Seq), we demonstrate that the absence of GreA limits RecBCD-mediated resection. Our findings suggest that increased RNAP backtracking promotes break repair by instigating RecA loading by RecBCD, without the influence of canonical Chi signals. The idea that backtracked RNAP can stimulate recombination presents a DNA transaction conundrum: a transcription fidelity factor compromises genomic integrity.
Collapse
|
99987
|
Grønnemose RB, Saederup KL, Kolmos HJ, Hansen SWK, Asferg CA, Rasmussen KJ, Palarasah Y, Andersen TE. A novel in vitro model for haematogenous spreading ofS. aureusdevice biofilms demonstrating clumping dispersal as an advantageous dissemination mechanism. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/28/2017] [Indexed: 01/07/2023]
Affiliation(s)
- R. B. Grønnemose
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| | - K. L. Saederup
- Department of Cancer and Inflammation Research; University of Southern Denmark; Odense Denmark
| | - H. J. Kolmos
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| | - S. W. K. Hansen
- Department of Cancer and Inflammation Research; University of Southern Denmark; Odense Denmark
| | - C. A. Asferg
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| | - K. J. Rasmussen
- Department of Cancer and Inflammation Research; University of Southern Denmark; Odense Denmark
| | - Y. Palarasah
- Unit for Thrombosis Research, Department of Clinical Biochemistry; University of Southern Denmark; Esbjerg Denmark
| | - T. E. Andersen
- Department of Clinical Microbiology; University of Southern Denmark and Odense University Hospital; Odense Denmark
| |
Collapse
|
99988
|
Srivastava A, Sircaik S, Husain F, Thomas E, Ror S, Rastogi S, Alim D, Bapat P, Andes DR, Nobile CJ, Panwar SL. Distinct roles of the 7-transmembrane receptor protein Rta3 in regulating the asymmetric distribution of phosphatidylcholine across the plasma membrane and biofilm formation in Candida albicans. Cell Microbiol 2017; 19. [PMID: 28745020 DOI: 10.1111/cmi.12767] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022]
Abstract
Fungal pathogens such as Candida albicans exhibit several survival mechanisms to evade attack by antifungals and colonise host tissues. Rta3, a member of the Rta1-like family of lipid-translocating exporters has a 7-transmembrane domain topology, similar to the G-protein-coupled receptors and is unique to the fungal kingdom. Our findings point towards a role for the plasma membrane localised Rta3 in providing tolerance to miltefosine, an analogue of alkylphosphocholine, by maintaining mitochondrial energetics. Concurrent with miltefosine susceptibility, the rta3Δ/Δ strain displays increased inward translocation (flip) of fluorophore-labelled phosphatidylcholine (PC) across the plasma membrane attributed to enhanced PC-specific flippase activity. We also assign a novel role to Rta3 in the Bcr1-regulated pathway for in vivo biofilm development. Transcriptome analysis reveals that Rta3 regulates expression of Bcr1 target genes involved in cell surface properties, adhesion, and hyphal growth. We show that rta3Δ/Δ mutant is biofilm-defective in a rat venous catheter model of infection and that BCR1 overexpression rescues this defect, indicating that Bcr1 functions downstream of Rta3 to mediate biofilm formation in C. albicans. The identification of this novel Rta3-dependent regulatory network that governs biofilm formation and PC asymmetry across the plasma membrane will provide important insights into C. albicans pathogenesis.
Collapse
Affiliation(s)
- Archita Srivastava
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shabnam Sircaik
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Farha Husain
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Edwina Thomas
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shivani Ror
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sumit Rastogi
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Darakshan Alim
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Priyanka Bapat
- Department of Molecular and Cell Biology, University of California, Merced, California, USA.,Quantitative and System Biology Graduate Program, University of California, Merced, California, USA
| | - David R Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California, USA
| | - Sneh L Panwar
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
99989
|
How prokaryotes 'encode' their environment: Systemic tools for organizing the information flow. Biosystems 2017; 164:26-38. [PMID: 28987781 DOI: 10.1016/j.biosystems.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023]
Abstract
An important issue related to code biology concerns the cell's informational relationships with the environment. As an open self-producing system, a great variety of inputs and outputs are necessary for the living cell, not only consisting of matter and energy but also involving information flows. The analysis here of the simplest cells will involve two basic aspects. On the one side, the molecular apparatuses of the prokaryotic signaling system, with all its variety of environmental signals and component pathways (which have been called 1-2-3 Component Systems), including the role of a few second messengers which have been pointed out in bacteria too. And in the other side, the gene transcription system as depending not only on signaling inputs but also on a diversity of factors. Amidst the continuum of energy, matter, and information flows, there seems to be evidence for signaling codes, mostly established around the arrangement of life-cycle stages, in large metabolic changes, or in the relationships with conspecifics (quorum sensing) and within microbial ecosystems. Additionally, and considering the complexity growth of signaling systems from prokaryotes to eukaryotes, four avenues or "roots" for the advancement of such complexity would come out. A comparative will be established in between the signaling strategies and organization of both kinds of cellular systems. Finally, a new characterization of "informational architectures" will be proposed in order to explain the coding spectrum of both prokaryotic and eukaryotic signaling systems. Among other evolutionary aspects, cellular strategies for the construction of novel functional codes via the intermixing of informational architectures could be related to the persistence of retro-elements with obvious viral ancestry.
Collapse
|
99990
|
Castanheira S, García-Del Portillo F. Salmonella Populations inside Host Cells. Front Cell Infect Microbiol 2017; 7:432. [PMID: 29046870 PMCID: PMC5632677 DOI: 10.3389/fcimb.2017.00432] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the Salmonella genus cause diseases ranging from gastroenteritis to life-threatening typhoid fever and are among the most successful intracellular pathogens known. After the invasion of the eukaryotic cell, Salmonella exhibits contrasting lifestyles with different replication rates and subcellular locations. Although Salmonella hyper-replicates in the cytosol of certain host cell types, most invading bacteria remain within vacuoles in which the pathogen proliferates at moderate rates or persists in a dormant-like state. Remarkably, these cytosolic and intra-vacuolar intracellular lifestyles are not mutually exclusive and can co-exist in the same infected host cell. The mechanisms that direct the invading bacterium to follow the cytosolic or intra-vacuolar “pathway” remain poorly understood. In vitro studies show predominance of either the cytosolic or the intra-vacuolar population depending on the host cell type invaded by the pathogen. The host and pathogen factors controlling phagosomal membrane integrity and, as consequence, the egress into the cytosol, are intensively investigated. Other aspects of major interest are the host defenses that may affect differentially the cytosolic and intra-vacuolar populations and the strategies used by the pathogen to circumvent these attacks. Here, we summarize current knowledge about these Salmonella intracellular subpopulations and discuss how they emerge during the interaction of this pathogen with the eukaryotic cell.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
99991
|
Substrate Specificity of the FurE Transporter Is Determined by Cytoplasmic Terminal Domain Interactions. Genetics 2017; 207:1387-1400. [PMID: 28978674 DOI: 10.1534/genetics.117.300327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022] Open
Abstract
FurE, a member of the Nucleobase Cation Symporter 1 transporter family in Aspergillus nidulans, is specific for allantoin, uric acid (UA), uracil, and related analogs. Herein, we show that C- or N-terminally-truncated FurE transporters (FurE-ΔC or FurE-ΔΝ) present increased protein stability, but also an inability for UA transport. To better understand the role of cytoplasmic terminal regions, we characterized genetic suppressors that restore FurE-ΔC-mediated UA transport. Suppressors map in the periphery of the substrate-binding site [Thr133 in transmembrane segment (TMS)3 and Val343 in TMS8], an outward-facing gate (Ser296 in TMS7, Ile371 in TMS9, and Tyr392 and Leu394 in TMS10), or in flexible loops (Asp26 in LN, Gly222 in L5, and Asn308 in L7). Selected suppressors were also shown to restore the wild-type specificity of FurE-ΔΝ, suggesting that both C- and/or N-terminal domains are involved in intramolecular dynamics critical for substrate selection. A direct, substrate-sensitive interaction of C- and/or N-terminal domains was supported by bimolecular fluorescence complementation assays. To our knowledge, this is the first case where not only the function, but also the specificity, of a eukaryotic transporter is regulated by its terminal cytoplasmic regions.
Collapse
|
99992
|
Kochenova OV, Bezalel-Buch R, Tran P, Makarova AV, Chabes A, Burgers PMJ, Shcherbakova PV. Yeast DNA polymerase ζ maintains consistent activity and mutagenicity across a wide range of physiological dNTP concentrations. Nucleic Acids Res 2017; 45:1200-1218. [PMID: 28180291 PMCID: PMC5388397 DOI: 10.1093/nar/gkw1149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
In yeast, dNTP pools expand drastically during DNA damage response. We show that similar dNTP elevation occurs in strains, in which intrinsic replisome defects promote the participation of error-prone DNA polymerase ζ (Polζ) in replication of undamaged DNA. To understand the significance of dNTP pools increase for Polζ function, we studied the activity and fidelity of four-subunit Polζ (Polζ4) and Polζ4-Rev1 (Polζ5) complexes in vitro at ‘normal S-phase’ and ‘damage-response’ dNTP concentrations. The presence of Rev1 inhibited the activity of Polζ and greatly increased the rate of all three ‘X-dCTP’ mispairs, which Polζ4 alone made extremely inefficiently. Both Polζ4 and Polζ5 were most promiscuous at G nucleotides and frequently generated multiple closely spaced sequence changes. Surprisingly, the shift from ‘S-phase’ to ‘damage-response’ dNTP levels only minimally affected the activity, fidelity and error specificity of Polζ complexes. Moreover, Polζ-dependent mutagenesis triggered by replisome defects or UV irradiation in vivo was not decreased when dNTP synthesis was suppressed by hydroxyurea, indicating that Polζ function does not require high dNTP levels. The results support a model wherein dNTP elevation is needed to facilitate non-mutagenic tolerance pathways, while Polζ synthesis represents a unique mechanism of rescuing stalled replication when dNTP supply is low.
Collapse
Affiliation(s)
- Olga V Kochenova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel Bezalel-Buch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phong Tran
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
99993
|
Hauryliuk V, Atkinson GC. Small Alarmone Synthetases as novel bacterial RNA-binding proteins. RNA Biol 2017; 14:1695-1699. [PMID: 28820325 DOI: 10.1080/15476286.2017.1367889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The alarmone nucleotides guanosine pentaphosphate (pppGpp) and tetraphosphate (ppGpp), collectively referred to as (p)ppGpp, are key regulators of bacterial growth, stress adaptation, antibiotic tolerance and pathogenicity. We have recently shown that the Small Alarmone Synthetase (SAS) RelQ from the Gram-positive pathogen Enterococcus faecalis has an RNA-binding activity (Beljantseva et al. 2017). RelQ's activities as an enzyme and as an RNA-binding protein are mutually incompatible: binding of single-stranded RNA potently inhibits (p)ppGpp synthesis in a sequence-specific manner, and RelQ's enzymatic activity destabilizes the RNA:RelQ complex. RelQ's allosteric regulator, pppGpp, destabilizes RNA binding and activates RelQ's enzymatic activity. Since SAS enzymes are widely distributed in bacteria, and, as has been discovered recently, are also mobilized by phages (Dedrick et al. 2017), RNA binding to SASs could be a widespread mechanism. The initial discovery raises numerous questions regarding RNA-binding function of the SAS enzymes: What is the molecular mechanism underlying the incompatibility of RNA:SAS complex formation with pppGpp binding and (p)ppGpp synthesis? What are the RNA targets in living cells? What is the regulatory output of the system - (p)ppGpp synthesis, modulation of RNA structure and function, or both?
Collapse
Affiliation(s)
- Vasili Hauryliuk
- a Department of Molecular Biology , Umeå University , 6L University Hospital Area, Umeå , Sweden.,b Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, University Hospital Area , Umeå , Sweden.,c University of Tartu, Institute of Technology , Tartu , Estonia
| | - Gemma C Atkinson
- a Department of Molecular Biology , Umeå University , 6L University Hospital Area, Umeå , Sweden
| |
Collapse
|
99994
|
Abstract
Candida albicans is among the most prevalent fungal species of the human microbiota and asymptomatically colonizes healthy individuals. However, it is also an opportunistic pathogen that can cause severe, and often fatal, bloodstream infections. The medical impact of C. albicans typically depends on its ability to form biofilms, which are closely packed communities of cells that attach to surfaces, such as tissues and implanted medical devices. In this Review, we provide an overview of the processes involved in the formation of C. albicans biofilms and discuss the core transcriptional network that regulates biofilm development. We also consider some of the advantages that biofilms provide to C. albicans in comparison with planktonic growth and explore polymicrobial biofilms that are formed by C. albicans and certain bacterial species.
Collapse
|
99995
|
Huang SH, Cozart MR, Hart MA, Kobryn K. The Borrelia burgdorferi telomere resolvase, ResT, possesses ATP-dependent DNA unwinding activity. Nucleic Acids Res 2017; 45:1319-1329. [PMID: 28180323 PMCID: PMC5388405 DOI: 10.1093/nar/gkw1243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 11/14/2022] Open
Abstract
Spirochetes of the genus Borrelia possess unusual genomes harboring multiple linear and circular replicons. The linear replicons are terminated by covalently closed hairpin (hp) telomeres. Hairpin telomeres are formed from replicated intermediates by the telomere resolvase, ResT, in a phosphoryl transfer reaction with mechanistic similarities to those promoted by type 1B topoisomerases and tyrosine recombinases. There is growing evidence that ResT is multifunctional. Upon ResT depletion DNA replication unexpectedly ceases. Additionally, ResT possesses RecO-like biochemical activities being able to promote single-strand annealing on both free ssDNA and ssDNA complexed with cognate single-stranded DNA binding protein. We report here that ResT possesses DNA-dependent ATPase activity that promotes DNA unwinding with a 3΄-5΄ polarity. ResT can unwind a variety of substrates including synthetic replication forks and D-loops. We demonstrate that ResT's twin activities of DNA unwinding and annealing can drive regression of a model replication fork. These properties are similar to those of the RecQ helicase of the RecF pathway involved in DNA gap repair. We propose that ResT's combination of activities implicates it in replication and recombination processes operating on the linear chromosome and plasmids of Borrelia burgdorferi.
Collapse
Affiliation(s)
- Shu Hui Huang
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| | - McKayla R Cozart
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| | - Madison A Hart
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| | - Kerri Kobryn
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| |
Collapse
|
99996
|
Culka M, Huwiler SG, Boll M, Ullmann GM. Breaking Benzene Aromaticity-Computational Insights into the Mechanism of the Tungsten-Containing Benzoyl-CoA Reductase. J Am Chem Soc 2017; 139:14488-14500. [PMID: 28918628 DOI: 10.1021/jacs.7b07012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aromatic compounds are environmental pollutants with toxic and carcinogenic properties. Despite the stability of aromatic rings, bacteria are able to degrade the aromatic compounds into simple metabolites and use them as growth substrates under oxic or even under anoxic conditions. In anaerobic microorganisms, most monocyclic aromatic growth substrates are converted to the central intermediate benzoyl-coenzyme A, which is enzymatically reduced to cyclohexa-1,5-dienoyl-CoA. The strictly anaerobic bacterium Geobacter metallireducens uses the class II benzoyl-CoA reductase complex for this reaction. The catalytic BamB subunit of this complex harbors an active site tungsten-bis-pyranopterin cofactor with the metal being coordinated by five protein/cofactor-derived sulfur atoms and a sixth, so far unknown, ligand. Although BamB has been biochemically and structurally characterized, its mechanism still remains elusive. Here we use continuum electrostatic and QM/MM calculations to model benzoyl-CoA reduction by BamB. We aim to elucidate the identity of the sixth ligand of the active-site tungsten ion together with the interplay of the electron and proton transfer events during the aromatic ring reduction. On the basis of our calculations, we propose that benzoyl-CoA reduction is initiated by a hydrogen atom transfer from a W(IV) species with an aqua ligand, yielding W(V)-[OH-] and a substrate radical intermediate. In the next step, a proton-assisted second electron transfer takes place with a conserved active-site histidine serving as the second proton donor. Interestingly, our calculations suggest that the electron for the second reduction step is taken from the pyranopterin cofactors rather than from the tungsten ion. The resulting cationic radical, which is distributed over both pyranopterins, is stabilized by conserved anionic amino acid residues. The stepwise mechanism of the reduction shows similarities to the Birch reduction known from organic chemistry. However, the strict coupling of protons and electrons allows the reaction to proceed under milder conditions.
Collapse
Affiliation(s)
- Martin Culka
- Computational Biochemistry, University of Bayreuth , Universitätsstrasse 30, NW I, 95447 Bayreuth, Germany
| | - Simona G Huwiler
- Microbiology, Faculty of Biology, University of Freiburg , Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Matthias Boll
- Microbiology, Faculty of Biology, University of Freiburg , Schänzlestrasse 1, 79104 Freiburg, Germany
| | - G Matthias Ullmann
- Computational Biochemistry, University of Bayreuth , Universitätsstrasse 30, NW I, 95447 Bayreuth, Germany
| |
Collapse
|
99997
|
Disarming Fungal Pathogens: Bacillus safensis Inhibits Virulence Factor Production and Biofilm Formation by Cryptococcus neoformans and Candida albicans. mBio 2017; 8:mBio.01537-17. [PMID: 28974618 PMCID: PMC5626971 DOI: 10.1128/mbio.01537-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteria interact with each other in nature and often compete for limited nutrient and space resources. However, it is largely unknown whether and how bacteria also interact with human fungal pathogens naturally found in the environment. Here, we identified a soil bacterium, Bacillus safensis, which potently blocked several key Cryptococcus neoformans virulence factors, including formation of the antioxidant pigment melanin and production of the antiphagocytic polysaccharide capsule. The bacterium also inhibited de novo cryptococcal biofilm formation but had only modest inhibitory effects on already formed biofilms or planktonic cell growth. The inhibition of fungal melanization was dependent on direct cell contact and live bacteria. B. safensis also had anti-virulence factor activity against another major human-associated fungal pathogen, Candida albicans. Specifically, dual-species interaction studies revealed that the bacterium strongly inhibited C. albicans filamentation and biofilm formation. In particular, B. safensis physically attached to and degraded candidal filaments. Through genetic and phenotypic analyses, we demonstrated that bacterial chitinase activity against fungal cell wall chitin is a factor contributing to the antipathogen effect of B. safensis. Pathogenic fungi are estimated to contribute to as many human deaths as tuberculosis or malaria. Two of the most common fungal pathogens, Cryptococcus neoformans and Candida albicans, account for up to 1.4 million infections per year with very high mortality rates. Few antifungal drugs are available for treatment, and development of novel therapies is complicated by the need for pathogen-specific targets. Therefore, there is an urgent need to identify novel drug targets and new drugs. Pathogens use virulence factors during infection, and it has recently been proposed that targeting these factors instead of the pathogen itself may represent a new approach to develop antimicrobials. Here, we identified a soil bacterium that specifically blocked virulence factor production and biofilm formation by C. neoformans and C. albicans. We demonstrate that the bacterial antipathogen mechanism is based in part on targeting the fungal cell wall, a structure not found in human cells.
Collapse
|
99998
|
Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in Bacillus subtilis. mBio 2017; 8:mBio.00976-17. [PMID: 28974613 PMCID: PMC5626966 DOI: 10.1128/mbio.00976-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
At the heart of central carbon metabolism, pyruvate is a pivotal metabolite in all living cells. Bacillus subtilis is able to excrete pyruvate as well as to use it as the sole carbon source. We herein reveal that ysbAB (renamed pftAB), the only operon specifically induced in pyruvate-grown B. subtilis cells, encodes a hetero-oligomeric membrane complex which operates as a facilitated transport system specific for pyruvate, thereby defining a novel class of transporter. We demonstrate that the LytST two-component system is responsible for the induction of pftAB in the presence of pyruvate by binding of the LytT response regulator to a palindromic region upstream of pftAB. We show that both glucose and malate, the preferred carbon sources for B. subtilis, trigger the binding of CcpA upstream of pftAB, which results in its catabolite repression. However, an additional CcpA-independent mechanism represses pftAB in the presence of malate. Screening a genome-wide transposon mutant library, we find that an active malic enzyme replenishing the pyruvate pool is required for this repression. We next reveal that the higher the influx of pyruvate, the stronger the CcpA-independent repression of pftAB, which suggests that intracellular pyruvate retroinhibits pftAB induction via LytST. Such a retroinhibition challenges the rational design of novel nature-inspired sensors and synthetic switches but undoubtedly offers new possibilities for the development of integrated sensor/controller circuitry. Overall, we provide evidence for a complete system of sensors, feed-forward and feedback controllers that play a major role in environmental growth of B. subtilis. Pyruvate is a small-molecule metabolite ubiquitous in living cells. Several species also use it as a carbon source as well as excrete it into the environment. The bacterial systems for pyruvate import/export have yet to be discovered. Here, we identified in the model bacterium Bacillus subtilis the first import/export system specific for pyruvate, PftAB, which defines a novel class of transporter. In this bacterium, extracellular pyruvate acts as the signal molecule for the LytST two-component system (TCS), which in turn induces expression of PftAB. However, when the pyruvate influx is high, LytST activity is drastically retroinhibited. Such a retroinhibition challenges the rational design of novel nature-inspired sensors and synthetic switches but undoubtedly offers new possibilities for the development of integrated sensor/controller circuitry.
Collapse
|
99999
|
Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nat Microbiol 2017; 2:1648-1657. [PMID: 28974693 PMCID: PMC5705579 DOI: 10.1038/s41564-017-0029-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/11/2017] [Indexed: 01/05/2023]
Abstract
Modification of essential bacterial peptidoglycan (PG) containing cell
walls can lead to antibiotic resistance, for example β-lactam resistance
by L,D-transpeptidase activities. Predatory Bdellovibrio
bacteriovorus are naturally antibacterial and combat infections by
traversing, modifying and finally destroying walls of Gram-negative prey
bacteria, modifying their own PG as they grow inside prey. Historically, these
multi-enzymatic processes on two similar PG walls have proved challenging to
elucidate. Here, with a PG labelling approach utilizing timed pulses of multiple
fluorescent D-amino acids (FDAAs), we illuminate dynamic changes that predator
and prey walls go through during the different phases of bacteria:bacteria
invasion. We show formation of a reinforced circular port-hole in the prey wall;
L,D-transpeptidaseBd mediated D-amino acid modifications
strengthening prey PG during Bdellovibrio invasion and a zonal
mode of predator-elongation. This process is followed by unconventional,
multi-point and synchronous septation of the intracellular
Bdellovibrio, accommodating odd- and even-numbered progeny
formation by non-binary division.
Collapse
|
100000
|
Yadav PK, Rajasekharan R. The m 6A methyltransferase Ime4 and mitochondrial functions in yeast. Curr Genet 2017; 64:353-357. [PMID: 28975387 DOI: 10.1007/s00294-017-0758-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
In eukaryotes, the precise transcriptional and post-transcriptional regulations of gene expression are crucial for the developmental processes. More than 100 types of post-transcriptional RNA modifications have been identified in eukaryotes. The deposition of N6-methyladenosine (m6A) into mRNA is among the most common post-transcriptional RNA modifications known in eukaryotes. It has been reported that m6A RNA modification can regulate gene expression. The role of yeast m6A methyltransferase (Ime4) in meiosis and sporulation in diploid cells is very well proven, but its physiological role in haploid cells has remained unknown until recently. Previously, we have shown that Ime4 epitranscriptionally regulates triacylglycerol (TAG) metabolism and vacuolar morphology in haploid cells. Mitochondrial dysfunction leads to TAG accumulation as lipid droplets (LDs) in the cells; besides, LDs are physically connected to the mitochondria. As of now there are no reports on the role of Ime4 in mitochondrial biology. Here we report the important role played by Ime4 in the mitochondrial morphology and functions in Saccharomyces cerevisiae. The confocal microscopic analysis showed that IME4 gene deletion causes mitochondrial fragmentation; besides, the ime4Δ cells showed a significant decrease in cytochrome c oxidase and citrate synthase activities compared to the wild-type cells. IME4 gene deletion causes mitochondrial dysfunction, and it will be interesting to find out the target genes of Ime4 related to the mitochondrial biology. The determination of the role of Ime4 and its targets in mitochondrial biology could probably help in formulating potential cures for the mitochondria-linked rare genetic disorders.
Collapse
Affiliation(s)
- Pradeep Kumar Yadav
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research, CSIR-CFTRI, Mysore, India
| | - Ram Rajasekharan
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, 570020, India. .,Academy of Scientific and Innovative Research, CSIR-CFTRI, Mysore, India.
| |
Collapse
|