1001
|
Gaiarsa JL, Corradetti R, Cherubini E, Ben-Ari Y. The allosteric glycine site of the N-methyl-D-aspartate receptor modulates GABAergic-mediated synaptic events in neonatal rat CA3 hippocampal neurons. Proc Natl Acad Sci U S A 1990; 87:343-6. [PMID: 2153293 PMCID: PMC53259 DOI: 10.1073/pnas.87.1.343] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We report in this study that, in the presence of magnesium, bath application of micromolar concentrations of glycine have prominent effects on synaptic events and N-methyl-D-aspartate (NMDA) responses in neonatal but not in adult hippocampal slices. Intracellular recordings were made from 71 rat CA3 hippocampal neurons in neonatal slices. In keeping with our earlier study, during the first postnatal week, CA3 neurons exhibited giant depolarizing potentials (GDPs). These GDPs are mediated by gamma-aminobutyric acid (GABA) acting on type A GABA (GABAA) receptors and modulated presynaptically by NMDA receptors. In the majority of cells (18 out of 31), glycine (10-30 microM) increased the frequency of GDPs (from 0.14 to 0.29 Hz). This effect was mimicked by D-serine (10-20 microM) and blocked by the NMDA receptor antagonists D-(-)-2-amino-5-phosphonovalerate (50 microM) and DL-2-amino-7-phosphonoheptanoate (50 microM) and by the GABAA antagonist bicuculline (10 microM) but not by strychnine (1 microM). Subthreshold concentrations of glycine (or D-serine) and NMDA, when given together, enhanced synaptic noise and the frequency of GDPs. In the presence of tetrodotoxin (1 microM), glycine and D-serine (up to 50 microM) did not modify the NMDA-induced inward currents in CA3 pyramidal cells. However the reduction of NMDA-mediated currents by 7-chlorokynurenate (10-20 microM) was reversed by glycine and D-serine (100-200 microM). In contrast, glycine (up to 100 microM) had no effect on membrane potential, input resistance, or NMDA responses after postnatal day 10. It is concluded that GABA-mediated events are facilitated by glycine acting on presynaptically located NMDA receptors.
Collapse
Affiliation(s)
- J L Gaiarsa
- Institut National de la Santé et de la Recherche Médicale, Hospital de Port-Royal, Paris, France
| | | | | | | |
Collapse
|
1002
|
Dowrick PG, Warn RM. The effects of scatter factor on the cytoskeletal organization of epithelial cells. Cancer Invest 1990; 8:675-83. [PMID: 2149836 DOI: 10.3109/07357909009018944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- P G Dowrick
- Cell Biology Group, School of Biological Sciences, University of East Anglia, Norwich, England
| | | |
Collapse
|
1003
|
Rosen EM, Meromsky L, Setter E, Vinter DW, Goldberg ID. Quantitation of cytokine-stimulated migration of endothelium and epithelium by a new assay using microcarrier beads. Exp Cell Res 1990; 186:22-31. [PMID: 2137088 DOI: 10.1016/0014-4827(90)90205-o] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies have identified a group of cytokines which appear to be cell-specific regulators of mobility in nonleukocytic mammalian cells. One example is scatter factor (SF), a soluble protein(s) produced by cultured fibroblasts and vascular smooth muscle cells which causes spreading and separation ("scattering") of tight, cohesive colonies of epithelial cells. Studies of SF action have been limited because the degree of scattering is difficult to quantitate and because scattering assays cannot be used to study potential target cells that do not form tight, cohesive colonies. We developed a simple, quantitative assay of SF-stimulated mobility based on migration of target cells off microcarrier beads onto plastic culture surfaces in 24-well plates. We showed that crude and partially purified SF derived from ras-transformed 3T3 cells stimulates migration of both epithelial and vascular endothelial cells but not of producer or nonproducer fibroblasts. Scatter and migration-stimulating activities copurified on cation exchange chromatography; and the degree of stimulation was closely correlated with scattering titer regardless of SF purity. Migration of endothelial cells from beads, while extremely sensitive to SF, was not affected by serum concentration (1 to 10%), various purified growth factors, or fibronectin. Both scattering and migration from beads were blocked by cycloheximide (0.1 microgram/ml) during assay incubation, suggesting that these processes require protein synthesis. The microcarrier bead assay may be a useful quantitative tool to study the biochemical mechanisms of SF-stimulated cell migration.
Collapse
Affiliation(s)
- E M Rosen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | |
Collapse
|
1004
|
Rosen EM, Goldberg ID. Protein factors which regulate cell motility. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1989; 25:1079-87. [PMID: 2558106 DOI: 10.1007/bf02621258] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell motility (i.e., movement) is an essential component of normal development, inflammation, tissue repair, angiogenesis, and tumor invasion. Various molecules can affect the motility and positioning of mammalian cells, including peptide growth factors, (e.g., EGF, PDGF, TGF-beta), substrate-adhesion molecules (e.g., fibronectin, laminin), cell adhesion molecules (CAMs), and metalloproteinases. Recent studies have demonstrated a group of motility-stimulating proteins which do not appear to fit into any of the above categories. Examples include: 1) scatter factor (SF), a mesenchymal cell-derived protein which causes contiguous sheets of epithelium to separate into individual cells and stimulates the migration of epithelial as well as vascular endothelial cells; 2) autocrine motility factor (AMF), a tumor cell-derived protein which stimulates migration of the producer cells; and 3) migration-stimulating factor (MSF), a protein produced by fetal and cancer patient fibroblasts which stimulates penetration of three-dimensional collagen gels by non-producing adult fibroblasts. SF, AMF, and MSF are soluble and heat labile proteins with Mr of 77, 55, and 70 kd by SDS-PAGE, respectively, and may be members of a new class of cell-specific regulators of motility. Their physiologic functions have not been established, but available data suggest that they may be involved in fetal development and/or tissue repair.
Collapse
Affiliation(s)
- E M Rosen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
1005
|
Tamm I, Cardinale I, Krueger J, Murphy JS, May LT, Sehgal PB. Interleukin 6 decreases cell-cell association and increases motility of ductal breast carcinoma cells. J Exp Med 1989; 170:1649-69. [PMID: 2553849 PMCID: PMC2189517 DOI: 10.1084/jem.170.5.1649] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Treatment of transformed breast duct epithelial cells with IL-6 produces a unique cellular phenotype characterized by diminished proliferation and increased motility. Human ductal carcinoma cells (T-47D and ZR-75-1 lines) are typically epithelioid in shape and form compact colonies in culture. Time-lapse cinemicrography shows that some untreated cells can transiently become fusiform or stellate in shape and separate from each other within a colony, but they usually rejoin their neighbors. While IL-6 suppresses the proliferation of these carcinoma cells, the IL-6-treated cells generally become stellate or fusiform and show increased motility. These changes persist as long as the cells are exposed to IL-6. This results in the dispersal of cells within colonies. The effects on cell growth, shape, and motility are reversible upon removal of IL-6. IL-6-treated T-47D cells display diminished adherens-type cell junctions, as indicated by markedly decreased vinculin-containing adhesions and intercellular desmosomal attachments. The effects on ZR-75-1 cell shape, colony number, and DNA synthesis are dependent on IL-6 concentration in the range from 0.15 to 15 ng/ml. Higher concentrations are required in T-47D cells for equivalent effects. Anti-IL-6 immune serum blocks IL-6 action. IL-6 represents a well-characterized molecule that regulates both the proliferation and junction-forming ability of breast ductal carcinoma cells.
Collapse
Affiliation(s)
- I Tamm
- Rockefeller University, New York, New York 10021
| | | | | | | | | | | |
Collapse
|
1006
|
Boyer B, Tucker GC, Vallés AM, Franke WW, Thiery JP. Rearrangements of desmosomal and cytoskeletal proteins during the transition from epithelial to fibroblastoid organization in cultured rat bladder carcinoma cells. J Cell Biol 1989; 109:1495-509. [PMID: 2677020 PMCID: PMC2115780 DOI: 10.1083/jcb.109.4.1495] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Changes of cell morphology and the state of differentiation are known to play important roles in embryogenesis as well as in carcinogenesis. Examples of particularly profound changes are the conversions of epithelial to mesenchymal cells; i.e., the dissociation of some or all polygonal, polar epithelial cells and their transformation into elongate, fibroblastoid cells of high motility. As an in vitro model system for such changes in cell morphology, we have used cell cultures of the rat bladder carcinoma-derived cell line NBT-II which, on exposure to inducing medium containing a commercial serum substitute (Ultroser G), show an extensive change in their organization (epithelial-mesenchymal transition): the junctions between the epithelial cells are split, the epithelial cell organization is lost, and the resulting individual cells become motile and assume a spindle-like fibroblastoid appearance. Using immunofluorescence microscopy and biochemical protein characterization techniques, we show that this change is accompanied by a redistribution of desmosomal plaque proteins (desmoplakins, desmoglein, plakoglobin) and by a reorganization of the cytokeratin and the actin-fodrin filament systems. Moreover, intermediate-sized filaments of the vimentin type are formed in the fibroblastoid cells. We demonstrate that the modulation of desmosomal proteins, specifically an increase in soluble desmoplakins, is a relatively early event in cell dissociation and in epithelial-mesenchymal transition. In this process, a latent period of 5 h upon addition of inducing medium precedes the removal of these desmosomal components from the plasma membrane. The transition, which is reversible, is dependent on continued protein synthesis and phosphorylation but not on the presence of the inducing medium beyond the initial 2-h period. We discuss the value of this experimental system as a physiologically relevant approach for studying the regulation of the assembly and disassembly of desmosomes and other intercellular adhesion structures, and as a model of the conversion of cells from one state of differentiation into another.
Collapse
Affiliation(s)
- B Boyer
- Laboratoire de Physiopathologie du Développement, Centre National de la Recherche Scientifique, Paris, France
| | | | | | | | | |
Collapse
|
1007
|
Gherardi E, Gray J, Stoker M, Perryman M, Furlong R. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc Natl Acad Sci U S A 1989; 86:5844-8. [PMID: 2527367 PMCID: PMC297727 DOI: 10.1073/pnas.86.15.5844] [Citation(s) in RCA: 291] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Scatter factor is a fibroblast-derived protein that causes separation of contiguous epithelial cells and increased local mobility of unanchored cells. Highly purified scatter factor has been obtained by a combination of ion-exchange and reverse-phase chromatography from serum-free medium conditioned by a ras-transformed clone (D4) of mouse NIH 3T3 fibroblasts. Under nonreducing conditions scatter factor has a pI of approximately 9.5 and migrates in SDS/polyacrylamide gels as a single band at approximately 62 kDa from which epithelial scatter activity can be recovered. Treatment with reducing agents destroys biological activity and is associated with the appearance of two major bands at approximately 57 and approximately 30 kDa. Whether both the 57-kDa and 30-kDa polypeptides are required for biological activity remains to be established. All the activities observed in crude medium conditioned by cells producing scatter factor are retained by highly purified preparations of scatter factor. These include (i) increased local movement, modulation of morphology, and inhibition of junction formation by single epithelial cells and (ii) disruption of epithelial interactions and cell scattering from preformed epithelial sheets. These changes occur with picomolar concentrations of purified scatter factor and without an effect on cell growth.
Collapse
Affiliation(s)
- E Gherardi
- Department of Pathology, University of Cambridge, England
| | | | | | | | | |
Collapse
|
1008
|
|
1009
|
Sage H, Vernon RB, Funk SE, Everitt EA, Angello J. SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca+2-dependent binding to the extracellular matrix. J Biophys Biochem Cytol 1989; 109:341-56. [PMID: 2745554 PMCID: PMC2115491 DOI: 10.1083/jcb.109.1.341] [Citation(s) in RCA: 298] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SPARC (Secreted Protein Acidic and Rich in Cysteine) is a Ca+2-binding glycoprotein that is differentially associated with morphogenesis, remodeling, cellular migration, and proliferation. We show here that exogenous SPARC, added to cells in culture, was associated with profound changes in cell shape, caused rapid, partial detachment of a confluent monolayer, and inhibited spreading of newly plated cells. Bovine aortic endothelial cells, exposed to 2-40 micrograms SPARC/ml per 2 x 10(6) cells, exhibited a rounded morphology in a dose-dependent manner but remained attached to plastic or collagen-coated surfaces. These round cells synthesized protein, uniformly excluded trypan blue, and grew in aggregates after replating in media without SPARC. SPARC caused rounding of bovine endothelial cells, fibroblasts, and smooth muscle cells; however, the cell lines F9, PYS-2, and 3T3 were not affected. The activity of native SPARC was inhibited by heat denaturation and prior incubation with anti-SPARC IgG. The effect of SPARC on endothelial cells appeared to be independent of the rounding phenomenon produced by the peptide GRGDSP. Immunofluorescence localization of SPARC on endothelial cells showed preferential distribution at the leading edges of membranous extensions. SPARC bound Ca+2 in both amino- and carboxyl-terminal (EF-hand) domains and required this cation for maintenance of native structure. Solid-phase binding assays indicated a preferential affinity of native SPARC for several proteins comprising the extracellular matrix, including types III and V collagen, and thrombospondin. This binding was saturable, Ca+2 dependent, and inhibited by anti-SPARC IgG. Endothelial cells also failed to spread on a substrate of native type III collagen complexed with SPARC. We propose that SPARC is an extracellular modulator of Ca+2 and cation-sensitive proteins or proteinases, which facilitates changes in cellular shape and disengagement of cells from the extracellular matrix.
Collapse
Affiliation(s)
- H Sage
- Department of Biological Structure, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|
1010
|
Abstract
The scatter factor is a protein released by fibroblasts that causes dispersal of epithelial cell colonies and disruption of intercellular junctions, as well as an alteration of morphology with ruffling and rapid extension and movement of pseudopodia. To find out if the scatter factor has a direct effect on cell migration, the Boyden chamber assay was used to determine the effect of partially purified factor on the migration of cells through 8 microns pore size filters. The results showed that the mobility of Madin-Darby canine kidney (MDCK) cells was stimulated, and usually maximal at 100 ng per ml, which is equivalent to 100 to 200 units of activity in the standard assay based on the morphology and arrangement of cells. The migration was due to chemotaxis and chemokinesis. A keratinocyte cell line was also sensitive as were, to a lesser extent, BSCl monkey kidney cells. The motility of freshly isolated fibroblasts and fibroblast cell lines, however, was not significantly affected. The results confirm the cell specificity and paracrine role of the scatter factor and show that this fibroblast-derived molecule can directly stimulate the movement of epithelial cells.
Collapse
Affiliation(s)
- M Stoker
- Department of Pathology, University of Cambridge
| |
Collapse
|
1011
|
Behrens J, Mareel MM, Van Roy FM, Birchmeier W. Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol 1989; 108:2435-47. [PMID: 2661563 PMCID: PMC2115620 DOI: 10.1083/jcb.108.6.2435] [Citation(s) in RCA: 695] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The generation of invasiveness in transformed cells represents an essential step of tumor progression. We show here, first, that nontransformed Madin-Darby canine kidney (MDCK) epithelial cells acquire invasive properties when intercellular adhesion is specifically inhibited by the addition of antibodies against the cell adhesion molecule uvomorulin; the separated cells then invade collagen gels and embryonal heart tissue. Second, MDCK cells transformed with Harvey and Moloney sarcoma viruses are constitutively invasive, and they were found not to express uvomorulin at their cell surface. These data suggest that the loss of adhesive function of uvomorulin (which is identical to E-cadherin and homologous to L-CAM) is a critical step in the promotion of epithelial cells to a more malignant, i.e., invasive, phenotype. Similar modulation of intercellular adhesion might also occur during invasion of carcinoma cells in vivo.
Collapse
Affiliation(s)
- J Behrens
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Tübingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
1012
|
Grey AM, Schor AM, Rushton G, Ellis I, Schor SL. Purification of the migration stimulating factor produced by fetal and breast cancer patient fibroblasts. Proc Natl Acad Sci U S A 1989; 86:2438-42. [PMID: 2488545 PMCID: PMC286928 DOI: 10.1073/pnas.86.7.2438] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have previously shown that (i) human skin fibroblasts of fetal and adult origin display distinctive migratory phenotypes, (ii) this difference in cell behavior results from the production of a soluble "migration stimulating factor" (MSF) by fetal cells, and (iii) skin fibroblasts from breast cancer patients commonly resemble fetal fibroblasts both in migratory phenotype and in production of MSF. Data are now presented indicating that MSF present in the conditioned medium of fetal and cancer patient fibroblasts is precipitated at 10% saturation ammonium sulfate and binds to heparin and cation-exchange resins. Based on this information, we have devised a scheme for the purification of MSF involving the sequential application of ammonium sulfate precipitation, heparin affinity, gel filtration, and reverse-phase chromatography. Purified MSF has an estimated molecular mass of 70 kDa; amino acid analysis reveals a relatively high level of proline (13.34 residues per 100). Our results further suggest that skin fibroblasts from breast cancer patients produce an additional factor with migration stimulating activity; this factor is precipitated at higher concentrations of ammonium sulfate and binds to anion-exchange resins. We have previously discussed the possible direct involvement of fetal-like fibroblasts in cancer pathogenesis. The availability of MSF obtained from cancer patient fibroblasts provides a potential means with which to examine the complex cellular interactions contributing to this process as well as develop a screening regime for identifying individuals at elevated risk of developing cancer.
Collapse
Affiliation(s)
- A M Grey
- Department of Cell and Structural Biology, University of Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
1013
|
Rosen EM, Goldberg ID, Kacinski BM, Buckholz T, Vinter DW. Smooth muscle releases an epithelial cell scatter factor which binds to heparin. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1989; 25:163-73. [PMID: 2537811 DOI: 10.1007/bf02626174] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report that cultured bovine calf aorta and human adult iliac artery smooth muscle cells release a soluble factor which causes spreading and separation of cells in normally tight, cohesive epithelial colonies, similar to the morphologic changes induced by the fibroblast-derived scatter factor (SF). Smooth muscle-derived SF was heat sensitive, trypsin labile, and nondialyzable, consistent with a protein (or proteins). Its effects on epithelium were not mimicked by a variety of proteolytic enzymes, growth factors, or hormones, and were not blocked by antiproteases or by antibodies to fibronectin and basic fibroblast growth factor. Epithelial cell proliferation was unaffected or only mildly stimulated by partially purified SF at concentrations that produced cell scattering. Both smooth muscle- and MRC5 human embryo fibroblast-derived SFs could be partially purified with similar elution patterns on a number of different chromatographic columns, including DEAE-agarose, heparin-sepharose, Bio-Rex 70, concanavalin A-sepharose, and MonoQ. SF from both sources bound tightly to heparin-sepharose, requiring 1.3 to 1.4 M NaCl for elution. The morphologically obvious cell scattering effect was markedly inhibited by soluble heparin at concentrations down to 5 micrograms/ml, and this inhibition was prevented by protamine. These data suggest that vascular smooth muscle cells produce an epithelial cell scattering factor with properties similar to the fibroblast-produced factor, including a high affinity for heparin. Such factors are potentially important because they may represent a new class of proteins that primarily regulate cell mobility rather than growth and differentiation.
Collapse
Affiliation(s)
- E M Rosen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | |
Collapse
|
1014
|
Abstract
In order to study cell translocation in vitro on a physiological substrate a novel cell migration assay was developed using the inner limiting membrane of the avian embryonic retina. The matrix sheet consists of a laminin-rich basal lamina covered by a dense layer of neuroepithelial endfeet. The retina basal lamina does not contain fibronectin. Cells translocating on this substrate displace the neuroepithelial endfeet, leaving behind tracks in the endfeet monolayer. Motility of cells and the relative forward to lateral migration can be quantitated by measuring lengths, widths, and areas of the tracks. Using this assay system, the conditions and patterns of cell migration for a variety of cells have been examined. In the absence of serum all cell types show only minor migratory activity and addition of serum to the culture medium always enhances the rate of cell migration in a saturable, dose-response manner. The serum cannot be replaced by fibronectin or vitronectin (serum spreading factor). For maximum cell migration, serum has to be constantly present in the medium; however, 58% cell migration is obtained in serum-free medium when the matrix is preincubated with serum. According to the area and linearity of the tracks, the migratory behavior of the different cells can be classified into three groups: (i) fibroblasts and the nonpigmented Bowes melanoma cells form straight and long tracks; (ii) glioma, sarcoma, and carcinoma cells from straight but short tracks, and (iii) neuronal tumor cells, epithelial cells, and pigmented B16 melanoma cells form wide and short tracks. Comparative studies with low and high metastatic clones of tumorgenic cell lines show that migratory activity and metastatic potential of cells do not necessarily correlate. Finally, we show that fibroblasts deposit fibronectin fibrils on their paths as they migrate on the basal lamina. Fibronectin trails are also seen when fibroblasts are cultured on plain basal laminae that are pretreated with detergent to remove the endfeet monolayer. Likewise, when fibroblasts are cultured in the presence of antifibronectin antibodies, the fibronectin secreted by cells is detectable. Due to antibody treatment the cellular fibronectin is precipitated and its normal fibril formation is inhibited; however, the translocation of fibroblasts is not impaired.
Collapse
Affiliation(s)
- W Halfter
- Friedrich Miescher-Institute, Basel, Switzerland
| | | | | |
Collapse
|
1015
|
Stern CD, Canning DR. Gastrulation in birds: a model system for the study of animal morphogenesis. EXPERIENTIA 1988; 44:651-7. [PMID: 3044815 DOI: 10.1007/bf01941025] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- C D Stern
- Department of Human Anatomy, Oxford, England
| | | |
Collapse
|
1016
|
Guirguis R, Margulies I, Taraboletti G, Schiffmann E, Liotta L. Cytokine-induced pseudopodial protrusion is coupled to tumour cell migration. Nature 1987; 329:261-3. [PMID: 2957596 DOI: 10.1038/329261a0] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pseudopodia protrusion is a prominent feature of actively motile cells in vitro and invading tumour cells in vivo; however, the function and regulation of pseudopodia are poorly understood. Tumour autocrine motility factor (AMF) represents a new class of cytokines which are secreted by tumour cells and embryonic cells and induce random motility in the producer cells or in heterologous cells with appropriate receptors. Here we report that a major effect of this factor is to induce the extension of cell pseudopodia before cell translocation. Using a new method to quantify and isolate pseudopodia, we find that human breast carcinoma cell AMF (at concentrations of 1 nM or below) stimulates random pseudopodia formation in a dose-dependent and time-dependent manner. Anti-AMF antibodies inhibit pseudopodia protrusion and cell motility, showing the importance of pseudopodia formation during locomotion. AMF-stimulated motility and pseudopodia formation occur on a wide variety of adhesive substrata which suggests that certain intrinsic motility events are independent of the attachment mechanism. Induced pseudopodia show a prominent axial actin network in the electron microscope. The number of laminin receptor and fibronectin RGD recognition sites is increased by a factor of 20 in the induced pseudopodia when compared to the average distribution in unstimulated cells. Exploratory pseudopodia regulated by cell-derived motility factors contain receptors for matrix proteins and could serve as 'senseorgans' essential to the process of cell locomotion.
Collapse
|