1001
|
Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A, Croce CM. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 2006; 24:4677-84. [PMID: 16966691 DOI: 10.1200/jco.2005.05.5194] [Citation(s) in RCA: 590] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE We investigated the global microRNA expression patterns in normal pancreas, pancreatic endocrine tumors and acinar carcinomas to evaluate their involvement in transformation and malignant progression of these tumor types. MicroRNAs are small noncoding RNAs that regulate gene expression by targeting specific mRNAs for degradation or translation inhibition. Recent evidence indicates that microRNAs can contribute to tumor development and progression and may have diagnostic and prognostic value in several human malignancies. MATERIALS AND METHODS Using a custom microarray, we studied the global microRNA expression in 12 nontumor pancreas and 44 pancreatic primary tumors, including 12 insulinomas, 28 nonfunctioning endocrine tumors, and four acinar carcinomas. RESULTS Our data showed that a common pattern of microRNA expression distinguishes any tumor type from normal pancreas, suggesting that this set of microRNAs might be involved in pancreatic tumorigenesis; the expression of miR-103 and miR-107, associated with lack of expression of miR-155, discriminates tumors from normal; a set of 10 microRNAs distinguishes endocrine from acinar tumors and is possibly associated with either normal endocrine differentiation or endocrine tumorigenesis; miR-204 is primarily expressed in insulinomas and correlates with immunohistochemical expression of insulin; and the overexpression of miR-21 is strongly associated with both a high Ki67 proliferation index and presence of liver metastasis. CONCLUSION These results suggest that alteration in microRNA expression is related to endocrine and acinar neoplastic transformation and progression of malignancy, and might prove useful in distinguishing tumors with different clinical behavior.
Collapse
Affiliation(s)
- Claudia Roldo
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1002
|
Abstract
Development in mammals is a complex process requiring gene expression to be spatially and temporally well-regulated. Factors modulate gene functioning by controlling transcription, translation, or mRNA degradation. microRNAs (miRNAs) are a group of small RNA molecules (approximately 22 nucleotides) that attenuate gene activity posttranscriptionally by suppressing translation or destabilizing mRNAs. miRNAs have been recently validated to regulate many animal developmental events including proliferation, differentiation, and apoptosis. Many miRNAs display intriguing expression and functioning patterns throughout these pathways. Here we will review achievements to date about studies of how miRNAs affect a variety of animal developmental transitions, from the formation of early embryos to the generation of highly specialized tissues.
Collapse
Affiliation(s)
- Chung-Tien Lee
- Department of Molecular Cellular, and Developmental Biology, University of Colorado at Boulder, 80309, USA
| | | | | |
Collapse
|
1003
|
Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 2006; 26:8191-201. [PMID: 16940181 PMCID: PMC1636750 DOI: 10.1128/mcb.00242-06] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are an extensive family of approximately 22-nucleotide-long noncoding RNAs expressed in a wide range of eukaryotes, including humans, and they are important in development and disease. We found that microRNA Mir-17-5p has extensive complementarity to the mRNA of AIB1 (named for "amplified in breast cancer 1"). Cell culture experiments showed that AIB1 expression was downregulated by Mir-17-5p, primarily through translational inhibition. Expression of Mir-17-5p was low in breast cancer cell lines. We also found that downregulation of AIB1 by Mir-17-5p resulted in decreased estrogen receptor-mediated, as well as estrogen receptor-independent, gene expression and decreased proliferation of breast cancer cells. Mir-17-5p also completely abrogated the insulin-like growth factor 1-mediated, anchorage-independent growth of breast cancer cells. Our results reveal that Mir-17-5p has a role as a tumor suppressor in breast cancer cells.
Collapse
Affiliation(s)
- Anwar Hossain
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA.
| | | | | |
Collapse
|
1004
|
Krützfeldt J, Poy MN, Stoffel M. Strategies to determine the biological function of microRNAs. Nat Genet 2006; 38 Suppl:S14-9. [PMID: 16736018 DOI: 10.1038/ng1799] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are regulators of gene expression that control many biological processes in development, differentiation, growth and metabolism. Their expression levels, small size, abundance of repetitive copies in the genome and mode of action pose unique challenges in studies elucidating the function of miRNAs. New technologies for identification, expression profiling and target gene validation, as well as manipulation of miRNA expression in vivo, will facilitate the study of their contribution to biological processes and disease. Such information will be crucial to exploit the emerging knowledge of miRNAs for the development of new human therapeutic applications.
Collapse
Affiliation(s)
- Jan Krützfeldt
- Laboratory of Metabolic Diseases, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | |
Collapse
|
1005
|
Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol 2006; 302:1-12. [PMID: 16989803 DOI: 10.1016/j.ydbio.2006.08.028] [Citation(s) in RCA: 1975] [Impact Index Per Article: 103.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/01/2006] [Accepted: 08/12/2006] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs) are a new class of non-protein-coding, endogenous, small RNAs. They are important regulatory molecules in animals and plants. miRNA regulates gene expression by translational repression, mRNA cleavage, and mRNA decay initiated by miRNA-guided rapid deadenylation. Recent studies show that some miRNAs regulate cell proliferation and apoptosis processes that are important in cancer formation. By using multiple molecular techniques, which include Northern blot analysis, real-time PCR, miRNA microarray, up- or down-expression of specific miRNAs, it was found that several miRNAs were directly involved in human cancers, including lung, breast, brain, liver, colon cancer, and leukemia. In addition, some miRNAs may function as oncogenes or tumor suppressors. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites, suggesting that miRNAs may play a more important role in the pathogenesis of a limited range of human cancers than previously thought. Overexpressed miRNAs in cancers, such as mir-17-92, may function as oncogenes and promote cancer development by negatively regulating tumor suppressor genes and/or genes that control cell differentiation or apoptosis. Underexpressed miRNAs in cancers, such as let-7, function as tumor suppressor genes and may inhibit cancers by regulating oncogenes and/or genes that control cell differentiation or apoptosis. miRNA expression profiles may become useful biomarkers for cancer diagnostics. In addition, miRNA therapy could be a powerful tool for cancer prevention and therapeutics.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409-1163, USA.
| | | | | | | |
Collapse
|
1006
|
Malphettes L, Fussenegger M. Impact of RNA interference on gene networks. Metab Eng 2006; 8:672-83. [PMID: 16996764 DOI: 10.1016/j.ymben.2006.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 05/28/2006] [Accepted: 07/25/2006] [Indexed: 12/21/2022]
Abstract
Small endogenous RNAs such as microRNAs (miRNAs) and small interfering RNAs (siRNAs) have been found to post-transcriptionally control cellular gene networks by targeting complementary mRNAs for translation impairment (miRNA) or destruction (siRNA). We have developed a computational model, coordinated to molecular and biochemical parameters of RNA interference pathways, to provide (semi-) quantitative insight into the molecular events managing siRNA-mediated gene expression silencing in native and synthetic gene networks. Based on mass-conservation principles and kinetic rate laws, we converted biochemical RNA interference pathways into a set of ordinary differential equations that describe the dynamics of siRNA-mediated translation-regulation in mammalian cells. Capitalizing on mechanistic details of synthetic transactivator operation, we wired this model into a transcription control circuitry in which the siRNA and its target mRNA are independently regulated at the transcriptional level. In this context, we studied the impact of siRNA transcription timing on the onset of target gene transcription and production kinetics of target mRNA-encoded proteins. We also simulated the rate of siRNA-induced mRNA depletion and demonstrated that the relative concentrations of interacting siRNAs/mRNAs and the number of siRNA-specific target sites on a transcript modulate (i) the rate of target mRNA disappearance, (ii) the steady-state mRNA levels and (iii) induction dynamics of mRNA-encoded protein production. As our model predictions are consistent with available biochemical parameters, extrapolations may improve our understanding of how complex regulatory gene networks are impacted by small endogenous RNAs.
Collapse
Affiliation(s)
- Laetitia Malphettes
- Institute for Chemical and Bio-Engineering, Swiss Federal Institute of Technology-ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
1007
|
Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 2006; 20:2202-7. [PMID: 16882971 PMCID: PMC1553203 DOI: 10.1101/gad.1444406] [Citation(s) in RCA: 689] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that post-transcriptionally regulate gene expression. While hundreds of mammalian miRNA genes have been identified, little is known about the pathways that regulate the production of active miRNA species. Here we show that a large fraction of miRNA genes are regulated post-transcriptionally. During early mouse development, many miRNA primary transcripts, including the Let-7 family, are present at high levels but are not processed by the enzyme Drosha. An analysis of gene expression in primary tumors indicates that the widespread down-regulation of miRNAs observed in cancer is due to a failure at the Drosha processing step. These data uncover a novel regulatory step in miRNA function and provide a mechanism for miRNA down-regulation in cancer.
Collapse
Affiliation(s)
- J Michael Thomson
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
1008
|
Abstract
microRNAs (miRNAs) form an evolutionarily conserved and highly abundant class of non-coding RNAs that are 21-24 nucleotides (nt) in length. They are processed from double-stranded (ds) RNA precursors and sequence-specifically guide posttranscriptional gene silencing. The processing steps are facilitated by members of the RNAse III enzyme family, whereas gene silencing events are mediated by members of the highly conserved Argonaute (Ago) protein family. Initially discovered in Caenorhabditis elegans, in which they are essential for proper developmental timing, hundreds of miRNAs have been discovered to date in a variety of different organisms, including plants, flies and mammals. Expression profiling approaches demonstrated that miRNAs are specifically expressed not only during embryonic development, but also during cell differentiation and other cellular events such as hormonal signaling. Although miRNAs have been the object of extensive research in recent years, very little is known about their target mRNAs. Their identification along with a comprehensive description of the miRNA/target-mRNA interaction network will add a new level to our knowledge of gene regulation and will also provide new insights into the biology of so far poorly understood diseases, including various forms of cancer.
Collapse
MESH Headings
- Animals
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Embryo, Nonmammalian
- Gene Expression Profiling/methods
- Genomics
- Humans
- MicroRNAs/chemistry
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Protein Processing, Post-Translational
- RNA Interference
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
- Po Yu Chen
- Laboratory of RNA Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | |
Collapse
|
1009
|
Angeloni D, ter Elst A, Wei MH, van der Veen AY, Braga EA, Klimov EA, Timmer T, Korobeinikova L, Lerman MI, Buys CHCM. Analysis of a new homozygous deletion in the tumor suppressor region at 3p12.3 reveals two novel intronic noncoding RNA genes. Genes Chromosomes Cancer 2006; 45:676-91. [PMID: 16607615 DOI: 10.1002/gcc.20332] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Homozygous deletions or loss of heterozygosity (LOH) at human chromosome band 3p12 are consistent features of lung and other malignancies, suggesting the presence of a tumor suppressor gene(s) (TSG) at this location. Only one gene has been cloned thus far from the overlapping region deleted in lung and breast cancer cell lines U2020, NCI H2198, and HCC38. It is DUTT1 (Deleted in U Twenty Twenty), also known as ROBO1, FLJ21882, and SAX3, according to HUGO. DUTT1, the human ortholog of the fly gene ROBO, has homology with NCAM proteins. Extensive analyses of DUTT1 in lung cancer have not revealed any mutations, suggesting that another gene(s) at this location could be of importance in lung cancer initiation and progression. Here, we report the discovery of a new, small, homozygous deletion in the small cell lung cancer (SCLC) cell line GLC20, nested in the overlapping, critical region. The deletion was delineated using several polymorphic markers and three overlapping P1 phage clones. Fiber-FISH experiments revealed the deletion was approximately 130 kb. Comparative genomic sequence analysis uncovered short sequence elements highly conserved among mammalian genomes and the chicken genome. The discovery of two EST clusters within the deleted region led to the isolation of two noncoding RNA (ncRNA) genes. These were subsequently found differentially expressed in various tumors when compared to their normal tissues. The ncRNA and other highly conserved sequence elements in the deleted region may represent miRNA targets of importance in cancer initiation or progression.
Collapse
Affiliation(s)
- Debora Angeloni
- Laboratory of Immunobiology, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1010
|
Calin GA, Garzon R, Cimmino A, Fabbri M, Croce CM. MicroRNAs and leukemias: How strong is the connection? Leuk Res 2006; 30:653-5. [PMID: 16330098 DOI: 10.1016/j.leukres.2005.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 12/19/2022]
|
1011
|
Abstract
Cytogenetic analysis of Hodgkin's lymphoma (HL) is hampered by the scarcity of neoplastic cells within a sea of reactive cells. There is accumulating evidence that HL represents 2 disease entities, classic HL (cHL) with its morphologic variants and nodular lymphocyte predominant HL (NLPHL). This subdivision, initially worked out in morphologic and immunohistochemical studies, has been further substantiated by molecular cytogenetic investigations. Two recurrent chromosomal aberrations, namely gains of 2p13-p16 and 9p24, have been found by comparative genomic hybridization analysis in microdissected cells from cHL patients as well as in cHL cell lines, but not in NLPHL cells. The available cHL cell lines are remarkably heterogeneous in their karyotypes, suggesting profound genomic instability leading to numeric chromosomal aberration and multiple chromosomal breaks and translocations. In this article, we review genomic aberrations that may contribute to the development and maintenance of the morphologic and clinical presentation of these beta-cell lymphoma entities. Furthermore, we delineate current data on the genomic changes observed in the neoplastic cells of HL that are created by epigenetic mechanisms, which are alternative mechanisms that regulate the expression of relevant genes.
Collapse
Affiliation(s)
- Marc A Weniger
- Department of Pathology, University of Ulm, Ulm, Germany
| | | | | |
Collapse
|
1012
|
Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 2006; 103:7024-9. [PMID: 16641092 PMCID: PMC1459012 DOI: 10.1073/pnas.0602266103] [Citation(s) in RCA: 849] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) represent a newly discovered class of posttranscriptional regulatory noncoding small RNAs that bind to targeted mRNAs and either block their translation or initiate their degradation. miRNA profiling of hematopoietic lineages in humans and mice showed that some miRNAs are differentially expressed during hematopoietic development, suggesting a role in hematopoietic cell differentiation. In addition, recent studies suggest the involvement of miRNAs in the initiation and progression of cancer. miR155 and BIC, its host gene, have been reported to accumulate in human B cell lymphomas, especially in diffuse large B cell lymphomas, Hodgkin lymphomas, and certain types of Burkitt lymphomas. Here, we show that E(mu)-mmu-miR155 transgenic mice exhibit initially a preleukemic pre-B cell proliferation evident in spleen and bone marrow, followed by frank B cell malignancy. These findings indicate that the role of miR155 is to induce polyclonal expansion, favoring the capture of secondary genetic changes for full transformation.
Collapse
Affiliation(s)
- Stefan Costinean
- Comprehensive Cancer Center, Ohio State University, 400 West 12th Avenue, Columbus, OH 43210
| | - Nicola Zanesi
- Comprehensive Cancer Center, Ohio State University, 400 West 12th Avenue, Columbus, OH 43210
| | - Yuri Pekarsky
- Comprehensive Cancer Center, Ohio State University, 400 West 12th Avenue, Columbus, OH 43210
| | - Esmerina Tili
- Comprehensive Cancer Center, Ohio State University, 400 West 12th Avenue, Columbus, OH 43210
| | - Stefano Volinia
- Comprehensive Cancer Center, Ohio State University, 400 West 12th Avenue, Columbus, OH 43210
| | - Nyla Heerema
- Comprehensive Cancer Center, Ohio State University, 400 West 12th Avenue, Columbus, OH 43210
| | - Carlo M. Croce
- Comprehensive Cancer Center, Ohio State University, 400 West 12th Avenue, Columbus, OH 43210
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1013
|
Kluiver J, Haralambieva E, de Jong D, Blokzijl T, Jacobs S, Kroesen BJ, Poppema S, van den Berg A. Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 2006; 45:147-53. [PMID: 16235244 DOI: 10.1002/gcc.20273] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We previously demonstrated high expression of primary-microRNA BIC (pri-miR-155) in Hodgkin lymphoma (HL) and lack of expression in most non-Hodgkin lymphoma subtypes including some Burkitt lymphoma (BL) cases. Recently, high expression of BIC was reported in BL in comparison to pediatric leukemia and normal peripheral-blood samples. In this study, we extended our series of BL cases and cell lines to examine expression of BIC using RNA in situ hybridization (ISH) and quantitative RT-PCR (qRT-PCR) and of miR-155 using Northern blotting. Both BIC RNA ISH and qRT-PCR revealed no or low levels of BIC in 25 BL tissue samples [including 7 Epstein-Barr virus (EBV)-positive cases] compared to HL and normal controls. In agreement with these findings, no miR-155 was observed in BL tissues. EBV-negative and EBV latency type I BL cell lines also showed very low BIC and miR-155 expression levels as compared to HL cell lines. Higher levels of BIC and miR-155 were detected in in vitro transformed lymphoblastoid EBV latency type III BL cell lines. An association of latency type III infection and induction of BIC was supported by consistent expression of BIC in 11 and miR-155 in 2 posttransplantation lymphoproliferative disorder (PTLD) cases. In summary, we demonstrated that expression of BIC and miR-155 is not a common finding in BL. Expression of BIC and miR-155 in 3 latency type III EBV-positive BL cell lines and in all primary PTLD cases suggests a possible role for EBV latency type III specific proteins in the induction of BIC expression.
Collapse
Affiliation(s)
- Joost Kluiver
- Department of Pathology & Laboratory Medicine, Groningen University Medical Center, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
1014
|
|
1015
|
Chung KH, Hart CC, Al-Bassam S, Avery A, Taylor J, Patel PD, Vojtek AB, Turner DL. Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res 2006; 34:e53. [PMID: 16614444 PMCID: PMC1435982 DOI: 10.1093/nar/gkl143] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/09/2006] [Accepted: 03/16/2006] [Indexed: 01/07/2023] Open
Abstract
Vector-based RNA interference (RNAi) has emerged as a valuable tool for analysis of gene function. We have developed new RNA polymerase II expression vectors for RNAi, designated SIBR vectors, based upon the non-coding RNA BIC. BIC contains the miR-155 microRNA (miRNA) precursor, and we find that expression of a short region of the third exon of mouse BIC is sufficient to produce miR-155 in mammalian cells. The SIBR vectors use a modified miR-155 precursor stem-loop and flanking BIC sequences to express synthetic miRNAs complementary to target RNAs. Like RNA polymerase III driven short hairpin RNA vectors, the SIBR vectors efficiently reduce target mRNA and protein expression. The synthetic miRNAs can be expressed from an intron, allowing coexpression of a marker or other protein with the miRNAs. In addition, intronic expression of a synthetic miRNA from a two intron vector enhances RNAi. A SIBR vector can express two different miRNAs from a single transcript for effective inhibition of two different target mRNAs. Furthermore, at least eight tandem copies of a synthetic miRNA can be expressed in a polycistronic transcript to increase the inhibition of a target RNA. The SIBR vectors are flexible tools for a variety of RNAi applications.
Collapse
Affiliation(s)
- Kwan-Ho Chung
- Molecular and Behavioral Neuroscience Institute, University of MichiganAnn Arbor, MI 48109-2200, USA
- Program in Neuroscience, University of MichiganAnn Arbor, MI 48109-2200, USA
| | - Christopher C. Hart
- Molecular and Behavioral Neuroscience Institute, University of MichiganAnn Arbor, MI 48109-2200, USA
- Program in Neuroscience, University of MichiganAnn Arbor, MI 48109-2200, USA
| | - Sarmad Al-Bassam
- Molecular and Behavioral Neuroscience Institute, University of MichiganAnn Arbor, MI 48109-2200, USA
| | - Adam Avery
- Department of Biological Chemistry, University of MichiganAnn Arbor, MI 48109-2200, USA
| | - Jennifer Taylor
- Department of Biological Chemistry, University of MichiganAnn Arbor, MI 48109-2200, USA
| | - Paresh D. Patel
- Molecular and Behavioral Neuroscience Institute, University of MichiganAnn Arbor, MI 48109-2200, USA
- Program in Neuroscience, University of MichiganAnn Arbor, MI 48109-2200, USA
- Department of Psychiatry, University of MichiganAnn Arbor, MI 48109-2200, USA
| | - Anne B. Vojtek
- Department of Biological Chemistry, University of MichiganAnn Arbor, MI 48109-2200, USA
| | - David L. Turner
- Molecular and Behavioral Neuroscience Institute, University of MichiganAnn Arbor, MI 48109-2200, USA
- Program in Neuroscience, University of MichiganAnn Arbor, MI 48109-2200, USA
- Department of Biological Chemistry, University of MichiganAnn Arbor, MI 48109-2200, USA
| |
Collapse
|
1016
|
Abstract
MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. They regulate diverse biological processes, and bioinformatic data indicates that each miRNA can control hundreds of gene targets, underscoring the potential influence of miRNAs on almost every genetic pathway. Recent evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes. miRNAs have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Aurora Esquela-Kerscher
- Yale University, Department of Molecular, Cellular & Developmental Biology, 266 Whitney Avenue, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
1017
|
Sevignani C, Calin GA, Siracusa LD, Croce CM. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 2006; 17:189-202. [PMID: 16518686 PMCID: PMC2679635 DOI: 10.1007/s00335-005-0066-3] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 11/30/2005] [Indexed: 12/19/2022]
Abstract
The basis of eukaryotic complexity is an intricate genetic architecture where parallel systems are involved in tuning gene expression, via RNA-DNA, RNA-RNA, RNA-protein, and DNA-protein interactions. In higher organisms, about 97% of the transcriptional output is represented by noncoding RNA (ncRNA) encompassing not only rRNA, tRNA, introns, 5′ and 3′ untranslated regions, transposable elements, and intergenic regions, but also a large, rapidly emerging family named microRNAs. MicroRNAs are short 20-22-nucleotide RNA molecules that have been shown to regulate the expression of other genes in a variety of eukaryotic systems. MicroRNAs are formed from larger transcripts that fold to produce hairpin structures and serve as substrates for the cytoplasmic Dicer, a member of the RNase III enzyme family. A recent analysis of the genomic location of human microRNA genes suggested that 50% of microRNA genes are located in cancer-associated genomic regions or in fragile sites. This review focuses on the possible implications of microRNAs in post-transcriptional gene regulation in mammalian diseases, with particular focus on cancer. We argue that developing mouse models for deleted and/or overexpressed microRNAs will be of invaluable interest to decipher the regulatory networks where microRNAs are involved.
Collapse
Affiliation(s)
- Cinzia Sevignani
- Department of Microbiology and Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennsylvania 19107 USA
| | - George A. Calin
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus Ohio, 43210 USA
| | - Linda D. Siracusa
- Department of Microbiology and Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, Pennsylvania 19107 USA
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus Ohio, 43210 USA
| |
Collapse
|
1018
|
Nairz K, Rottig C, Rintelen F, Zdobnov E, Moser M, Hafen E. Overgrowth caused by misexpression of a microRNA with dispensable wild-type function. Dev Biol 2006; 291:314-24. [PMID: 16443211 DOI: 10.1016/j.ydbio.2005.11.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/16/2005] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) represent an abundant class of non-coding RNAs that negatively regulate gene expression, primarily at the post-transcriptional level. miRNA genes are frequently located in proximity to fragile chromosomal sites associated with cancers and amplification of a miRNA cluster has been correlated with the etiology of lymphomas and solid tumors. The oncogenic potential of a miRNA polycistron has recently been demonstrated in vivo. Here, we show that misexpression of the Drosophila miRNA mirvana/mir-278 in the developing eye causes massive overgrowth, in part due to inhibition of apoptosis. A single base substitution affecting the mature miRNA blocks the gain-of-function phenotype but is not associated with a detectable reduction-of-function phenotype when homozygous. This result demonstrates that misexpressed miRNAs may acquire novel functions that cause unscheduled proliferation in vivo and thus exemplifies the potential of miRNAs to promote tumor formation.
Collapse
Affiliation(s)
- Knud Nairz
- Zoologisches Institut der Universität Zürich, Winterthurer Strasse 190, 8057 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
1019
|
Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9:189-98. [PMID: 16530703 DOI: 10.1016/j.ccr.2006.01.025] [Citation(s) in RCA: 2362] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 10/28/2005] [Accepted: 01/23/2006] [Indexed: 12/11/2022]
Abstract
MicroRNA (miRNA) expression profiles for lung cancers were examined to investigate miRNA's involvement in lung carcinogenesis. miRNA microarray analysis identified statistical unique profiles, which could discriminate lung cancers from noncancerous lung tissues as well as molecular signatures that differ in tumor histology. miRNA expression profiles correlated with survival of lung adenocarcinomas, including those classified as disease stage I. High hsa-mir-155 and low hsa-let-7a-2 expression correlated with poor survival by univariate analysis as well as multivariate analysis for hsa-mir-155. The miRNA expression signature on outcome was confirmed by real-time RT-PCR analysis of precursor miRNAs and cross-validated with an independent set of adenocarcinomas. These results indicate that miRNA expression profiles are diagnostic and prognostic markers of lung cancer.
Collapse
Affiliation(s)
- Nozomu Yanaihara
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1020
|
RNAi and cancer: Implications and applications. JOURNAL OF RNAI AND GENE SILENCING : AN INTERNATIONAL JOURNAL OF RNA AND GENE TARGETING RESEARCH 2006; 2:136-45. [PMID: 19771215 PMCID: PMC2737210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 02/06/2006] [Accepted: 02/07/2006] [Indexed: 11/02/2022]
Abstract
RNA interference (RNAi) is an endogenous process that regulates expression of genes and corresponding proteins to maintain homeostasis in diverse organisms. Non-coding RNAs (ncRNAs) including both long and short ncRNAs are widely expressed and levels of some specific microRNAs are different in tumor and non-tumor tissues. RNAi has been invaluable for unraveling critical pathways involved in cancer development, growth and metastasis and has identified critical tumor-type specific gene targets for chemotherapy. In addition, the development of new derivatized small inhibitory RNAs and more efficient methods of their delivery will facilitate the future development of these ribonucleotides as cancer chemotherapeutic agents.
Collapse
|
1021
|
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103:2257-61. [PMID: 16461460 PMCID: PMC1413718 DOI: 10.1073/pnas.0510565103] [Citation(s) in RCA: 4513] [Impact Index Per Article: 237.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small noncoding microRNAs (miRNAs) can contribute to cancer development and progression and are differentially expressed in normal tissues and cancers. From a large-scale miRnome analysis on 540 samples including lung, breast, stomach, prostate, colon, and pancreatic tumors, we identified a solid cancer miRNA signature composed by a large portion of overexpressed miRNAs. Among these miRNAs are some with well characterized cancer association, such as miR-17-5p, miR-20a, miR-21, miR-92, miR-106a, and miR-155. The predicted targets for the differentially expressed miRNAs are significantly enriched for protein-coding tumor suppressors and oncogenes (P < 0.0001). A number of the predicted targets, including the tumor suppressors RB1 (Retinoblastoma 1) and TGFBR2 (transforming growth factor, beta receptor II) genes were confirmed experimentally. Our results indicate that miRNAs are extensively involved in cancer pathogenesis of solid tumors and support their function as either dominant or recessive cancer genes.
Collapse
Affiliation(s)
- Stefano Volinia
- *Department of Molecular Virology, Immunology, and Medical Genetics and Cancer Comprehensive Center, Ohio State University, Columbus, OH 43210
- Telethon Facility–Data Mining for Analysis of DNA Microarrays, Department of Morphology and Embryology, and
| | - George A. Calin
- *Department of Molecular Virology, Immunology, and Medical Genetics and Cancer Comprehensive Center, Ohio State University, Columbus, OH 43210
| | - Chang-Gong Liu
- *Department of Molecular Virology, Immunology, and Medical Genetics and Cancer Comprehensive Center, Ohio State University, Columbus, OH 43210
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Amelia Cimmino
- *Department of Molecular Virology, Immunology, and Medical Genetics and Cancer Comprehensive Center, Ohio State University, Columbus, OH 43210
| | - Fabio Petrocca
- *Department of Molecular Virology, Immunology, and Medical Genetics and Cancer Comprehensive Center, Ohio State University, Columbus, OH 43210
| | - Rosa Visone
- *Department of Molecular Virology, Immunology, and Medical Genetics and Cancer Comprehensive Center, Ohio State University, Columbus, OH 43210
| | - Marilena Iorio
- *Department of Molecular Virology, Immunology, and Medical Genetics and Cancer Comprehensive Center, Ohio State University, Columbus, OH 43210
| | - Claudia Roldo
- *Department of Molecular Virology, Immunology, and Medical Genetics and Cancer Comprehensive Center, Ohio State University, Columbus, OH 43210
| | - Manuela Ferracin
- Department of Experimental and Diagnostic Medicine and Interdepartmental Center for Cancer Research, University of Ferrara, 44100 Ferrara, Italy
| | - Robyn L. Prueitt
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nozumu Yanaihara
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Giovanni Lanza
- Department of Experimental and Diagnostic Medicine and Interdepartmental Center for Cancer Research, University of Ferrara, 44100 Ferrara, Italy
| | - Aldo Scarpa
- Department of Pathology, University of Verona, 37100 Verona, Italy; and
| | - Andrea Vecchione
- **Department of Histopathology, Sant’Andrea Hospital, and University of Rome “La Sapienza,” 00185 Rome, Italy
| | - Massimo Negrini
- Department of Experimental and Diagnostic Medicine and Interdepartmental Center for Cancer Research, University of Ferrara, 44100 Ferrara, Italy
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Carlo M. Croce
- *Department of Molecular Virology, Immunology, and Medical Genetics and Cancer Comprehensive Center, Ohio State University, Columbus, OH 43210
| |
Collapse
|
1022
|
Gartel AL, Kandel ES. RNA interference in cancer. ACTA ACUST UNITED AC 2006; 23:17-34. [PMID: 16466964 DOI: 10.1016/j.bioeng.2006.01.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/08/2006] [Accepted: 01/13/2006] [Indexed: 12/19/2022]
Abstract
In the recent years, RNA interference (RNAi) has emerged as a major regulatory mechanism in eukaryotic gene expression. The realization that changes in the levels of microRNAs are directly associated with cancer led to the recognition of a new class of tumor suppressors and oncogenes. Moreover, RNAi has been turned into a potent tool for artificially modulating gene expression through the introduction of short interfering RNAs. A plethora of individual inhibitory RNAs as well as several large collections of these reagents have been generated. The systems for stable and regulated expression of these molecules emerged as well. These tools have helped to delineate the roles of various cellular factors in oncogenesis and tumor suppression and laid the foundation for new approaches in gene discovery. Furthermore, successful inhibition of tumor cell growth by RNAi aimed at oncogenes in vitro and in vivo supports the enthusiasm for potential therapeutic applications of this technique. In this article we review the evidence of microRNA involvement in cancer, the use of short interfering RNAs in forward and reverse genetics of this disease, and as well as both the benefits and limitations of experimental RNAi.
Collapse
Affiliation(s)
- Andrei L Gartel
- Department of Medicine, University of Illinois at Chicago, 60612, USA.
| | | |
Collapse
|
1023
|
Di Leva G, Calin GA, Croce CM. MicroRNAs: Fundamental facts and involvement in human diseases. ACTA ACUST UNITED AC 2006; 78:180-9. [PMID: 16847883 DOI: 10.1002/bdrc.20073] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNAs that have been identified in a variety of organisms. These small, 18-22-nucleotide (nt) RNAs are transcribed as parts of longer molecules called pri-miRNAs, which are processed in the nucleus into hairpin RNAs of 70-100 nt, called pre-miRNAs, by the double-stranded RNA (dsRNA)-specific ribonuclease Drosha. The function of most miRNAs is not known, but for a few members the participation in essential biological processes for the eukaryotic cell is proven. In this review, we summarize how miRNAs were discovered, their biological functions, and importance in animal development, highlighting their function in proliferation, apoptosis, and cell differentiation. Furthermore, we discuss the deregulation of miRNAs in human diseases and their involvement in tumorigenesis.
Collapse
Affiliation(s)
- Gianpiero Di Leva
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, 43210, USA
| | | | | |
Collapse
|
1024
|
Fatica A, Rosa A, Fazi F, Ballarino M, Morlando M, De Angelis FG, Caffarelli E, Nervi C, Bozzoni I. MicroRNAs and hematopoietic differentiation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 71:205-10. [PMID: 17381298 DOI: 10.1101/sqb.2006.71.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The discovery of microRNAS (miRNAs) and of their mechanism of action has provided some very new clues on how gene expression is regulated. These studies established new concepts on how posttranscriptional control can fine-tune gene expression during differentiation and allowed the identification of new regulatory circuitries as well as factors involved therein. Because of the wealth of information available about the transcriptional and cellular networks involved in hematopoietic differentiation, the hematopoietic system is ideal for studying cell lineage specification. An interesting interplay between miRNAs and lineage-specific transcriptional factors has been found, and this can help us to understand how terminal differentiation is accomplished.
Collapse
Affiliation(s)
- A Fatica
- Institute Pasteur Cenci-Bolognetti, Department of Genetics and Molecular Biology and I.B.P.M., University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
1025
|
Abstract
Discovered in nematodes in 1993, microRNAs (miRNAs) are non-coding RNAs that are related to small interfering RNAs (siRNAs), the small RNAs that guide RNA interference (RNAi). miRNAs sculpt gene expression profiles during plant and animal development. In fact, miRNAs may regulate as many as one-third of human genes. miRNAs are found only in plants and animals, and in the viruses that infect them. miRNAs function very much like siRNAs, but these two types of small RNAs can be distinguished by their distinct pathways for maturation and by the logic by which they regulate gene expression.
Collapse
Affiliation(s)
- Tingting Du
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
1026
|
Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005; 65:9628-32. [PMID: 16266980 DOI: 10.1158/0008-5472.can-05-2352] [Citation(s) in RCA: 1209] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs, thought to be involved in physiologic and developmental processes by negatively regulating expression of target genes. We have previously reported frequent down-regulation of the let-7 miRNA family in lung cancers and, in the present study, assessed alteration in a panel of 19 lung cancer cell lines. As a result, we found for the first time that the miR-17-92 cluster, which comprises seven miRNAs and resides in intron 3 of the C13orf25 gene at 13q31.3, is markedly overexpressed in lung cancers, especially with small-cell lung cancer histology. Southern blot analysis revealed the presence of increased gene copy numbers of the miRNA cluster in a fraction of lung cancer cell lines with overexpression. In addition, we were able to show predominant localization of C13orf25 transcripts within the nucleus and introduction of the expression construct of the miR-17-92 cluster, but not the putative open reading frame of C13orf25, enhancing lung cancer cell growth. These findings clearly suggest that marked overexpression of the miR-17-92 cluster with occasional gene amplification may play a role in the development of lung cancers, especially in their most aggressive form, small-cell lung cancer, and that the C13orf25 gene may well be serving as a vehicle in this regard.
Collapse
Affiliation(s)
- Yoji Hayashita
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1027
|
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that function as endogenous triggers of the RNA interference pathway. Originally discovered in Caenorhabditis elegans, this group of tiny RNAs has moved to the forefront of biology. With over 300 miRNA genes identified in the human genome, and a plethora of predicted mRNA targets, it is believed that these small RNAs have a central role in diverse cellular and developmental processes. Concordant with this, aberrant expression of miRNA genes could lead to human disease, including cancer. Although the connection of miRNAs with cancer has been suspected for several years, four recent studies have confirmed the suspicion that miRNAs regulate cell proliferation and apoptosis, and play a role in cancer.
Collapse
Affiliation(s)
- Scott M Hammond
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
1028
|
He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la Chapelle A. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A 2005; 102:19075-80. [PMID: 16365291 PMCID: PMC1323209 DOI: 10.1073/pnas.0509603102] [Citation(s) in RCA: 925] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apart from alterations in the RET/PTC-RAS-BRAF pathway, comparatively little is known about the genetics of papillary thyroid carcinoma (PTC). We show that numerous microRNAs (miRNAs) are transcriptionally up-regulated in PTC tumors compared with unaffected thyroid tissue. A set of five miRNAs, including the three most up-regulated ones (miR-221, -222, and -146), distinguished unequivocally between PTC and normal thyroid. Additionally, miR-221 was up-regulated in unaffected thyroid tissue in several PTC patients, presumably an early event in carcinogenesis. Tumors in which the up-regulation (11- to 19-fold) of miR-221, -222, and -146 was strongest showed dramatic loss of KIT transcript and Kit protein. In 5 of 10 such cases, this down expression was associated with germline single-nucleotide changes in the two recognition sequences in KIT for these miRNAs. We conclude that up-regulation of several miRs and regulation of KIT are involved in PTC pathogenesis, and that sequence changes in genes targeted by miRNAs can contribute to their regulation.
Collapse
Affiliation(s)
- Huiling He
- Human Cancer Genetics Program, Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1029
|
Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 2005; 207:243-9. [PMID: 16041695 DOI: 10.1002/path.1825] [Citation(s) in RCA: 518] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a previous study we demonstrated high expression of the non-coding BIC gene in the vast majority of Hodgkin's lymphomas (HLs). Evidence suggesting that BIC is a primary microRNA transcript containing the mature microRNA-155 (miR-155) as part of a RNA hairpin is now accumulating. We therefore analysed HL cell lines and tissue samples to determine whether miR-155 is also expressed in HL. High levels of miR-155 could be demonstrated, indicating that BIC is processed into a microRNA in HL. Most non-HL subtypes were negative for BIC as determined by RNA-ISH. However, in diffuse large B cell lymphoma (DLBCL) and primary mediastinal B cell lymphoma (PMBL), significant percentages of positive tumour cells were observed in 12/18 and 8/8 cases. A higher proportion of tumour cells were positive for BIC in DLBCL with activated B cell-like phenotype than in DLBCL with germinal centre B cell-like phenotype. Differential BIC expression was confirmed by qRT-PCR analysis. Northern blot analysis showed expression of miR-155 in all DLBCL and PMBL derived cell lines and tissue samples analysed. In summary, we demonstrate expression of primary microRNA BIC and its derivative miR-155 in HL, PMBL and DLBCL.
Collapse
Affiliation(s)
- Joost Kluiver
- Department of Pathology and Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
1030
|
Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438:685-9. [PMID: 16258535 DOI: 10.1038/nature04303] [Citation(s) in RCA: 3059] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 10/12/2005] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are an abundant class of non-coding RNAs that are believed to be important in many biological processes through regulation of gene expression. The precise molecular function of miRNAs in mammals is largely unknown and a better understanding will require loss-of-function studies in vivo. Here we show that a novel class of chemically engineered oligonucleotides, termed 'antagomirs', are efficient and specific silencers of endogenous miRNAs in mice. Intravenous administration of antagomirs against miR-16, miR-122, miR-192 and miR-194 resulted in a marked reduction of corresponding miRNA levels in liver, lung, kidney, heart, intestine, fat, skin, bone marrow, muscle, ovaries and adrenals. The silencing of endogenous miRNAs by this novel method is specific, efficient and long-lasting. The biological significance of silencing miRNAs with the use of antagomirs was studied for miR-122, an abundant liver-specific miRNA. Gene expression and bioinformatic analysis of messenger RNA from antagomir-treated animals revealed that the 3' untranslated regions of upregulated genes are strongly enriched in miR-122 recognition motifs, whereas downregulated genes are depleted in these motifs. Analysis of the functional annotation of downregulated genes specifically predicted that cholesterol biosynthesis genes would be affected by miR-122, and plasma cholesterol measurements showed reduced levels in antagomir-122-treated mice. Our findings show that antagomirs are powerful tools to silence specific miRNAs in vivo and may represent a therapeutic strategy for silencing miRNAs in disease.
Collapse
Affiliation(s)
- Jan Krützfeldt
- Laboratory of Metabolic Diseases, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
1031
|
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65:7065-70. [PMID: 16103053 DOI: 10.1158/0008-5472.can-05-1783] [Citation(s) in RCA: 3049] [Impact Index Per Article: 152.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Their aberrant expression may be involved in human diseases, including cancer. Indeed, miRNA aberrant expression has been previously found in human chronic lymphocytic leukemias, where miRNA signatures were associated with specific clinicobiological features. Here, we show that, compared with normal breast tissue, miRNAs are also aberrantly expressed in human breast cancer. The overall miRNA expression could clearly separate normal versus cancer tissues, with the most significantly deregulated miRNAs being mir-125b, mir-145, mir-21, and mir-155. Results were confirmed by microarray and Northern blot analyses. We could identify miRNAs whose expression was correlated with specific breast cancer biopathologic features, such as estrogen and progesterone receptor expression, tumor stage, vascular invasion, or proliferation index.
Collapse
Affiliation(s)
- Marilena V Iorio
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1032
|
Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353:1793-801. [PMID: 16251535 DOI: 10.1056/nejmoa050995] [Citation(s) in RCA: 1794] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND MicroRNA expression profiles can be used to distinguish normal B cells from malignant B cells in patients with chronic lymphocytic leukemia (CLL). We investigated whether microRNA profiles are associated with known prognostic factors in CLL. METHODS We evaluated the microRNA expression profiles of 94 samples of CLL cells for which the level of expression of 70-kD zeta-associated protein (ZAP-70), the mutational status of the rearranged immunoglobulin heavy-chain variable-region (IgV(H) ) gene, and the time from diagnosis to initial treatment were known. We also investigated the genomic sequence of 42 microRNA genes to identify abnormalities. RESULTS A unique microRNA expression signature composed of 13 genes (of 190 analyzed) differentiated cases of CLL with low levels of ZAP-70 expression from those with high levels and cases with unmutated IgV(H) from those with mutated IgV(H) . The same microRNA signature was also associated with the presence or absence of disease progression. We also identified a germ-line mutation in the miR-16-1-miR-15a primary precursor, which caused low levels of microRNA expression in vitro and in vivo and was associated with deletion of the normal allele. Germ-line or somatic mutations were found in 5 of 42 sequenced microRNAs in 11 of 75 patients with CLL, but no such mutations were found in 160 subjects without cancer (P<0.001). CONCLUSIONS A unique microRNA signature is associated with prognostic factors and disease progression in CLL. Mutations in microRNA transcripts are common and may have functional importance.
Collapse
Affiliation(s)
- George Adrian Calin
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1033
|
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005; 102:13944-9. [PMID: 16166262 PMCID: PMC1236577 DOI: 10.1073/pnas.0506654102] [Citation(s) in RCA: 2704] [Impact Index Per Article: 135.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common human leukemia and is characterized by predominantly nondividing malignant B cells overexpressing the antiapoptotic B cell lymphoma 2 (Bcl2) protein. miR-15a and miR-16-1 are deleted or down-regulated in the majority of CLLs. Here, we demonstrate that miR-15a and miR-16-1 expression is inversely correlated to Bcl2 expression in CLL and that both microRNAs negatively regulate Bcl2 at a posttranscriptional level. BCL2 repression by these microRNAs induces apoptopsis in a leukemic cell line model. Therefore, miR-15 and miR-16 are natural antisense Bcl2 interactors that could be used for therapy of Bcl2-overexpressing tumors.
Collapse
Affiliation(s)
- Amelia Cimmino
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1034
|
Costa FF. Non-coding RNAs: New players in eukaryotic biology. Gene 2005; 357:83-94. [PMID: 16111837 DOI: 10.1016/j.gene.2005.06.019] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/28/2005] [Accepted: 06/02/2005] [Indexed: 11/21/2022]
Abstract
The completion of the human, mouse and other eukaryotic genomes were important scientific milestones, but they were just small steps towards the understanding of eukaryotic biology. Recent transcriptome analysis and different experimental approaches have identified a surprisingly large number of non-coding RNAs (ncRNAs) in eukaryotic cells. ncRNAs comprise microRNAs, anti-sense transcripts and other Transcriptional Units containing a high density of stop codons and lacking any extensive "Open Reading Frame". They have been shown to regulate gene expression by novel mechanisms such as RNA interference, gene co-suppression, gene silencing, imprinting and DNA demethylation. It is becoming clear that these novel RNAs perform critical functions during development and cell differentiation. There is also mounting evidence of their involvement in cancer and neurological diseases. Together, all this information indicates that ncRNAs are emerging as a new class of functional transcripts in eukaryotes. Therefore, great challenges lie in the years ahead: understanding the molecular biology of higher organisms will require revealing all proteins (Proteome), all ncRNAs (RNome) and their interactions (Interactome) in the complex molecular scenario within eukaryotic cells.
Collapse
Affiliation(s)
- Fabrício F Costa
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
1035
|
Abstract
MicroRNAs (miRNAs) are known to regulate the expression of genes involved in the control of development, proliferation, apoptosis, and the stress response. As a cluster of recent Nature papers now show, altered expression of specific miRNA genes contributes to the initiation and progression of cancer.
Collapse
Affiliation(s)
- Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
1036
|
Abstract
MicroRNAs (miRNAs) are small noncoding transcripts that regulate gene expression by promoting the degradation of transcribed messages or by inhibiting translation. Although bioinformatic approaches suggest that miRNAs may regulate the expression of a large fraction of the genome, the determination of miRNA gene targets and biological functions has been comparatively limited. Emerging studies suggest that many miRNAs may participate in human disease, including oncogenesis; but for the most part, the observations have been correlative. A recent study by Johnson and colleagues indicates that the let-7 miRNA negatively regulates the oncogenic family of Ras guanosine triphosphatases in both Caenorhabditis elegans and human tumor cell lines, suggesting that let-7 may act as a tumor suppressor. This work raises several important questions: Can other miRNAs act as tumor suppressors or oncogenes? Is miRNA deregulation a critical aspect of tumor development and maintenance? A number of recent studies have begun to address some of these functional questions, providing the field with a greater understanding of the role of miRNAs in cancer.
Collapse
Affiliation(s)
- John P Morris
- UCSF Diabetes Center, Department of Microbiology and Immunology, University of California, San Francisco, CA 94122-0534, USA
| | | |
Collapse
|
1037
|
Uprichard SL. The therapeutic potential of RNA interference. FEBS Lett 2005; 579:5996-6007. [PMID: 16115631 PMCID: PMC7094730 DOI: 10.1016/j.febslet.2005.08.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 08/05/2005] [Accepted: 08/07/2005] [Indexed: 12/23/2022]
Abstract
In recent years, we have witnessed the discovery of a new mechanism of gene regulation called RNA interference (RNAi), which has revitalized interest in the development of nucleic acid‐based technologies for therapeutic gene suppression. This review focuses on the potential therapeutic use of RNAi, discussing the theoretical advantages of RNAi‐based therapeutics over previous technologies as well as the challenges involved in developing RNAi for clinical use. Also reviewed, are the in vivo proof‐of principle experiments that provide the preclinical justification for the continued development of RNAi‐based therapeutics.
Collapse
Affiliation(s)
- Susan L Uprichard
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, SBR10, La Jolla, CA 92037, USA.
| |
Collapse
|
1038
|
Wienholds E, Plasterk RHA. MicroRNA function in animal development. FEBS Lett 2005; 579:5911-22. [PMID: 16111679 DOI: 10.1016/j.febslet.2005.07.070] [Citation(s) in RCA: 619] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/26/2005] [Accepted: 07/26/2005] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate gene expression by base-pairing to mRNAs. Hundreds of miRNAs have been identified in various multicellular organisms and many miRNAs are evolutionarily conserved. Although the biological functions of most miRNAs are unknown, miRNAs are predicted to regulate up to 30% of the genes within the human genome. Gradually, we are beginning to understand the functions of individual miRNAs and the general function of miRNA action. Here, we review the recent advances in miRNA biology in animals. Particularly, we focus on the roles of miRNAs in vertebrate development and disease.
Collapse
Affiliation(s)
- Erno Wienholds
- Hubrecht Laboratory, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | | |
Collapse
|
1039
|
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature 2005; 435:834-838. [PMID: 15944708 DOI: 10.1038/nature03702] [Citation(s) in RCA: 7364] [Impact Index Per Article: 368.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 05/05/2005] [Indexed: 02/06/2023]
Abstract
Recent work has revealed the existence of a class of small non-coding RNA species, known as microRNAs (miRNAs), which have critical functions across various biological processes. Here we use a new, bead-based flow cytometric miRNA expression profiling method to present a systematic expression analysis of 217 mammalian miRNAs from 334 samples, including multiple human cancers. The miRNA profiles are surprisingly informative, reflecting the developmental lineage and differentiation state of the tumours. We observe a general downregulation of miRNAs in tumours compared with normal tissues. Furthermore, we were able to successfully classify poorly differentiated tumours using miRNA expression profiles, whereas messenger RNA profiles were highly inaccurate when applied to the same samples. These findings highlight the potential of miRNA profiling in cancer diagnosis.
Collapse
Affiliation(s)
- Jun Lu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1040
|
|
1041
|
Abstract
Key tenets of modern biology are the central place of protein in cell regulation and the flow of genetic information from DNA to RNA to protein. However, it is becoming increasingly apparent that genomes are much more complex than hitherto thought with remarkably complex regulatory systems. The notion that the fraction of the genome involved in coding protein is all that matters is increasingly being questioned as the roles of non-coding RNA (ncRNA) in cellular systems becomes recognised. The RNA world, including microRNA (miRNA), small inhibitory RNA (siRNA) and other RNA species, are now recognised as being crucial for the regulation of chromatin structure, gene expression, mRNA processing and splicing, mRNA stability and translational control. Furthermore such ncRNA systems may be perturbed in disease states and most notably in neoplasia, including in haematological malignancies. Here the burgeoning evidence for a role of miRNA in neoplasia is reviewed and the importance of understanding the RNA world emphasised.
Collapse
Affiliation(s)
- Peter A Hall
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, U Floor, Belfast City Hospital, Belfast, BT9 7AB, Northern Ireland, UK.
| | | |
Collapse
|
1042
|
Jiang J, Lee EJ, Schmittgen TD. Increased expression of microRNA-155 in Epstein-Barr virus transformed lymphoblastoid cell lines. Genes Chromosomes Cancer 2005; 45:103-6. [PMID: 16175574 DOI: 10.1002/gcc.20264] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|