1051
|
Errarte P, Larrinaga G, López JI. The role of cancer-associated fibroblasts in renal cell carcinoma. An example of tumor modulation through tumor/non-tumor cell interactions. J Adv Res 2019; 21:103-108. [PMID: 32071778 PMCID: PMC7015466 DOI: 10.1016/j.jare.2019.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAF) are a cellular compartment of the tumor microenvironment (TME) with critical roles in tumor development. Fibroblast activation protein-α (FAP) is one of the proteins expressed by CAF and its immunohistochemical detection in routine practice is associated with tumor aggressiveness and shorter patient survival. For these reasons, FAP seems a good prognostic marker in many malignant neoplasms, including renal cell carcinoma (RCC). The start point of this Perspective paper is to review the role of CAF in the modulation of renal cell carcinoma evolution. In this sense, CAF have demonstrated to develop important protumor and/or antitumor activities. This apparent paradox suggests that some type of temporally or spatially-related specialization is present in this cellular compartment during tumor evolution. The end point is to remark that tumor/non-tumor cell interactions, in particular the symbiotic tumor/CAF connections, are permanent and ever-changing crucial phenomena along tumor lifetime. Interestingly, these interactions may be responsible of many therapeutic failures.
Collapse
Affiliation(s)
- Peio Errarte
- Department of Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain.,Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Gorka Larrinaga
- Department of Physiology, University of The Basque Country (UPV/EHU), 48940 Leioa, Spain.,Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain.,Department of Nursing I, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - José I López
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain.,Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain.,Department of Medical-Surgical Specialties, University of the Basque Country, 48940 Leioa, Spain
| |
Collapse
|
1052
|
Xu S, Xu H, Wang W, Li S, Li H, Li T, Zhang W, Yu X, Liu L. The role of collagen in cancer: from bench to bedside. J Transl Med 2019; 17:309. [PMID: 31521169 PMCID: PMC6744664 DOI: 10.1186/s12967-019-2058-1] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Collagen is the major component of the tumor microenvironment and participates in cancer fibrosis. Collagen biosynthesis can be regulated by cancer cells through mutated genes, transcription factors, signaling pathways and receptors; furthermore, collagen can influence tumor cell behavior through integrins, discoidin domain receptors, tyrosine kinase receptors, and some signaling pathways. Exosomes and microRNAs are closely associated with collagen in cancer. Hypoxia, which is common in collagen-rich conditions, intensifies cancer progression, and other substances in the extracellular matrix, such as fibronectin, hyaluronic acid, laminin, and matrix metalloproteinases, interact with collagen to influence cancer cell activity. Macrophages, lymphocytes, and fibroblasts play a role with collagen in cancer immunity and progression. Microscopic changes in collagen content within cancer cells and matrix cells and in other molecules ultimately contribute to the mutual feedback loop that influences prognosis, recurrence, and resistance in cancer. Nanoparticles, nanoplatforms, and nanoenzymes exhibit the expected gratifying properties. The pathophysiological functions of collagen in diverse cancers illustrate the dual roles of collagen and provide promising therapeutic options that can be readily translated from bench to bedside. The emerging understanding of the structural properties and functions of collagen in cancer will guide the development of new strategies for anticancer therapy.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
1053
|
Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol 2019; 12:86. [PMID: 31462327 PMCID: PMC6714445 DOI: 10.1186/s13045-019-0770-1] [Citation(s) in RCA: 561] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022] Open
Abstract
Among all the stromal cells that present in the tumor microenvironment, cancer-associated fibroblasts (CAFs) are one of the most abundant and critical components of the tumor mesenchyme, which not only provide physical support for tumor cells but also play a key role in promoting and retarding tumorigenesis in a context-dependent manner. CAFs have also been involved in the modulation of many components of the immune system, and recent studies have revealed their roles in immune evasion and poor responses to cancer immunotherapy. In this review, we describe our current understanding of the tumorigenic significance, origin, and heterogeneity of CAFs, as well as the roles of different CAFs subtypes in distinct immune cell types. More importantly, we highlight potential therapeutic strategies that target CAFs to unleash the immune system against the tumor.
Collapse
|
1054
|
Mizutani Y, Kobayashi H, Iida T, Asai N, Masamune A, Hara A, Esaki N, Ushida K, Mii S, Shiraki Y, Ando K, Weng L, Ishihara S, Ponik SM, Conklin MW, Haga H, Nagasaka A, Miyata T, Matsuyama M, Kobayashi T, Fujii T, Yamada S, Yamaguchi J, Wang T, Woods SL, Worthley D, Shimamura T, Fujishiro M, Hirooka Y, Enomoto A, Takahashi M. Meflin-Positive Cancer-Associated Fibroblasts Inhibit Pancreatic Carcinogenesis. Cancer Res 2019; 79:5367-5381. [PMID: 31439548 DOI: 10.1158/0008-5472.can-19-0454] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/17/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022]
Abstract
Cancer-associated fibroblasts (CAF) constitute a major component of the tumor microenvironment. Recent observations in genetically engineered mouse models and clinical studies have suggested that there may exist at least two functionally different populations of CAFs, that is, cancer-promoting CAFs (pCAF) and cancer-restraining CAFs (rCAF). Although various pCAF markers have been identified, the identity of rCAFs remains unknown because of the lack of rCAF-specific marker(s). In this study, we found that Meflin, a glycosylphosphatidylinositol-anchored protein that is a marker of mesenchymal stromal/stem cells and maintains their undifferentiated state, is expressed by pancreatic stellate cells that are a source of CAFs in pancreatic ductal adenocarcinoma (PDAC). In situ hybridization analysis of 71 human PDAC tissues revealed that the infiltration of Meflin-positive CAFs correlated with favorable patient outcome. Consistent herewith, Meflin deficiency led to significant tumor progression with poorly differentiated histology in a PDAC mouse model. Similarly, genetic ablation of Meflin-positive CAFs resulted in poor differentiation of tumors in a syngeneic transplantation model. Conversely, delivery of a Meflin-expressing lentivirus into the tumor stroma or overexpression of Meflin in CAFs suppressed the growth of xenograft tumors. Lineage tracing revealed that Meflin-positive cells gave rise to α-smooth muscle actin-positive CAFs that are positive or negative for Meflin, suggesting a mechanism for generating CAF heterogeneity. Meflin deficiency or low expression resulted in straightened stromal collagen fibers, which represent a signature for aggressive tumors, in mouse or human PDAC tissues, respectively. Together, the data suggest that Meflin is a marker of rCAFs that suppress PDAC progression. SIGNIFICANCE: Meflin marks and functionally contributes to a subset of cancer-associated fibroblasts that exert antitumoral effects.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5367/F1.large.jpg.
Collapse
Affiliation(s)
- Yasuyuki Mizutani
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kobayashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akitoshi Hara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kaori Ushida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenju Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Liang Weng
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew W Conklin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Hisashi Haga
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Arata Nagasaka
- Division of Anatomy, Department of Human Development and Fostering, Meikai University School of Dentistry, Sakado, Japan
| | - Takaki Miyata
- Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tongtong Wang
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Susan L Woods
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Daniel Worthley
- School of Medicine, University of Adelaide and South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Hirooka
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, Toyoake, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
1055
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
1056
|
Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol 2019; 62:166-181. [PMID: 31415910 DOI: 10.1016/j.semcancer.2019.08.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is a complex meshwork of extracellular matrix (ECM) macromolecules filled with a collection of cells including cancer-associated fibroblasts (CAFs), blood vessel associated smooth muscle cells, pericytes, endothelial cells, mesenchymal stem cells and a variety of immune cells. In tumors the homeostasis governing ECM synthesis and turnover is disturbed resulting in abnormal blood vessel formation and excessive fibrillar collagen accumulations of varying stiffness and organization. The disturbed ECM homeostasis opens up for new types of paracrine, cell-cell and cell-ECM interactions with large consequences for tumor growth, angiogenesis, metastasis, immune suppression and resistance to treatments. As a main producer of ECM and paracrine signals the CAF is a central cell type in these events. Whereas the paracrine signaling has been extensively studied in the context of tumor-stroma interactions, the nature of the numerous integrin-mediated cell-ECM interactions occurring in the TME remains understudied. In this review we will discuss and dissect the role of known and potential CAF interactions in the TME, during both tumorigenesis and chemoresistance-induced events, with a special focus on the "interaction landscape" in desmoplastic breast, lung and pancreatic cancers. As an example of the multifaceted mode of action of the stromal collagen receptor integrin α11β1, we will summarize our current understanding on the role of this CAF-expressed integrin in these three tumor types.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway; Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Irina Primac
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiège), Liege, Belgium
| | - Pugazendhi Erusappan
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway; Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jahedul Alam
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Agnes Noel
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiège), Liege, Belgium
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway.
| |
Collapse
|
1057
|
Chen D, Lu T, Tan J, Li H, Wang Q, Wei L. Long Non-coding RNAs as Communicators and Mediators Between the Tumor Microenvironment and Cancer Cells. Front Oncol 2019; 9:739. [PMID: 31448238 PMCID: PMC6691164 DOI: 10.3389/fonc.2019.00739] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of more than 200 nucleotides RNA transcripts which have limited protein coding capacity. They regulate numerous biological processes in cancers through diverse molecular mechanisms. Aberrant expression of lncRNAs has been frequently associated with human cancer. Furthermore, the tumor microenvironment (TME) is composed of different cells such as cancer-associated fibroblasts (CAFs), endothelial cells and infiltrated immune cells, and all of which participate in communication with tumor cells affecting the progression of tumor. LncRNAs are directly and indirectly involved in the crosstalk between stromal cells and tumor cells and dysregulated lncRNAs expression in these cells could drive tumorigenesis. In this review, we explore the influence of aberrantly expressed lncRNAs in tumor progression, clarify the critical roles of lncRNAs in the TME, summarize findings on crosstalk between infiltrated immune cells, CAFs, endothelial cells, and tumor cells via lncRNAs, and discuss the promise of lncRNAs as tumor diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Di Chen
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Lu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junying Tan
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Li
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiuyue Wang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liangzhou Wei
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
1058
|
Platel V, Faure S, Corre I, Clere N. Endothelial-to-Mesenchymal Transition (EndoMT): Roles in Tumorigenesis, Metastatic Extravasation and Therapy Resistance. JOURNAL OF ONCOLOGY 2019; 2019:8361945. [PMID: 31467544 PMCID: PMC6701373 DOI: 10.1155/2019/8361945] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
Cancer cells evolve in a very complex tumor microenvironment, composed of several cell types, among which the endothelial cells are the major actors of the tumor angiogenesis. Today, these cells are also characterized for their plasticity, as endothelial cells have demonstrated their potential to modify their phenotype to differentiate into mesenchymal cells through the endothelial-to-mesenchymal transition (EndoMT). This cellular plasticity is mediated by various stimuli including transforming growth factor-β (TGF-β) and is modulated dependently of experimental conditions. Recently, emerging evidences have shown that EndoMT is involved in the development and dissemination of cancer and also in cancer cell to escape from therapeutic treatment. In this review, we summarize current updates on EndoMT and its main induction pathways. In addition, we discuss the role of EndoMT in tumorigenesis, metastasis, and its potential implication in cancer therapy resistance.
Collapse
Affiliation(s)
- Valentin Platel
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| | - Sébastien Faure
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| | - Isabelle Corre
- Sarcomes Osseux et Remodelage des Tissus Calcifiés Phy-OS, Université de Nantes INSERM UMR U1238, Faculté de Médecine, F-44035 Nantes, France
| | - Nicolas Clere
- Micro & Nanomédecines Translationnelles-MINT, Univ Angers, INSERM U1066, CNRS UMR 6021, Angers, France
| |
Collapse
|
1059
|
Hill BS, Sarnella A, D'Avino G, Zannetti A. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Semin Cancer Biol 2019; 60:202-213. [PMID: 31377307 DOI: 10.1016/j.semcancer.2019.07.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Currently, metastasis remains the primary cause of death of patients with breast cancer despite the important advances in the treatment of this disease. In the complex tumour microenvironment network, several malignant and non-malignant cell types as well as components of extracellular matrix cooperate in promoting the metastatic spread of breast carcinoma. Many components of the stromal compartment are recruited from distant sites to the tumour including mesenchymal stem cells, endothelial cells, macrophages and other immune cells whereas other cells such as fibroblasts are already present in both primary and secondary lesions. When these cells come into contact with cancer cells they are "educated" and acquire a pro-tumoural phenotype, which support all the steps of the metastatic cascade. In this Review, we highlight the role played by each stromal component in guiding cancer cells in their venture towards colonizing metastatic sites.
Collapse
|
1060
|
Audrito V, Managò A, Gaudino F, Sorci L, Messana VG, Raffaelli N, Deaglio S. NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer. Front Immunol 2019; 10:1720. [PMID: 31402913 PMCID: PMC6671870 DOI: 10.3389/fimmu.2019.01720] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cells, particularly in solid tumors, are surrounded by non-neoplastic elements, including endothelial and stromal cells, as well as cells of immune origin, which can support tumor growth by providing the right conditions. On the other hand, local hypoxia, and lack of nutrients induce tumor cells to reprogram their metabolism in order to survive, proliferate, and disseminate: the same conditions are also responsible for building a tumor-suppressive microenvironment. In addition to tumor cells, it is now well-recognized that metabolic rewiring occurs in all cellular components of the tumor microenvironment, affecting epigenetic regulation of gene expression and influencing differentiation/proliferation decisions of these cells. Nicotinamide adenine dinucleotide (NAD) is an essential co-factor for energy transduction in metabolic processes. It is also a key component of signaling pathways, through the regulation of NAD-consuming enzymes, including sirtuins and PARPs, which can affect DNA plasticity and accessibility. In addition, both NAD-biosynthetic and NAD-consuming enzymes can be present in the extracellular environment, adding a new layer of complexity to the system. In this review we will discuss the role of the “NADome” in the metabolic cross-talk between cancer and infiltrating immune cells, contributing to cancer growth and immune evasion, with an eye to therapeutic implications.
Collapse
Affiliation(s)
- Valentina Audrito
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Antonella Managò
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Federica Gaudino
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| | - Vincenzo Gianluca Messana
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Turin, Italy
| |
Collapse
|
1061
|
Suzuki E, Yamazaki S, Naito T, Hashimoto H, Okubo S, Udagawa H, Goto K, Tsuboi M, Ochiai A, Ishii G. Secretion of high amounts of hepatocyte growth factor is a characteristic feature of cancer‐associated fibroblasts with EGFR‐TKI resistance‐promoting phenotype: A study of 18 cases of cancer‐associated fibroblasts. Pathol Int 2019; 69:472-480. [DOI: 10.1111/pin.12838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Erika Suzuki
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of Tokyo Kashiwa Japan
- Division of Pathology, Exploratory Oncology Research and Clinical Trial CenterNational Cancer Center Kashiwa Japan
| | - Shota Yamazaki
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of Tokyo Kashiwa Japan
- Division of Pathology, Exploratory Oncology Research and Clinical Trial CenterNational Cancer Center Kashiwa Japan
| | - Tomoyuki Naito
- Department of Thoracic OncologyNational Cancer Center Hospital East Kashiwa Japan
| | - Hiroko Hashimoto
- Division of Pathology, Exploratory Oncology Research and Clinical Trial CenterNational Cancer Center Kashiwa Japan
| | - Satoshi Okubo
- Division of Pathology, Exploratory Oncology Research and Clinical Trial CenterNational Cancer Center Kashiwa Japan
| | - Hibiki Udagawa
- Department of Thoracic OncologyNational Cancer Center Hospital East Kashiwa Japan
| | - Koichi Goto
- Department of Thoracic OncologyNational Cancer Center Hospital East Kashiwa Japan
| | - Masahiro Tsuboi
- Department of Thoracic SurgeryNational Cancer Center Hospital East Kashiwa Japan
| | - Atsushi Ochiai
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of Tokyo Kashiwa Japan
- Exploratory Oncology Research and Clinical Trial CenterNational Cancer Center Kashiwa Japan
| | - Genichiro Ishii
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of Tokyo Kashiwa Japan
- Division of Pathology, Exploratory Oncology Research and Clinical Trial CenterNational Cancer Center Kashiwa Japan
| |
Collapse
|
1062
|
Xia A, Zhang Y, Xu J, Yin T, Lu XJ. T Cell Dysfunction in Cancer Immunity and Immunotherapy. Front Immunol 2019; 10:1719. [PMID: 31379886 PMCID: PMC6659036 DOI: 10.3389/fimmu.2019.01719] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022] Open
Abstract
In cancer, T cells become dysfunctional owing to persistent antigen exposure. Dysfunctional T cells are characterized by reduced proliferative capacity, decreased effector function, and overexpression of multiple inhibitory receptors. Due to the presence of various inhibitory signals in the complex tumor microenvironment, tumor-specific T cells have distinct dysfunction states. Therapeutic reactivation of tumor-specific T cells has yielded good results in cancer patients. Here, we review the hallmarks of T cell dysfunction in cancer. Also, we discuss the relationship between T cell dysfunction and cancer immunotherapy.
Collapse
Affiliation(s)
- Anliang Xia
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Xu
- Department of Rehabilitation, Huai'an Second People's Hospital, and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Jie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
1063
|
Alsahafi E, Begg K, Amelio I, Raulf N, Lucarelli P, Sauter T, Tavassoli M. Clinical update on head and neck cancer: molecular biology and ongoing challenges. Cell Death Dis 2019; 10:540. [PMID: 31308358 PMCID: PMC6629629 DOI: 10.1038/s41419-019-1769-9] [Citation(s) in RCA: 324] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are an aggressive, genetically complex and difficult to treat group of cancers. In lieu of truly effective targeted therapies, surgery and radiotherapy represent the primary treatment options for most patients. But these treatments are associated with significant morbidity and a reduction in quality of life. Resistance to both radiotherapy and the only available targeted therapy, and subsequent relapse are common. Research has therefore focussed on identifying biomarkers to stratify patients into clinically meaningful groups and to develop more effective targeted therapies. However, as we are now discovering, the poor response to therapy and aggressive nature of HNSCCs is not only affected by the complex alterations in intracellular signalling pathways but is also heavily influenced by the behaviour of the extracellular microenvironment. The HNSCC tumour landscape is an environment permissive of these tumours' aggressive nature, fostered by the actions of the immune system, the response to tumour hypoxia and the influence of the microbiome. Solving these challenges now rests on expanding our knowledge of these areas, in parallel with a greater understanding of the molecular biology of HNSCC subtypes. This update aims to build on our earlier 2014 review by bringing up to date our understanding of the molecular biology of HNSCCs and provide insights into areas of ongoing research and perspectives for the future.
Collapse
Affiliation(s)
- Elham Alsahafi
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Katheryn Begg
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, LE1 9HN, UK
| | - Nina Raulf
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Philippe Lucarelli
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Thomas Sauter
- Faculté des Sciences, de La Technologie et de La Communication, University of Luxembourg, 6, Avenue Du Swing, Belvaux, 4367, Luxembourg
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
1064
|
Zhang YY, Tang PMK, Tang PCT, Xiao J, Huang XR, Yu C, Ma RCW, Lan HY. LRNA9884, a Novel Smad3-Dependent Long Noncoding RNA, Promotes Diabetic Kidney Injury in db/ db Mice via Enhancing MCP-1-Dependent Renal Inflammation. Diabetes 2019; 68:1485-1498. [PMID: 31048367 DOI: 10.2337/db18-1075] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/14/2019] [Indexed: 11/13/2022]
Abstract
Transforming growth factor-β/Smad3 signaling plays an important role in diabetic nephropathy, but its underlying working mechanism remains largely unexplored. The current study uncovered the pathogenic role and underlying mechanism of a novel Smad3-dependent long noncoding RNA (lncRNA) (LRNA9884) in type 2 diabetic nephropathy (T2DN). We found that LRNA9884 was significantly upregulated in the diabetic kidney of db/db mice at the age of 8 weeks preceding the onset of microalbuminuria and was associated with the progression of diabetic renal injury. LRNA9884 was induced by advanced glycation end products and tightly regulated by Smad3, and its levels were significantly blunted in db/db mice and cells lacking Smad3. More importantly, kidney-specific silencing of LRNA9884 effectively attenuated diabetic kidney injury in db/db mice, as shown by the reduction of histological injury, albuminuria excretion, and serum creatinine. Mechanistically, we identified that LRNA9884 promoted renal inflammation-driven T2DN by triggering MCP-1 production at the transcriptional level, and its direct binding significantly enhanced the promoter activity of MCP-1. Thus, LRNA9884 is a novel Smad3-dependent lncRNA that is highly expressed in db/db mice associated with T2DN development. Targeting of LRNA9884 effectively blocked MCP-1-dependent renal inflammation, therefore suppressing the progressive diabetic renal injury in db/db mice. This study reveals that LRNA9884 may be a novel and precision therapeutic target for T2DN in the future.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Patrick Ming-Kuen Tang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Philip Chiu-Tsun Tang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Xiao
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Xiao-Ru Huang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ronald C W Ma
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
1065
|
Boesch M, Baty F, Rumpold H, Sopper S, Wolf D, Brutsche MH. Fibroblasts in cancer: Defining target structures for therapeutic intervention. Biochim Biophys Acta Rev Cancer 2019; 1872:111-121. [PMID: 31265878 DOI: 10.1016/j.bbcan.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022]
Abstract
The functional importance of the tumor stroma for cancer growth and progression is increasingly recognized, but has not resulted in notable therapeutic developments yet. Within the mesenchymal tumor microenvironment, cancer-associated fibroblasts take the center stage and fuel tumor progression in various ways including malignant cell potentiation, immune regulation and fibrosis. However, recent studies have demonstrated pronounced heterogeneity of the fibroblastic tumor stroma, which comprises a plethora of individual cell subsets with varying phenotypes and functions, some of which suppress malignant growth through immune engagement or crosstalk with the tumor vasculature. This article summarizes the various levels at which the fibroblastic tumor stroma may impact cancer progression and highlights potential target structures for future therapeutic intervention(s).
Collapse
Affiliation(s)
- Maximilian Boesch
- Lung Center, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland.
| | - Florent Baty
- Lung Center, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland
| | - Holger Rumpold
- Internal Medicine II (Medical Oncology, Hematology, Gastroenterology & Rheumatology), Academic Teaching Hospital Feldkirch, Carinagasse 47, 6807 Feldkirch, Austria
| | - Sieghart Sopper
- Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
| | - Dominik Wolf
- Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; Medical Clinic 3, Oncology, Hematology, Immunoncology and Rheumatology, University Clinic Bonn (UKB), Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Martin H Brutsche
- Lung Center, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland
| |
Collapse
|
1066
|
Chen Z, Yan X, Li K, Ling Y, Kang H. Stromal fibroblast-derived MFAP5 promotes the invasion and migration of breast cancer cells via Notch1/slug signaling. Clin Transl Oncol 2019; 22:522-531. [PMID: 31190277 DOI: 10.1007/s12094-019-02156-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The tumor microenvironment (TME) regulates tumor progression, and cancer-associated fibroblasts (CAFs) are the primary stromal components of the TME, with the potential to drive tumor metastasis via the secretion of paracrine factors, but the specific mechanisms driving this process have not been defined. METHODS Proteins secreted from CAFs and normal fibroblasts (NFs) were analyzed via proteomic analysis (fold change > 2, p < 0.05) to identify tumor-promoting proteins secreted by CAFs. RESULTS Proteomic analysis revealed that microfibrillar-associated protein 5 (MFAP5) is preferentially expressed and secreted by CAFs relative to NFs, which was confirmed by Western blotting and RT-qPCR. Transwell and wound healing assays confirmed that MFAP5 is secreted by CAFs, and drives the invasion and migration of MCF7 breast cancer cells. We further found that in MCF7 cells MFAP5 promoted epithelial-mesenchymal transition, activating Notch1 signaling and consequently upregulating NICD1 and slug. When Notch1 was knocked down in MCF7 cells, the ability of MFAP5 to promote invasion and migration decreased. CONCLUSION CAFs promote cancer cells invasion and migration via MFAP5 secretion and activation of the Notch1/slug signaling. These data highlight this pathway as a therapeutic target to disrupt tumor progression through the interference of CAF-tumor crosstalk.
Collapse
Affiliation(s)
- Z Chen
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - X Yan
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - K Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Y Ling
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - H Kang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
1067
|
Li Z, Zhang J, Zhou J, Lu L, Wang H, Zhang G, Wan G, Cai S, Du J. Nodal Facilitates Differentiation of Fibroblasts to Cancer-Associated Fibroblasts that Support Tumor Growth in Melanoma and Colorectal Cancer. Cells 2019; 8:E538. [PMID: 31167491 PMCID: PMC6627322 DOI: 10.3390/cells8060538] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Fibroblasts become cancer-associated fibroblasts (CAFs) in the tumor microenvironment after activation by transforming growth factor-β (TGF-β) and are critically involved in cancer progression. However, it is unknown whether the TGF superfamily member Nodal, which is expressed in various tumors but not expressed in normal adult tissue, influences the fibroblast to CAF conversion. Here, we report that Nodal has a positive correlation with α-smooth muscle actin (α-SMA) in clinical melanoma and colorectal cancer (CRC) tissues. We show the Nodal converts normal fibroblasts to CAFs, together with Snail and TGF-β signaling pathway activation in fibroblasts. Activated CAFs promote cancer growth in vitro and tumor-bearing mouse models in vivo. These results demonstrate that intercellular crosstalk between cancer cells and fibroblasts is mediated by Nodal, which controls tumor growth, providing potential targets for the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Ziqian Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Junjie Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jiawang Zhou
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Linlin Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Guohui Wan
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shaohui Cai
- Department of Pharmacology, School of Pharmaceutical Sciences, Jinan University, Guangzhou 510632, China.
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
1068
|
Zeltz C, Alam J, Liu H, Erusappan PM, Hoschuetzky H, Molven A, Parajuli H, Cukierman E, Costea DE, Lu N, Gullberg D. α11β1 Integrin is Induced in a Subset of Cancer-Associated Fibroblasts in Desmoplastic Tumor Stroma and Mediates In Vitro Cell Migration. Cancers (Basel) 2019; 11:E765. [PMID: 31159419 PMCID: PMC6627481 DOI: 10.3390/cancers11060765] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023] Open
Abstract
Integrin α11β1 is a collagen receptor that has been reported to be overexpressed in the stroma of non-small cell lung cancer (NSCLC) and of head and neck squamous cell carcinoma (HNSCC). In the current study, we further analyzed integrin α11 expression in 14 tumor types by screening a tumor tissue array while using mAb 203E3, a newly developed monoclonal antibody to human α11. Different degrees of expression of integrin α11 were observed in the stroma of breast, ovary, skin, lung, uterus, stomach, and pancreatic ductal adenocarcinoma (PDAC) tumors. Co-expression queries with the myofibroblastic cancer-associated fibroblast (myCAF) marker, alpha smooth muscle actin (αSMA), demonstrated a moderate level of α11+ in myCAFs associated with PDAC and HNSCC tumors, and a lack of α11 expression in additional stromal cells (i.e., cells positive for fibroblast-specific protein 1 (FSP1) and NG2). The new function-blocking α11 antibody, mAb 203E1, inhibited cell adhesion to collagen I, partially hindered fibroblast-mediated collagen remodeling and obstructed the three-dimensional (3D) migration rates of PDAC myCAFs. Our data demonstrate that integrin α11 is expressed in a subset of non-pericyte-derived CAFs in a range of cancers and suggest that α11β1 constitutes an important receptor for collagen remodeling and CAF migration in the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Jahedul Alam
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Hengshuo Liu
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Pugazendhi M Erusappan
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Heinz Hoschuetzky
- nanoTools Antikörpertechnik, Tscheulinstr. 21, 79331 Teningen, Germany.
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, NO-5020 Bergen, Norway.
- Department of Pathology, Haukeland University Hospital, NO-5020 Bergen, Norway.
| | - Himalaya Parajuli
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Edna Cukierman
- Cancer Biology Department, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA.
| | - Daniela-Elena Costea
- Department of Pathology, Haukeland University Hospital, NO-5020 Bergen, Norway.
- Department of Clinical Medicine, Center for Cancer Biomarkers CCBIO and Gade Laboratory for Pathology, University of Bergen, NO-5020 Bergen, Norway.
| | - Ning Lu
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway.
| |
Collapse
|
1069
|
Wang Z, Tang Y, Tan Y, Wei Q, Yu W. Cancer-associated fibroblasts in radiotherapy: challenges and new opportunities. Cell Commun Signal 2019; 17:47. [PMID: 31101063 PMCID: PMC6525365 DOI: 10.1186/s12964-019-0362-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022] Open
Abstract
Background Radiotherapy is one of the most important therapeutic strategies for treating cancer. For decades, studies concerning the outcomes of radiotherapy mainly focused on the biological effects of radiation on tumor cells. Recently, we have increasingly recognized that the complex cellular interactions within the tumor microenvironment (TME) are closely related to treatment outcomes. Main content As a critical component of the TME, fibroblasts participate in all stages of cancer progression. Fibroblasts are able to tolerate harsh extracellular environments, which are usually fatal to all other cells. They play pivotal roles in determining the treatment response to chemoradiotherapy. Radiotherapy activates the TME networks by inducing cycling hypoxia, modulating immune reaction, and promoting vascular regeneration, inflammation and fibrosis. While a number of studies claim that radiotherapy affects fibroblasts negatively through growth arrest and cell senescence, others argue that exposure to radiation can induce an activated phenotype in fibroblasts. These cells take an active part in constructing the tumor microenvironment by secreting cytokines and degradative enzymes. Current strategies that aim to inhibit activated fibroblasts mainly focus on four aspects: elimination, normalization, paracrine signaling blockade and extracellular matrix inhibition. This review will describe the direct cellular effects of radiotherapy on fibroblasts and the underlying genetic changes. We will also discuss the impact of fibroblasts on cancer cells during radiotherapy and the potential value of targeting fibroblasts to enhance the clinical outcome of radiotherapy. Conclusion This review provides good preliminary data to elucidate the biological roles of CAFs in radiotherapy and the clinical value of targeting CAFs as a supplementary treatment to conventional radiotherapy. Further studies to validate this strategy in more physiological models may be required before clinical trial.
Collapse
Affiliation(s)
- Zhanhuai Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yang Tang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Yinuo Tan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qichun Wei
- Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Wei Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China. .,Department of Radiation Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
1070
|
Le QV, Suh J, Oh YK. Nanomaterial-Based Modulation of Tumor Microenvironments for Enhancing Chemo/Immunotherapy. AAPS JOURNAL 2019; 21:64. [PMID: 31102154 DOI: 10.1208/s12248-019-0333-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) has drawn considerable research attention as an alternative target for nanomedicine-based cancer therapy. Various nanomaterials that carry active substances have been designed to alter the features or composition of the TME and thereby improve the delivery and efficacy of anticancer chemotherapeutics. These alterations include disruption of the extracellular matrix and tumor vascular systems to promote perfusion or modulate hypoxia. Nanomaterials have also been used to modulate the immunological microenvironment of tumors. In this context, nanomaterials have been shown to alter populations of cancer-associated fibroblasts, tumor-associated macrophages, regulatory T cells, and myeloid-derived suppressor cells. Despite considerable progress, nanomaterial-based TME modulation must overcome several limitations before this strategy can be translated to clinical trials, including issues related to limited tumor tissue penetration, tumor heterogeneity, and immune toxicity. In this review, we summarize recent progress and challenges of nanomaterials used to modulate the TME to enhance the efficacy of anticancer chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Quoc-Viet Le
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak gu, Seoul, 08826, Republic of Korea
| | - Juhan Suh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak gu, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
1071
|
Shreberk-Shaked M, Oren M. New insights into YAP/TAZ nucleo-cytoplasmic shuttling: new cancer therapeutic opportunities? Mol Oncol 2019; 13:1335-1341. [PMID: 31050214 PMCID: PMC6547617 DOI: 10.1002/1878-0261.12498] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Yes‐associated protein (YAP) and transcriptional co‐activator with PDZ‐binding motif (TAZ), the main effectors of the Hippo pathway, are emerging as important players in cancer biology and therapy response. The intracellular localization of YAP/TAZ is a key determinant in the regulation of their activity and their roles in signal transduction. This is particularly relevant for cancer: Aberrant nuclear localization of YAP and TAZ has been observed in numerous human cancers and may therefore represent an attractive target for cancer therapy. In this review, we describe the mechanisms that regulate the nucleo‐cytoplasmic shuttling of YAP/TAZ and their implications for cancer, and discuss how the new insights about this process may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
1072
|
Sun L, Wang Y, Wang L, Yao B, Chen T, Li Q, Liu Z, Liu R, Niu Y, Song T, Liu Q, Tu K. Resolvin D1 prevents epithelial-mesenchymal transition and reduces the stemness features of hepatocellular carcinoma by inhibiting paracrine of cancer-associated fibroblast-derived COMP. J Exp Clin Cancer Res 2019; 38:170. [PMID: 30999932 PMCID: PMC6472102 DOI: 10.1186/s13046-019-1163-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) require stromal signals for maintaining pluripotency and self-renewal capacities to confer tumor metastasis. Resolvin D1 (RvD1), an endogenous anti-inflammatory lipid mediator, has recently been identified to display anti-cancer effects by acting on stroma cells. Our previous study reveals that hepatic stellate cells (HSCs)-derived cartilage oligomeric matrix protein (COMP) contributes to hepatocellular carcinoma (HCC) progression. However, whether RvD1 inhibits paracrine of cancer-associated fibroblasts (CAFs)-derived COMP to prevent epithelial-mesenchymal transition (EMT) and cancer stemness in HCC remains to be elucidated. METHODS CAFs were isolated from HCC tissues. Direct and indirect co-culture models were established to analyze the interactions between HCC cells and CAFs in the presence of RvD1 in vitro. The transwell and tumor sphere formation assays were used to determine invasion and stemness of HCC cells. The subcutaneous tumor formation and orthotopic liver tumor models were established by co-implantation of CAFs and HCC cells to evaluate the role of RvD1 in vivo. To characterize the mechanism of RvD1 inhibited paracrine of COMP in CAFs, various signaling molecules were analyzed by ELISA, western blotting, reactive oxygen species (ROS) detection, immunofluorescence staining, dual luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS Our data revealed that RvD1 treatment can impede the CAFs-induced cancer stem-like properties and the EMT of HCC cells under co-culture conditions. In vivo studies indicated that RvD1 intervention repressed the promoting effects of CAFs on tumor growth and metastasis of HCC. Furthermore, RvD1 inhibited CAF-induced EMT and stemness features of HCC cells by suppressing the secretion of COMP. Mechanistically, formyl peptide receptor 2 (FPR2) receptor mediated the suppressive effects of RvD1 on COMP and forkhead box M1 (FOXM1) expression in CAFs. Notably, RvD1 impaired CAF-derived COMP in a paracrine manner by targeting FPR2/ROS/FOXM1 signaling to ultimately abrogate FOXM1 recruitment to the COMP promoter. CONCLUSION Our results indicated that RvD1 impaired paracrine of CAFs-derived COMP by targeting FPR2/ROS/FOXM1 signaling to repress EMT and cancer stemness in HCC. Thus, RvD1 may be a potential agent to promote treatment outcomes in HCC.
Collapse
Affiliation(s)
- Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi Province 710061 China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi Province 710061 China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi Province 710061 China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi Province 710061 China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi Province 710061 China
| | - Qing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi Province 710061 China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi Province 710061 China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi Province 710061 China
| | - Yongshen Niu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi Province 710061 China
| | - Tao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi Province 710061 China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi Province 710061 China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 Yanta West Road, Xi’an, Shaanxi Province 710061 China
| |
Collapse
|
1073
|
Stress responses in stromal cells and tumor homeostasis. Pharmacol Ther 2019; 200:55-68. [PMID: 30998941 DOI: 10.1016/j.pharmthera.2019.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
In most (if not all) solid tumors, malignant cells are outnumbered by their non-malignant counterparts, including immune, endothelial and stromal cells. However, while the mechanisms whereby cancer cells adapt to microenvironmental perturbations have been studied in great detail, relatively little is known on stress responses in non-malignant compartments of the tumor microenvironment. Here, we discuss the mechanisms whereby cancer-associated fibroblasts and other cellular components of the tumor stroma react to stress in the context of an intimate crosstalk with malignant, endothelial and immune cells, and how such crosstalk influences disease progression and response to treatment.
Collapse
|
1074
|
Dooling LJ, Discher DE. Inhibiting Tumor Fibrosis and Actomyosin through GPCR activation. Trends Cancer 2019; 5:197-199. [PMID: 30961827 DOI: 10.1016/j.trecan.2019.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Myofibroblasts produce desmoplastic stroma around tumors and have emerged as therapeutic targets in pancreatic ductal adenocarcinoma (PDAC) and other cancers. Differentiation of pancreatic stellate cells (PSCs) into myofibroblasts is inhibited by the estrogen-receptor modulator, tamoxifen, which activates a G-protein-coupled receptor (GPCR) for estrogen (GPER). This negatively regulates actomyosin contractility and downstream mechanosensitive signaling to profoundly alter the tumor microenvironment, which appears less fibrotic, less immunosuppressive, and more vascularized.
Collapse
Affiliation(s)
- Lawrence J Dooling
- Biophysical Engineering Labs University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis E Discher
- Biophysical Engineering Labs University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
1075
|
Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G, De Maria R. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer 2019; 18:70. [PMID: 30927908 PMCID: PMC6441236 DOI: 10.1186/s12943-019-0994-2] [Citation(s) in RCA: 396] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
In the last decades, the role of the microenvironment in tumor progression and therapeutic outcome has gained increasing attention. Cancer-associated fibroblasts (CAFs) have emerged as key players among stromal cells, owing to their abundance in most solid tumors and their diverse tumor-restraining/promoting roles. The interplay between tumor cells and neighboring CAFs takes place by both paracrine signals (cytokines, exosomes and metabolites) or by the multifaceted functions of the surrounding extracellular matrix. Here, we dissect the most recent identified mechanisms underlying CAF-mediated control of tumor progression and therapy resistance, which include induction of the epithelial-to-mesenchymal transition (EMT), activation of survival pathways or stemness-related programs and metabolic reprogramming in tumor cells. Importantly, the recently unveiled heterogeneity in CAFs claims tailored therapeutic efforts aimed at eradicating the specific subset facilitating tumor progression, therapy resistance and relapse. However, despite the large amount of pre-clinical data, much effort is still needed to translate CAF-directed anti-cancer strategies from the bench to the clinic.
Collapse
Affiliation(s)
- Micol Eleonora Fiori
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Simone Di Franco
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, 90127, Palermo, Italy
| | - Lidia Villanova
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Paola Bianca
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, 90127, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical Oncological and Stomatological Sciences, University of Palermo, 90127, Palermo, Italy.
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy. .,Scientific Vice-Direction - Fondazione Policlinico Universitario "A. Gemelli" - I.R.C.C.S, Largo Francesco Vito 1-8, 00168, Rome, Italy.
| |
Collapse
|
1076
|
Truffi M, Mazzucchelli S, Bonizzi A, Sorrentino L, Allevi R, Vanna R, Morasso C, Corsi F. Nano-Strategies to Target Breast Cancer-Associated Fibroblasts: Rearranging the Tumor Microenvironment to Achieve Antitumor Efficacy. Int J Mol Sci 2019; 20:ijms20061263. [PMID: 30871158 PMCID: PMC6471729 DOI: 10.3390/ijms20061263] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/26/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer-associated fibroblasts (CAF) are the most abundant cells of the tumor stroma and they critically influence cancer growth through control of the surrounding tumor microenvironment (TME). CAF-orchestrated reactive stroma, composed of pro-tumorigenic cytokines and growth factors, matrix components, neovessels, and deregulated immune cells, is associated with poor prognosis in multiple carcinomas, including breast cancer. Therefore, beyond cancer cells killing, researchers are currently focusing on TME as strategy to fight breast cancer. In recent years, nanomedicine has provided a number of smart delivery systems based on active targeting of breast CAF and immune-mediated overcome of chemoresistance. Many efforts have been made both to eradicate breast CAF and to reshape their identity and function. Nano-strategies for CAF targeting profoundly contribute to enhance chemosensitivity of breast tumors, enabling access of cytotoxic T-cells and reducing immunosuppressive signals. TME rearrangement also includes reorganization of the extracellular matrix to enhance permeability to chemotherapeutics, and nano-systems for smart coupling of chemo- and immune-therapy, by increasing immunogenicity and stimulating antitumor immunity. The present paper reviews the current state-of-the-art on nano-strategies to target breast CAF and TME. Finally, we consider and discuss future translational perspectives of proposed nano-strategies for clinical application in breast cancer.
Collapse
Affiliation(s)
- Marta Truffi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Arianna Bonizzi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Luca Sorrentino
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Raffaele Allevi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
| | - Renzo Vanna
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
| | - Carlo Morasso
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli studi di Milano, via G. B. Grassi 74, 20157 Milano, Italy.
- Nanomedicine and Molecular Imaging Lab, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
- Breast Unit, Surgery Department, Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
| |
Collapse
|
1077
|
Regulation of fibroblast-like synoviocyte transformation by transcription factors in arthritic diseases. Biochem Pharmacol 2019; 165:145-151. [PMID: 30878552 DOI: 10.1016/j.bcp.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
Inflammation in the synovium is known to mediate joint destruction in several forms of arthritis. Fibroblast-like synoviocytes (FLS) are cells that reside in the synovial lining of joints and are known to be key contributors to inflammation associated with arthritis. FLS are a major source of inflammatory cytokines and catabolic enzymes that promote joint degeneration. We now know that there exists a direct correlation between the signaling pathways that are activated by the pro-inflammatory molecules produced by the FLS, and the severity of joint degeneration in arthritis. Research focused on understanding the signaling pathways that are activated by these pro-inflammatory molecules has led to major advancements in the understanding of the joint pathology in arthritis. Transcription factors (TFs) that act as downstream mediators of the pro-inflammatory signaling cascades in various cell types have been reported to play an important role in inducing the deleterious transformation of the FLS. Interestingly, recent studies have started uncovering that several TFs that were previously reported to play role in embryonic development and cancer, but not known to have pronounced roles in tissue inflammation, can actually play crucial roles in the regulation of the pathological properties of the FLS. In this review, we will discuss reports that have been able to impart novel arthritogenic roles to TFs that are specialized in embryonic development. We also discuss the therapeutic potential of targeting these newly identified regulators of FLS transformation in the treatment of arthritis.
Collapse
|
1078
|
Cancer-associated fibroblasts: how do they contribute to metastasis? Clin Exp Metastasis 2019; 36:71-86. [PMID: 30847799 DOI: 10.1007/s10585-019-09959-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are activated fibroblasts in the tumor microenvironment. They are one of the most prominent cell types in the stroma and produce large amounts of extracellular matrix molecules, chemokines, cytokines and growth factors. Importantly, CAFs promote cancer progression and metastasis by multiple pathways. This, together with their genetic stability, makes them an interesting target for cancer therapy. However, CAF heterogeneity and limited knowledge about the function of the different CAF subpopulations in vivo, are currently major obstacles for identifying specific molecular targets that are of value for cancer treatment. In this review, we discuss recent major findings on CAF development and their metastasis-promoting functions, as well as open questions to be addressed in order to establish successful cancer therapies targeting CAFs.
Collapse
|
1079
|
Suvarna K, Honda K, Muroi M, Kondoh Y, Osada H, Watanabe N. A small-molecule ligand of valosin-containing protein/p97 inhibits cancer cell-accelerated fibroblast migration. J Biol Chem 2019; 294:2988-2996. [PMID: 30610116 DOI: 10.1074/jbc.ra118.004741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Carcinoma-associated fibroblasts are fibroblasts activated by surrounding cancer cells. Carcinoma-associated fibroblasts exhibit enhanced cell migration, which plays an important role in cancer metastasis. Previously, we demonstrated enhanced migration of NIH3T3 fibroblasts when they were cultured in the presence of MCF7 breast cancer cells. Human fibroblasts displayed a similar phenomenon even when they were co-cultured with cancer cells other than MCF7 cells. In this study, we screened ∼16,000 compounds from the RIKEN Natural Products Depository chemical library for inhibitors of enhanced NIH3T3 cell migration in the presence of MCF7. We identified NPD8733 as an inhibitor of cancer cell-enhanced fibroblast migration. This inhibition was observed not only in a wound-healing co-culture assay but also in a Transwell migration assay. Using NPD8733 and a structurally similar but inactive derivative, NPD8126, on immobilized beads, we found that NPD8733, but not NPD8126, specifically binds to valosin-containing protein (VCP)/p97, a member of the ATPase-associated with diverse cellular activities (AAA+) protein family. Using VCP truncation variants, we found that NPD8733 binds to the D1 domain of VCP. Because VCP's D1 domain is important for its function, we concluded that NPD8733 may act on VCP by binding to this domain. siRNA-mediated silencing of VCP in NIH3T3 fibroblasts, but not in MCF7 cells, reduced the migration of the co-cultured NIH3T3 fibroblasts. These results indicate that MCF7 activates the migration of NIH3T3 cells through VCP and that NPD8733 binds VCP and thereby inhibits its activity.
Collapse
Affiliation(s)
- Kruthi Suvarna
- From the Bio-Active Compounds Discovery Research Unit.,the Tokyo Medical Dental University, Yushima, Tokyo 113-8510, Japan
| | - Kaori Honda
- From the Bio-Active Compounds Discovery Research Unit.,Chemical Biology Research Group, and
| | | | | | - Hiroyuki Osada
- Chemical Biology Research Group, and.,RIKEN-Max Planck Joint Research Division, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan and
| | - Nobumoto Watanabe
- From the Bio-Active Compounds Discovery Research Unit, .,the Tokyo Medical Dental University, Yushima, Tokyo 113-8510, Japan.,RIKEN-Max Planck Joint Research Division, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan and
| |
Collapse
|
1080
|
Practical Application of Periostin as a Biomarker for Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:195-204. [PMID: 31037636 DOI: 10.1007/978-981-13-6657-4_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In physiological condition, periostin is expressed in limited tissues such as periodontal ligament, periosteum, and heart valves. Periostin protein is mainly localized on extracellular collagen bundles and in matricellular space. On the other hand, in pathological condition, expression of periostin is induced in disordered tissues of human patients. In tumor development and progression, periostin is elevated mainly in its microenvironment and stromal tissue rich in extracellular matrix. Tumor stromal fibroblasts highly express periostin and organize the tumor-surrounding extracellular matrix architecture. In fibrosis in lung, liver, and kidney, proliferating activated fibroblasts express periostin and replace normal functional tissues with dense connective tissues. In inflammation and allergy, inflammatory cytokines such as IL-4 and IL-13 induce expression of periostin that plays important roles in pathogenesis of these diseases. The elevated levels of periostin in human patients could be detected not only in tissue biopsy samples but also in peripheral bloods using specific antibodies against periostin, because periostin secreted from the disordered tissues is transported into blood vessels and circulates in the cardiovascular system. In this chapter, I introduce the elevated expression of periostin in pathological conditions, and discuss how periostin could be utilized as a biomarker in disease diagnosis.
Collapse
|