11301
|
Narzi D, Siu SWI, Stirnimann CU, Grimshaw JPA, Glockshuber R, Capitani G, Böckmann RA. Evidence for proton shuffling in a thioredoxin-like protein during catalysis. J Mol Biol 2008; 382:978-86. [PMID: 18692066 DOI: 10.1016/j.jmb.2008.07.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
Proteins of the thioredoxin (Trx) superfamily catalyze disulfide-bond formation, reduction and isomerization in substrate proteins both in prokaryotic and in eukaryotic cells. All members of the Trx family with thiol-disulfide oxidoreductase activity contain the characteristic Cys-X-X-Cys motif in their active site. Here, using Poisson-Boltzmann-based protonation-state calculations based on 100-ns molecular dynamics simulations, we investigate the catalytic mechanism of DsbL, the most oxidizing Trx-like protein known to date. We observed several correlated transitions in the protonation states of the buried active-site cysteine and a neighboring lysine coupled to the exposure of the active-site thiolate. These results support the view of an internal proton shuffling mechanism during oxidation crucial for the uptake of two electrons from the substrate protein. Intramolecular disulfide-bond formation is probably steered by the conformational switch facilitating interaction with the active-site thiolate. A consistent catalytic mechanism for DsbL, probably conferrable to other proteins of the same class, is presented. Our results suggest a functional role of hydration entropy of active-site groups.
Collapse
Affiliation(s)
- Daniele Narzi
- Theoretical and Computational Membrane Biology, Center for Bioinformatics, Saarland University, Box 15 11 50, D-66041 Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
11302
|
In silico identification of anthropogenic chemicals as ligands of zebrafish sex hormone binding globulin. Toxicol Appl Pharmacol 2008; 234:47-57. [PMID: 18725242 DOI: 10.1016/j.taap.2008.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/27/2008] [Accepted: 07/07/2008] [Indexed: 11/23/2022]
Abstract
Anthropogenic compounds with the capacity to interact with the steroid-binding site of sex hormone binding globulin (SHBG) pose health risks to humans and other vertebrates including fish. Building on studies of human SHBG, we have applied in silico drug discovery methods to identify potential binders for SHBG in zebrafish (Danio rerio) as a model aquatic organism. Computational methods, including; homology modeling, molecular dynamics simulations, virtual screening, and 3D QSAR analysis, successfully identified 6 non-steroidal substances from the ZINC chemical database that bind to zebrafish SHBG (zfSHBG) with low-micromolar to nanomolar affinities, as determined by a competitive ligand-binding assay. We also screened 80,000 commercial substances listed by the European Chemicals Bureau and Environment Canada, and 6 non-steroidal hits from this in silico screen were tested experimentally for zfSHBG binding. All 6 of these compounds displaced the [(3)H]5alpha-dihydrotestosterone used as labeled ligand in the zfSHBG screening assay when tested at a 33 microM concentration, and 3 of them (hexestrol, 4-tert-octylcatechol, and dihydrobenzo(a)pyren-7(8H)-one) bind to zfSHBG in the micromolar range. The study demonstrates the feasibility of large-scale in silico screening of anthropogenic compounds that may disrupt or highjack functionally important protein:ligand interactions. Such studies could increase the awareness of hazards posed by existing commercial chemicals at relatively low cost.
Collapse
|
11303
|
Pauli I, Caceres RA, de Azevedo WF. Molecular modeling and dynamics studies of Shikimate Kinase from Bacillus anthracis. Bioorg Med Chem 2008; 16:8098-108. [PMID: 18706819 DOI: 10.1016/j.bmc.2008.07.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/17/2008] [Accepted: 07/19/2008] [Indexed: 11/16/2022]
Abstract
Bacillus anthracis has been used as weapon in bioterrorist activities, with high mortality, despite anti-microbial treatment, which strongly indicates a need of new drugs to treat anthrax. Shikimate Pathway is a seven-step biosynthetic route which generates chorismic acid. The shikimate pathway is essential for many pathological organisms, whereas it is absent in mammals. Therefore, these enzymes are potential targets for the development of non-toxic anti-microbial agents and herbicides and have been submitted to intensive structural studies. Shikimate Kinase is the fifth enzyme of shikimate pathway and catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimate using ATP as a co-substrate, resulting in shikimate-3-phosphate and ADP. The present work describes for the first time a structural model for the Shikimate Kinase from B. anthracis using molecular modeling approach and molecular dynamics simulations. This study was able to identify the main residues of the ATP-binding and the shikimate pockets responsible for ligand affinities. Analysis of the molecular dynamics simulations indicates the structural features responsible for the stability of the structure. This study may help in the identification of new inhibitors for this enzyme.
Collapse
Affiliation(s)
- Ivani Pauli
- Faculdade de Biociências, Laboratório de Bioquímica Estrutural, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, Porto Alegre, 90619-900 Rio Grande do Sul, CEP, Brazil
| | | | | |
Collapse
|
11304
|
Abstract
Bin/Amphiphysin/Rvs-homology (BAR) domains generate and sense membrane curvature by binding the negatively charged membrane to their positively charged concave surfaces. N-BAR domains contain an N-terminal extension (helix-0) predicted to form an amphipathic helix upon membrane binding. We determined the NMR structure and nano-to-picosecond dynamics of helix-0 of the human Bin1/Amphiphysin II BAR domain in sodium dodecyl sulfate and dodecylphosphocholine micelles. Molecular dynamics simulations of this 34-amino acid peptide revealed electrostatic and hydrophobic interactions with the detergent molecules that induce helical structure formation from residues 8-10 toward the C-terminus. The orientation in the micelles was experimentally confirmed by backbone amide proton exchange. The simulation and the experiment indicated that the N-terminal region is disordered, and the peptide curves to adopted the micelle shape. Deletion of helix-0 reduced tubulation of liposomes by the BAR domain, whereas the helix-0 peptide itself was fusogenic. These findings support models for membrane curving by BAR domains in which helix-0 increases the binding affinity to the membrane and enhances curvature generation.
Collapse
|
11305
|
Kiviranta PH, Salo HS, Leppänen J, Rinne VM, Kyrylenko S, Kuusisto E, Suuronen T, Salminen A, Poso A, Lahtela-Kakkonen M, Wallén EAA. Characterization of the binding properties of SIRT2 inhibitors with a N-(3-phenylpropenoyl)-glycine tryptamide backbone. Bioorg Med Chem 2008; 16:8054-62. [PMID: 18701307 DOI: 10.1016/j.bmc.2008.07.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/22/2008] [Indexed: 12/01/2022]
Abstract
SIRT2 inhibitors with a N-(3-phenylpropenoyl)-glycine tryptamide backbone were studied. This backbone has been developed in our group, and it is derived from a compound originally found by virtual screening. In addition, compounds with a smaller 3-phenylpropenoic acid tryptamide backbone were also included in the study. Binding modes for the new compounds and the previously reported compounds were analyzed with molecular modelling methods. The approach, which included a combination of molecular dynamics, molecular docking and cluster analysis, showed that certain docking poses were favourable despite the conformational variation in the target protein. The N-(3-phenylpropenoyl)-glycine tryptamide backbone is also a good backbone for SIRT2 inhibitors, and the series of compounds includes several potent SIRT2 inhibitors.
Collapse
Affiliation(s)
- Päivi H Kiviranta
- Department of Pharmaceutical Chemistry, University of Kuopio, PO Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11306
|
Globisch C, Pajeva IK, Wiese M. Identification of putative binding sites of P-glycoprotein based on its homology model. ChemMedChem 2008; 3:280-95. [PMID: 18175303 DOI: 10.1002/cmdc.200700249] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A homology model of P-glycoprotein based on the crystal structure of the multidrug transporter Sav1866 is developed, incorporated into a membrane environment, and optimized. The resulting model is analyzed in relation to the functional state and potential binding sites. The comparison of modeled distances to distances reported in experimental studies between particular residues suggests that the model corresponds most closely to the first ATP hydrolysis step of the protein transport cycle. Comparison to the protein 3D structure confirms this suggestion. Using SiteID and Site Finder programs three membrane related binding regions are identified: a region at the interface between the membrane and cytosol and two regions located in the transmembrane domains. The regions contain binding pockets of different size, orientation, and amino acids. A binding pocket located inside the membrane cavity is also identified. The pockets are analyzed in relation to amino acids shown experimentally to influence the protein function. The results suggest that the protein has multiple binding sites and may bind and/or release substrates in multiple pathways.
Collapse
|
11307
|
Kwan AH, Macindoe I, Vukasin PV, Morris VK, Kass I, Gupte R, Mark AE, Templeton MD, Mackay JP, Sunde M. The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. J Mol Biol 2008; 382:708-20. [PMID: 18674544 DOI: 10.1016/j.jmb.2008.07.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
Class I hydrophobins are fungal proteins that self-assemble into robust amphipathic rodlet monolayers on the surface of aerial structures such as spores and fruiting bodies. These layers share many structural characteristics with amyloid fibrils and belong to the growing family of functional amyloid-like materials produced by microorganisms. Although the three-dimensional structure of the soluble monomeric form of a class I hydrophobin has been determined, little is known about the molecular structure of the rodlets or their assembly mechanism. Several models have been proposed, some of which suggest that the Cys3-Cys4 loop has a critical role in the initiation of assembly or in the polymeric structure. In order to provide insight into the relationship between hydrophobin sequence and rodlet assembly, we investigated the role of the Cys3-Cys4 loop in EAS, a class I hydrophobin from Neurospora crassa. Remarkably, deletion of up to 15 residues from this 25-residue loop does not impair rodlet formation or reduce the surface activity of the protein, and the physicochemical properties of rodlets formed by this mutant are indistinguishable from those of its full-length counterpart. In addition, the core structure of the truncation mutant is essentially unchanged. Molecular dynamics simulations carried out on the full-length protein and this truncation mutant binding to an air-water interface show that, although it is hydrophobic, the loop does not play a role in positioning the protein at the surface. These results demonstrate that the Cys3-Cys4 loop does not have an integral role in the formation or structure of the rodlets and that the major determinant of the unique properties of these proteins is the amphipathic core structure, which is likely to be preserved in all hydrophobins despite the high degree of sequence variation across the family.
Collapse
Affiliation(s)
- Ann H Kwan
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11308
|
Yi M, Nymeyer H, Zhou HX. Test of the Gouy-Chapman theory for a charged lipid membrane against explicit-solvent molecular dynamics simulations. PHYSICAL REVIEW LETTERS 2008; 101:038103. [PMID: 18764300 PMCID: PMC3532908 DOI: 10.1103/physrevlett.101.038103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Indexed: 05/14/2023]
Abstract
A wealth of experimental data has verified the applicability of the Gouy-Chapman (GC) theory to charged lipid membranes. Surprisingly, a validation of GC by molecular dynamics (MD) simulations has been elusive. Here, we report a test of GC against extensive MD simulations of an anionic lipid bilayer solvated by water at different concentrations of NaCl or KCl. We demonstrate that the ion distributions from the simulations agree remarkably well with GC predictions when information on the adsorption of counterions to the bilayer is incorporated.
Collapse
Affiliation(s)
- Myunggi Yi
- Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
- Department of Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
- Department of School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA
| | - Hugh Nymeyer
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
- Department of Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
- Department of School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA
| | - Huan-Xiang Zhou
- Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
- Department of Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
- Department of School of Computational Science, Florida State University, Tallahassee, Florida 32306, USA
- Corresponding author.
| |
Collapse
|
11309
|
Models of the structure and gating mechanisms of the pore domain of the NaChBac ion channel. Biophys J 2008; 95:3650-62. [PMID: 18641075 DOI: 10.1529/biophysj.108.135327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The NaChBac prokaryotic sodium channel appears to be a descendent of an evolutionary link between voltage-gated K(V) and Ca(V) channels. Like K(V) channels, four identical six-transmembrane subunits comprise the NaChBac channel, but its selectivity filter possesses a signature sequence of eukaryotic Ca(V) channels. We developed structural models of the NaChBac channel in closed and open conformations, using K(+)-channel crystal structures as initial templates. Our models were also consistent with numerous experimental results and modeling criteria. This study concerns the pore domain. The major differences between our models and K(+) crystal structures involve the latter portion of the selectivity filter and the bend region in S6 of the open conformation. These NaChBac models may serve as a stepping stone between K(+) channels of known structure and Na(V), Ca(V), and TRP channels of unknown structure.
Collapse
|
11310
|
Vorobyov I, Li L, Allen TW. Assessing Atomistic and Coarse-Grained Force Fields for Protein−Lipid Interactions: the Formidable Challenge of an Ionizable Side Chain in a Membrane. J Phys Chem B 2008; 112:9588-602. [DOI: 10.1021/jp711492h] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Igor Vorobyov
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616
| | - Libo Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616
| | - Toby W. Allen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616
| |
Collapse
|
11311
|
Molecular dynamics simulation of the neuroglobin crystal: comparison with the simulation in solution. Biophys J 2008; 95:4157-62. [PMID: 18641072 DOI: 10.1529/biophysj.108.135855] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroglobin (Ngb) is a monomeric protein that, despite the small sequence similarity with other globins, displays the typical globin fold. In the absence of exogenous ligands, the ferric and the ferrous forms of Ngb are both hexacoordinated to the distal and proximal histidines. In the ferrous form, oxygen, nitric oxide or carbon monoxide can displace the distal histidine, yielding a reversible adduct. Crystallographic data show that the binding of an exogenous ligand is associated to structural changes involving heme sliding and a topological reorganization of the internal cavities. Molecular dynamics (MD) simulations in solution show that the heme oscillates between two positions, much as the ones observed in the crystal structure, although the occupancy is different. The simulations also suggest that ligand binding in solution can affect the flexibility and conformation of residues connecting the C and D helices, referred to as the CD corner, which is coupled to the configuration adopted by the distal histidine. In this study, we report the results of 30 ns MD simulations of CO-bound Ngb in the crystal. Our goal was to compare the protein dynamical behavior in the crystal with the results supplied by the previous MD simulation of CO-bound Ngb in solution and the x-ray experimental data. The results show that the different environments (crystal or solution) affect the dynamics of the heme group and of the CD corner.
Collapse
|
11312
|
Molecular dynamics simulations of the hydration of poly(vinyl methyl ether): Hydrogen bonds and quasi-hydrogen bonds. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11426-008-0078-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11313
|
Pressure effects on the ensemble dynamics of ubiquitin inspected with molecular dynamics simulations and isotropic reorientational eigenmode dynamics. Biophys J 2008; 95:3943-55. [PMID: 18621814 DOI: 10.1529/biophysj.108.133702] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
According to NMR chemical shift data, the ensemble of ubiquitin is a mixture of "open" and "closed" conformations at rapid equilibrium. Pressure perturbations provide the means to study the transition between the two conformers by imposing an additional constraint on the system's partial molar volume. Here we use nanosecond-timescale molecular dynamics simulations to characterize the network of correlated motions accessible to the conformers at low- and high-pressure conditions. Using the isotropic reorientational eigenmode dynamics formalism to analyze our simulation trajectories, we reproduce NMR relaxation data without fitting any parameters of our model. Comparative analysis of our results suggests that the two conformations behave very differently. The dynamics of the "closed" conformation are almost unaffected by pressure and are dominated by large-amplitude correlated motions of residues 23-34 in the extended alpha-helix. The "open" conformation under conditions of normal pressure displays increased mobility, focused on the loop residues 17-20, 46-55, and 58-59 at the bottom of the core of the structure, as well as the C-terminal residues 69-76, that directly participate in key protein-protein interactions. For the same conformation, a pressure increase induces a loss of separability between molecular tumbling and internal dynamics, while motions between different backbone sites become uncorrelated.
Collapse
|
11314
|
Impact on replicative fitness of the G48E substitution in the protease of HIV-1: an in vitro and in silico evaluation. J Acquir Immune Defic Syndr 2008; 48:255-62. [PMID: 18545158 DOI: 10.1097/qai.0b013e318174dca6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We observed an unusual glycine-to-glutamate substitution at protease (PR) residue position 48 (G48E) in an African patient infected with a subtype A1 HIV-1 strain failing a saquinavir-containing regimen. Phenotypic analysis of protease inhibitor (PI) susceptibility showed that the G48E site-directed mutant, when introduced into an NL4-3 HIV-1 PR backbone, was slightly resistant to SQV (2-fold when compared with the wild-type virus). In addition, the G48E and G48E/V82A site-directed mutants were associated with a decrease in fitness, whereas a reversion to the wild type at position 48 was observed in vitro. Growth competition experiments using a novel growth competition assay based on enhanced green fluorescent protein- or Discosoma spp. red fluorescent protein-expressing viruses showed that the replicative fitness of the G48E virus was reduced to 55% compared with the parental NL4-3 virus. Synthesizing all possible site-directed mutants found in the patient strain is too time-consuming; therefore, a molecular dynamics (MD) simulation approach was used to understand why this mutation survived despite its fitness cost. These simulations documented that the G48E mutant interacted with PI resistance mutations (M46I, I54V, Q58E, and L63P) and with natural polymorphisms specific to subtype A1 (E35D, M36I, and R57K) that were present in the patient's virus. We hypothesize that the polymorphisms contained in the PR flap regions of the patient's virus may compensate for the presence of G48E, possibly by restoring the flexibility of the PR flaps. In summary, our results demonstrate that the G48E substitution, when introduced in the context of an HIV-1 subtype B strain, is highly unstable and gives rise to viruses with a poor replicative fitness in vitro. We also showed that when confronted with too many mutations to evaluate in vitro, MD simulations are helpful to draft hypotheses on how polymorphisms can interact with resistance mutations to stabilize their potential fitness cost.
Collapse
|
11315
|
Interplay of unsaturated phospholipids and cholesterol in membranes: effect of the double-bond position. Biophys J 2008; 95:3295-305. [PMID: 18621818 DOI: 10.1529/biophysj.108.138123] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural and dynamical properties of lipid membranes rich in phospholipids and cholesterol are known to be strongly affected by the unsaturation of lipid acyl chains. We show that not only unsaturation but also the position of a double bond has a pronounced effect on membrane properties. We consider how cholesterol interacts with phosphatidylcholines comprising two 18-carbon long monounsaturated acyl chains, where the position of the double bond is varied systematically along the acyl chains. Atomistic molecular dynamics simulations indicate that when the double bond is not in contact with the cholesterol ring, and especially with the C18 group on its rough beta-side, the membrane properties are closest to those of the saturated bilayer. However, any interaction between the double bond and the ring promotes membrane disorder and fluidity. Maximal disorder is found when the double bond is located in the middle of a lipid acyl chain, the case most commonly found in monounsaturated acyl chains of phospholipids. The results suggest a cholesterol-mediated lipid selection mechanism in eukaryotic cell membranes. With saturated lipids, cholesterol promotes the formation of highly ordered raft-like membrane domains, whereas domains rich in unsaturated lipids with a double bond in the middle remain highly fluid despite the presence of cholesterol.
Collapse
|
11316
|
Feige MJ, Paci E. Rate of loop formation in peptides: a simulation study. J Mol Biol 2008; 382:556-65. [PMID: 18644378 DOI: 10.1016/j.jmb.2008.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 11/16/2022]
Abstract
Experimental techniques with high temporal and spatial resolution extend our knowledge of how biological macromolecules self-organise and function. Here, we provide an illustration of the convergence between simulation and experiment made possible by techniques such as triplet-triplet energy transfer and fluorescence quenching with long-lifetime and fast-quenching fluorescent probes. These techniques have recently been used to determine the average time needed for two residues in a peptide or protein segment to form a contact. The timescale of this process is accessible to computer simulation, providing a microscopic interpretation of the data and yielding new insight into the disordered state of proteins. Conversely, such experimental data also provide a test of the validity of alternative choices for the molecular models used in simulations, indicating their possible deficiencies. We carried out simulations of peptides of various composition and length using several models. End-to-end contact formation rates and their dependence on peptide length agree with experimental estimates for some sequences and some force fields but not for others. The deviations are due to artefactual structuring of some peptides, which is not observed when an atomistic model for the solvation water is used. Simulations show that the observed experimental rates are compatible with considerably different distributions of the end-to-end distance; for realistic models, these are never Gaussian but indicative of a rugged energy landscape.
Collapse
Affiliation(s)
- Matthias J Feige
- Department Chemie, Technische Universität München, 85747 Garching, Germany
| | | |
Collapse
|
11317
|
Protein-protein interaction investigated by steered molecular dynamics: the TCR-pMHC complex. Biophys J 2008; 95:3575-90. [PMID: 18621828 DOI: 10.1529/biophysj.108.131383] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a novel steered molecular dynamics scheme to induce the dissociation of large protein-protein complexes. We apply this scheme to study the interaction of a T cell receptor (TCR) with a major histocompatibility complex (MHC) presenting a peptide (p). Two TCR-pMHC complexes are considered, which only differ by the mutation of a single amino acid on the peptide; one is a strong agonist that produces T cell activation in vivo, while the other is an antagonist. We investigate the interaction mechanism from a large number of unbinding trajectories by analyzing van der Waals and electrostatic interactions and by computing energy changes in proteins and solvent. In addition, dissociation potentials of mean force are calculated with the Jarzynski identity, using an averaging method developed for our steering scheme. We analyze the convergence of the Jarzynski exponential average, which is hampered by the large amount of dissipative work involved and the complexity of the system. The resulting dissociation free energies largely underestimate experimental values, but the simulations are able to clearly differentiate between wild-type and mutated TCR-pMHC and give insights into the dissociation mechanism.
Collapse
|
11318
|
Lipid bilayer deformation and the free energy of interaction of a Kv channel gating-modifier toxin. Biophys J 2008; 95:3816-26. [PMID: 18621840 DOI: 10.1529/biophysj.108.130971] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of membrane proteins act via binding at the water/lipid bilayer interface. An important example of such proteins is provided by the gating-modifier toxins that act on voltage-gated potassium (Kv) channels. They are thought to partition to the headgroup region of lipid bilayers, and so provide a good system for probing the nature of interactions of a protein with the water/bilayer interface. We used coarse-grained molecular dynamics simulations to compute the one-dimensional potential of mean force (i.e., free energy) profile that governs the interaction between a Kv channel gating-modifier toxin (VSTx1) and model phospholipid bilayers. The reaction coordinate sampled corresponds to the position of the toxin along the bilayer normal. The course-grained representation of the protein and lipids enabled us to explore extended time periods, revealing aspects of toxin/bilayer dynamics and energetics that would be difficult to observe on the timescales currently afforded by atomistic molecular dynamics simulations. In particular, we show for this model system that the bilayer deforms as it interacts with the toxin, and that such deformations perturb the free energy profile. Bilayer deformation therefore adds an additional layer of complexity to be addressed in investigations of membrane/protein systems. In particular, one should allow for local deformations that may arise due to the spatial array of charged and hydrophobic elements of an interfacially located membrane protein.
Collapse
|
11319
|
Arcangeli C, Cantale C, Galeffi P, Rosato V. Structure and dynamics of the anti-AMCV scFv(F8): effects of selected mutations on the antigen combining site. J Struct Biol 2008; 164:119-33. [PMID: 18662789 DOI: 10.1016/j.jsb.2008.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/16/2008] [Accepted: 06/27/2008] [Indexed: 11/26/2022]
Abstract
The recombinant antibody fragment scFv(F8), which recognizes the coat protein of the plant virus AMCV, is characterized by peculiar high in vitro stability and functional folding even in reducing environments, making it fit for designing stable antibodies with desired properties. Mutagenesis and functional analysis evidenced two residues, at positions 47 and 58 of the V(H) chain, playing a crucial role in the antigen binding recognition. Here, we used a computational procedure to assess the effects of these mutations on the stability, structure and dynamics of the antigen-binding site. Structural models of the wild type scFv(F8) and of its H47 and H58 mutants were built by homology modelling and assessed by multiple 15.5ns of molecular dynamics simulations. Computational results indicate that the 47H substitution strongly affects the CDR-H(2) conformation, destabilizes the V(H)/V(L) interface and confers high conformational flexibility to the antigen-binding site, leading the mutant to functional loss. The mutation at position H58 strenghtens the binding site, bestowing a high antigen specificity on the mutant. The essential dynamics and the analysis of the protein-solvent interface further corroborate the correspondence between the extent of the structurally-determined flexibility of the binding site with the different functional behaviours proved by the wild-type and its mutants. These results may have useful implications for structure-based design of antibody combining site.
Collapse
Affiliation(s)
- Caterina Arcangeli
- ENEA, Dipartimento FIM, Sezione Calcolo e Modellistica, CR Casaccia, Via Anguillarese 301, I-00123 Rome, Italy.
| | | | | | | |
Collapse
|
11320
|
Plested AJR, Vijayan R, Biggin PC, Mayer ML. Molecular basis of kainate receptor modulation by sodium. Neuron 2008; 58:720-35. [PMID: 18549784 DOI: 10.1016/j.neuron.2008.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/12/2008] [Accepted: 04/02/2008] [Indexed: 10/22/2022]
Abstract
Membrane proteins function in a polarized ionic environment with sodium-rich extracellular and potassium-rich intracellular solutions. Glutamate receptors that mediate excitatory synaptic transmission in the brain show unusual sensitivity to external ions, resulting in an apparent requirement for sodium in order for glutamate to activate kainate receptors. Here, we solve the structure of the Na(+)-binding sites and determine the mechanism by which allosteric anions and cations regulate ligand-binding dimer stability, and hence the rate of desensitization and receptor availability for gating by glutamate. We establish a stoichiometry for binding of 2 Na(+) to 1 Cl(-) and show that allosteric anions and cations bind at physically discrete sites with strong electric fields, that the binding sites are not saturated in CSF, and that the requirement of kainate receptors for Na(+) occurs simply because other cations bind with lower affinity and have lower efficacy compared to Na(+).
Collapse
Affiliation(s)
- Andrew J R Plested
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, NICHD, NIH, DHHS, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
11321
|
Computational study of the binding of CuII to Alzheimer’s amyloid-β peptide: Do Aβ42 and Aβ40 bind copper in identical fashion? J Biol Inorg Chem 2008; 13:1197-204. [DOI: 10.1007/s00775-008-0403-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 06/25/2008] [Indexed: 12/31/2022]
|
11322
|
Conde MM, Vega C, Patrykiejew A. The thickness of a liquid layer on the free surface of ice as obtained from computer simulation. J Chem Phys 2008; 129:014702. [DOI: 10.1063/1.2940195] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
11323
|
Knecht V. β-Hairpin Folding by a Model Amyloid Peptide in Solution and at an Interface. J Phys Chem B 2008; 112:9476-83. [DOI: 10.1021/jp8026513] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Volker Knecht
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
11324
|
Schmitz C, Stanton-Cook MJ, Su XC, Otting G, Huber T. Numbat: an interactive software tool for fitting Deltachi-tensors to molecular coordinates using pseudocontact shifts. JOURNAL OF BIOMOLECULAR NMR 2008; 41:179-89. [PMID: 18574699 DOI: 10.1007/s10858-008-9249-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 05/26/2008] [Indexed: 05/14/2023]
Abstract
Pseudocontact shift (PCS) effects induced by a paramagnetic lanthanide bound to a protein have become increasingly popular in NMR spectroscopy as they yield a complementary set of orientational and long-range structural restraints. PCS are a manifestation of the chi-tensor anisotropy, the Deltachi-tensor, which in turn can be determined from the PCS. Once the Deltachi-tensor has been determined, PCS become powerful long-range restraints for the study of protein structure and protein-ligand complexes. Here we present the newly developed package Numbat (New User-friendly Method Built for Automatic Deltachi-Tensor determination). With a Graphical User Interface (GUI) that allows a high degree of interactivity, Numbat is specifically designed for the computation of the complete set of Deltachi-tensor parameters (including shape, location and orientation with respect to the protein) from a set of experimentally measured PCS and the protein structure coordinates. Use of the program for Linux and Windows operating systems is illustrated by building a model of the complex between the E. coli DNA polymerase III subunits epsilon186 and theta using PCS.
Collapse
Affiliation(s)
- Christophe Schmitz
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
11325
|
Organogold complexes probe a large β-barrel cavity for human serum α1-acid glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1106-14. [DOI: 10.1016/j.bbapap.2008.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 03/20/2008] [Accepted: 03/24/2008] [Indexed: 11/22/2022]
|
11326
|
Booth CR, Meyer AS, Cong Y, Topf M, Sali A, Ludtke SJ, Chiu W, Frydman J. Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT. Nat Struct Mol Biol 2008; 15:746-53. [PMID: 18536725 PMCID: PMC2546500 DOI: 10.1038/nsmb.1436] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 04/28/2008] [Indexed: 01/01/2023]
Abstract
All chaperonins mediate ATP-dependent polypeptide folding by confining substrates within a central chamber. Intriguingly, the eukaryotic chaperonin TRiC (also called CCT) uses a built-in lid to close the chamber, whereas prokaryotic chaperonins use a detachable lid. Here we determine the mechanism of lid closure in TRiC using single-particle cryo-EM and comparative protein modeling. Comparison of TRiC in its open, nucleotide-free, and closed, nucleotide-induced states reveals that the interdomain motions leading to lid closure in TRiC are radically different from those of prokaryotic chaperonins, despite their overall structural similarity. We propose that domain movements in TRiC are coordinated through unique interdomain contacts within each subunit and, further, these contacts are absent in prokaryotic chaperonins. Our findings show how different mechanical switches can evolve from a common structural framework through modification of allosteric networks.
Collapse
Affiliation(s)
- Christopher R Booth
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, One Baylor Plaza, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
11327
|
Ivanov AA, Jacobson KA. Molecular modeling of a PAMAM-CGS21680 dendrimer bound to an A2A adenosine receptor homodimer. Bioorg Med Chem Lett 2008; 18:4312-5. [PMID: 18639453 DOI: 10.1016/j.bmcl.2008.06.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/20/2008] [Accepted: 06/25/2008] [Indexed: 01/19/2023]
Abstract
The theoretical possibility of bivalent binding of a dendrimer, covalently appended with multiple copies of a small ligand, to a homodimer of a G protein-coupled receptor was investigated with a molecular modeling approach. A molecular model was constructed of a third generation (G3) poly(amidoamine) (PAMAM) dendrimer condensed with multiple copies of the potent A(2A) adenosine receptor agonist CGS21680. The dendrimer was bound to an A(2A) adenosine receptor homodimer. Two units of the nucleoside CGS21680 could occupy the A(2A) receptor homodimer simultaneously. The binding mode of CGS21680 moieties linked to the PAMAM dendrimer and docked to the A(2A) receptor was found to be similar to the binding mode of a monomeric CGS21680 ligand.
Collapse
Affiliation(s)
- Andrei A Ivanov
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
11328
|
Noé F. Probability distributions of molecular observables computed from Markov models. J Chem Phys 2008; 128:244103. [DOI: 10.1063/1.2916718] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
11329
|
Kubař T, Elstner M. What Governs the Charge Transfer in DNA? The Role of DNA Conformation and Environment. J Phys Chem B 2008; 112:8788-98. [DOI: 10.1021/jp803661f] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomáš Kubař
- Department of Physical and Theoretical Chemistry, Technische Universität Braunschweig, D-38106 Braunschweig, Germany, and Department of Molecular Biophysics, German Cancer Research Center, D-69115 Heidelberg, Germany
| | - Marcus Elstner
- Department of Physical and Theoretical Chemistry, Technische Universität Braunschweig, D-38106 Braunschweig, Germany, and Department of Molecular Biophysics, German Cancer Research Center, D-69115 Heidelberg, Germany
| |
Collapse
|
11330
|
Allen EC, Rutledge GC. A novel algorithm for creating coarse-grained, density dependent implicit solvent models. J Chem Phys 2008; 128:154115. [PMID: 18433198 DOI: 10.1063/1.2899729] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Implicit solvent simulations are those in which solvent molecules are not explicitly simulated, and the solute-solute interaction potential is modified to compensate for the implicit solvent effect. Implicit solvation is well known in Brownian dynamics of dilute solutions but offers promise to speed up many other types of molecular simulations as well, including studies of proteins and colloids where the local density can vary considerably. This work examines implicit solvent potentials within a more general coarse-graining framework. While a pairwise potential between solute sites is relatively simple and ubiquitous, an additional parametrization based on the local solute concentration has the possibility to increase the accuracy of the simulations with only a marginal increase in computational cost. We describe here a method in which the radial distribution function and excess chemical potential of solute insertion for a system of Lennard-Jones particles are first measured in a fully explicit, all-particle simulation, and then reproduced across a range of solute particle densities in an implicit solvent simulation.
Collapse
Affiliation(s)
- Erik C Allen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
11331
|
Duarte AMS, van Mierlo CPM, Hemminga MA. Molecular Dynamics Study of the Solvation of an α-Helical Transmembrane Peptide by DMSO. J Phys Chem B 2008; 112:8664-71. [DOI: 10.1021/jp076678j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Afonso M. S. Duarte
- Laboratory of Biophysics and Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Carlo P. M. van Mierlo
- Laboratory of Biophysics and Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Marcus A. Hemminga
- Laboratory of Biophysics and Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| |
Collapse
|
11332
|
Gupta A, Chauhan A, Kopelevich DI. Molecular modeling of surfactant covered oil-water interfaces: Dynamics, microstructure, and barrier for mass transport. J Chem Phys 2008; 128:234709. [DOI: 10.1063/1.2939123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11333
|
Koivuniemi A, Kovanen PT, Hyvönen MT. Molecular dynamics simulations of a lipovitellin-derived amphiphilic beta-sheet homologous to apoB-100 beta-sheets at a hydrophobic decane-water interface. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1668-75. [PMID: 18619564 DOI: 10.1016/j.bbapap.2008.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/19/2008] [Accepted: 06/04/2008] [Indexed: 12/12/2022]
Abstract
Lipovitellin, an egg-yolk lipoprotein, transports lipids in a pocket surrounded by amphiphilic beta-sheets. Its X-ray structure provides possibilities to study interactions between lipophilic beta-sheets and lipids at the atomic level. Here, we studied a 67-residue-long amphiphilic beta-sheet of lipovitellin previously suggested a suitable working model for studies of the lipid-binding behaviour of amphiphilic beta-sheet regions in apolipoprotein B-100 (apoB-100). We performed four molecular dynamics simulations with different starting configurations to define characteristics of the amphiphilic beta-sheet model at a decane-water interface. In each simulation the model beta-sheet bound keenly to the decane layer via its hydrophobic surface. The structural profiles showed unchanged secondary structure of the beta-sheet during the attachment. Also, aromatic side chains, especially tryptophans and tyrosines, mediated the attachment to the hydrophobic layer and influenced the orientation of the decane molecules that are in contact with the beta-sheet. In conclusion, the present simulations reveal high affinity of a lipovitellin-derived amphiphilic beta-sheet to a hydrophobic decane layer. They lay thereby the basis for further studies of the interaction between amphiphilic beta-sheets and lipids in complex molecular systems, like LDL particles, in which the large apoB-100 is the main protein component.
Collapse
|
11334
|
Han DS, Wang SX, Weinstein H. Active state-like conformational elements in the beta2-AR and a photoactivated intermediate of rhodopsin identified by dynamic properties of GPCRs. Biochemistry 2008; 47:7317-21. [PMID: 18558776 PMCID: PMC2664832 DOI: 10.1021/bi800442g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-Protein-coupled receptors (GPCRs) adopt various functionally relevant conformational states in cell signaling processes. Recently determined crystal structures of rhodopsin and the beta 2-adrenergic receptor (beta 2-AR) offer insight into previously uncharacterized active conformations, but the molecular states of these GPCRs are likely to contain both inactive and active-like conformational elements. We have identified conformational rearrangements in the dynamics of the TM7-HX8 segment that relate to the properties of the conserved NPxxY(x)5,6F motif and show that they can be used to identify active state-like conformational elements in the corresponding regions of the new structures of rhodopsin and the beta 2-AR.
Collapse
Affiliation(s)
- Daniel S Han
- Department of Physiology and Biophysics, Weill Medical College, Cornell University, 1300 York Avenue, New York, New York 10021, USA
| | | | | |
Collapse
|
11335
|
Stansfeld PJ, Grottesi A, Sands ZA, Sansom MSP, Gedeck P, Gosling M, Cox B, Stanfield PR, Mitcheson JS, Sutcliffe MJ. Insight into the mechanism of inactivation and pH sensitivity in potassium channels from molecular dynamics simulations. Biochemistry 2008; 47:7414-22. [PMID: 18558719 DOI: 10.1021/bi800475j] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potassium (K (+)) channels can regulate ionic conduction through their pore by a mechanism, involving the selectivity filter, known as C-type inactivation. This process is rapid in the hERG K (+) channel and is fundamental to its physiological role. Although mutations within hERG are known to remove this process, a structural basis for the inactivation mechanism has yet to be characterized. Using MD simulations based on homology modeling, we observe that the carbonyl of the filter aromatic, Phe627, forming the S 0 K (+) binding site, swiftly rotates away from the conduction axis in the wild-type channel. In contrast, in well-characterized non-inactivating mutant channels, this conformational change occurs less frequently. In the non-inactivating channels, interactions with a water molecule located behind the selectivity filter are critical to the enhanced stability of the conducting state. We observe comparable conformational changes in the acid sensitive TASK-1 channel and propose a common mechanism in these channels for regulating efflux of K (+) ions through the selectivity filter.
Collapse
|
11336
|
Coarse-grained MD simulations of membrane protein-bilayer self-assembly. Structure 2008; 16:621-30. [PMID: 18400182 DOI: 10.1016/j.str.2008.01.014] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 11/22/2022]
Abstract
Complete determination of a membrane protein structure requires knowledge of the protein position within the lipid bilayer. As the number of determined structures of membrane proteins increases so does the need for computational methods which predict their position in the lipid bilayer. Here we present a coarse-grained molecular dynamics approach to lipid bilayer self-assembly around membrane proteins. We demonstrate that this method can be used to predict accurately the protein position in the bilayer for membrane proteins with a range of different sizes and architectures.
Collapse
|
11337
|
Johansson MP, Kaila VRI, Laakkonen L. Charge parameterization of the metal centers in cytochrome c oxidase. J Comput Chem 2008; 29:753-67. [PMID: 17876762 DOI: 10.1002/jcc.20835] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Reliable atomic point charges are of key importance for a correct description of the electrostatic interactions when performing classical, force field based simulations. Here, we present a systematic procedure for point charge derivation, based on quantum mechanical methodology suited for the systems at hand. A notable difference to previous procedures is to include an outer region around the actual system of interest. At the cost of increasing the system sizes, here up to 265 atoms, including the surroundings achieves near-neutrality for the systems as well as structural stability, important factors for reliable charge distributions. In addition, the common problem of converting between C--H bonds and C--C bonds at the border vanishes. We apply the procedure to the four redox-active metal centers of cytochrome c oxidase: Cu(A), haem a, haem a(3), and Cu(B). Several relevant charge and ligand states are considered. Charges for two different force fields, CHARMM and AMBER, are presented.
Collapse
Affiliation(s)
- Mikael P Johansson
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland.
| | | | | |
Collapse
|
11338
|
Kubař T, Woiczikowski PB, Cuniberti G, Elstner M. Efficient Calculation of Charge-Transfer Matrix Elements for Hole Transfer in DNA. J Phys Chem B 2008; 112:7937-47. [DOI: 10.1021/jp801486d] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tomáš Kubař
- Department of Physical and Theoretical Chemistry, Technische Universität Braunschweig, D-38106 Braunschweig, Germany, Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, D-01062 Dresden, Germany, and Department of Molecular Biophysics, German Cancer Research Center, D-69115 Heidelberg, Germany
| | - P. Benjamin Woiczikowski
- Department of Physical and Theoretical Chemistry, Technische Universität Braunschweig, D-38106 Braunschweig, Germany, Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, D-01062 Dresden, Germany, and Department of Molecular Biophysics, German Cancer Research Center, D-69115 Heidelberg, Germany
| | - Gianaurelio Cuniberti
- Department of Physical and Theoretical Chemistry, Technische Universität Braunschweig, D-38106 Braunschweig, Germany, Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, D-01062 Dresden, Germany, and Department of Molecular Biophysics, German Cancer Research Center, D-69115 Heidelberg, Germany
| | - Marcus Elstner
- Department of Physical and Theoretical Chemistry, Technische Universität Braunschweig, D-38106 Braunschweig, Germany, Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, D-01062 Dresden, Germany, and Department of Molecular Biophysics, German Cancer Research Center, D-69115 Heidelberg, Germany
| |
Collapse
|
11339
|
Bikádi Z, Hazai E. In silico description of differential enantioselectivity in methoxychlor O-demethylation by CYP2C enzymes. Biochim Biophys Acta Gen Subj 2008; 1780:1070-9. [PMID: 18585438 DOI: 10.1016/j.bbagen.2008.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 11/17/2022]
Abstract
Methoxychlor undergoes metabolism by cytochrome P450 (CYP) enzymes forming a chiral mono-phenolic derivative (Mono-OH-M) as main metabolite. In the current study, members of the CYP2C family were examined for their chiral preference in Mono-OH-M formation. CYP2C9 and CYP2C19 possessed high enantioselectivity favoring the formation of S-Mono-OH-M; CYP2C3 showed no enantioselectivity, whereas CYP2C5 slightly favored the formation of R-Mono-OH-M. Molecular modeling calculations were utilized in order to explain the observed differences in chiral preference of CYP2C enzymes. Molecular docking calculations could describe neither the existence of chiral preference in metabolism, nor the enantiomer which is preferentially formed. Molecular dynamic calculations were also carried out and were found to be useful for accurate description of chiral preference in biotransformation of methoxychlor by CYP2C enzymes. An in silico model capable of predicting chiral preference in cytochrome P450 enzymes in general can be developed based on the analysis of the stability and rigidity parameters of interacting partners during molecular dynamic simulation.
Collapse
Affiliation(s)
- Zsolt Bikádi
- Virtua Drug, Ltd., H-1015 Budapest, Csalogány st. 4c, Hungary
| | | |
Collapse
|
11340
|
Liu Y, Pan D, Bellis SL, Song Y. Effect of altered glycosylation on the structure of the I-like domain of β1 integrin: A molecular dynamics study. Proteins 2008; 73:989-1000. [DOI: 10.1002/prot.22126] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11341
|
Özal TA, Peter C, Hess B, van der Vegt NFA. Modeling Solubilities of Additives in Polymer Microstructures: Single-Step Perturbation Method Based on a Soft-Cavity Reference State. Macromolecules 2008. [DOI: 10.1021/ma702329q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tugba A. Özal
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Christine Peter
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Berk Hess
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | | |
Collapse
|
11342
|
Sander T, Liljefors T, Balle T. Prediction of the receptor conformation for iGluR2 agonist binding: QM/MM docking to an extensive conformational ensemble generated using normal mode analysis. J Mol Graph Model 2008; 26:1259-68. [DOI: 10.1016/j.jmgm.2007.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 11/22/2007] [Accepted: 11/23/2007] [Indexed: 11/26/2022]
|
11343
|
Binding and interactions of L-BABP to lipid membranes studied by molecular dynamic simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1390-7. [DOI: 10.1016/j.bbamem.2008.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 11/19/2022]
|
11344
|
Coscia MR, Giacomelli S, De Santi C, Varriale S, Oreste U. Immunoglobulin light chain isotypes in the teleost Trematomus bernacchii. Mol Immunol 2008; 45:3096-106. [DOI: 10.1016/j.molimm.2008.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
|
11345
|
Abraham MJ, Gready JE. Ensuring Mixing Efficiency of Replica-Exchange Molecular Dynamics Simulations. J Chem Theory Comput 2008; 4:1119-28. [DOI: 10.1021/ct800016r] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark J. Abraham
- Computational Proteomics Group, John Curtin School of Medical Research, Australian National University, P.O. Box 334, Canberra, ACT, 2601, Australia
| | - Jill E. Gready
- Computational Proteomics Group, John Curtin School of Medical Research, Australian National University, P.O. Box 334, Canberra, ACT, 2601, Australia
| |
Collapse
|
11346
|
Koziński M, Garrett-Roe S, Hamm P. 2D-IR Spectroscopy of the Sulfhydryl Band of Cysteines in the Hydrophobic Core of Proteins. J Phys Chem B 2008; 112:7645-50. [DOI: 10.1021/jp8005734] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- M. Koziński
- Physikalisch-Chemisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - S. Garrett-Roe
- Physikalisch-Chemisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - P. Hamm
- Physikalisch-Chemisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
11347
|
Abstract
To better understand bilayer property dependency on lipid electrostatics and headgroup size, we use atomistic molecular dynamics simulations to study negatively charged and neutral lipid membranes. We compare the negatively charged phosphatidic acid (PA), which at physiological pH and salt concentration has a negative spontaneous curvature, with the negatively charged phosphatidylglycerol (PG) and neutrally charged phosphatidylcholine (PC), both of which have zero spontaneous curvature. The PA lipids are simulated using two different sets of partial charges for the headgroup and the varied charge distribution between the two PA systems results in significantly different locations for the Na(+) ions relative to the water/membrane interface. For one PA system, the Na(+) ions are localized around the phosphate group. In the second PA system, the Na(+) ions are located near the ester carbonyl atoms, which coincides with the preferred location site for the PG Na(+) ions. We find that the Na(+) ion location has a larger effect on bilayer fluidity properties than lipid headgroup size, where the A(lipid) and acyl chain order parameter values are more similar between the PA and PG bilayers that have Na(+) ions located near the ester groups than between the two PA bilayers.
Collapse
|
11348
|
Risselada HJ, Mark AE, Marrink SJ. Application of Mean Field Boundary Potentials in Simulations of Lipid Vesicles. J Phys Chem B 2008; 112:7438-47. [DOI: 10.1021/jp0758519] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- H. Jelger Risselada
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and School of Molecular and Microbial Sciences and Institute for Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alan E. Mark
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and School of Molecular and Microbial Sciences and Institute for Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, and School of Molecular and Microbial Sciences and Institute for Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
11349
|
Baldauf C, Pisabarro MT. Stable Hairpins with β-Peptides: Route to Tackle Protein−Protein Interactions. J Phys Chem B 2008; 112:7581-91. [DOI: 10.1021/jp076838r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carsten Baldauf
- Structural Bioinformatics, Biotechnologiezentrum der TU Dresden, Tatzberg 47-51, D-01307 Dresden, Germany
| | - M. Teresa Pisabarro
- Structural Bioinformatics, Biotechnologiezentrum der TU Dresden, Tatzberg 47-51, D-01307 Dresden, Germany
| |
Collapse
|
11350
|
Zhao ZJ, Wang Q, Zhang L, Wu T. Structured Water and Water−Polymer Interactions in Hydrogels of Molecularly Imprinted Polymers. J Phys Chem B 2008; 112:7515-21. [DOI: 10.1021/jp800836d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhi-Jian Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Qi Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Li Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Tao Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|