1101
|
Kraus A, Neff F, Behn M, Schuermann M, Muenkel K, Schlegel J. Expression of alternatively spliced mdm2 transcripts correlates with stabilized wild-type p53 protein in human glioblastoma cells. Int J Cancer 1999; 80:930-4. [PMID: 10074928 DOI: 10.1002/(sici)1097-0215(19990315)80:6<930::aid-ijc20>3.0.co;2-m] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A puzzling finding in various human tumors, including glioblastoma multiforme (GBM), is the stabilization of wild-type (wt) p53 protein. The biological significance of this phenomenon and the mechanism by which it occurs are unexplained. Recent reports have revealed that mdm2 exerts its negative regulation on the p53 signal by directly binding p53 protein and thereby instigating its proteasomal degradation. mdm2 has been shown to exist in alternatively spliced forms in human ovarian and bladder carcinomas, and recently in GBM, with loss or disruption of its p53 binding domain. Here we report that alternatively spliced transcripts of mdm2 are present in 7 of 16 human GBM primary cell cultures and in the established GBM cell lines LN 229 and LN 18. Sequencing demonstrated loss of the amino terminal p53 binding domain in these alternatively spliced mdm2 transcripts, and an out-of-frame splicing in the majority of cases. A significant correlation between the presence of mdm2 splice variants and increased expression of wt p53 protein was observed. Furthermore, in the presence of an mdm2 splice variant, wt p53 stabilization occurred despite coincident MDM2 amplification. Our findings suggest that wt p53 protein stabilization may arise as a consequence of alternative splicing of mdm2. Such a mechanism might account for wt p53 protein accumulation in GBM cells, even in the presence of MDM2 gene amplification.
Collapse
Affiliation(s)
- A Kraus
- Department of Neuropathology, University of Marburg, Germany
| | | | | | | | | | | |
Collapse
|
1102
|
Blattner C, Tobiasch E, Litfen M, Rahmsdorf HJ, Herrlich P. DNA damage induced p53 stabilization: no indication for an involvement of p53 phosphorylation. Oncogene 1999; 18:1723-32. [PMID: 10208433 DOI: 10.1038/sj.onc.1202480] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abundance and activity of p53 are predominantly regulated posttranslationally. Structural disturbance in transcribed genes induced by radiation, e.g. DNA damage, or by transcriptional inhibitors cause p53 protein stabilization by a yet unknown mechanism. Using stable and transient transfections for the analysis of p53 mutant proteins, we have ruled out a role in stabilization by UV, gamma irradiation or actinomycin C for the following putative phosphorylation sites in the p53 protein: serines 6, 9, 15, 33, 315 and 392, and threonine 18. By double mutation combinations of phosphorylations were also ruled out; 6,9; 15,18; 15,37. These mutations eliminate modifications by casein kinases I and II, DNA-PK, ATM, CDK and JNK. Also the 30 carboxyterminal amino acids are not required for induced p53 stabilization. Thus neither phosphorylations of individual amino acids nor interactions of the carboxyterminus of p53 with cellular macromolecules appear to play a role in the stabilization process. The only single prerequisite for induced stabilization of p53 is its prior destabilization by Mdm2. However, the level of active Mdm2 must be controlled carefully: overexpression of Mdm2 inhibits UV induced p53 stabilization.
Collapse
Affiliation(s)
- C Blattner
- Forschungszentrum Karlsruhe, Institut für Genetik, Universität Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
1103
|
Ghiani CA, Eisen AM, Yuan X, DePinho RA, McBain CJ, Gallo V. Neurotransmitter receptor activation triggers p27(Kip1)and p21(CIP1) accumulation and G1 cell cycle arrest in oligodendrocyte progenitors. Development 1999; 126:1077-90. [PMID: 9927607 DOI: 10.1242/dev.126.5.1077] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the pathways that link neurotransmitter receptor activation and cell cycle arrest in oligodendrocyte progenitors. We had previously demonstrated that glutamate receptor activation inhibits oligodendrocyte progenitor proliferation and lineage progression. Here, using purified oligodendrocyte progenitors and cerebellar slice cultures, we show that norepinephrine and the beta-adrenergic receptor agonist isoproterenol also inhibited the proliferation, but in contrast to glutamate, isoproterenol stimulated progenitor lineage progression, as determined by O4 and O1 antibody staining. This antiproliferative effect was specifically attributable to a beta-adrenoceptor-mediated increase in cyclic adenosine monophosphate, since analogs of this cyclic nucleotide mimicked the effects of isoproterenol on oligodendrocyte progenitor proliferation, while alpha-adrenoceptor agonists were ineffective. Despite the opposite effects on lineage progression, both isoproterenol and the glutamate receptor agonist kainate caused accumulation of the cyclin-dependent kinase inhibitors p27(Kip1)and p21(CIP1), and G1 arrest. Studies with oligodendrocyte progenitor cells from INK4a−/− mice indicated that the G1 cyclin kinase inhibitor p16(INK4a) as well as p19(ARF)were not required for agonist-stimulated proliferation arrest. Our results demonstrate that beta-adrenergic and glutamatergic receptor activation inhibit oligodendrocyte progenitor proliferation through a mechanism that may involve p27(Kip1) and p21(CIP1); but while neurotransmitter-induced accumulation of p27(Kip1) is associated with cell cycle arrest, it does not by itself promote oligodendrocyte progenitor differentiation.
Collapse
Affiliation(s)
- C A Ghiani
- Laboratory of Cellular and Molecular Neurophysiology, NICHD, NIH, Bethesda, MD 20892-4495, USA
| | | | | | | | | | | |
Collapse
|
1104
|
Benedict WF, Lerner SP, Zhou J, Shen X, Tokunaga H, Czerniak B. Level of retinoblastoma protein expression correlates with p16 (MTS-1/INK4A/CDKN2) status in bladder cancer. Oncogene 1999; 18:1197-203. [PMID: 10022125 DOI: 10.1038/sj.onc.1202452] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have shown that patients whose bladder cancer exhibit overexpression of RB protein as measured by immunohistochemical analysis do equally poorly as those with loss of RB function. We hypothesized that loss of p16 protein function could be related to RB overexpression, since p16 can induce transcriptional downregulation of RB and its loss may lead to aberrant RB regulation. Conversely, loss of RB function has been associated with high p16 protein expression in several other tumor types. In the present study RB negative bladder tumors also exhibited strong nuclear p16 staining while each tumor with strong, homogeneous RB nuclear staining were p16 negative, supporting our hypothesis. To expand on these immunohistochemical studies additional cases were selected in which the status of the p16 encoding gene had been determined at the molecular level. Absent p16 and high RB protein expression was found in the tumors having loss of heterozygosity within 9p21 and a structural change (mutation or deletion) of the remaining p16 encoding gene allele, confirming the staining results. These results strongly support the hypothesis that the RB nuclear overexpression recently associated with poor prognosis in bladder cancer is also associated with loss of p16 function and implies that loss of p16 function could be equally deleterious as RB loss in bladder and likely other cancers.
Collapse
Affiliation(s)
- W F Benedict
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|
1105
|
Abstract
Our understanding of how RB and E2F-1 function has progressed significantly from the model in which RB negatively regulates expression of genes required for S phase by binding to and inhibiting E2F-1. Both RB and E2F-1 have been shown recently to possess additional properties and mechanisms of regulation relevant to developmental and tumorigenic processes. In particular, it is now realised that RB has E2F-independent tumor suppressor functions which rely upon the ability of RB to induce differentiation. For its part, E2F-1 is unique amongst E2F family members in its capacity to induce apoptosis and this function is clearly relevant to our appreciation of E2F-1 as a conditional tumor suppressor. E2F-1 can induce both apoptosis and S-phase transition and whether E2F-1 acts as an oncogene or a tumor-suppressor gene may depend on the extent to which E2F-1 induces apoptosis as opposed to G1/S transition.
Collapse
Affiliation(s)
- K Macleod
- Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK.
| |
Collapse
|
1106
|
|
1107
|
Abstract
The INK4A/ARF locus on chromosome 9 is one of the sites mutated most frequently in human cancer. Two genes comprising overlapping reading frames encoding p16(INK4a) and p19(ARF) have been discovered at this locus and, remarkably, both play an important role in regulating cell growth, survival and senescence.
Collapse
Affiliation(s)
- N E Sharpless
- Dana Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
1108
|
Abstract
This article reviews the recent molecular and clinical studies that characterize the role of p53 in pathologies of the central nervous system, p53 has many important biological functions, notably, maintenance of DNA stability and regulation of apoptosis. These features are essential to avoid cellular transformation and ensure normal brain development. Lack of p53 function in the brain results in tumor formation in the astrocytic and lymphoid lineages and in severe neurodevelopmental diseases, such as exencephaly.
Collapse
Affiliation(s)
- G Fulci
- Neurosurgery Department and Winship Cancer Center, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
1109
|
Saji S, Nakashima S, Hayashi S, Toi M, Saji S, Nozawa Y. Overexpression of MDM2 in MCF-7 promotes both growth advantage and p53 accumulation in response to estradiol. Jpn J Cancer Res 1999; 90:210-8. [PMID: 10189892 PMCID: PMC5926053 DOI: 10.1111/j.1349-7006.1999.tb00735.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The overexpression of the oncogene product MDM2 is often observed in human breast cancer cells, especially in estrogen receptor (ER)-positive ones. To study the role of MDM2 protein in ER-positive breast cancer, we have established cell lines derived from MCF-7 which stably express increased and decreased levels of MDM2 by transfection of a mammalian expression vector containing human mdm2 cDNA in sense and antisense orientations, respectively. Interestingly, MDM2 overexpression in MCF-7 cells afforded a remarkable growth advantage under estradiol (E2)-supplemented condition. Then, we analyzed the expression of p53, which is an important regulator of growth and the cell cycle. Unexpectedly, the p53 accumulation induced by E2 was remarkably higher in MCF-7 cells stably overexpressing MDM2 than in the parent MCF-7 cells. On the other hand, reduction of MDM2 suppressed the E2-induced increase in p53 protein. Moreover, mdm2 antisense oligonucleotides prevented E2-induced accumulation of p53. In the steady state, the cellular levels of p53 were also correlated with those of MDM2. These interactions are not consistent with the well-known role of MDM2, which acts as a negative regulator for p53 by inhibiting its function and promoting its rapid degradation. These results suggest that MDM2 may regulate the expression of p53 in the steady state and in response to E2 in breast cancer cells, and imply a novel and important role of MDM2 during breast carcinogenesis.
Collapse
Affiliation(s)
- S Saji
- 2nd Department of Surgery, Gifu University School of Medicine.
| | | | | | | | | | | |
Collapse
|
1110
|
Liew CT, Li HM, Lo KW, Leow CK, Chan JY, Hin LY, Lau WY, Lai PB, Lim BK, Huang J, Leung WT, Wu S, Lee JC. High frequency of p16INK4A gene alterations in hepatocellular carcinoma. Oncogene 1999; 18:789-95. [PMID: 9989830 DOI: 10.1038/sj.onc.1202359] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor suppressor gene p16 (CDKN2/MTS-1/INK4A) is an important component of the cell cycle and inactivation of the gene has been found in a variety of human cancers. In order to investigate the role of p16 gene in the tumorigenesis of hepatocellular carcinoma (HCC), 48 cases of HCC were analysed for p16 alterations by: methylation-specific PCR (MSP) to determine the methylation status of the p16 promoter region; comparative multiplex PCR to detect homozygous deletion; PCR-SSCP and DNA sequencing analysis to identify mutation of the p16 gene. We found high frequency of hypermethylation of the 5' CpG island of the p16 gene in 30 of 48 cases (62.5%) of HCC tumors. Moreover, homozygous deletion at p16 region were present in five of 48 cases (10.4%); and missense mutation were detected in three of 48 cases (6.3%). The overall frequency of p16 alterations, including homozygous deletion, mutation and hypermethylation, in HCC tumors was 70.8% (34 of 48 cases). These findings suggest that: (a) the inactivation of the p16 is a frequent event in HCC; (b) the p16 gene is inactivated by multiple mechanisms including homozygous deletion, promoter hypermethylation and point mutation; (c) the most common somatic alteration of the p16 gene in HCC is de novo hypermethylation of the 5' CpG island; and (d) in contrast to other studies, high frequency of genomic alterations are not uncommon in the 9p21 of the p16 gene. Our results strongly suggest that the p16 gene plays an important role in the pathogenesis of HCC.
Collapse
Affiliation(s)
- C T Liew
- Department of Anatomical and Cellular Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1111
|
Orlow I, Drobnjak M, Zhang ZF, Lewis J, Woodruff JM, Brennan MF, Cordon-Cardo C. Alterations of INK4A and INK4B genes in adult soft tissue sarcomas: effect on survival. J Natl Cancer Inst 1999; 91:73-9. [PMID: 9890173 DOI: 10.1093/jnci/91.1.73] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The INK4A and INK4B genes map to chromosome 9p21, with the INK4A gene encoding two protein products, p16 and pl9ARF. Alterations of the INK4A and INK4B genes occur frequently in certain primary malignant neoplasms. This study was undertaken to evaluate the frequency of INK4A and INK4B gene alterations in a cohort of adult soft tissue sarcomas. METHODS The status of the INK4A and INK4B genes was determined in 46 soft tissue sarcomas by use of the following methods: Southern blotting, polymerase chain reaction (PCR), single-strand conformation polymorphism analysis, comparative multiplex PCR, and a methylation assay focusing on the p16 promoter. Associations between alterations of the INK4A and INK4B genes and clinicopathologic variables, as well as with p53 and pRB (retinoblastoma protein) status, were evaluated by use of the two-tailed Fisher's exact test. Disease-specific survival was evaluated by use of the Kaplan-Meier method and the logrank test. Proportional hazards analysis was used to obtain estimates of relative risks. All P values are two-sided. RESULTS Homozygous and hemizygous deletions, but no point mutations, were observed in these two genes. The overall frequency of gene alteration (deletion or rearrangement) was approximately 15% for the INK4A and INK4B genes, with changes restricted to high-grade sarcomas. Statistically significant associations were observed between INK4A/INK4B deletions (P = .036) or alterations (P = .005) and poor survival. Alteration of the INK4A and INK4B genes was the only statistically significant predictor for poor survival when controlling for tumor grade and size (P = .03). CONCLUSION/IMPLICATIONS Coincident homozygous deletion of the INK4A and INK4B genes occurs frequently in adult soft tissue sarcomas. Loss of p16 and pl9ARF function in primary tumors, although not equivalent to alterations in p53 and pRB function, appears to be associated with cancers that have an aggressive biologic behavior.
Collapse
Affiliation(s)
- I Orlow
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
1112
|
Honda R, Yasuda H. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 1999; 18:22-7. [PMID: 9878046 PMCID: PMC1171098 DOI: 10.1093/emboj/18.1.22] [Citation(s) in RCA: 531] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have demonstrated previously that the oncoprotein Mdm2 has a ubiquitin ligase activity for the tumor suppressor p53 protein. In the present study, we characterize this ubiquitin ligase activity of Mdm2. We first demonstrate the ubiquitination of several p53 point mutants and deletion mutants by Mdm2. The point mutants, which cannot bind to Mdm2, are not ubiquitinated by Mdm2. The ubiquitination of the C-terminal deletion mutants, which contain so-called Mdm2-binding sites, is markedly decreased, compared with that of wild-type p53. The binding of Mdm2 to p53 is essential for ubiquitination, but p53's tertiary structure and/or C-terminal region may also be important for this reaction. DNA-dependent protein kinase is known to phosphorylate p53 on Mdm2-binding sites, where DNA damage induces phosphorylation, and p53 phosphorylated by this kinase is not a good substrate for Mdm2. This suggests that DNA damage-induced phosphorylation stabilizes p53 by inhibiting its ubiquitination by Mdm2. We further investigated whether the tumor suppressor p19(ARF) affects the ubiquitin ligase activity of Mdm2 for p53. The activity of p19(ARF)-bound Mdm2 was found to be lower than that of free Mdm2, suggesting that p19(ARF) promotes the stabilization of p53 by inactivating Mdm2.
Collapse
Affiliation(s)
- R Honda
- School of Life Science, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | |
Collapse
|
1113
|
Dome JS, Look AT. Three molecular determinants of malignant conversion and their potential as therapeutic targets. Curr Opin Oncol 1999; 11:58-67. [PMID: 9914880 DOI: 10.1097/00001622-199901000-00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The past decade has been marked by an explosion of knowledge regarding the dysregulation of cancer at the molecular level. It has become apparent that oncogenes, tumor suppressor genes, and other ancillary molecules interact in complex pathways that govern cellular homeostasis. We review three molecular events that have been implicated in tumorigenesis and define pathways ripe for the development of new therapeutic approaches: 1) activation of telomerase, 2) dysregulation of the patched/sonic hedgehog pathway, and 3) mutation of the INK4 alpha-ARF locus.
Collapse
Affiliation(s)
- J S Dome
- St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | |
Collapse
|
1114
|
Abstract
The proliferative lifespan of normal mammalian cells is limited by intrinsic controls, which desensitize the cell-cycle machinery to extrinsic stimulation after a given number of cell divisions. One underlying clock driving this process of 'replicative senescence' is the progressive erosion of chromosome telomeres, which occurs with each round of DNA replication. This appears to trigger growth inhibition via activation of the tumour suppressor gene (TSG) product, p53, and the consequent up-regulation of the cell-cycle inhibitor p21WAF1. Other inhibitory pathways are also activated (possibly by additional clocks), including the TSG p16INK4a and the less well-defined complementation group genes. Loss of one pathway can be compensated, after a limited extension of lifespan, by further up-regulation of the others, so that to escape mortality a developing tumour must overcome multiple 'proliferative lifespan barriers' (PLBs) by successive genetic events, each conferring a new wave of clonal expansion. This provides one explanation for the existence of multiple genetic abnormalities in human cancers; furthermore, the diversity in the nature and timing of these PLBs between different cell types may explain the variation in the spectrum of abnormalities observed between the corresponding cancers. Even if all senescence pathways are inactivated, immortalization can only be achieved if erosion of telomeres is halted, before their end-protecting function is lost. This usually requires either activation of telomerase during tumour development, if the cell of origin is telomerase-negative, or up-regulation if the normal cell already has some activity, but not enough to prevent erosion. In either case, cancers often maintain near-critical telomere lengths; hence pharmacological inhibition of telomerase remains an attractive approach to the selective killing of tumour cells.
Collapse
Affiliation(s)
- D Wynford-Thomas
- Department of Pathology, University of Wales College of Medicine, Cardiff, U.K
| |
Collapse
|
1115
|
Abstract
Inactivation of the tumour suppressors p53 and p16INK4a or activating mutations in the ras oncogene are the most common genetic alterations found in human cancers. In this review, novel approaches designed to evaluate the effect of targeting intracellular molecules are described and it is shown how information derived from small synthetic peptides can stimulate novel approaches for cancer drugs. This review also gives an example of how molecular, biochemical, and cell biology studies of cancer-associated gene products can, via organic chemistry, be translated into active drugs ready for testing in clinical trials. New cancer treatments are directly springing out of studies related to tumour physiology, where the prime target is not the tumour cells but the tumour blood vessels; some of the different approaches that are being tested will be highlighted here. Finally, some of the difficulties and promises using cancer-associated genes in gene therapy are discussed.
Collapse
Affiliation(s)
- R Fåhraeus
- CRC Laboratories, Department of Biochemistry, University of Dundee, Scotland, U.K
| | | | | | | |
Collapse
|
1116
|
Goggins M, Kern S, Offerhaus J, Hruban R. Progress in cancer genetics: Lessons from pancreatic cancer. Ann Oncol 1999. [DOI: 10.1093/annonc/10.suppl_4.s4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
1117
|
Abstract
The generation of mice designed to overexpress activated forms of oncogenes or carrying targeted mutations in tumour suppressor genes, has allowed scientists to causally link the function of these genes with specific tumour processes, such as proliferation, apoptosis, angiogenesis or metastasis. In addition, these mice have been interbred to assess the extent of cooperativity between different genetic lesions in disease progression, leading to a greater understanding of the multi-stage nature of tumourigenesis. The effect of genetic mutations is often influenced by the genetic background of the mouse and by analysing strain-dependent phenotypes, modifier loci have been identified. Although genetic mutations in mouse and humans do not always lead to the same tumour spectrum, the underlying molecular mechanisms are frequently relevant to both species. Furthermore, new technical approaches creating conditional mouse mutants which develop tumours in a tissue-specific manner, will allow the effect of mutation of certain genes to be studied in specific tissues, free from the fatal effects of the mutation in other clinically less relevant tissues. Several exising mouse strains have already been used to develop and test new therapies and conditional mutagenesis will undoubtedly increase the potential use of transgenic mice in understanding and treating cancer.
Collapse
Affiliation(s)
- K F Macleod
- Department of Molecular and Cellular Pathology, University of Dundee, Ninewells Hospital, Scotland, U.K.
| | | |
Collapse
|
1118
|
Abstract
Abnormalities of the p53 tumour suppressor gene are among the most frequent molecular events in human and animal neoplasia. Moreover, p53 is one of the most studied proteins in the whole of contemporary biology, with more than 12,500 papers so far written! In this review the choice has been deliberately made not to be fully comprehensive in the coverage of the huge p53 literature. Rather attention is focused on a small number of recent developments which are reviewed in the context of modern models of p53 function. Progress in the analysis of signalling to p53 including phosphorylation cascades, and interactions with proteins such as mdm2 and ARF are highlighted. The plethora of protein-protein interactions is discussed, as are the strategies for defining downstream targets of p53. Finally, the emerging biology of p53 homologues is considered. The need for bridging the gap between reductionist, biochemical and biophysical studies and biological and genetic analysis is emphasized. Only this will provide the needed framework for utilizing the information in clinical care.
Collapse
Affiliation(s)
- C Prives
- Department of Biological Sciences, Columbia University, New York 10027, USA
| | | |
Collapse
|
1119
|
Auer KL, Park JS, Seth P, Coffey RJ, Darlington G, Abo A, McMahon M, Depinho RA, Fisher PB, Dent P. Prolonged activation of the mitogen-activated protein kinase pathway promotes DNA synthesis in primary hepatocytes from p21Cip-1/WAF1-null mice, but not in hepatocytes from p16INK4a-null mice. Biochem J 1998; 336 ( Pt 3):551-60. [PMID: 9841865 PMCID: PMC1219904 DOI: 10.1042/bj3360551] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In primary rat hepatocytes, prolonged activation of the p42/44 mitogen-activated protein kinase (MAPK) pathway is associated with a decrease in DNA synthesis and increased expression of the cyclin-dependent kinase inhibitor (CKI) proteins p21Cip-1/WAF1 and p16INK4a. To evaluate the relative importance of these CKIs in mediating this response, we determined the impact of prolonged MAPK activation on DNA synthesis in primary cultures of hepatocytes derived from mice embryonically deleted (null) for either p21Cip-1/WAF1 or p16INK4a. When MAPK was activated in wild-type mouse hepatocytes for 24 h, via infection with a construct to express an inducible oestrogen receptor-Raf-1 fusion protein (DeltaRaf:ER), the expression of p21Cip-1/WAF1 and p16INK4a CKI proteins increased, cyclin-dependent kinase 2 (cdk2) and cdk4 activities decreased, and DNA synthesis decreased. Inhibition of RhoA GTPase function increased the basal expression of p21Cip-1/WAF1 and p27Kip-1 but not p16INK4a, and enhanced the ability of MAPK signalling to decrease DNA synthesis. Ablation of the expression of CCAATT enhancer-binding protein alpha (C/EBPalpha), but not of the expression of C/EBPbeta, decreased the ability of MAPK signalling to induce p21Cip-1/WAF1. When MAPK was activated in p16INK4a-null hepatocytes for 24 h, the expression of p21Cip-1/WAF1 increased, cdk2 and cdk4 activities decreased and DNA synthesis decreased. In contrast with these findings, prolonged activation of the MAPK pathway in hepatocytes from p21Cip-1/WAF1-null mice enhanced cdk2 and cdk4 activities and caused a large increase in DNA synthesis, despite elevated expression of p16INK4a. Inhibition of RhoA GTPase activity in p21Cip-1/WAF1-null cells partly blunted both the basal levels of DNA synthesis and the ability of prolonged MAPK signalling to increase DNA synthesis. Expression of anti-sense p21Cip-1/WAF1 in either wild-type or p16INK4a-null hepatocytes decreased the ability of prolonged MAPK signalling to increase the expression of p21Cip-1/WAF1, and permitted MAPK signalling to increase both cdk2 and cdk4 activities and DNA synthesis. These results argue that the ability of prolonged MAPK signalling to inhibit DNA synthesis in hepatocytes requires the expression of p21Cip-1/WAF1, and that the increased expression of p16INK4a has a smaller role in the ability of this stimulus to mediate growth arrest. Our results also suggest that RhoA function can modulate DNA synthesis in primary hepatocytes via the expression of p21Cip-1/WAF1 and p27Kip-1.
Collapse
Affiliation(s)
- K L Auer
- Department of Radiation Oncology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1120
|
Abstract
The retinoblastoma protein and p53 are both cell-cycle regulators and are, directly or indirectly, inactivated in the majority of human tumors. Recent studies have provided new mechanistic insights into how these proteins regulate cell growth in response to various intracellular and extracellular signals.
Collapse
Affiliation(s)
- P D Adams
- Fox Chase Cancer Center 7701 Burholme Avenue Philadelphia PA 19104 USA.
| | | |
Collapse
|
1121
|
Meek DW. New developments in the multi-site phosphorylation and integration of stress signalling at p53. Int J Radiat Biol 1998; 74:729-37. [PMID: 9881718 DOI: 10.1080/095530098141005] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE To summarize recent progress in the understanding of the role of multi-site phosphorylation in mediating the integration of stress signals at the p53 tumour suppressor protein. RESULTS The p53 protein plays a key role in the response to a range of cellular stresses including agents that can damage DNA; consequently the involvement of p53 in sensing these effects is central to the prevention of tumour development. p53 is a potent but latent transcription factor that can be activated by a range of cellular stresses leading to the induction of cellular growth arrest or controlled cell removal through apoptosis. Accordingly, p53 is under tight control and is subject to several levels of regulation including multi-site phosphorylation. Recent evidence has implicated individual phosphorylation events in the activation of p53 by different types of stress (e.g. ionizing radiation, UV and mitotic spindle damage). CONCLUSIONS A picture is now emerging of the p53 protein as an integration point for stress signals. Different signals impinge on different domains of the protein and may cooperate in modulating the type of p53 response, depending on the nature of the incoming signal.
Collapse
Affiliation(s)
- D W Meek
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, UK.
| |
Collapse
|
1122
|
Holland EC, Hively WP, Gallo V, Varmus HE. Modeling mutations in the G1 arrest pathway in human gliomas: overexpression of CDK4 but not loss of INK4a-ARF induces hyperploidy in cultured mouse astrocytes. Genes Dev 1998; 12:3644-9. [PMID: 9851971 PMCID: PMC317261 DOI: 10.1101/gad.12.23.3644] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nearly all human gliomas exhibit alterations in one of three genetic loci governing G1 arrest: INK4a-ARF, CDK4, or RB. To discern the roles of CDK4 amplification and INK4a-ARF loss in gliomagenesis, we compared the behavior of astrocytes lacking a functional INK4a-ARF locus with astrocytes overexpressing CDK4. Either a deficiency of p16(INK4a) and p19(ARF) or an increase in Cdk4 allows cultured astrocytes to grow without senescence. Astrocytes overexpressing CDK4 grow more slowly than INK4a-ARF-deficient astrocytes and convert to a tetraploid state at high efficiency; in contrast, INK4a-ARF-deficient cells remain pseudodiploid, consistent with properties observed in human gliomas with corresponding lesions in these genes.
Collapse
Affiliation(s)
- E C Holland
- Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892 USA.
| | | | | | | |
Collapse
|
1123
|
Gorgoulis VG, Zacharatos P, Kotsinas A, Liloglou T, Kyroudi A, Veslemes M, Rassidakis A, Halazonetis TD, Field JK, Kittas C. Alterations of the p16-pRb pathway and the chromosome locus 9p21-22 in non-small-cell lung carcinomas: relationship with p53 and MDM2 protein expression. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:1749-65. [PMID: 9846966 PMCID: PMC2233978 DOI: 10.1016/s0002-9440(10)65690-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/1998] [Indexed: 02/06/2023]
Abstract
The p16-pRb and p53-MDM2 pathways represent vital cell cycle checkpoints. Recent studies provide evidence that these pathways are directly linked via MDM2-pRb interaction and p53 suppression of the RB1 gene. In the present study we investigated the alterations of this G1 phase protein network using immunohistochemical and molecular methods in a series of 68 non-small-cell lung carcinomas (NSCLCs) and correlated the findings with clinicopathological features and prognosis of the patients. Aberrant expression (Ab) of p16 and pRb was observed in 33 (49%) and 27 (40%) of the carcinomas, respectively. Analysis of the region that encodes for p16 by deletion mapping, a polymerase chain reaction (PCR)-based methylation assay and PCR single-strand conformation polymorphism (SSCP) analysis revealed that deletions and transcriptional silencing by methylation might represent the main mechanisms of CDKN2/p16ink4a inactivation in NSCLCs. The results of deletion mapping also suggest that other tumor suppressor genes may reside at the 9p21-22 region, which encodes for CDKN2/MTS1/p16ink4a, p14ARF, and MTS2/p15ink4b. In addition, microsatellite instability was observed with a frequency of 16% in the 9p21-22 chromosome area. Overexpression (P) of p53 and MDM2 proteins was found in 39 (58%) and 47 (70%) of the cases, respectively. A highly significant association was observed between p53 overexpression and p53 mutations (P = 0.006). Statistical analysis of the expression patterns of the biologically relevant molecules (p16/pRb, p53/MDM2, MDM2/pRb, and p53/pRb) showed coincident overexpression of p53 and MDM2 (P = 0.04) and that abnormal pRb was correlated with elevated levels of MDM2 (P = 0.013) and p53 (P = 0.01), respectively. We suggest that deregulated expression of these molecules may act synergistically. An important finding of the study was that multiple impairments (three and four molecules affected) of the p16/pRb/p53/MDM2 network occurred in a large proportion (43%) of the carcinomas. This finding in addition to the absence of correlation with clinical stage of the tumors suggests that multiple hits of this network may be a relatively early event in the development of a subset of NSCLCs. The relationship between the factors examined in the present study, clinicopathological features, and survival of the patients did not reveal any significant correlations with the exception of smoking, which was associated with microsatellite alterations (loss of heterozygosity and microsatellite instability) at the 9p21-22 locus (P = 0.04) and the immunophenotypes p53(P)/MDM2(P) (P = 0.04) and p16(Ab)/pRb(Ab)/p53(P)/MDM2(P) (P = 0.03), respectively. We suggest that in a subset of NSCLCs, simultaneous deregulation of the members of this network may represent one way of initiating the oncogenic procedure whereas in other NSCLC subgroups alternative pathways may play this role.
Collapse
Affiliation(s)
- V G Gorgoulis
- Department of Histology and Embryology, School of Medicine, University of Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1124
|
Development of a Model for Evaluating the Interaction Between Human Pre-B Acute Lymphoblastic Leukemic Cells and the Bone Marrow Stromal Cell Microenvironment. Blood 1998. [DOI: 10.1182/blood.v92.10.3817.422k12_3817_3828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clonal expansion of B-cell precursor acute lymphoblastic leukemia (ALL) is potentially regulated by survival, growth, and death signals transduced by the bone marrow (BM) microenvironment. Using a human BM stromal cell culture that supports the growth of normal human B-cell precursors, we established a pre-B ALL cell line designated BLIN-2. BLIN-2 has a clonal rearrangement of the Ig heavy chain locus, a dic(9;20) chromosomal abnormality, and a bi-allelic deletion of thep16INK4a and p19ARF genes. The most interesting feature of BLIN-2 is an absolute dependence on adherent human BM stromal cells for sustained survival and growth. BLIN-2 cultured in the absence of BM stromal cells undergo apoptosis, and direct contact with viable BM stromal cells is essential for optimal growth. BLIN-2 cells also grow on vascular cell adhesion molecule-1 (VCAM-1)–negative human skin fibroblasts, making it unlikely that a very late antigen-4 (VLA-4)/VCAM-1 interaction is required for BLIN-2 growth. Western blot analysis of BLIN-2 cells cultured in the presence or absence of BM stromal cells demonstrates that contact of BLIN-2 with BM stromal cells induces hyperphosphorylation of Rb. In contrast, the pre-B ALL cell line BLIN-1, which has a bi-allelic deletion of p16INK4ap19ARF but does not require BM stromal cells for growth, does not undergo Rb phosphorylation after BM stromal cell contact. The BLIN-2 cell line will facilitate identification of ligand/receptor interactions at the B-cell precursor/BM stromal cell interface and may provide new insight into microenvironmental regulation of leukemic cell survival and growth.
Collapse
|
1125
|
Development of a Model for Evaluating the Interaction Between Human Pre-B Acute Lymphoblastic Leukemic Cells and the Bone Marrow Stromal Cell Microenvironment. Blood 1998. [DOI: 10.1182/blood.v92.10.3817] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Clonal expansion of B-cell precursor acute lymphoblastic leukemia (ALL) is potentially regulated by survival, growth, and death signals transduced by the bone marrow (BM) microenvironment. Using a human BM stromal cell culture that supports the growth of normal human B-cell precursors, we established a pre-B ALL cell line designated BLIN-2. BLIN-2 has a clonal rearrangement of the Ig heavy chain locus, a dic(9;20) chromosomal abnormality, and a bi-allelic deletion of thep16INK4a and p19ARF genes. The most interesting feature of BLIN-2 is an absolute dependence on adherent human BM stromal cells for sustained survival and growth. BLIN-2 cultured in the absence of BM stromal cells undergo apoptosis, and direct contact with viable BM stromal cells is essential for optimal growth. BLIN-2 cells also grow on vascular cell adhesion molecule-1 (VCAM-1)–negative human skin fibroblasts, making it unlikely that a very late antigen-4 (VLA-4)/VCAM-1 interaction is required for BLIN-2 growth. Western blot analysis of BLIN-2 cells cultured in the presence or absence of BM stromal cells demonstrates that contact of BLIN-2 with BM stromal cells induces hyperphosphorylation of Rb. In contrast, the pre-B ALL cell line BLIN-1, which has a bi-allelic deletion of p16INK4ap19ARF but does not require BM stromal cells for growth, does not undergo Rb phosphorylation after BM stromal cell contact. The BLIN-2 cell line will facilitate identification of ligand/receptor interactions at the B-cell precursor/BM stromal cell interface and may provide new insight into microenvironmental regulation of leukemic cell survival and growth.
Collapse
|
1126
|
Affiliation(s)
- L Chin
- Department of Dermatology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115 USA
| | | | | |
Collapse
|
1127
|
O'Neill M, Campbell SJ, Save V, Thompson AM, Hall PA. An immunochemical analysis of mdm2 expression in human breast cancer and the identification of a growth-regulated cross-reacting species p170. J Pathol 1998; 186:254-61. [PMID: 10211113 DOI: 10.1002/(sici)1096-9896(1998110)186:3<254::aid-path185>3.0.co;2-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
mdm2 is a 491 amino acid nuclear protein which is involved in complex interactions with important cell-cycle and stress-response regulators including p53, Rb and E2F. Recent data implicate mdm2 in the regulation of both p53 activity and level, and burgeoning data suggest that mdm2 may be involved in human epithelial tumourigenesis, including breast cancer. In this study the expression of mdm2 protein has been investigated in a series of 54 human breast carcinomas using immunoblotting methods. Overexpression of the predominant p90 mdm2 isoform is common in breast cancer (54 per cent) and this is not frequently a consequence of gene amplification. There is no relationship between p90 expression and either p53 protein expression or p53 mutational status. Additional mdm2 immunoreactive species of differing mobilities are identifiable, greatly complicating the analysis. For example, a p170 form is seen in many breast cancer samples (44 per cent) using 2A10 but is not identified by 3G5. This 2A10 immunoreactive species, which is almost certainly not an mdm2 isoform, is a growth-regulated protein, being undetectable in resting peripheral blood lymphocytes and rising to high levels after PHA stimulation. In contrast to mdm2 (p90), p170 is not induced by DNA damage caused by UV light. p170 is identifiable in mdm2 null cells by immunoblotting and is detected as a nuclear protein. While mdm2 immunostaining studies are increasing, this report highlights the complexity of mdm2 analysis in vivo and emphasizes the need to correlate immunohistological and biochemical assays since, in some mdm2 (p90) negative tumours, nuclear immunoreactivity may be identified as a consequence of cross-reacting species such as p170.
Collapse
Affiliation(s)
- M O'Neill
- Department of Cellular & Molecular Pathology, University of Dundee, Ninewells Hospital and Medical School, Scotland, U.K
| | | | | | | | | |
Collapse
|
1128
|
Robertson KD, Jones PA. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol Cell Biol 1998; 18:6457-73. [PMID: 9774662 PMCID: PMC109232 DOI: 10.1128/mcb.18.11.6457] [Citation(s) in RCA: 265] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1998] [Accepted: 08/06/1998] [Indexed: 11/20/2022] Open
Abstract
The INK4a/ARF locus encodes two proteins involved in tumor suppression in a manner virtually unique in mammalian cells. Distinct first exons, driven from separate promoters, splice onto a common exon 2 and 3 but utilize different reading frames to produce two completely distinct proteins, both of which play roles in cell cycle control. INK4a, a critical element of the retinoblastoma gene pathway, binds to and inhibits the activities of CDK4 and CDK6, while ARF, a critical element of the p53 pathway, increases the level of functional p53 via interaction with MDM2. Here we clone and characterize the promoter of the human ARF gene and show that it is a CpG island characteristic of a housekeeping gene which contains numerous Sp1 sites. Both ARF and INK4a are coordinately expressed in cells except when their promoter regions become de novo methylated. In one of these situations, ARF transcription could be reactivated by treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine, and the reactivation kinetics of ARF and INK4a were found to differ slightly in a cell line in which both genes were silenced by methylation. The ARF promoter was also found to be highly responsive to E2F1 expression, in keeping with previous results at the RNA level. Lastly, transcription from the ARF promoter was down-regulated by wild-type p53 expression, and the magnitude of the effect correlated with the status of the endogenous p53 gene. This finding points to the existence of an autoregulatory feedback loop between p53, MDM2, and ARF, aimed at keeping p53 levels in check.
Collapse
Affiliation(s)
- K D Robertson
- Norris Comprehensive Cancer Center, The University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
1129
|
Sherburn TE, Gale JM, Ley RD. Cloning and characterization of the CDKN2A and p19ARF genes from Monodelphis domestica. DNA Cell Biol 1998; 17:975-81. [PMID: 9839807 DOI: 10.1089/dna.1998.17.975] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The tumor suppressor gene, CDKN2A (p16), encodes a cyclin-dependent kinase inhibitor and functions as a negative regulator in the retinoblastoma pathway that blocks cell cycle progression from the G1 phase. The gene has been found to be deleted, truncated, mutated, or silenced by promoter methylation in a wide range of tumor types. Where melanoma CDKN2A mutations have been characterized, C --> T and CC --> TT transitions were found, indicating a direct role for ultraviolet radiation (UVR)-induced pyrimidine dimers in the formation of some tumors. The South American opossum, Monodelphis domestica, has been shown by our group and others to be susceptible to the induction of melanoma on chronic exposure to UVR alone. The CDKN2A gene and its exon 1beta alternate transcript p19ARF were cloned and sequenced from M. domestica to investigate the role of these genes in the development of UVR-induced melanoma and non-melanoma tumors. Both genes were first amplified by polymerase chain reaction (PCR) using cDNA from an opossum corneal-tumor cell-line library and degenerate primers based on human, mouse, and rat CDKN2A gene sequences. To verify these as normal sequences, both genes were then RT-PCR amplified from cultured normal opossum melanocyte mRNA. When comparing the tumor and melanocyte sequences, we found a UVR signature point mutation, a C --> T transition, within exon 2 in the corneal tumor cell line. The same mutation at this site in other tumors has been shown to alter the CDKN2A protein's ability to bind CDK4 kinase, which may lead to uncontrolled cell cycling. A comparison of the amino acid sequence of opossum CDKN2A showed identities relative to human, mouse, and rat between 57% and 63%, and when conserved amino acid substitutions are considered (similarity), the range is 63% to 67%. The amino acid identity and similarity for p19ARF ranged from 39% to 49%.
Collapse
Affiliation(s)
- T E Sherburn
- Department of Cell Biology and Physiology, The University of New Mexico Health Science Center, Albuquerque 87131, USA
| | | | | |
Collapse
|
1130
|
Radfar A, Unnikrishnan I, Lee HW, DePinho RA, Rosenberg N. p19(Arf) induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation. Proc Natl Acad Sci U S A 1998; 95:13194-9. [PMID: 9789064 PMCID: PMC23757 DOI: 10.1073/pnas.95.22.13194] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Ink4a/Arf locus encodes p16(Ink4a) and p19(Arf) and is among the most frequently mutated tumor suppressor loci in human cancer. In mice, many of these effects appear to be mediated by interactions between p19(Arf) and the p53 tumor-suppressor protein. Because Tp53 mutations are a common feature of the multistep pre-B cell transformation process mediated by Abelson murine leukemia virus (Ab-MLV), we examined the possibility that proteins encoded by the Ink4a/Arf locus also play a role in Abelson virus transformation. Analyses of primary transformants revealed that both p16(Ink4a) and p19(Arf) are expressed in many of the cells as they emerge from the apoptotic crisis that characterizes the transformation process. Analyses of primary transformants from Ink4a/Arf null mice revealed that these cells bypassed crisis. Because expression of p19(Arf) but not p16 (Ink4a) induced apoptosis in Ab-MLV-transformed pre-B cells, p19(Arf) appears to be responsible for these events. Consistent with the link between p19(Arf) and p53, Ink4a/Arf expression correlates with or precedes the emergence of cells expressing mutant p53. These data demonstrate that p19(Arf) is an important part of the cellular defense mounted against transforming signals from the Abl oncoprotein and provide direct evidence that the p19(Arf)-p53 regulatory loop plays an important role in lymphoma induction.
Collapse
Affiliation(s)
- A Radfar
- The Immunology Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
1131
|
Ruas M, Peters G. The p16INK4a/CDKN2A tumor suppressor and its relatives. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1378:F115-77. [PMID: 9823374 DOI: 10.1016/s0304-419x(98)00017-1] [Citation(s) in RCA: 341] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- M Ruas
- Imperial Cancer Research Fund, London, UK
| | | |
Collapse
|
1132
|
Weng Z, Fluckiger AC, Nisitani S, Wahl MI, Le LQ, Hunter CA, Fernal AA, Le Beau MM, Witte ON. A DNA damage and stress inducible G protein-coupled receptor blocks cells in G2/M. Proc Natl Acad Sci U S A 1998; 95:12334-9. [PMID: 9770487 PMCID: PMC22832 DOI: 10.1073/pnas.95.21.12334] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/1998] [Indexed: 12/15/2022] Open
Abstract
Cell cycle progression is monitored by highly coordinated checkpoint machinery, which is activated to induce cell cycle arrest until defects like DNA damage are corrected. We have isolated an anti-proliferative cell cycle regulator named G2A (for G2 accumulation), which is predominantly expressed in immature T and B lymphocyte progenitors and is a member of the seven membrane-spanning G protein-coupled receptor family. G2A overexpression attenuates the transformation potential of BCR-ABL and other oncogenes, and leads to accumulation of cells at G2/M independently of p53 and c-Abl. G2A can be induced in lymphocytes and to a lesser extent in nonlymphocyte cell lines or tissues by multiple stimuli including different classes of DNA-damaging agents and serves as a response to damage and cellular stimulation which functions to slow cell cycle progression.
Collapse
Affiliation(s)
- Z Weng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1133
|
Affiliation(s)
- C Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
1134
|
Kubbutat MH, Ludwig RL, Ashcroft M, Vousden KH. Regulation of Mdm2-directed degradation by the C terminus of p53. Mol Cell Biol 1998; 18:5690-8. [PMID: 9742086 PMCID: PMC109155 DOI: 10.1128/mcb.18.10.5690] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1998] [Accepted: 07/15/1998] [Indexed: 11/20/2022] Open
Abstract
The stability of the p53 tumor suppressor protein is regulated by interaction with Mdm2, the product of a p53-inducible gene. Mdm2-targeted degradation of p53 depends on the interaction between the two proteins and is mediated by the proteasome. We show here that in addition to the N-terminal Mdm2 binding domain, the C terminus of p53 participates in the ability of p53 to be degraded by Mdm2. In contrast, alterations in the central DNA binding domain of p53, which change the conformation of the p53 protein, do not abrogate the sensitivity of the protein to Mdm2-mediated degradation. The importance of the C-terminal oligomerization domain to Mdm2-targeted degradation of p53 is likely to reflect the importance of oligomerization of the full-length p53 protein for interaction with Mdm2, as previously shown in vitro. Interestingly, the extreme C-terminal region of p53, outside the oligomerization domain, was also shown to be necessary for efficient degradation, and deletion of this region stabilized the protein without abrogating its ability to bind to Mdm2. Mdm2-resistant p53 mutants were not further stabilized following DNA damage, supporting a role for Mdm2 as the principal regulator of p53 stability in cells. The extreme C terminus of the p53 protein has previously been shown to contain several regulatory elements, raising the possibility that either allosteric regulation of p53 by this domain or interaction between this region and a third protein plays a role in determining the sensitivity of p53 to Mdm2-directed degradation.
Collapse
Affiliation(s)
- M H Kubbutat
- ABL-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
1135
|
Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 1998; 12:2973-83. [PMID: 9765199 DOI: 10.1101/gad.12.19.2973] [Citation(s) in RCA: 991] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- A J Giaccia
- Mayer Cancer Biology Research Laboratory, Department of Radiation Oncology, Stanford University, Stanford, California 94305-5468, USA
| | | |
Collapse
|
1136
|
Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX, Kumar S, Howley PM, Livingston DM. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 1998; 2:405-15. [PMID: 9809062 DOI: 10.1016/s1097-2765(00)80140-9] [Citation(s) in RCA: 316] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Control of p53 turnover is critical to p53 function. E1A binding to p300/CBP translates into enhanced p53 stability, implying that these coactivator proteins normally operate in p53 turnover control. In this regard, the p300 C/H1 region serves as a specific in vivo binding site for both p53 and MDM2, a naturally occurring p53 destabilizer. Moreover, most of the endogenous MDM2 is bound to p300, and genetic analysis implies that specific interactions of p53 and MDM2 with p300 C/H1 are important steps in the MDM2-directed turnover of p53. A specific role for p300 in endogenous p53 degradation is underscored by the p53-stabilizing effect of overproducing the p300 C/H1 domain. Taken together, the data indicate that specific interactions between p300/CBP C/H1, p53, and MDM2 are intimately involved in the MDM2-mediated control of p53 abundance.
Collapse
Affiliation(s)
- S R Grossman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1137
|
Abstract
The oncogenes RAS and RAF came to view as agents of neoplastic transformation. However, in normal cells, these genes can have effects that run counter to oncogenic transformation, such as arrest of the cell division cycle, induction of cell differentiation, and apoptosis. Recent work has demonstrated that RAS elicits proliferative arrest and senescence in normal mouse and human fibroblasts. Because the Raf/MEK/MAP kinase signaling cascade is a key effector of signaling from Ras proteins, we examined the ability of conditionally active forms of Raf-1 to elicit cell cycle arrest and senescence in human cells. Activation of Raf-1 in nonimmortalized human lung fibroblasts (IMR-90) led to the prompt and irreversible arrest of cellular proliferation and the premature onset of senescence. Concomitant with the onset of cell cycle arrest, we observed the induction of the cyclin-dependent kinase (CDK) inhibitors p21(Cip1) and p16(Ink4a). Ablation of p53 and p21(Cip1) expression by use of the E6 oncoprotein of HPV16 demonstrated that expression of these proteins was not required for Raf-induced cell cycle arrest or senescence. Furthermore, cell cycle arrest and senescence were elicited in IMR-90 cells by the ectopic expression of p16(Ink4a) alone. Pharmacological inhibition of the Raf/MEK/MAP kinase cascade prevented Raf from inducing p16(Ink4a) and also prevented Raf-induced senescence. We conclude that the kinase cascade initiated by Raf can regulate the expression of p16(Ink4a) and the proliferative arrest and senescence that follows. Induction of senescence may provide a defense against neoplastic transformation when the MAP kinase signaling cascade is inappropriately active.
Collapse
Affiliation(s)
- J Zhu
- Department of Microbiology and Immunology and G.W. Hooper Foundation, University of California at San Francisco (UCSF), California 94143-0552, USA
| | | | | | | |
Collapse
|
1138
|
Affiliation(s)
- C J Sherr
- Howard Hughes Medical Institute, Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
1139
|
Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17:5001-14. [PMID: 9724636 PMCID: PMC1170828 DOI: 10.1093/emboj/17.17.5001] [Citation(s) in RCA: 872] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The two distinct proteins encoded by the CDKN2A locus are specified by translating the common second exon in alternative reading frames. The product of the alpha transcript, p16(INK4a), is a recognized tumour suppressor that induces a G1 cell cycle arrest by inhibiting the phosphorylation of the retinoblastoma protein by the cyclin-dependent kinases, CDK4 and CDK6. In contrast, the product of the human CDKN2A beta transcript, p14(ARF), activates a p53 response manifest in elevated levels of MDM2 and p21(CIP1) and cell cycle arrest in both G1 and G2/M. As a consequence, p14(ARF)-induced cell cycle arrest is p53 dependent and can be abrogated by the co-expression of human papilloma virus E6 protein. p14(ARF) acts by binding directly to MDM2, resulting in the stabilization of both p53 and MDM2. Conversely, p53 negatively regulates p14(ARF) expression and there is an inverse correlation between p14(ARF) expression and p53 function in human tumour cell lines. However, p14(ARF) expression is not involved in the response to DNA damage. These results place p14(ARF) in an independent pathway upstream of p53 and imply that CDKN2A encodes two proteins that are involved in tumour suppression.
Collapse
Affiliation(s)
- F J Stott
- Imperial Cancer Research Fund Laboratories, P.O. Box 123, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1140
|
Tsai KY, Hu Y, Macleod KF, Crowley D, Yamasaki L, Jacks T. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol Cell 1998; 2:293-304. [PMID: 9774968 DOI: 10.1016/s1097-2765(00)80274-9] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mice mutant for the Rb tumor suppressor gene die in mid-gestation with defects in erythropoiesis, cell cycle control, and apoptosis. We show here that embryos mutant for both Rb and its downstream target E2f-1 demonstrate significant suppression of apoptosis and S phase entry in certain tissues compared to Rb mutants, implicating E2f-1 as a critical mediator of these effects. Up-regulation of the p53 pathway, required for cell death in these cells in Rb mutants, is also suppressed in the Rb/E2f-1 double mutants. However, double mutants have defects in cell cycle regulation and apoptosis in some tissues and die at approximately E17.0 with anemia and defective skeletal muscle and lung development, demonstrating that E2F-1 regulation is not the sole function of pRB in development.
Collapse
Affiliation(s)
- K Y Tsai
- MIT Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | | | |
Collapse
|
1141
|
Abstract
The p53 tumor suppressor gene is inactivated in human tumors by several distinct mechanisms. The best characterized inactivation mechanisms are: (i) gene mutation; (ii) p53 protein association with viral proteins; (iii) p53 protein association with the MDM2 cellular oncoprotein. The MDM2 gene has been shown to be abnormally up-regulated in human tumors and tumor cell lines by gene amplification, increased transcript levels and enhanced translation. This communication presents a brief review of the spectrum of MDM2 abnormalities in human tumors and compares the tissue distribution of MDM2 amplification and p53 mutation frequencies. In this study, 3889 samples from tumors or xenografts from 28 tumor types were examined for MDM2 amplification from previously published sources. The overall frequency of MDM2 amplification in these human tumors was 7%. Gene amplification was observed in 19 tumor types, with the highest frequency observed in soft tissue tumors (20%), osteosarcomas (16%) and esophageal carcinomas (13%). Tumors which showed a higher incidence of MDM2 amplification than p53 mutation were soft tissue tumors, testicular germ cell cancers and neuro-blastomas. Data from studies where both MDM2 amplification and p53 mutations were analyzed within the same samples showed that mutations in these two genes do not generally occur within the same tumor. In these studies, 29 out of a total of 33 MDM2 amplification-positive tumors had wild-type p53. We hypothesize that heretofore uncharacterized carcinogens favor MDM2 amplification over p53 mutations in certain tumor types. A database listing the MDM2 gene amplifications is available on the World Wide Web at http://www. infosci.coh.org/mdm2 . Charts of MDM2 amplification frequencies and comparisons with p53 genetic alterations are also available at this Web site.
Collapse
Affiliation(s)
- J Momand
- Department of Cell and Tumor Biology, Beckman Research Institute, National Medical Center, 1450 East Duarte Road, Duarte, CA 91010-3000, USA.
| | | | | | | |
Collapse
|
1142
|
Affiliation(s)
- N Dyson
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129 USA.
| |
Collapse
|
1143
|
Chin L, Pomerantz J, DePinho RA. The INK4a/ARF tumor suppressor: one gene--two products--two pathways. Trends Biochem Sci 1998; 23:291-6. [PMID: 9757829 DOI: 10.1016/s0968-0004(98)01236-5] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional inactivation of the retinoblastoma (RB) and p53 pathways appears to be a rite of passage for all cancerous cells and results in disruption of cell-cycle regulation and deactivation of the apoptotic response that normally ensues. The INK4a/ARF locus sits at the nexus of these two growth-control pathways, by virtue of its ability to generate two distinct products: the p16INK4a protein, a cyclin-dependent kinase inhibitor that functions upstream of RB; and the p19ARF protein, which blocks MDM2 inhibition of p53 activity. This 'one gene--two products--two pathways' arrangement provides a basis for the prominence of INK4a/ARF in tumorigenesis.
Collapse
Affiliation(s)
- L Chin
- Dept of Adult Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
1144
|
Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 1998; 12:2424-33. [PMID: 9694806 PMCID: PMC317045 DOI: 10.1101/gad.12.15.2424] [Citation(s) in RCA: 956] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1998] [Accepted: 06/29/1998] [Indexed: 11/25/2022]
Abstract
Establishment of primary mouse embryo fibroblasts (MEFs) as continuously growing cell lines is normally accompanied by loss of the p53 or p19(ARF) tumor suppressors, which act in a common biochemical pathway. myc rapidly activates ARF and p53 gene expression in primary MEFs and triggers replicative crisis by inducing apoptosis. MEFs that survive myc overexpression sustain p53 mutation or ARF loss during the process of establishment and become immortal. MEFs lacking ARF or p53 exhibit an attenuated apoptotic response to myc ab initio and rapidly give rise to cell lines that proliferate in chemically defined medium lacking serum. Therefore, ARF regulates a p53-dependent checkpoint that safeguards cells against hyperproliferative, oncogenic signals.
Collapse
Affiliation(s)
- F Zindy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis Tennessee 38105 USA
| | | | | | | | | | | | | |
Collapse
|
1145
|
de Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ, Lowe SW. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 1998; 12:2434-42. [PMID: 9694807 PMCID: PMC317046 DOI: 10.1101/gad.12.15.2434] [Citation(s) in RCA: 465] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1998] [Accepted: 06/29/1998] [Indexed: 11/24/2022]
Abstract
The adenovirus E1A oncogene activates p53 through a signaling pathway involving the retinoblastoma protein and the tumor suppressor p19(ARF). The ability of E1A to induce p53 and its transcriptional targets is severely compromised in ARF-null cells, which remain resistant to apoptosis following serum depletion or adriamycin treatment. Reintroduction of p19(ARF) restores p53 accumulation and resensitizes ARF-null cells to apoptotic signals. Therefore, p19(ARF) functions as part of a p53-dependent failsafe mechanism to counter uncontrolled proliferation. Synergistic effects between the p19(ARF) and DNA damage pathways in inducing p53 may contribute to E1A's ability to enhance radio- and chemosensitivity.
Collapse
Affiliation(s)
- E de Stanchina
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1146
|
Abstract
Most cellular proteins are targeted for degradation by the proteasome, a eukaryotic ATP-dependent protease, after they have been covalently attached to ubiquitin (Ub) in the form of a poly Ub chain functioning as a degradation signal. The proteasome is an unusually large multisubunit proteolytic complex, consisting of a central catalytic machine (called the 20S proteasome) and two terminal regulatory subcomplexes, termed PA700 or PA28, that are attached to both ends of the central portion in opposite orientations, to form enzymatically active proteasomes. The large assembled proteasome acts as a protein-destroying machine responsible for the selective breakdown of numerous ubiquitinylated cellular proteins and certain nonubiquitinylated proteins. To date, proteolysis mediated by the Ub-proteasome pathway has been shown to be involved in a wide variety of biologically important processes, such as the cell cycle, apoptosis, metabolism, signal transduction, immune response and protein quality control, implying that it functions as a previously unrecognized regulatory system for determining the final fate of protein factors involved in these biological reactions.
Collapse
Affiliation(s)
- K Tanaka
- The Tokyo Metropolitan Institute of Medical Science, and CREST, Japan Science and Technology Corporation (JST), 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-0021, Japan.
| | | |
Collapse
|
1147
|
Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci U S A 1998; 95:8292-7. [PMID: 9653180 PMCID: PMC20969 DOI: 10.1073/pnas.95.14.8292] [Citation(s) in RCA: 639] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/1998] [Indexed: 02/08/2023] Open
Abstract
The INK4a-ARF locus encodes two proteins, p16(INK4a) and p19(ARF), that restrain cell growth by affecting the functions of the retinoblastoma protein and p53, respectively. Disruption of this locus by deletions or point mutations is a common event in human cancer, perhaps second only to the loss of p53. Using insect cells infected with baculovirus vectors and NIH 3T3 fibroblasts infected with ARF retrovirus, we determined that mouse p19(ARF) can interact directly with p53, as well as with the p53 regulator mdm2. ARF can bind p53-DNA complexes, and it depends upon functional p53 to transcriptionally induce mdm2 and the cyclin-dependent kinase inhibitor p21(Cip1), and to arrest cell proliferation. Binding of p19(ARF) to p53 requires the ARF N-terminal domain (amino acids 1-62) that is necessary and sufficient to induce cell cycle arrest. Overexpression of p19(ARF) in wild type or ARF-null mouse embryo fibroblasts increases the half-life of p53 from 15 to approximately 75 min, correlating with an increased p53-dependent transcriptional response and growth arrest. Surprisingly, when overexpressed at supra-physiologic levels after introduction into ARF-null NIH 3T3 cells or mouse embryo fibroblasts, the p53 protein is handicapped in inducing this checkpoint response. In this setting, reintroduction of p19(ARF) restores p53's ability to induce p21(Cip1) and mdm2, implying that, in addition to stabilizing p53, ARF modulates p53-dependent function through an additional mechanism.
Collapse
Affiliation(s)
- T Kamijo
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
1148
|
Juven-Gershon T, Shifman O, Unger T, Elkeles A, Haupt Y, Oren M. The Mdm2 oncoprotein interacts with the cell fate regulator Numb. Mol Cell Biol 1998; 18:3974-82. [PMID: 9632782 PMCID: PMC108982 DOI: 10.1128/mcb.18.7.3974] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/1997] [Accepted: 04/21/1998] [Indexed: 02/07/2023] Open
Abstract
The Mdm2 oncoprotein is a well-known inhibitor of the p53 tumor suppressor, but it may also possess p53-independent activities. In search of such p53-independent activities, the yeast two-hybrid screen was employed to identify Mdm2-binding proteins. We report that in vitro and in transfected cells, Mdm2 can associate with Numb, a protein involved in the determination of cell fate. This association causes translocation of overexpressed Numb into the nucleus and leads to a reduction in overall cellular Numb levels. Through its interaction with Numb, Mdm2 may influence processes such as differentiation and survival. This could potentially contribute to the altered properties of tumor cells which overexpress Mdm2.
Collapse
Affiliation(s)
- T Juven-Gershon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
1149
|
Abstract
Mouse strains carrying tumor suppressor mutations genetically mimic familial forms of human cancer. New tumor suppressors have and will be identified and mutated in the mouse; however, it is clear that future investigation will focus on a new generation of experiments aimed at improving existing models, and using them to delineate the molecular pathways to tumorigenesis and to test the value of rationally designed drug therapies.
Collapse
Affiliation(s)
- A I McClatchey
- Massachusetts General Hospital Cancer Center, Charlestown 02129, USA.
| | | |
Collapse
|
1150
|
Kubbutat MH, Vousden KH. Keeping an old friend under control: regulation of p53 stability. MOLECULAR MEDICINE TODAY 1998; 4:250-6. [PMID: 9679243 DOI: 10.1016/s1357-4310(98)01260-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tumor suppressor protein p53 plays a pivotal role in protection against the development of cancer and is inactivated in many human malignancies. p53 is thought to prevent accumulation of genomic alterations by hindering cell proliferation in response to genotoxic stress, and two of the principal functions of p53 are the induction of cell-cycle arrest and the activation of apoptotic cell death. Because p53 is an extremely efficient inhibitor of cell growth, keeping p53 function under control in normal cells is critical. One of the principal mechanisms by which cells achieve this is by regulating the p53 protein level, although the ability of the protein to adopt active and latent forms and its cellular localization also contribute to the regulation of its function. Here, we summarize recently identified mechanisms that regulate the stability of the p53 protein and discuss the potentially immense clinical relevance of these observations in developing therapeutical approaches that aim to restore p53 function in human tumors.
Collapse
Affiliation(s)
- M H Kubbutat
- ABL-Basic Research Program, Frederick Cancer Research and Developmental Center, National Cancer Institute, MD 21702, USA
| | | |
Collapse
|