1101
|
Wei JQ, Shehadeh LA, Mitrani JM, Pessanha M, Slepak TI, Webster KA, Bishopric NH. Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 2008; 118:934-46. [PMID: 18697823 DOI: 10.1161/circulationaha.107.760488] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Acetyltransferase p300 is essential for cardiac development and is thought to be involved in cardiac myocyte growth through MEF2- and GATA4-dependent transcription. However, the importance of p300 in the modulation of cardiac growth in vivo is unknown. METHODS AND RESULTS Pressure overload induced by transverse aortic coarctation, postnatal physiological growth, and human heart failure were associated with large increases in p300. Minimal transgenic overexpression of p300 (1.5- to 3.5-fold) induced striking myocyte and cardiac hypertrophy. Both mortality and cardiac mass were directly related to p300 protein dosage. Heterozygous loss of a single p300 allele reduced pressure overload-induced hypertrophy by approximately 50% and rescued the hypertrophic phenotype of p300 overexpressers. Increased p300 expression had no effect on total histone deacetylase activity but was associated with proportional increases in p300 acetyltransferase activity and acetylation of the p300 substrates histone 3 and GATA-4. Remarkably, a doubling of p300 levels was associated with the de novo acetylation of MEF2. Consistent with this, genes specifically upregulated in p300 transgenic hearts were highly enriched for MEF2 binding sites. CONCLUSIONS Small increments in p300 are necessary and sufficient to drive myocardial hypertrophy, possibly through acetylation of MEF2 and upstream of signals promoting phosphorylation or nuclear export of histone deacetylases. We propose that induction of myocardial p300 content is a primary rate-limiting event in the response to hemodynamic loading in vivo and that p300 availability drives and constrains adaptive myocardial growth. Specific reduction of p300 content or activity may diminish stress-induced hypertrophy and forestall the development of heart failure.
Collapse
Affiliation(s)
- Jian Qin Wei
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
1102
|
Codd R, Braich N, Liu J, Soe CZ, Pakchung AAH. Zn(II)-dependent histone deacetylase inhibitors: suberoylanilide hydroxamic acid and trichostatin A. Int J Biochem Cell Biol 2008; 41:736-9. [PMID: 18725319 DOI: 10.1016/j.biocel.2008.05.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/02/2008] [Accepted: 05/02/2008] [Indexed: 12/17/2022]
Abstract
Suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza) and trichostatin A (TSA) are inhibitors of the Zn(II)-dependent class I and class II histone deacetylases (HDACs), which are enzymes that operate in concert with histone acetyltransferases (HATs) to regulate the acetylation status of the epsilon-amino group of lysine residues of nucleosomal histones in chromatin. An increased level of histone acetylation resulting from the SAHA or TSA inhibition of Zn(II)-dependent HDACs relaxes the chromatin structure and upregulates transcription. The links made in the 1990s between the inhibition of HDAC activity and the suppression of tumor growth have brought the design of HDAC inhibitors (HDACi) to the forefront of oncology research. SAHA has anticancer activity against hematologic and solid tumors and has been approved by the FDA for the treatment of cutaneous T-cell lymphoma. The increased molecular-level understanding of class I and class IIa HDACs from X-ray crystallography highlights differences in the residues distal to the active site and in the cavity size, which has implications for HDACi substrate specificity and enzyme mechanism. Results from HDAC-focussed activity-based protein profiling experiments may lead to the design of molecules that are class-specific HDACi.
Collapse
Affiliation(s)
- Rachel Codd
- School of Medical Sciences (Pharmacology) and Bosch Institute, University of Sydney, Camperdown, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
1103
|
Dzieran J, Beck JF, Sonnemann J. Differential responsiveness of human hepatoma cells versus normal hepatocytes to TRAIL in combination with either histone deacetylase inhibitors or conventional cytostatics. Cancer Sci 2008; 99:1685-92. [PMID: 18754884 PMCID: PMC11158644 DOI: 10.1111/j.1349-7006.2008.00868.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for the treatment of cancer because it elicits cell death in many tumor cells while sparing most normal cells. Liver cancer, however, is largely resistant to TRAIL and, thus, requires sensitization for TRAIL-mediated cytotoxicity. Sensitization may be achieved by cotreatment with chemotherapeutic agents. In this study, we comparatively investigated the treatment efficacy of TRAIL in combination with histone deacetylase inhibitors (HDI) versus TRAIL in combination with conventional cytostatics in the hepatocellular carcinoma cell line HepG2 and in the childhood hepatoblastoma cell line Huh6. We found that TRAIL resistance could be overcome by cotreatment with the HDI vorinostat, sodium butyrate and MS-275, but not by cotreatment with the cytostatics carboplatin and etoposide. However, TRAIL combination treatment bears the risk of sensitizing otherwise TRAIL-resistant normal cells. We thus explored a potential cytotoxic effect of combined HDI/TRAIL treatment in normal hepatocytes: TRAIL in conjunction with HDI did not impose any cytotoxicity on the non-malignant cells. In searching for the determinants of HDI-mediated TRAIL sensitization in hepatoma cells, we observed that HDI treatment did not increase cell-surface expression of proapoptotic TRAIL receptors. Instead, HDI treatment enhanced TRAIL-induced cleavage of Bid. In conclusion, our data suggest that HDI are potent sensitizers to TRAIL in hepatoma cells and that the combination of HDI and TRAIL is selectively active in hepatoma cells without affecting normal hepatocytes, indicating that the combination of HDI and TRAIL may be an effective approach for the treatment of advanced liver cancer.
Collapse
Affiliation(s)
- Johanna Dzieran
- Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University, Greifswald, Germany
| | | | | |
Collapse
|
1104
|
Narver HL, Kong L, Burnett BG, Choe DW, Bosch-Marcé M, Taye AA, Eckhaus MA, Sumner CJ. Sustained improvement of spinal muscular atrophy mice treated with trichostatin a plus nutrition. Ann Neurol 2008; 64:465-70. [PMID: 18661558 PMCID: PMC10103738 DOI: 10.1002/ana.21449] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Early treatment with the histone deacetylase inhibitor, trichostatin A, plus nutritional support extended median survival of spinal muscular atrophy mice by 170%. Treated mice continued to gain weight, maintained stable motor function, and retained intact neuromuscular junctions long after trichostatin A was discontinued. In many cases, ultimate decline of mice appeared to result from vascular necrosis, raising the possibility that vascular dysfunction is part of the clinical spectrum of severe spinal muscular atrophy. Early spinal muscular atrophy disease detection and treatment initiation combined with aggressive ancillary care may be integral to the optimization of histone deacetylase inhibitor treatment in human patients.
Collapse
Affiliation(s)
- Heather L Narver
- Animal Care Division, National Institute of Neurological Disorders and Stroke, National Institute of Health, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
1105
|
Fournel M, Bonfils C, Hou Y, Yan PT, Trachy-Bourget MC, Kalita A, Liu J, Lu AH, Zhou NZ, Robert MF, Gillespie J, Wang JJ, Ste-Croix H, Rahil J, Lefebvre S, Moradei O, Delorme D, Macleod AR, Besterman JM, Li Z. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol Cancer Ther 2008; 7:759-68. [PMID: 18413790 DOI: 10.1158/1535-7163.mct-07-2026] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonselective inhibitors of human histone deacetylases (HDAC) are known to have antitumor activity in mice in vivo, and several of them are under clinical investigation. The first of these, Vorinostat (SAHA), has been approved for treatment of cutaneous T-cell lymphoma. Questions remain concerning which HDAC isotype(s) are the best to target for anticancer activity and whether increased efficacy and safety will result with an isotype-selective HDAC inhibitor. We have developed an isotype-selective HDAC inhibitor, MGCD0103, which potently targets human HDAC1 but also has inhibitory activity against HDAC2, HDAC3, and HDAC11 in vitro. In intact cells, MGCD0103 inhibited only a fraction of the total HDAC activity and showed long-lasting inhibitory activity even upon drug removal. MGCD0103 induced hyperacetylation of histones, selectively induced apoptosis, and caused cell cycle blockade in various human cancer cell lines in a dose-dependent manner. MGCD0103 exhibited potent and selective antiproliferative activities against a broad spectrum of human cancer cell lines in vitro, and HDAC inhibitory activity was required for these effects. In vivo, MGCD0103 significantly inhibited growth of human tumor xenografts in nude mice in a dose-dependent manner and the antitumor activity correlated with induction of histone acetylation in tumors. Our findings suggest that the isotype-selective HDAC inhibition by MGCD0103 is sufficient for antitumor activity in vivo and that further clinical investigation is warranted.
Collapse
Affiliation(s)
- Marielle Fournel
- Department of Molecular Biology, MethylGene, Inc., 7220 Frederick-Banting, Montreal, Quebec H4S 2A1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1106
|
Eot-Houllier G, Fulcrand G, Magnaghi-Jaulin L, Jaulin C. Histone deacetylase inhibitors and genomic instability. Cancer Lett 2008; 274:169-76. [PMID: 18635312 DOI: 10.1016/j.canlet.2008.06.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/03/2008] [Accepted: 06/04/2008] [Indexed: 12/15/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) are a promising new class of anticancer drugs. However, their mechanism of action has not been fully elucidated. Most studies have investigated the effect of HDACIs on the regulation of gene transcription. HDAC inhibition also leads to genomic instability by a variety of mechanisms. This phenomenon, which has been largely overlooked, may contribute to the cytotoxic effects of these drugs. Indeed, HDACIs sensitize DNA to exogenous genotoxic damage and induce the generation of reactive oxygen species. Moreover, HDACIs target mitosis resulting in chromosome segregation defects. Here, we review the effects of HDACI treatment on DNA damage and repair, and chromosome segregation control.
Collapse
Affiliation(s)
- Grégory Eot-Houllier
- Groupe Microtubules et Cycle Cellulaire, Institut de Génétique Humaine, CNRS UPR 1142, rue de la cardonille, 34396 Montpellier cedex 5, France
| | | | | | | |
Collapse
|
1107
|
Trivedi CM, Lu MM, Wang Q, Epstein JA. Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy. J Biol Chem 2008; 283:26484-9. [PMID: 18625706 DOI: 10.1074/jbc.m803686200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class I and II histone deacetylases (HDACs) play vital roles in regulating cardiac development, morphogenesis, and hypertrophic responses. Although the roles of Hdac1 and Hdac2, class I HDACs, in cardiac hyperplasia, growth, and hypertrophic responsiveness have been reported, the role in the heart of Hdac3, another class I HDAC, has been less well explored. Here we report that myocyte-specific overexpression of Hdac3 in mice results in cardiac abnormalities at birth. Hdac3 overexpression produces thickening of ventricular myocardium, especially the interventricular septum, and reduction of both ventricular cavities in newborn hearts. Our data suggest that increased thickness of myocardium in Hdac3-transgenic (Hdac3-Tg) mice is due to increased cardiomyocyte hyperplasia without hypertrophy. Hdac3 overexpression inhibits several cyclin-dependent kinase inhibitors, including Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, and Cdkn2c. Hdac3-Tg mice did not develop cardiac hypertrophy at 3 months of age, unlike previously reported Hdac2-Tg mice. Further, Hdac3 overexpression did not augment isoproterenol-induced cardiac hypertrophy when compared with wild-type littermates. These findings identify Hdac3 as a novel regulator of cardiac myocyte proliferation during cardiac development.
Collapse
Affiliation(s)
- Chinmay M Trivedi
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
1108
|
HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci U S A 2008; 105:9633-8. [PMID: 18606987 DOI: 10.1073/pnas.0803749105] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eighteen histone deacetylases (HDACs) are present in humans, categorized into two groups: zinc-dependent enzymes (HDAC1-11) and NAD(+)-dependent enzymes (sirtuins 1-7). Among zinc-dependent HDACs, HDAC6 is unique. It has a cytoplasmic localization, two catalytic sites, a ubiquitin-binding site, and it selectively deacetylases alpha-tubulin and Hsp90. Here, we report the discovery that the redox regulatory proteins, peroxiredoxin (Prx) I and Prx II are specific targets of HDAC6. Prx are antioxidants enzymes whose main function is H(2)O(2) reduction. Prx are elevated in many cancers and neurodegenerative diseases. The acetylated form of Prx accumulates in the absence of an active HDAC6. Acetylation of Prx increases its reducing activity, its resistance to superoxidation, and its resistance to transition to high-molecular-mass complexes. Thus, HDAC6 and Prx are targets for modulating intracellular redox status in therapeutic strategies for disorders as disparate as cancers and neurodegenerative diseases.
Collapse
|
1109
|
Mühlethaler-Mottet A, Meier R, Flahaut M, Bourloud KB, Nardou K, Joseph JM, Gross N. Complex molecular mechanisms cooperate to mediate histone deacetylase inhibitors anti-tumour activity in neuroblastoma cells. Mol Cancer 2008; 7:55. [PMID: 18549473 PMCID: PMC2442609 DOI: 10.1186/1476-4598-7-55] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 06/12/2008] [Indexed: 01/01/2023] Open
Abstract
Background Histone deacetylase inhibitors (HDACi) are a new class of promising anti-tumour agent inhibiting cell proliferation and survival in tumour cells with very low toxicity toward normal cells. Neuroblastoma (NB) is the second most common solid tumour in children still associated with poor outcome in higher stages and, thus NB strongly requires novel treatment modalities. Results We show here that the HDACi Sodium Butyrate (NaB), suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA) strongly reduce NB cells viability. The anti-tumour activity of these HDACi involved the induction of cell cycle arrest in the G2/M phase, followed by the activation of the intrinsic apoptotic pathway, via the activation of the caspases cascade. Moreover, HDACi mediated the activation of the pro-apoptotic proteins Bid and BimEL and the inactivation of the anti-apoptotic proteins XIAP, Bcl-xL, RIP and survivin, that further enhanced the apoptotic signal. Interestingly, the activity of these apoptosis regulators was modulated by several different mechanisms, either by caspases dependent proteolytic cleavage or by degradation via the proteasome pathway. In addition, HDACi strongly impaired the hypoxia-induced secretion of VEGF by NB cells. Conclusion HDACi are therefore interesting new anti-tumour agents for targeting highly malignant tumours such as NB, as these agents display a strong toxicity toward aggressive NB cells and they may possibly reduce angiogenesis by decreasing VEGF production by NB cells.
Collapse
Affiliation(s)
- Annick Mühlethaler-Mottet
- Paediatric Oncology Research, Paediatric Department, University Hospital CHUV, CH-1011 Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
1110
|
Incorporation of histone deacetylase inhibition into the structure of a nuclear receptor agonist. Proc Natl Acad Sci U S A 2008; 105:8250-5. [PMID: 18550844 DOI: 10.1073/pnas.0709279105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1,25-dihydroxyvitamin D(3) (1,25D) regulates gene expression by signaling through the nuclear vitamin D receptor (VDR) transcription factor and exhibits calcium homeostatic, anticancer, and immunomodulatory properties. Histone deacetylase inhibitors (HDACis) alter nuclear and cytoplasmic protein acetylation, modify gene expression, and have potential for treatment of cancer and other indications. The function of nuclear receptor ligands, including 1,25D, can be enhanced in combination with HDACi. We designed triciferol, a hybrid molecule in which the 1,25D side chain was replaced with the dienyl hydroxamic acid of HDACi trichostatin A. Triciferol binds directly to the VDR, and functions as an agonist with 1,25D-like potency on several 1,25D target genes. Moreover, unlike 1,25D, triciferol induces marked tubulin hyperacetylation, and augments histone acetylation at concentrations that largely overlap those where VDR agonism is observed. Triciferol also exhibits more efficacious antiproliferative and cytotoxic activities than 1,25D in four cancer cell models in vitro. The bifunctionality of triciferol is notable because (i) the HDACi activity is generated by modifying the 1,25D side chain without resorting to linker technology and (ii) 1,25D and HDACi have sympathetic, but very distinct biochemical targets; the hydrophobic VDR ligand binding domain and the active sites of HDACs, which are zinc metalloenzymes. These studies demonstrate the feasibility of combining HDAC inhibition with nuclear receptor agonism to enhance their therapeutic potential.
Collapse
|
1111
|
Epigenetic plasticity of chromatin in embryonic and hematopoietic stem/progenitor cells: therapeutic potential of cell reprogramming. Leukemia 2008; 22:1503-18. [PMID: 18548105 DOI: 10.1038/leu.2008.141] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During embryonic development and adult life, the plasticity and reversibility of modifications that affect the chromatin structure is important in the expression of genes involved in cell fate decisions and the maintenance of cell-differentiated state. Epigenetic changes in DNA and chromatin, which must occur to allow the accessibility of transcriptional factors at specific DNA-binding sites, are regarded as emerging major players for embryonic and hematopoietic stem cell (HSC) development and lineage differentiation. Epigenetic deregulation of gene expression, whether it be in conjunction with chromosomal alterations and gene mutations or not, is a newly recognized mechanism that leads to several diseases, including leukemia. The reversibility of epigenetic modifications makes DNA and chromatin changes attractive targets for therapeutic intervention. Here we review some of the epigenetic mechanisms that regulate gene expression in pluripotent embryonic and multipotent HSCs but may be deregulated in leukemia, and the clinical approaches designed to target the chromatin structure in leukemic cells.
Collapse
|
1112
|
Bonfils C, Kalita A, Dubay M, Siu LL, Carducci MA, Reid G, Martell RE, Besterman JM, Li Z. Evaluation of the pharmacodynamic effects of MGCD0103 from preclinical models to human using a novel HDAC enzyme assay. Clin Cancer Res 2008; 14:3441-9. [PMID: 18519775 PMCID: PMC3444140 DOI: 10.1158/1078-0432.ccr-07-4427] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE The pharmacodynamic properties of MGCD0103, an isotype-selective inhibitor of histone deacetylase (HDAC), were evaluated in preclinical models and patients with a novel whole-cell HDAC enzyme assay. EXPERIMENTAL DESIGN Boc-Lys(epsilon-Ac)-AMC, a HDAC substrate with fluorescent readout, was found to be cell permeable and was used to monitor MGCD0103-mediated HDAC inhibition in cultured cancer cells in vitro, in peripheral WBC ex vivo, in mice in vivo, and in human patients. RESULTS MGCD0103 inhibited HDAC activity in several human cancer cell lines in vitro and in human peripheral WBC ex vivo in a dose-dependent manner. Unlike suberoylanilide hydroxamic acid, the HDAC inhibitory activity of MGCD0103 was time dependent and sustained for at least 24 hours following drug removal in peripheral WBC ex vivo. Inhibitory activity of MGCD0103 was sustained for at least 8 hours in vivo in mice and 48 hours in patients with solid tumors. HDAC inhibitory activity of MGCD0103 in peripheral WBC correlated with induction of histone acetylation in blood and in implanted tumors in mice. In cancer patients, sustained pharmacodynamic effect of MGCD0103 was visualized only by dose-dependent enzyme inhibition in peripheral WBC but not by histone acetylation analysis. CONCLUSIONS This study shows that MGCD0103 has sustained pharmacodynamic effects that can be monitored both in vitro and in vivo with a cell-based HDAC enzyme assay.
Collapse
|
1113
|
Vorinostat synergistically potentiates MK-0457 lethality in chronic myelogenous leukemia cells sensitive and resistant to imatinib mesylate. Blood 2008; 112:793-804. [PMID: 18505786 DOI: 10.1182/blood-2007-10-116376] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interactions between the dual Bcr/Abl and aurora kinase inhibitor MK-0457 and the histone deacetylase inhibitor vorinostat were examined in Bcr/Abl(+) leukemia cells, including those resistant to imatinib mesylate (IM), particularly those with the T315I mutation. Coadministration of vorinostat dramatically increased MK-0457 lethality in K562 and LAMA84 cells. Notably, the MK-0457/vorinostat regimen was highly active against primary CD34(+) chronic myelogenous leukemia (CML) cells and Ba/F3 cells bearing various Bcr/Abl mutations (ie, T315I, E255K, and M351T), as well as IM-resistant K562 cells exhibiting Bcr/Abl-independent, Lyn-dependent resistance. These events were associated with inactivation and down-regulation of wild-type (wt) and mutated Bcr/Abl (particularly T315I). Moreover, treatment with MK-0457 resulted in accumulation of cells with 4N or more DNA content, whereas coadministration of vorinostat markedly enhanced aurora kinase inhibition by MK-0457, and preferentially killed polyploid cells. Furthermore, vorinostat also interacted with a selective inhibitor of aurora kinase A and B to potentiate apoptosis without modifying Bcr/Abl activity. Finally, vorinostat markedly induced Bim expression, while blockade of Bim induction by siRNA dramatically diminished the capacity of this agent to potentiate MK-0457 lethality. Together, these findings indicate that vorinostat strikingly increases MK-0457 activity against IM-sensitive and -resistant CML cells through inactivation of Bcr/Abl and aurora kinases, as well as by induction of Bim.
Collapse
|
1114
|
Di Renzo F, Cappelletti G, Broccia ML, Giavini E, Menegola E. The Inhibition of Embryonic Histone Deacetylases as the Possible Mechanism Accounting for Axial Skeletal Malformations Induced by Sodium Salicylate. Toxicol Sci 2008; 104:397-404. [DOI: 10.1093/toxsci/kfn094] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
1115
|
Abstract
FoxO transcription factors are an evolutionary conserved subfamily of the forkhead transcription factors, characterized by the forkhead DNA-binding domain. FoxO factors regulate a number of cellular processes involved in cell-fate decisions in a cell-type- and environment-specific manner, including metabolism, differentiation, apoptosis and proliferation. A key mechanism by which FoxO determines cell fate is through regulation of the cell cycle machinery, and as such the cellular consequence of FoxO deregulation is often manifested through perturbation of the cell cycle. Consequently, the deregulation of FoxO factors is implicated in the development of numerous proliferative diseases, in particular cancer.
Collapse
|
1116
|
Vansteenkiste J, Van Cutsem E, Dumez H, Chen C, Ricker JL, Randolph SS, Schöffski P. Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Invest New Drugs 2008; 26:483-8. [PMID: 18425418 DOI: 10.1007/s10637-008-9131-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/21/2008] [Indexed: 12/12/2022]
Abstract
Vorinostat (Zolinza) is a histone deacetylase inhibitor that has demonstrated activity in patients with advanced solid tumors in phase I trials. A multicenter, open-label phase II trial of oral vorinostat 200, 300 or 400 mg bid for 14 days followed by a 7-day rest until disease progression or intolerable toxicity was conducted. Patients with measurable, relapsed or refractory breast or non-small cell lung cancer who had received > or = 1 prior therapy or colorectal cancer who had received > or = 2 prior therapies were eligible. The response rate, safety and tolerability were evaluated. Sixteen patients (median age, 62 years; median 5.5 prior therapies) were enrolled. Six patients received 400 mg bid, six received 300 mg bid and four received 200 mg bid (14 days/3 weeks). Dose-limiting toxicities (DLTs) at the 400 or 300 mg bid levels were anorexia, asthenia, nausea, thrombocytopenia, vomiting, and weight loss. No DLTs were observed at the 200 mg bid level. Disease stabilization was observed in eight patients, but there were no confirmed responses. The median TTP was 33.5 days. Eleven patients discontinued due to clinical adverse experiences (AEs). The most common drug-related AEs were anorexia (81%), fatigue (62%), nausea (62%), diarrhea (56%), vomiting (56%), thrombocytopenia (50%) and weight loss (50%). Drug-related AEs > or = grade 3 included thrombocytopenia (50%), anemia (12%), asthenia (12%) and nausea (12%). Vorinostat in a daily oral schedule for 14 days/3 weeks was tolerable at 200 mg bid only, and no responses were observed in this study. Most patients, however, had limited drug exposure which did not allow a reliable efficacy analysis.
Collapse
Affiliation(s)
- Johan Vansteenkiste
- Respiratory Oncology Unit (Pulmonology), University Hospital Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
1117
|
Estiu G, Greenberg E, Harrison CB, Kwiatkowski NP, Mazitschek R, Bradner JE, Wiest O. Structural Origin of Selectivity in Class II-Selective Histone Deacetylase Inhibitors. J Med Chem 2008; 51:2898-906. [DOI: 10.1021/jm7015254] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guillermina Estiu
- Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Broad Institute of Harvard University and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
| | - Edward Greenberg
- Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Broad Institute of Harvard University and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
| | - Christopher B. Harrison
- Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Broad Institute of Harvard University and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
| | - Nicholas P. Kwiatkowski
- Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Broad Institute of Harvard University and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
| | - Ralph Mazitschek
- Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Broad Institute of Harvard University and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
| | - James E. Bradner
- Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Broad Institute of Harvard University and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
| | - Olaf Wiest
- Walther Cancer Research Center and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, and Broad Institute of Harvard University and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142
| |
Collapse
|
1118
|
Johnson RL, Huang W, Jadhav A, Austin CP, Inglese J, Martinez ED. A quantitative high-throughput screen identifies potential epigenetic modulators of gene expression. Anal Biochem 2008; 375:237-48. [PMID: 18211814 PMCID: PMC2330280 DOI: 10.1016/j.ab.2007.12.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 11/24/2022]
Abstract
Epigenetic regulation of gene expression is essential in embryonic development and contributes to cancer pathology. We used a cell-based imaging assay that measures derepression of a silenced green fluorescent protein (GFP) reporter to identify novel classes of compounds involved in epigenetic regulation. This locus derepression (LDR) assay was screened against a 69,137-member chemical library using quantitative high-throughput screening (qHTS), a titration-response method that assays compounds at multiple concentrations. From structure-activity relationships of the 411 actives recovered from the qHTS, 6 distinct chemical series were chosen for further study. A total of 48 qHTS actives and analogs were counterscreened using the parental line of the LDR cells, which lack the GFP reporter. Three series-8-hydroxy quinoline, quinoline-8-thiol, and 1,3,5-thiadiazinane-2-thione-were not fluorescent and reconfirmed activity in the LDR cells. The three active series did not inhibit histone deacetylase activity in nuclear extracts or reactivate the expression of the densely methylated p16 gene in cancer cells. However, one series induced expression of the methylated CDH13 gene and inhibited the viability of several lung cancer lines at submicromolar concentrations. These results suggest that the identified small molecules act on epigenetic or transcriptional components and validate our approach of using a cell-based imaging assay in conjunction with qHTS.
Collapse
Affiliation(s)
- Ronald L. Johnson
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892-3370
| | - Wenwei Huang
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892-3370
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892-3370
| | - Christopher P. Austin
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892-3370
| | - James Inglese
- NIH Chemical Genomics Center, National Institutes of Health, Bethesda, MD 20892-3370
| | - Elisabeth D. Martinez
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, TX 75390-8593
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, TX 75390-8593
| |
Collapse
|
1119
|
Erlich RB, Rickwood D, Coman WB, Saunders NA, Guminski A. Valproic acid as a therapeutic agent for head and neck squamous cell carcinomas. Cancer Chemother Pharmacol 2008; 63:381-9. [PMID: 18398612 DOI: 10.1007/s00280-008-0747-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 03/17/2008] [Indexed: 11/25/2022]
Abstract
PURPOSES Here we investigate if valproic acid (VA) can enhance the efficacy of commonly used therapies for head and neck squamous cell carcinomas (HNSCC) and the molecular mechanisms that may be related to its anticancer effects. METHODS Proliferation and viability of distinct cell types subjected to VA treatment alone or in combination regimens were measured through BrdU incorporation and LDH release, respectively. Molecular markers compatible with histone deacetylase inhibitory activity of VA were assessed through western blots assays in lysates obtained from cultured cells and tumour biopsies. RESULTS Treatment of all cell types with VA resulted in a dose-dependent increase in histone H3 acetylation and p21 expression, as well as dose-dependent cytostasis. In contrast, the cytotoxic response to VA was variable and did not correlate with cytostasis, histone acetylation or p21 induction. The variability in response to VA was also observed in tumour biopsy samples collected from patients prior to and following a 1 week oral course of VA. In addition, we found that a combination of a clinically achievable concentration of VA plus cisplatin caused a threefold to sevenfold increase in cisplatin cytotoxicity in vitro. CONCLUSIONS VA acts as a histone deacetylase inhibitor (HDI) in SCC cells and normal human keratinocytes (HKs), potentiates the cytotoxic effect of cisplatin in SCC cell lines and decreases the viability of SCC cells as opposed to HKs. Taken together, the results provide initial evidence that VA might be a valuable drug in the development of better therapeutic regimens for HNSCC.
Collapse
Affiliation(s)
- Rafael B Erlich
- Epithelial Pathobiology Group, Cancer Biology Programme, Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | | | | | | | | |
Collapse
|
1120
|
Blackwell L, Norris J, Suto CM, Janzen WP. The use of diversity profiling to characterize chemical modulators of the histone deacetylases. Life Sci 2008; 82:1050-8. [PMID: 18455194 DOI: 10.1016/j.lfs.2008.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/25/2008] [Accepted: 03/03/2008] [Indexed: 11/25/2022]
Abstract
Target specificity and off-target liabilities are routinely monitored during the early phases of drug discovery for most kinase projects. Typically these criteria are evaluated using a profiling panel comprised of a diverse collection of in vitro kinase assays and relates compound structure to potency and selectivity. The success of these efforts has led to the design of similar panels for phosphatase, protease, and epigenetic targets. Here the implementation of an epigenetic profiling panel, comprised of eleven histone deacetylases (HDACs) and one histone acetyltransferase (HAT), was used to evaluate chemical modulators of these enzymes. HDAC inhibitors (HDACi) such as sodium butyrate and trichostatin A demonstrate diverse biological effects which have led to broad speculation about their therapeutic potential in multiple disease states. Some HDACi have demonstrated tumor suppression in vivo and recently Zolinza was the first HDACi approved by the FDA for the treatment of cutaneous T-cell lymphoma. While HDACi have demonstrated therapeutic utility, many of the first generation compounds are pan-inhibitors. Thus, use of an HDAC profiling panel will be essential in achieving isoform specificity of the next generation of inhibitors. To this end, twenty-one compounds, twelve of which are known to have activities against the HDACs, were tested to evaluate the utility of the epigenetic panel. Additionally, these compounds were tested against a larger 72 member enzyme panel comprised of kinase, phosphatase and protease activities. This effort represents the first time these compounds have been profiled with such a broad range of biochemical activities.
Collapse
Affiliation(s)
- Leonard Blackwell
- Amphora Discovery Corp., Research Triangle Park, Durham, NC 27713, USA
| | | | | | | |
Collapse
|
1121
|
HDAC inhibitor reduces cytokine storm and facilitates induction of chimerism that reverses lupus in anti-CD3 conditioning regimen. Proc Natl Acad Sci U S A 2008; 105:4796-801. [PMID: 18347343 DOI: 10.1073/pnas.0712051105] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In allogeneic hematopoietic cell transplantation (HCT), donor T cell-mediated graft versus host leukemia (GVL) and graft versus autoimmune (GVA) activity play critical roles in treatment of hematological malignancies and refractory autoimmune diseases. However, graft versus host disease (GVHD), which sometimes can be fatal, remains a major obstacle in classical HCT, where recipients are conditioned with total body irradiation or high-dose chemotherapy. We previously reported that anti-CD3 conditioning allows donor CD8(+) T cells to facilitate engraftment and mediate GVL without causing GVHD. However, the clinical application of this radiation-free and GVHD preventative conditioning regimen is hindered by the cytokine storm syndrome triggered by anti-CD3 and the high-dose donor bone marrow (BM) cells required for induction of chimerism. Histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) are known to induce apoptosis of cancer cells and reduce production of proinflammatory cytokines by nonmalignant cells. Here, we report that SAHA inhibits the proliferative and cytotoxic activity of anti-CD3-activated T cells. Administration of low-dose SAHA reduces cytokine production and ameliorates the cytokine storm syndrome triggered by anti-CD3. Conditioning with anti-CD3 and SAHA allows induction of chimerism with lower doses of donor BM cells in old nonautoimmune and autoimmune lupus mice. In addition, conditioning with anti-CD3 and SAHA allows donor CD8(+) T cell-mediated GVA activity to reverse lupus glomerulonephritis without causing GVHD. These results indicate that conditioning with anti-CD3 and HDAC inhibitors represent a radiation-free and GVHD-preventative regimen with clinical application potential.
Collapse
|
1122
|
Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein-Barr virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors. J Virol 2008; 82:4706-19. [PMID: 18337569 DOI: 10.1128/jvi.00116-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the Epstein-Barr virus (EBV) lytic cycle is mediated through the combined actions of ZEBRA and Rta, the products of the viral BZLF1 and BRLF1 genes. During latency, these two genes are tightly repressed. Histone deacetylase inhibitors (HDACi) can activate viral lytic gene expression. Therefore, a widely held hypothesis is that Zp and Rp, the promoters for BZLF1 and BRLF1, are repressed by chromatin and that hyperacetylation of histone tails, by allowing the access of positively acting factors, leads to transcription of BZLF1 and BRLF1. To investigate this hypothesis, we used chromatin immunoprecipitation (ChIP) to examine the acetylation and phosphorylation states of histones H3 and H4 on Zp and Rp in three cell lines, Raji, B95-8, and HH514-16, which differ in their response to EBV lytic induction by HDACi. We studied the effects of three HDACi, sodium butyrate (NaB), trichostatin A (TSA), and valproic acid (VPA). We also examined the effects of tetradecanoyl phorbol acetate (TPA) and 5-aza-2'-deoxycytidine, a DNA methyltransferase inhibitor, on histone modification. In Raji cells, TPA and NaB act synergistically to activate the EBV lytic cycle and promote an increase in histone H3 and H4 acetylation and phosphorylation at Zp and Rp. Surprisingly, however, when Raji cells were treated with NaB or TSA, neither of which is sufficient to activate the lytic cycle, an increase of comparable magnitude of hyperacetylated and phosphorylated histone H3 at Zp and Rp was observed. In B95-8 cells, NaB inhibited lytic induction by TPA, yet NaB promoted hyperacetylation of H3 and H4. In HH514-16 cells, NaB and TSA strongly activated the EBV lytic cycle and caused hyperacetylation of histone H3 on Zp and Rp. However, when HH514-16 cells were treated with VPA, lytic cycle mRNAs or proteins were not induced, although histone H3 was hyperacetylated as measured by immunoblotting or by ChIP on Zp and Rp. Taken together, our data suggest that open chromatin at EBV BZLF1 and BRLF1 promoters is not sufficient to activate EBV lytic cycle gene expression.
Collapse
|
1123
|
Sekhavat A, Sun JM, Davie JR. Competitive inhibition of histone deacetylase activity by trichostatin A and butyrate. Biochem Cell Biol 2008; 85:751-8. [PMID: 18059533 DOI: 10.1139/o07-145] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylases (HDACs) play a pivotal role in gene expression through their involvement in chromatin remodeling. The abnormal targeting or retention of HDACs to DNA regulatory regions is observed in many cancers, and hence HDAC inhibitors are being tested as promising anti-tumor agents. The results of previous kinetic studies, characterizing trichostatin A (TSA), as well as butyrate, as HDAC noncompetitive inhibitors, conflict with crystallographic and homology modeling data suggesting that TSA should act as a competitive inhibitor. Our results demonstrate that each of the HDAC inhibitors TSA and butyrate inhibits HDAC activity in a competitive fashion. Co-immunoprecipitation studies show that the inhibition of HDAC1 and HDAC2 activity by TSA does not disturb the extensive level of their association in the human breast cancer cell line MCF-7. Moreover, the inhibition of HDAC activity by TSA does not interfere with the interaction of HDAC1 and HDAC2 with Sin3A, a core component of the Sin3 complex. Thus, repressor complexes such as Sin3, appear to be stable in the presence of TSA. The association of HDAC2 with transcription factor Sp1 is also not affected by TSA.
Collapse
Affiliation(s)
- Anoushe Sekhavat
- MB Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
1124
|
Paris M, Porcelloni M, Binaschi M, Fattori D. Histone Deacetylase Inhibitors: From Bench to Clinic. J Med Chem 2008; 51:1505-29. [DOI: 10.1021/jm7011408] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
1125
|
Dong G, Wang L, Wang CY, Yang T, Kumar MV, Dong Z. Induction of apoptosis in renal tubular cells by histone deacetylase inhibitors, a family of anticancer agents. J Pharmacol Exp Ther 2008; 325:978-84. [PMID: 18310471 DOI: 10.1124/jpet.108.137398] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibitors of histone deacetylases, including suberoylanilide hydroxamic acid (SAHA) and Trichostatin A, are a new class of anticancer agents. With potent chemotherapy effects in cancers, these agents are not obviously toxic in normal nonmalignant cells or tissues. However, their toxicity in kidney cells has not been carefully evaluated. Here, we demonstrate a potent apoptosis-inducing activity of SAHA in cultured renal proximal tubular cells. SAHA induces apoptosis at low micromolar concentrations. At 5 muM, SAHA induces 30 to approximately 40% apoptosis in 18 h. The apoptosis is accompanied by notable caspase activation; however, the general caspase inhibitor VAD can only partially suppress SAHA-induced apoptosis, suggesting the involvement of both caspase-dependent and -independent mechanisms. SAHA treatment leads to cytochrome c release from mitochondria, which is suppressed by Bcl-2 but not by VAD. Bcl-2 consistently blocks SAHA-induced apoptosis. During SAHA treatment, Bcl-2 and Bcl-XL decrease, and Bid is proteolytically cleaved, whereas Bax and Bak expression remains constant. Bid cleavage, but not Bcl-2/Bcl-XL decrease, is completely suppressed by VAD. SAHA does not activate p53, and pifithrin-alpha (a pharmacological p53 inhibitor) does not attenuate SAHA-induced apoptosis, negating a role of p53 in SAHA-induced apoptosis. SAHA induces histone acetylation, which is not affected by VAD, Bcl-2, or pifithrin-alpha. Trichostatin A can also induce apoptosis and histone acetylation in renal tubular cells. Together, the results have shown evidence for renal toxicity of histone deacetylase inhibitors. The toxicity may be related to protein acetylation and decrease of antiapoptotic proteins including Bcl-2 and Bcl-XL.
Collapse
Affiliation(s)
- Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
1126
|
El-Dahr SS, Aboudehen K, Saifudeen Z. Transcriptional control of terminal nephron differentiation. Am J Physiol Renal Physiol 2008; 294:F1273-8. [PMID: 18287399 DOI: 10.1152/ajprenal.00562.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Terminal differentiation of epithelial cells into more specialized cell types is a critical step in organogenesis. Throughout the process of terminal differentiation, epithelial progenitors acquire or upregulate expression of renal function genes and cease to proliferate, while expression of embryonic genes is repressed. This exquisite coordination of gene expression is accomplished by signaling networks and transcription factors which couple the external environment with the new functional demands of the cell. While there has been much progress in understanding the early steps involved in renal epithelial cell differentiation, a major gap remains in our knowledge of the factors that control the steps of terminal differentiation. A number of signaling molecules and transcription factors have been recently implicated in determining segmental nephron identity and functional differentiation. While some of these factors (the p53 gene family, hepatocyte nuclear factor-1beta) promote the terminal epithelial differentiation fate, others (Notch, Brn-1, IRX, KLF4, and Foxi1) tend to regulate differentiation of specific nephron segments and individual cell types. This review summarizes current knowledge related to these transcription factors and discusses how diverse cellular signals are integrated to generate a transcriptional output during the process of terminal differentiation. Since these transcriptional processes are accompanied by profound changes in nuclear chromatin structure involving the genes responsible for creating and maintaining the differentiated cell phenotype, future studies should focus on identifying the nature of these epigenetic events and factors, how they are regulated temporally and spatially, and the chromatin environment they eventually reside in.
Collapse
Affiliation(s)
- Samir S El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, SL-37, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
1127
|
Hahnen E, Hauke J, Tränkle C, Eyüpoglu IY, Wirth B, Blümcke I. Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin Investig Drugs 2008; 17:169-84. [PMID: 18230051 DOI: 10.1517/13543784.17.2.169] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During the past six years numerous studies identified histone deacetylase (HDAC) inhibitors as candidate drugs for the treatment of neurodegenerative disorders. Two major neuroprotective mechanisms of HDAC inhibitors have been identified, namely the transcriptional activation of disease-modifying genes and the correction of perturbations in histone acetylation homeostasis, which have been shown to be intimately involved in the neurodegenerative pathomechanisms of Huntington's, Parkinson's and Kennedy disease, amyotropic lateral sclerosis, Rubinstein-Taybi syndrome as well as stroke. Based on the promising in vitro and in vivo analyses, clinical trials have been initiated to evaluate the safety and efficacy of HDAC inhibitors for the treatment of devastating diseases such as Huntington's disease, amyotropic lateral sclerosis and spinal muscular atrophy. Here, the authors summarize and discuss the findings on the emerging field of epigenetic therapy strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Eric Hahnen
- Institute of Human Genetics, Institute of Genetics, University of Cologne, 50931 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
1128
|
Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 2008; 22:1026-34. [PMID: 18256683 DOI: 10.1038/leu.2008.9] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have developed a potent, histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 with >200-fold selectivity over the other HDAC isoforms. PCI-34051 induces caspase-dependent apoptosis in cell lines derived from T-cell lymphomas or leukemias, but not in other hematopoietic or solid tumor lines. Unlike broad-spectrum HDAC inhibitors, PCI-34051 does not cause detectable histone or tubulin acetylation. Cells defective in T-cell receptor signaling were still sensitive to PCI-34051-induced apoptosis, whereas a phospholipase C-gamma1 (PLCgamma1)-defective line was resistant. Jurkat cells showed a dose-dependent decrease in PCI-34051-induced apoptosis upon treatment with a PLC inhibitor U73122, but not with an inactive analog. We found that rapid intracellular calcium mobilization from endoplasmic reticulum (ER) and later cytochrome c release from mitochondria are essential for the apoptotic mechanism. The rapid Ca(2+) flux was dependent on PCI-34051 concentration, and was blocked by the PLC inhibitor U73122. Further, apoptosis was blocked by Ca(2+) chelators (BAPTA) and enhanced by Ca(2+) effectors (thapsigargin), supporting this model. These studies show that HDAC8-selective inhibitors have a unique mechanism of action involving PLCgamma1 activation and calcium-induced apoptosis, and could offer benefits including a greater therapeutic index for treating T-cell malignancies.
Collapse
Affiliation(s)
- S Balasubramanian
- Department of Cancer Biology, Pharmacyclics Inc., Sunnyvale, CA 94085, USA.
| | | | | | | | | | | |
Collapse
|
1129
|
Weichert W, Röske A, Gekeler V, Beckers T, Ebert MPA, Pross M, Dietel M, Denkert C, Röcken C. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol 2008; 9:139-48. [PMID: 18207460 DOI: 10.1016/s1470-2045(08)70004-4] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although histone deacetylases (HDACs) are known to have an important regulatory role in cancer cells, and HDAC inhibitors (HDIs) have entered late-phase clinical trials for the treatment of several cancers, little is known about the expression patterns of HDAC isoforms in tumours. We aimed to clarify these expression patterns and identify potential diagnostic and prognostic uses of selected class I HDAC isoforms in gastric cancer. METHODS Tissue samples from a training cohort and a validation cohort of patients with gastric cancer from two German institutions were used for analyses. Tissue microarrays were generated from tumour tissue collected from patients in the training group, whereas tissue slides were used in the validation group. The tissues were scored for expression of class I HDAC isoforms 1, 2, and 3. Overall expression patterns (gHDAC) were grouped as being negative (all three isoforms negative), partially positive (one or two isoforms positive), or completely positive (all isoforms positive), and correlated with clinicopathological parameters and patient survival. The main endpoints were amount of expression of each of the three HDAC isoforms, patterns of expression of gHDAC, effect of metastasis on expression of HDAC and gHDAC, and overall survival according to HDAC expression patterns. FINDINGS 2617 tissue microarray spots from 143 patients in the training cohort and 606 tissue slides from 150 patients in the validation cohort were studied. 52 of the 143 (36%) gastric tumours in the training cohort and 32 of the 150 (21%) gastric tumours in the validation cohort showed nuclear expression of all three HDAC isoforms. 60 (42%) of tumours in the training cohort and 65 (43%) in the validation cohort expressed one or two isoforms in the nuclei, whereas 31 (22%) of tumours in the training cohort and 53 (35%) in the validation cohort were scored negative for all three proteins. gHDAC expression in both cohorts was higher when lymph-node metastases were present (p=0.0175 for the training group and p=0.0242 for the validation group). Survival data were available for 49 patients in the training group and 123 patients in the validation group. In the validation cohort, 3-year survival was 44% (95% CI 34-57) in the HDAC1-negative group, 50% (39-64) in the HDAC2-negative group, and 48% (34-67) in the gHDAC-negative group. 3-year survival decreased to 21% (11-37) when HDAC1 was positive, 16% (9-31) when HDAC2 was positive, and 5% (1-31) when gHDAC (all isoforms) were positive. Those patients highly expressing one or two isoforms (the gHDAC-intermediate group) had an estimated 3-year survival of 40% (29-56). In multivariate analyses, high gHDAC and HDAC2 expression were associated with shorter survival in the training cohort (gHDAC: hazard ratio [HR] 4.15 [1.23-13.99], p=0.0250; HDAC2: HR 3.58 [1.36-9.44], p=0.0100) and in the validation cohort (gHDAC: HR 2.18 [1.19-4.01], p=0.0433; HDAC2: HR 1.72 [1.08-2.73], p=0.0225), independent of standard clinical predictors. INTERPRETATION High HDAC expression is significantly associated with nodal spread and is an independent prognostic marker for gastric cancer. Additionally, we postulate that immunohistochemical detection of HDAC as a companion diagnostic method might predict treatment response to HDIs, thereby enabling selection of patients for this specific targeted treatment in gastric cancer.
Collapse
Affiliation(s)
- Wilko Weichert
- Institute of Pathology, Charité University Hospital, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
1130
|
Abstract
The current standard of care for malignant gliomas consists of surgery, radiotherapy and conventional (DNA-damaging) chemotherapies. These treatments are relatively nonspecific and may be applied to all glioma subtypes. Developments in cancer medicine, however, now offer the opportunity to direct therapies to specific molecular pathways involved in tumorigenesis. This offers the potential to tailor treatments to tumor subtypes--perhaps with greater efficacy and less toxicity. Many of the so-called targeted therapies are under investigation in the treatment of malignant glioma. In this review, we will focus on the use of agents that affect signal transduction. In particular, we will review the potential role for inhibitors of: tyrosine kinases, targets of rapamycin, farnesyl transferase and histone deacetylase. Inhibitors of angiogenesis will also be discussed. Some 'targeted' therapies are less specific than others, working on more than one pathway or receptor, thus complex interactions are possible.
Collapse
Affiliation(s)
- Rimas V Lukas
- University of Chicago, Department of Neurology, MC 2030, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
1131
|
Kanai Y. Overexpression of HDACs: a prognostic marker for gastric cancer identified by tissue microarray. Lancet Oncol 2008; 9:91-3. [DOI: 10.1016/s1470-2045(08)70012-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
1132
|
Downs JA. Chromatin structure and DNA double-strand break responses in cancer progression and therapy. Oncogene 2008; 26:7765-72. [PMID: 18066089 DOI: 10.1038/sj.onc.1210874] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Defects in the detection and repair of DNA double-strand breaks (DSBs) have been causatively linked to tumourigenesis. Moreover, inhibition of DNA damage responses (DDR) can increase the efficacy of cancer therapies that rely on generation of damaged DNA. DDR must occur within the context of chromatin, and there have been significant advances in recent years in understanding how the modulation and manipulation of chromatin contribute to this activity. One particular covalent modification of a histone variant--the phosphorylation of H2AX--has been investigated in great detail and has been shown to have important roles in DNA DSB responses and in preventing tumourigenesis. These studies are reviewed here in the context of their relevance to cancer therapy and diagnostics. In addition, there is emerging evidence for contributions by proteins involved in mediating higher order structure to DNA DSB responses. The contributions of a subset of these proteins--linker histones and high-mobility group box (HMGB) proteins--to DDR and their potential significance in tumourigenesis are discussed.
Collapse
Affiliation(s)
- J A Downs
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, UK.
| |
Collapse
|
1133
|
Substituting N(epsilon)-thioacetyl-lysine for N(epsilon)-acetyl-lysine in peptide substrates as a general approach to inhibiting human NAD(+)-dependent protein deacetylases. Int J Mol Sci 2008; 9:1-11. [PMID: 19325715 PMCID: PMC2635597 DOI: 10.3390/ijms9010001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 12/21/2007] [Accepted: 01/02/2008] [Indexed: 12/13/2022] Open
Abstract
Inhibitors of human NAD+-dependent protein deacetylases possess great value for deciphering the biology of these enzymes and as potential therapeutics for metabolic and age-related diseases and cancer. In the current study, we have experimentally demonstrated that, the potent inhibition we obtained previously for one of these enzymes (i.e. sirtuin type 1 (SIRT1)) by simply replacing Nε-thioacetyl-lysine for Nε-acetyl-lysine in its peptide substrate, represented a general and efficient strategy to develop potent and selective inhibitors of human NAD+-dependent protein deacetylase enzymes. Indeed, by using this simple inhibition strategy, potent (low-micromolar) and selective (≤40-fold) SIRT2 and SIRT3 inhibitors, which were either comparable or superior to currently existing inhibitors, have also been quickly identified in the current study. These inhibitors could be used as chemical biological tools or as lead compounds for further focused structure-activity optimization.
Collapse
|
1134
|
Latronico MV, Elia L, Condorelli G, Catalucci D. Heart failure: Targeting transcriptional and post-transcriptional control mechanisms of hypertrophy for treatment. Int J Biochem Cell Biol 2008; 40:1643-8. [DOI: 10.1016/j.biocel.2008.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/04/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
|
1135
|
Abstract
Histone deacetylase inhibitors (HDACi) comprise structurally diverse compounds that are a group of targeted anticancer agents. The first of these new HDACi, vorinostat (suberoylanilide hydroxamic acid), has received Food and Drug Administration approval for treating patients with cutaneous T-cell lymphoma. This review focuses on the activities of the 11 zinc-containing HDACs, their histone and nonhistone protein substrates, and the different pathways by which HDACi induce transformed cell death. A hypothesis is presented to explain the relative resistance of normal cells to HDACi-induced cell death.
Collapse
Affiliation(s)
- Milos Dokmanovic
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
1136
|
Dokmanovic M, Perez G, Xu W, Ngo L, Clarke C, Parmigiani RB, Marks PA. Histone deacetylase inhibitors selectively suppress expression of HDAC7. Mol Cancer Ther 2007; 6:2525-34. [PMID: 17876049 DOI: 10.1158/1535-7163.mct-07-0251] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are 18 histone deacetylases (HDAC) generally divided into four classes based on homology to yeast HDACs. HDACs have many protein substrates in addition to histones that are involved in regulation of gene expression, cell proliferation, and cell death. Inhibition of HDACs can cause accumulation of acetylated forms of these proteins, thus altering their function. HDAC inhibitors (HDACi), such as the hydroxamic acid-based vorinostat (suberoylanilide hydroxamic acid), inhibit the zinc-containing classes I, II, and IV, but not the NAD(+)-dependent class III, enzymes. HDACis are a group of novel anticancer agents. Vorinostat is the first HDACi approved for clinical use in the treatment of the cancer cutaneous T-cell lymphoma. Factors affecting expression of HDACs are not well understood. This study focuses on the effect of the HDACi vorinostat on the expression of class I and class II HDACs. We found that vorinostat selectively down-regulates HDAC7 with little or no effect on the expression of other class I or class II HDACs. Fourteen cell lines were examined, including normal, immortalized, genetically transformed, and human cancer-derived cell lines. Down-regulation of HDAC7 by vorinostat is more pronounced in transformed cells sensitive to inhibitor-induced cell death than in normal cells or cancer cells resistant to induced cell death. Modulation of HDAC7 levels by small interfering RNA-mediated knockdown or by HDAC7 overexpression is associated with growth arrest but without detectable changes in acetylation of histones or p21 gene expression. Selective down-regulation of HDAC7 protein may serve as a marker of response of tumors to HDACi.
Collapse
Affiliation(s)
- Milos Dokmanovic
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
1137
|
Charrier C, Roche J, Gesson JP, Bertrand P. Antiproliferative activities of a library of hybrids between indanones and HDAC inhibitor SAHA and MS-275 analogues. Bioorg Med Chem Lett 2007; 17:6142-6. [PMID: 17897824 DOI: 10.1016/j.bmcl.2007.09.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/07/2007] [Accepted: 09/08/2007] [Indexed: 10/22/2022]
Abstract
New compounds derived from inhibitors of histone deacetylases (HDACs) have been synthesized and their antiproliferative activities towards non small lung cancer cell line H661 evaluated. Their design is based on hybrids between indanones to limit conformational mobility and other known HDAC inhibitors (SAHA, MS-275). The synthesis of these new derivatives was achieved by alkylation of appropriate indanones to introduce the side chain bearing a terminal ester group, the latter being a precursor of hydroxamic acid and aminobenzamide derivatives. These new analogues were found to be moderately active to inhibit H661 cell proliferation.
Collapse
Affiliation(s)
- Cédric Charrier
- Synthèse et Réactivité des Substances Naturelles, CNRS UMR 6514, Université de Poitiers, 40 Avenue du Recteur Pineau, Poitiers, France
| | | | | | | |
Collapse
|
1138
|
Fucito A, Lucchetti C, Giordano A, Romano G. Genetic and epigenetic alterations in breast cancer: what are the perspectives for clinical practice? Int J Biochem Cell Biol 2007; 40:565-75. [PMID: 18061512 PMCID: PMC2729585 DOI: 10.1016/j.biocel.2007.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/04/2007] [Accepted: 10/05/2007] [Indexed: 12/28/2022]
Abstract
The worldwide incidence of breast cancer affects 1.2 million women each year. In contrast to the high occurrence of this malady, a decline in mortality is reported among industrialized countries. In this respect, both awareness campaigns and substantial progress achieved in therapy and diagnosis allowed for the enhancement of the survival rate in patients with breast cancer. Undoubtedly, oncology research programs played a relevant role in the improvement of therapeutics and diagnostics for breast cancer. Major strides were reported, especially over the last decade and a half, in better understanding molecular and cellular biology events involved in breast cancer pathogenesis and progression of the disease. However, therapeutic approaches for the treatment of patients with breast cancer need further improvement. Therapeutic interventions can chronically compromise both the state of health and quality of life of breast cancer survivors. In addition, current therapeutic approaches have not significantly improved the survival rate in patients with metastatic disease. On these grounds, it is necessary to develop more efficient therapeutics and diagnostic tools, which can improve the health and quality of life of breast cancer survivors and increase the survival rate in patients with metastatic disease. In this respect, the field of cancer research has placed a particular emphasis on the elucidation of genetic and epigenetic alterations that may lead to the pathogenesis of breast cancer and contribute to its progression.
Collapse
Affiliation(s)
- Alfredo Fucito
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | | | | | | |
Collapse
|
1139
|
Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 2007; 26:5310-8. [PMID: 17694074 DOI: 10.1038/sj.onc.1210599] [Citation(s) in RCA: 716] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acetylation of the epsilon-amino group of a lysine residue was first discovered with histones in 1968, but the responsible enzymes, histone acetyltransferases and deacetylases, were not identified until the mid-1990s. In the past decade, knowledge about this modification has exploded, with targets rapidly expanding from histones to transcription factors and other nuclear proteins, and then to cytoskeleton, metabolic enzymes, and signaling regulators in the cytoplasm. Thus, protein lysine acetylation has emerged as a major post-translational modification to rival phosphorylation. In this issue of Oncogene, 19 articles review various aspects of the enzymes governing lysine acetylation, especially about their intimate links to cancer. To introduce the articles, we highlight here four central themes: (i) multisubunit enzymatic complexes; (ii) non-histone substrates in diverse cellular processes; (iii) interplay of lysine acetylation with other regulatory mechanisms, such as noncoding RNA-mediated gene silencing and activation; and (iv) novel therapeutic strategies and preventive measures to combat cancer and other human diseases.
Collapse
Affiliation(s)
- X-J Yang
- Molecular Oncology Group, Department of Medicine, McGill University Health Center, Montréal, Québec, Canada.
| | | |
Collapse
|