1151
|
The Role of Macrophage in the Pathogenesis of Osteoporosis. Int J Mol Sci 2019; 20:ijms20092093. [PMID: 31035384 PMCID: PMC6539137 DOI: 10.3390/ijms20092093] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a systemic disease with progressive bone loss. The bone loss is associated with an imbalance between bone resorption via osteoclasts and bone formation via osteoblasts. Other cells including T cells, B cells, macrophages, and osteocytes are also involved in the pathogenesis of osteoporosis. Different cytokines from activated macrophages can regulate or stimulate the development of osteoclastogenesis-associated bone loss. The fusion of macrophages can form multinucleated osteoclasts and, thus, cause bone resorption via the expression of IL-4 and IL-13. Different cytokines, endocrines, and chemokines are also expressed that may affect the presentation of macrophages in osteoporosis. Macrophages have an effect on bone formation during fracture-associated bone repair. However, activated macrophages may secrete proinflammatory cytokines that induce bone loss by osteoclastogenesis, and are associated with the activation of bone resorption. Targeting activated macrophages at an appropriate stage may help inhibit or slow the progression of bone loss in patients with osteoporosis.
Collapse
|
1152
|
Kawiak A, Domachowska A, Lojkowska E. Plumbagin Increases Paclitaxel-Induced Cell Death and Overcomes Paclitaxel Resistance in Breast Cancer Cells through ERK-Mediated Apoptosis Induction. JOURNAL OF NATURAL PRODUCTS 2019; 82:878-885. [PMID: 30810041 DOI: 10.1021/acs.jnatprod.8b00964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ERK is a component of mitogen-activated protein kinases that controls a range of cellular processes including cell proliferation and survival. The upregulation of ERK has been associated with apoptosis inhibition in response to various stimuli including chemotherapeutic agents. Research has suggested that the upregulation of ERK signaling by the anticancer agent paclitaxel leads to acquired resistance of cells to this compound. The presented research focused on determining the role of plumbagin, a naturally derived naphthoquinone, in the sensitization of breast cancer cells to paclitaxel-induced cell death and the involvement of ERK signaling in this process. The results of the study indicated that plumbagin increases the sensitivity of breast cancer cells to paclitaxel. Moreover, a synergistic effect between plumbagin and paclitaxel was observed. Plumbagin was shown to decrease levels of phosphorylated ERK in breast cancer cells and abrogated paclitaxel-induced ERK phosphorylation. The role of ERK in plumbagin-mediated sensitization of breast cancer cells to paclitaxel was shown through the enhancement of the synergistic effect between compounds in cells with decreased ERK expression. Furthermore, plumbagin reduced p-ERK levels in paclitaxel-resistant breast cancer cells and resensitized paclitaxel-resistant cells to this compound. These results imply that plumbagin inhibits ERK activation in breast cancer cells, which plays a role in the sensitization of cells to paclitaxel-induced cell death.
Collapse
Affiliation(s)
- Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology , University of Gdansk and Medical University of Gdansk , Abrahama 58 , 80-307 , Gdansk , Poland
| | - Anna Domachowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology , University of Gdansk and Medical University of Gdansk , Abrahama 58 , 80-307 , Gdansk , Poland
| | - Ewa Lojkowska
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology , University of Gdansk and Medical University of Gdansk , Abrahama 58 , 80-307 , Gdansk , Poland
| |
Collapse
|
1153
|
Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P. Drug delivery systems designed to overcome antimicrobial resistance. Med Res Rev 2019; 39:2343-2396. [PMID: 31004359 DOI: 10.1002/med.21588] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Antimicrobial resistance has emerged as a huge challenge to the effective treatment of infectious diseases. Aside from a modest number of novel anti-infective agents, very few new classes of antibiotics have been successfully developed for therapeutic use. Despite the research efforts of numerous scientists, the fight against antimicrobial (ATB) resistance has been a longstanding continued effort, as pathogens rapidly adapt and evolve through various strategies, to escape the action of ATBs. Among other mechanisms of resistance to antibiotics, the sophisticated envelopes surrounding microbes especially form a major barrier for almost all anti-infective agents. In addition, the mammalian cell membrane presents another obstacle to the ATBs that target intracellular pathogens. To negotiate these biological membranes, scientists have developed drug delivery systems to help drugs traverse the cell wall; these are called "Trojan horse" strategies. Within these delivery systems, ATB molecules can be conjugated with one of many different types of carriers. These carriers could include any of the following: siderophores, antimicrobial peptides, cell-penetrating peptides, antibodies, or even nanoparticles. In recent years, the Trojan horse-inspired delivery systems have been increasingly reported as efficient strategies to expand the arsenal of therapeutic solutions and/or reinforce the effectiveness of conventional ATBs against drug-resistant microbes, while also minimizing the side effects of these drugs. In this paper, we aim to review and report on the recent progress made in these newly prevalent ATB delivery strategies, within the current context of increasing ATB resistance.
Collapse
Affiliation(s)
- Thanh-Nhat Pham
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | - Pauline Loupias
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| | | | - Pascal Sonnet
- Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, Amiens, France
| |
Collapse
|
1154
|
Zhou F, Mei J, Yuan K, Han X, Qiao H, Tang T. Isorhamnetin attenuates osteoarthritis by inhibiting osteoclastogenesis and protecting chondrocytes through modulating reactive oxygen species homeostasis. J Cell Mol Med 2019; 23:4395-4407. [PMID: 30983153 PMCID: PMC6533508 DOI: 10.1111/jcmm.14333] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence indicates that osteoarthritis (OA) is a musculoskeletal disease affecting the whole joint, including both cartilage and subchondral bone. Reactive oxygen species (ROS) have been demonstrated to be one of the important destructive factors during early‐stage OA development. The objective of this study was to investigate isorhamnetin (Iso) treatment on osteoclast formation and chondrocyte protection to attenuate OA by modulating ROS. Receptor activator of nuclear factor‐kappa B ligand (RANKL) was used to establish the osteoclast differentiation model in bone marrow macrophages (BMMs) in vivo. H2O2 was used to induce ROS, which could further cause chondrocyte apoptosis. We demonstrated that Iso suppressed RANKL‐induced ROS generation, which could mediate osteoclastogenesis. Moreover, we found that Iso inhibited osteoclast formation and function by suppressing the expression of osteoclastogenesis‐related genes and proteins. We proved that Iso inhibited RANKL‐induced activation of mitogen‐activated protein kinase activation of mitogen‐activated protein kinase (MAPK), nuclear factor‐kappa B (NF‐κB) and AKT signalling pathways in BMMs. In addition, Iso inhibited ROS‐induced chondrocyte apoptosis by regulating apoptosis‐related proteins. Moreover, Iso was administered to an anterior cruciate ligament transection (ACLT)‐induced OA mouse model. The results indicated that Iso exerted beneficial effects on inhibiting excessive osteoclast activity and chondrocyte apoptosis, which further remedied cartilage damage. Overall, our data showed that Iso is an effective candidate for treating OA.
Collapse
Affiliation(s)
- Feng Zhou
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. of China
| | - Jingtian Mei
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. of China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. of China
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. of China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. of China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. of China
| |
Collapse
|
1155
|
Anisimova N, Kiselevskiy M, Martynenko N, Straumal B, Willumeit-Römer R, Dobatkin S, Estrin Y. Cytotoxicity of biodegradable magnesium alloy WE43 to tumor cells in vitro: Bioresorbable implants with antitumor activity? J Biomed Mater Res B Appl Biomater 2019; 108:167-173. [PMID: 30957969 DOI: 10.1002/jbm.b.34375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
In this study, a degradable magnesium alloy WE43 (Mg-3.56%Y-2.20%Nd-0.47%Zr) was used as a research object. To refine its microstructure from the initial homogenized one, the alloy was subjected to severe plastic deformation (SPD) by equal channel angular pressing (ECAP). The data presented show that coincubation of tumor LNCaP and MDA-MB-231 cells with the WE43 alloy in the homogenized and the ECAP-processed states led to a decrease in their viability and proliferation. An increase in the concentration of Annexin V(+) cells during coincubation with samples in both microstructural states investigated was also observed. This is associated with the induction of apoptosis in the cell culture through contact with the samples. Concurrently, a significant drop in the concentration of Bcl-2(+) cells occurred. It was established that ECAP led to an enhancement of the cytotoxic activity of the alloy against tumor cells. This study demonstrated that alloy WE43 can be considered as a promising candidate for application in orthopedic implants in clinical oncology, where it could play a double role of a mechanically stable, yet bioresorbable, scaffold with local antitumor activity. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:167-173, 2020.
Collapse
Affiliation(s)
- Natalia Anisimova
- National University of Science and Technology "MISIS", Moscow, Russia.,N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail Kiselevskiy
- National University of Science and Technology "MISIS", Moscow, Russia.,N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalia Martynenko
- National University of Science and Technology "MISIS", Moscow, Russia.,A.A. Baikov Institute of Metallurgy and Materials Science of the RAS, Moscow, Russia
| | - Boris Straumal
- National University of Science and Technology "MISIS", Moscow, Russia.,Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Sergey Dobatkin
- National University of Science and Technology "MISIS", Moscow, Russia.,A.A. Baikov Institute of Metallurgy and Materials Science of the RAS, Moscow, Russia
| | - Yuri Estrin
- Department of Materials Science and Engineering, Monash University, Melbourne, Australia.,Department of Mechanical Engineering, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
1156
|
Chu L, Li R, Liao Z, Yang Y, Dai J, Zhang K, Zhang F, Xie Y, Wei J, Zhao J, Yu Z, Tang T. Highly Effective Bone Fusion Induced by the Interbody Cage Made of Calcium Silicate/Polyetheretherketone in a Goat Model. ACS Biomater Sci Eng 2019; 5:2409-2416. [PMID: 33405749 DOI: 10.1021/acsbiomaterials.8b01193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interbody fusion surgery is often used to settle matters such as degenerative disc disease or disc herniation in clinical orthopedics. Considering the deficiencies of the current treatment methods, we developed an interbody fusion cage made of calcium silicate (CS)/polyetheretherketone (PEEK) and hoped that the bioactive cage could exhibit great fusion ability and maintain stable mechanical function. In the goat model of cervical interbody fusion, the CS/PEEK cage showed stronger interbody fusion at 12 and 26 weeks compared with pure PEEK cage based on the X-ray analysis. The micro-CT scanning and analysis indicated that the CS/PEEK cage induced more new bone ingrowth than the PEEK cage and led to nearly complete interbody fusion at 26 weeks. Moreover, the CS/PEEK group showed excellent mechanical stability and stiffness as evaluated by the spine kinematic assay at the time points. The histological assessment showed the rapid osseointegration and mineralized bone formation around the CS/PEEK cage. This study confirmed that the bioactive CS/PEEK cage is capable of inducing highly effective bone fusion and has high potential to be used in the clinics of spine surgery.
Collapse
Affiliation(s)
- Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Rui Li
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
| | - Zhenhua Liao
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
| | - Ying Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Jianjun Dai
- Institute of Animal Science and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 200011, P. R. China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Feng Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Youzhuan Xie
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| |
Collapse
|
1157
|
Yang BC, Zhou XD, Yu HY, Wu Y, Bao CY, Man Y, Cheng L, Sun Y. [Advances in titanium dental implant surface modification]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:124-129. [PMID: 31168977 PMCID: PMC7030153 DOI: 10.7518/hxkq.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/02/2019] [Indexed: 02/05/2023]
Abstract
Titanium dental implants have wide clinical application due to their many advantages, including comfort, aesthetics, lack of damage to adjacent teeth, and significant clinical effects. However, the failure of osseointegration, bone resorption, and peri-implantitis limits their application. Physical-chemical and bioactive coatings on the surface of titanium implants could improve the successful rate of dental implants and meet the clinical application requirements. This paper reviews the characteristics of surface modification of titanium implants from the aspects of physics, chemistry, and biology. Results provide information for research and clinical application of dental implant materials.
Collapse
Affiliation(s)
- Bang-Cheng Yang
- Engineering Research Center in Biomaterials, Sichuan University & Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hai-Yang Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yao Wu
- Engineering Research Center in Biomaterials, Sichuan University & Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China
| | - Chong-Yun Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Man
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yao Sun
- Dept. of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai 200072, China
| |
Collapse
|
1158
|
Maher S, Mazinani A, Barati MR, Losic D. Engineered titanium implants for localized drug delivery: recent advances and perspectives of Titania nanotubes arrays. Expert Opin Drug Deliv 2019; 15:1021-1037. [PMID: 30259776 DOI: 10.1080/17425247.2018.1517743] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Therapeutics delivery to bones to treat skeletal diseases or prevent postsurgical infections is challenging due to complex and solid bone structure that limits blood supply and diffusion of therapeutics administered by systemic routes to reach effective concentration. Titanium (Ti) and their alloys are employed as mainstream implant materials in orthopedics and dentistry; having superior mechanical/biocompatibility properties which could provide an alternative solution to address this problem. AREAS COVERED This review presents an overview of recent development of Ti drug-releasing implants, with emphasis on nanoengineered Titania nanotubes (TNTs) structures, for solving key problems to improve implants osseointegration, overcome inflammation and infection together with providing localized drug delivery (LDD) for bone diseases including cancer. Critical analysis of the advantages/disadvantages of developed concepts is discussed, their drug loading/releasing performances and specific applications. EXPERT OPINION LDD to bones can address many disorders and postsurgical conditions such as inflammation, implants rejection and infection. To this end, TNTs-Ti implants represent a potential promise for the development of new generation of multifunctional implants with drug release functions. Even this concept is extensively explored recently, there is a strong need for more preclinical studies using animal models to confirm the long-term safety and stability of TNTs-Ti implants for real-life medical applications.
Collapse
Affiliation(s)
- Shaheer Maher
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| | - Arash Mazinani
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| | - Mohammad Reza Barati
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| | - Dusan Losic
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| |
Collapse
|
1159
|
Ahmed W, Zhai Z, Gao C. Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio 2019; 2:100017. [PMID: 32159147 PMCID: PMC7061676 DOI: 10.1016/j.mtbio.2019.100017] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections on the implant surface may eventually lead to biofilm formation and thus threaten the use of implants in body. Despite efficient host immune system, the implant surface can be rapidly occupied by bacteria, resulting in infection persistence, implant failure, and even death of the patients. It is difficult to cope with these problems because bacteria exhibit complex adhesion mechanisms to the implants that vary according to bacterial strains. Different biomaterial coatings have been produced to release antibiotics to kill bacteria. However, antibiotic resistance occurs very frequently. Stimuli-responsive biomaterials have gained much attention in recent years but are not effective enough in killing the pathogens because of the complex mechanisms in bacteria. This review is focused on the development of highly efficient and specifically targeted biomaterials that release the antimicrobial agents or respond to bacteria on demands in body. The mechanisms of bacterial adhesion, biofilm formation, and antibiotic resistance are discussed, and the released substances accounting for implant infection are described. Strategies that have been used in past for the eradication of bacterial infections are also discussed. Different types of stimuli can be triggered only upon the existence of bacteria, leading to the release of antibacterial molecules that in turn kill the bacteria. In particular, the toxin-triggered, pH-responsive, and dual stimulus-responsive adaptive antibacterial biomaterials are introduced. Finally, the state of the art in fabrication of dual responsive antibacterial biomaterials and tissue integration in medical implants is discussed.
Collapse
Affiliation(s)
| | | | - C. Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
1160
|
Liu J, Sun L, Xu W, Wang Q, Yu S, Sun J. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr Polym 2019; 207:297-316. [DOI: 10.1016/j.carbpol.2018.11.077] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/20/2022]
|
1161
|
Seem SA, Yuan YV, Tou JC. Chocolate and chocolate constituents influence bone health and osteoporosis risk. Nutrition 2019; 65:74-84. [PMID: 31029926 DOI: 10.1016/j.nut.2019.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/13/2022]
Abstract
Bone loss resulting in increased risk for osteoporosis is a major health issue worldwide. Chocolate is a rich source of antioxidant and antiinflammatory flavonoids and dietary minerals with the potential to benefit bone health. However, other chocolate constituents such as cocoa butter, sugar, and methylxanthines may be detrimental to bone. Human studies investigating the role of chocolate consumption on serum bone markers and bone mineral density (BMD) have been inconsistent. A contributing factor is likely the different composition and thereby the nutrient and bioactive content among chocolate types. White and milk chocolate are high in sugar and low in flavonoids and most minerals. Dark chocolate (45-85% cocoa solids) is high in flavonoids, most minerals, and low in sugar with ≥70% cocoa solids resulting in higher fat and methylxanthine content. The aim of this review was to examine the relationship between chocolate consumption and its constiuents, including flavonoid content, on bone health and osteoporosis risk. Studies showed postmenopausal women had no bone effects at moderate chocolate intakes, whereas adolescents consuming chocolate had greater longitudinal bone growth. Based on flavonoid and mineral content, unsweetened cocoa powder appeared to be the best option followed by dark chocolate with higher cocoa content in terms of supporting and preserving bone health. Determining dietary recommendations for chocolate consumption relative to bone health is important because of the growing popularity of chocolate, particularly dark chocolate, and an expected increase in consumption owing to suggestions of health benefits against various degenerative diseases.
Collapse
Affiliation(s)
- Stephanie A Seem
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Yvonne V Yuan
- School of Nutrition, Ryerson University, Toronto, Ontario, Canada
| | - Janet C Tou
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
1162
|
He F, Bai J, Wang J, Zhai J, Tong L, Zhu G. Irradiation‐induced osteocyte damage promotes HMGB1‐mediated osteoclastogenesis in vitro. J Cell Physiol 2019; 234:17314-17325. [DOI: 10.1002/jcp.28351] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Feilong He
- Department of Radiation Health Institute of Radiation Medicine, Fudan University Shanghai China
| | - Jiangtao Bai
- Department of Radiation Health Institute of Radiation Medicine, Fudan University Shanghai China
| | - Jianping Wang
- Department of Radiation Health Institute of Radiation Medicine, Fudan University Shanghai China
| | - Jianglong Zhai
- Department of Radiation Health Institute of Radiation Medicine, Fudan University Shanghai China
| | - Ling Tong
- Department of Radiation Health Institute of Radiation Medicine, Fudan University Shanghai China
| | - Guoying Zhu
- Department of Radiation Health Institute of Radiation Medicine, Fudan University Shanghai China
| |
Collapse
|
1163
|
Kang Y, Li L, Li S, Zhou X, Xia K, Liu C, Qu Q. Temporary Inhibition of the Corrosion of AZ31B Magnesium Alloy by Formation of Bacillus subtilis Biofilm in Artificial Seawater. MATERIALS 2019; 12:ma12030523. [PMID: 30744166 PMCID: PMC6384576 DOI: 10.3390/ma12030523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/08/2019] [Accepted: 01/26/2019] [Indexed: 11/16/2022]
Abstract
It is well known that microorganisms tend to form biofilms on metal surfaces to accelerate/decelerate corrosion and affect their service life. Bacillus subtilis was used to produce a dense biofilm on an AZ31B magnesium alloy surface. Corrosion behavior of the alloy with the B. subtilis biofilm was evaluated in artificial seawater. The results revealed that the biofilm hampered extracellular electron transfer significantly, which resulted in a decrease of icorr and increase of Rt clearly compared to the control group. Moreover, an ennoblement of Ecorr was detected under the condition of B. subtilis biofilm covering. Significant reduction of the corrosion was observed by using the cyclic polarization method. All of these prove that the existence of the B. subtilis biofilm effectively enhances the anti-corrosion performance of the AZ31B magnesium alloy. This result may enhance the usage of bio-interfaces for temporary corrosion control. In addition, a possible corrosion inhibition mechanism of B. subtilis on AZ31B magnesium alloy was proposed.
Collapse
Affiliation(s)
- Yaxin Kang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Shunling Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Xin Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Ke Xia
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Chang Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
1164
|
Aragón J, Feoli S, Irusta S, Mendoza G. Composite scaffold obtained by electro-hydrodynamic technique for infection prevention and treatment in bone repair. Int J Pharm 2019; 557:162-169. [DOI: 10.1016/j.ijpharm.2018.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 01/12/2023]
|
1165
|
Wu J, Zhao FT, Fan KJ, Zhang J, Xu BX, Wang QS, Tang TT, Wang TY. Dihydromyricetin Inhibits Inflammation of Fibroblast-Like Synoviocytes through Regulation of Nuclear Factor- κB Signaling in Rats with Collagen-Induced Arthritis. J Pharmacol Exp Ther 2019; 368:218-228. [PMID: 30530730 DOI: 10.1124/jpet.118.253369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022] Open
Abstract
Dihydromyricetin (DMY), the main flavonoid of Ampelopsis grossedentata, has potent anti-inflammatory activity. However, the effect of DMY on chronic autoimmune arthritis remains undefined. In this study, we investigated the therapeutic effects of DMY on collagen-induced arthritis (CIA). Wistar rats were immunized with bovine type II collagen to establish CIA and were then administered DMY intraperitoneally (5, 25, and 50 mg/kg) every other day for 5 weeks. Paw swelling, clinical scoring, and histologic analysis were assessed to determine the therapeutic effects of DMY on the development of arthritis in CIA rats. The results showed that treatment with DMY significantly reduced erythema and swelling in the paws of CIA rats. Pathologic analysis of the knee joints and peripheral blood cytokine assay results confirmed the antiarthritic effects of DMY on synovitis and inflammation. Fibroblast-like synoviocytes (FLSs) were isolated from the synovium of CIA rats and treated with 10 ng/ml interleukin (IL)-1β DMY significantly inhibited the proliferation, migration, and inflammation of IL-1β-induced FLSs, whereas it significantly increased IL-1β-induced FLS apoptosis in a dose-dependent manner (6.25-25 μM). Moreover, DMY suppressed phosphorylation of IκB kinase (IKK) and inhibitor of NF-κB α and subsequently reduced the IL-1β-induced nucleus translocation of NF-κB in FLSs. Through a molecular docking assay, we demonstrated that DMY could directly bind to the Thr9 and Asp88 residues in IKKα and the Asp95, Asn142, and Gln167 residues in IKKβ These findings demonstrate that DMY could alleviate inflammation in CIA rats and attenuate IL-1β-induced activities in FLSs through suppression of NF-κB signaling.
Collapse
Affiliation(s)
- Jing Wu
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Fu-Tao Zhao
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Kai-Jian Fan
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Jun Zhang
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Bing-Xing Xu
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Qi-Shan Wang
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Ting-Ting Tang
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Ting-Yu Wang
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| |
Collapse
|
1166
|
Wei T, Yu Q, Chen H. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Adv Healthc Mater 2019; 8:e1801381. [PMID: 30609261 DOI: 10.1002/adhm.201801381] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/13/2018] [Indexed: 01/12/2023]
Abstract
Antibacterial coatings that eliminate initial bacterial attachment and prevent subsequent biofilm formation are essential in a number of applications, especially implanted medical devices. Although various approaches, including bacteria-repelling and bacteria-killing mechanisms, have been developed, none of them have been entirely successful due to their inherent drawbacks. In recent years, antibacterial coatings that are responsive to the bacterial microenvironment, that possess two or more killing mechanisms, or that have triggered-cleaning capability have emerged as promising solutions for bacterial infection and contamination problems. This review focuses on recent progress on three types of such responsive and synergistic antibacterial coatings, including i) self-defensive antibacterial coatings, which can "turn on" biocidal activity in response to a bacteria-containing microenvironment; ii) synergistic antibacterial coatings, which possess two or more killing mechanisms that interact synergistically to reinforce each other; and iii) smart "kill-and-release" antibacterial coatings, which can switch functionality between bacteria killing and bacteria releasing under a proper stimulus. The design principles and potential applications of these coatings are discussed and a brief perspective on remaining challenges and future research directions is presented.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| |
Collapse
|
1167
|
Van Giau V, An SSA, Hulme J. Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des Devel Ther 2019; 13:327-343. [PMID: 30705582 PMCID: PMC6342214 DOI: 10.2147/dddt.s190577] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The worldwide misuse of antibiotics and the subsequent rise of multidrug-resistant pathogenic bacteria have prompted a paradigm shift in the established view of antibiotic and bacterial-human relations. The clinical failures of conventional antibiotic therapies are associated with lengthy detection methods, poor penetration at infection sites, disruption of indigenous microflora and high potential for mutational resistance. One of the most promising strategies to improve the efficacy of antibiotics is to complex them with micro or nano delivery materials. Such materials/vehicles can shield antibiotics from enzyme deactivation, increasing the therapeutic effectiveness of the drug. Alternatively, drug-free nanomaterials that do not kill the pathogen but target virulent factors such as adhesins, toxins, or secretory systems can be used to minimize resistance and infection severity. The main objective of this review is to examine the potential of the aforementioned materials in the detection and treatment of antibiotic-resistant pathogenic organisms.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| |
Collapse
|
1168
|
Han G, Zuo J, Holliday LS. Specialized Roles for Actin in Osteoclasts: Unanswered Questions and Therapeutic Opportunities. Biomolecules 2019; 9:biom9010017. [PMID: 30634501 PMCID: PMC6359508 DOI: 10.3390/biom9010017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
Osteoclasts are cells of the hematopoietic lineage that are specialized to resorb bone. In osteoclasts, the actin cytoskeleton engages in at least two unusual activities that are required for resorption. First, microfilaments form a dynamic and structurally elaborate actin ring. Second, microfilaments bind vacuolar H⁺-ATPase (V-ATPase) and are involved in forming the V-ATPase-rich ruffled plasma membrane. The current review examines these two specialized functions with emphasis on the identification of new therapeutic opportunities. The actin ring is composed of substructures called podosomes that are interwoven to form a cohesive superstructure. Studies examining the regulation of the formation of actin rings and its constituent proteins are reviewed. Areas where there are gaps in the knowledge are highlighted. Microfilaments directly interact with the V-ATPase through an actin binding site in the B2-subunit of V-ATPase. This binding interaction is required for ruffled membrane formation. Recent studies show that an inhibitor of the interaction blocks bone resorption in pre-clinical animal models, including a model of post-menopausal osteoporosis. Because the unusual actin-based resorption complex is unique to osteoclasts and essential for bone resorption, it is likely that deeper understanding of its underlying mechanisms will lead to new approaches to treat bone disease.
Collapse
Affiliation(s)
- Guanghong Han
- Department of Stomatology, College and Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Jian Zuo
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.
| | - Lexie Shannon Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.
- Department of Anatomy & Cell Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
1169
|
Wang T, Qiao H, Zhai Z, Zhang J, Tu J, Zheng X, Qian N, Zhou H, Lu E, Tang T. Plumbagin Ameliorates Collagen-Induced Arthritis by Regulating Treg/Th17 Cell Imbalances and Suppressing Osteoclastogenesis. Front Immunol 2019; 9:3102. [PMID: 30671063 PMCID: PMC6333053 DOI: 10.3389/fimmu.2018.03102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
Abstract
Objective: Plumbago zeylanica L. (with plumbagin as its active ingredients) has been used for centuries to treat conditions such as joint swelling, fractures, and bacterial infections, suggesting that it possesses anti-inflammatory and immunosuppressive properties. In the present study, we evaluated the potential anti-arthritic activity and related mechanisms of plumbagin. Methods: Collagen-induced arthritis (CIA) was initiated in Wistar rats with collagen type II. Plumbagin (2 and 6 mg/kg) was orally administered to rats with CIA from day 12 to day 32 post immunization. The effects of plumbagin on arthritis progression were assessed by paw swelling, clinical scoring, and histologic analysis. The percentage of Treg and Th17 were defined by flow cytometry or immunofluorescence (IF) staining. Bone erosion and resorption were assessed by micro-CT and histomorphometric analysis. Osteoclast differentiation was further determined by in vitro osteoclastogenesis assay. The molecular docking assay was used to determine the potential binding site of plumbagin. Results: Treatment with plumbagin significantly inhibited arthritis development, as well as suppressed the local and systemic inflammation. Plumbagin reciprocally regulated pro-inflammatory Th17 cell and immunosuppressive Treg cell populations. In addition, plumbagin protected inflammation-induced bone loss by inhibiting osteoclast formation and activity. Plumbagin markedly suppressed RANKL-stimulated osteoclast-specific gene expression by repressing NF-κB signaling activation and MAP kinase phosphorylation. Further study via molecular docking assay demonstrated that plumbagin bound to MET169 of JNK kinase and LYS138 and SER183 of p38 kinase. Conclusion: Plumbagin not only attenuates the immune-induced arthritis by inhibiting inflammation, but also protects bone erosion by directly inhibiting osteoclast formation and activity. These data suggest plumbagin is a promising new candidate drug for treating inflammatory joint diseases.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Han Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jinwen Tu
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Xinyi Zheng
- Department of Stomatology, Shanghai Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Niandong Qian
- Department of Orthopaedic Surgery, Shanghai Institute of Traumatology and Orthopaedics, Shanghai, China
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Eryi Lu
- Department of Stomatology, Shanghai Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
1170
|
Jie Z, Xie Z, Xu W, Zhao X, Jin G, Sun X, Huang B, Tang P, Wang G, Shen S, Qin A, Fan S. SREBP-2 aggravates breast cancer associated osteolysis by promoting osteoclastogenesis and breast cancer metastasis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:115-125. [PMID: 30394316 DOI: 10.1016/j.bbadis.2018.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Bone is one of the most common sites of breast cancer metastasis and a major cause of high mortality in these patients. Thus, further understanding the molecular mechanisms regulating breast cancer-induced osteolysis is critical for the development of more effective treatments. In this study, we demonstrated that important roles sterol regulatory element-binding protein 2 (SREBP-2) play in osteoclast formation a function, and in breast cancer metastasis. SREBP-2 expression was found to be induced during the early stages of osteoclast formation under the control of the RANKL/cAMP-response element binding protein (CREB) signaling cascade. SREBP-2 is subsequently translocated into the nucleus where it participates with other transcriptional factors to induce the expression of NFATc1 required for mature osteoclast formation. Additionally, SREBP-2 was also found to be highly expressed in breast cancer tissues and correlated with a poor prognosis. SREBP-2 was similarly under the transcriptional control of CREB and its induction regulates the expression of matrix metalloproteinases (MMPs), key degradative enzymes involved in bone metastases by breast cancer cells. Accordingly, targeting of SREBP-2 with Fatostatin which specifically inhibits SCAP (SREBP cleavage-activating protein) and prevents SREBP activation, attenuated breast cancer-induced osteolysis in vivo. Collectively, our results suggest that SREBP-2 plays a critical role in regulating osteoclastogenesis and contributes to breast cancer-induced osteolysis. Thus, SREBP-2 inhibition is a potential therapeutic approach for breast cancer patients with osteolytic bone lesions.
Collapse
Affiliation(s)
- Zhiwei Jie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Ziang Xie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Wenbin Xu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Xiangde Zhao
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Gu Jin
- Department of Bone and Soft Tissue Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xuewu Sun
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Bao Huang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Pan Tang
- Department of Orthopedic, Zhejiang University Huzhou Hospital, Huzhou 313003, China
| | - Gangliang Wang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - Shuying Shen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
1171
|
Xu K, He R, Zhang Y, Qin S, Wang G, Wei Q, Zhang H, Ji F. Forsythiaside inhibited titanium particle-induced inflammation via the NF-κB signaling pathway and RANKL-induced osteoclastogenesis and titanium particle-induced periprosthetic osteolysis via JNK, p38, and ERK signaling pathways. RSC Adv 2019; 9:12384-12393. [PMID: 35515832 PMCID: PMC9063541 DOI: 10.1039/c8ra10007a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/26/2019] [Indexed: 11/21/2022] Open
Abstract
Wear particle-induced periprosthetic osteolysis is the primary complication of the total joint replacement; however, no conservative treatment except for reversal surgery is available for this disease. During the past decade, Chinese herbal medicines have been widely investigated to inhibit osteoclast differentiation, which may exhibit the potential to treat wear particle-induced periprosthetic osteolysis. The present study was aimed at the investigation of the effects of forsythiaside on osteocytes. The current data revealed that the forsythiaside treatment notably inhibited the titanium (Ti) particle-induced inflammation through impaired NF-κB signaling, thereby inhibiting TNF-α and IL-1β. In addition, the in vitro study demonstrated that forsythiaside effectively prevented the RANKL-induced differentiation of osteoclasts and inhibited the expression of osteoclast-specific genes in osteoclasts via inhibition of the JNK signaling pathway. The in vivo study of Ti particle-induced implant-associated osteolysis indicated that forsythiaside could also inhibit osteoclastogenesis. In summary, forsythiaside could inhibit osteoclastogenesis and particle-induced inflammation, resulting in decreased secretion of inflammatory cytokines such as TNF-α and IL-1β. On the other hand, forsythiaside could inhibit RANKL-induced osteoclastogenesis and Ti particle-induced periprosthetic osteolysis via JNK, ERK and p38 signaling pathways. Both the abovementioned biofunctions of forsythiaside contributed to the implant-associated particle-induced osteolysis. Thus, forsythiaside can act as a candidate drug for the precaution of implant-associated particle-induced osteolysis. Forsythiaside can act as a candidate drug for the precaution of implant-associated particle-induced osteolysis.![]()
Collapse
Affiliation(s)
- Kaihang Xu
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| | - Rongzhi He
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| | - Yuan Zhang
- Department of Ophthalmology
- Changhai Hospital Affiliated to the Navy Military Medical University
- Shanghai
- People's Republic of China
| | - Sheng Qin
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| | - Guangchao Wang
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| | - Qiang Wei
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| | - Hao Zhang
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| | - Fang Ji
- Department of Orthopedics
- Changhai Hospital Affiliated to the Navy Military Medical University
- Changhai Hospital
- The Navy Military Medical University
- Shanghai 200433
| |
Collapse
|
1172
|
De U, Son JY, Jeon Y, Ha SY, Park YJ, Yoon S, Ha KT, Choi WS, Lee BM, Kim IS, Kwak JH, Kim HS. Plumbagin from a tropical pitcher plant (Nepenthes alata Blanco) induces apoptotic cell death via a p53-dependent pathway in MCF-7 human breast cancer cells. Food Chem Toxicol 2019; 123:492-500. [PMID: 30458268 DOI: 10.1016/j.fct.2018.11.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022]
Abstract
Plumbagin (5-hydroxy-2-methyl-1,4-naphthaquinone) has displayed antitumor activity in vitro and in animal models; however, the underlying molecular mechanisms have not been fully explored. The aim of this study was to investigate the anticancer effects of plumbagin isolated from Nepenthes alata against MCF-7 breast cancer cells. We examined the cytotoxicity, cell cycle regulation, apoptotic cell death, and generation of intracellular reactive oxygen species (ROS) in MCF-7 cells. Plumbagin exhibited potent cytotoxicity in MCF-7 cells (wild-type p53) compared to that in SK-OV-3 (null-type) human epithelial ovarian cancer cells. Specifically, plumbagin upregulated the expression of p21CIP1/WAF1 in MCF-7 cells, causing cell cycle arrest in the G2/M phase through inhibition of cyclin B1 levels. Plumbagin also significantly increased the ratio of Bax/Bcl-2 and release of cytochrome c, resulting in apoptotic cell death in MCF-7 cells. Furthermore, plumbagin dramatically increased the intracellular ROS level, whereas pretreatment with the ROS scavenger N-acetyl cysteine protected against plumbagin-induced cytotoxicity, suggesting that ROS formation plays a pivotal role in antitumor activity in MCF-7 cells. In mice bearing MCF-7 cell xenografts, plumbagin significantly reduced tumor growth and weight without apparent side effects. We therefore concluded that plumbagin exerts anticancer activity against MCF-7 cells through the generation of intracellular ROS, resulting in the induction of apoptosis via a p53-dependent pathway. This study thus identifies a new anticancer mechanism of plumbagin against p53-dependent breast cancer cells and suggests a novel strategy for overcoming of breast cancer therapy.
Collapse
Affiliation(s)
- Umasankar De
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yukyoung Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Song-Yi Ha
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yu Jin Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ki-Tae Ha
- School of Korean Medicine and Healthy Aging Korean Medicine Research Center, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong Hwan Kwak
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
1173
|
Ao H, Yang S, Nie B, Fan Q, Zhang Q, Zong J, Guo S, Zheng X, Tang T. Improved antibacterial properties of collagen I/hyaluronic acid/quaternized chitosan multilayer modified titanium coatings with both contact-killing and release-killing functions. J Mater Chem B 2019; 7:1951-1961. [PMID: 32255058 DOI: 10.1039/c8tb02425a] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The HACC-based multilayer could inhibit the colonization of bacteria via contact-killing and release-killing.
Collapse
Affiliation(s)
- Haiyong Ao
- Shanghai Key Laboratory of Orthopedic Implants
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopedic Implants
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Bin’en Nie
- Shanghai Key Laboratory of Orthopedic Implants
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Qiming Fan
- Shanghai Key Laboratory of Orthopedic Implants
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Quanchao Zhang
- School of Materials Science and Engineering
- East China Jiao Tong University
- Nanchang
- China
| | - Jiajia Zong
- School of Materials Science and Engineering
- East China Jiao Tong University
- Nanchang
- China
| | - Shengrong Guo
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Science
- Shanghai
- China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| |
Collapse
|
1174
|
Zhang S, Xing M, Li B. Capsule-Integrated Polypeptide Multilayer Films for Effective pH-Responsive Multiple Drug Co-Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44267-44278. [PMID: 30511568 PMCID: PMC6461212 DOI: 10.1021/acsami.8b17264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many applications using drug-carrying biomedical materials require on-demand, localized delivery of multiple therapeutic agents in precisely controlled and patient-specific time sequences, especially after assembly of the delivery vehicles; however, creating such materials has proven extremely challenging. Here, we report a novel strategy to create polypeptide multilayer films integrated with capsules as vehicles for co-delivery of multiple drugs using layer-by-layer self-assembly technology. Our approach allows the multilayered polypeptide nanofilms and preimpregnated capsules to assemble into innovative biomedical materials with high and controllable loading of multiple drugs at any time postpreparation and to achieve pH-responsive and sustained release. The resulting capsule-integrated polypeptide multilayer films effectively co-deliver various drugs with very different properties, including proteins (e.g., growth factors) and nanoparticles, achieving bovine serum albumin loading of 80 μg cm-2 and release of 2 weeks, and histone loading of 100 μg cm-2 and release of 6 weeks; which also enable Staphylococcus aureus killing efficacy of 83% while maintaining osteoblast viability of >85% with silver nanoparticle delivery; and >5-fold cell adhesion and proliferation capability with live cell percentage of >90% via human recombinant bone morphogenetic protein 2 delivery. The successful development of such fascinating materials can not only function as advanced nanocoatings to reduce two major complications of orthopedic bone injuries (i.e., infection and delayed bone regeneration) but also provide new insights into the design and development of multifunctional materials for various other biomedical applications.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, and The Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
1175
|
Martínez-Carmona M, Gun'ko YK, Vallet-Regí M. Mesoporous Silica Materials as Drug Delivery: "The Nightmare" of Bacterial Infection. Pharmaceutics 2018; 10:E279. [PMID: 30558308 PMCID: PMC6320763 DOI: 10.3390/pharmaceutics10040279] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
Mesoporous silica materials (MSM) have a great surface area and a high pore volume, meaning that they consequently have a large loading capacity, and have been demonstrated to be unique candidates for the treatment of different pathologies, including bacterial infection. In this text, we review the multiple ways of action in which MSM can be used to fight bacterial infection, including early detection, drug release, targeting bacteria or biofilm, antifouling surfaces, and adjuvant capacity. This review focus mainly on those that act as a drug delivery system, and therefore that have an essential characteristic, which is their great loading capacity. Since MSM have advantages in all stages of combatting bacterial infection; its prevention, detection and finally in its treatment, we can venture to talk about them as the "nightmare of bacteria".
Collapse
Affiliation(s)
- Marina Martínez-Carmona
- School of Chemistry and CRANN, Trinity College, The University of Dublin, Dublin 2, Ireland.
| | - Yurii K Gun'ko
- School of Chemistry and CRANN, Trinity College, The University of Dublin, Dublin 2, Ireland.
| | - María Vallet-Regí
- Department Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
1176
|
Vidal M, Thibodaux RJ, Neira LFV, Messina OD. Osteoporosis: a clinical and pharmacological update. Clin Rheumatol 2018; 38:385-395. [PMID: 30542797 DOI: 10.1007/s10067-018-4370-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
Osteoporosis is characterized by the loss of bone mass, deterioration of the bone microarchitecture, and an increased risk of fractures; these later complications are associated with significant morbidity and mortality. The asymptomatic and progressive nature of osteoporosis underscores the importance of identifying this entity in early stages. Despite the various treatments available, the prevention of the disease represents the most important aspect of management. An adequate intake of calcium and vitamin D as well as a healthy lifestyle is the basis for maintaining bone health. When osteoporosis is diagnosed, the choice of medications must be individualized considering characteristics of the patient and the risk of fractures. In this article, we review the main causes of osteoporosis, when and how to start treatment, and appropriate therapy and monitoring.
Collapse
Affiliation(s)
- Maritza Vidal
- Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima, Peru.
| | - Ross J Thibodaux
- Division of Rheumatology, LSU Health Sciences Center - New Orleans, New Orleans, LA, USA
| | - Luis Fernando Vidal Neira
- Centro de Diagnóstico de Osteoporosis y Enfermedades Reumáticas (CEDOR), Lima, Peru.,Hospital María Auxiliadora, Lima, Peru.,International Osteoporosis Foundation (IOF), Nyon, Switzerland
| | - Osvaldo Daniel Messina
- Hospital Cosme Argerich, Buenos Aires, Argentina.,International Osteoporosis Foundation (IOF), Buenos Aires, Argentina
| |
Collapse
|
1177
|
Adipose mesenchymal stem cell-derived exosomes ameliorate hypoxia/serum deprivation-induced osteocyte apoptosis and osteocyte-mediated osteoclastogenesis in vitro. Biochem Biophys Res Commun 2018; 508:138-144. [PMID: 30473217 DOI: 10.1016/j.bbrc.2018.11.109] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/16/2018] [Indexed: 01/22/2023]
Abstract
Age-related skeletal changes is closely associated with imbalanced bone remodeling characterized by elevated osteocyte apoptosis and osteoclast activation. Since osteocytes are the commander of bone remodeling, attenuating increased osteocyte apoptosis may improve age-related bone loss. Exosomes, derived from mesenchymal stem cells, hold promising potential for cell-free therapy due to multiple abilities, such as promoting proliferation and suppressing apoptosis. We aimed to explore the effect of exosomes derived from adipose mesenchymal stem cell (ADSCs-exo) on osteocyte apoptosis and osteocyte-mediated osteoclastogenesis in vitro. The osteocyte-like cell line MLO-Y4 was used as a model, and apoptosis was induced by hypoxia and serum deprivation (H/SD). Our results showed that ADSCs-exo noticeably reduced H/SD-induced apoptosis in MLO-Y4 cells via upregulating the radio of Bcl-2/Bax, diminishing the production of reactive oxygen species and cytochrome c, and subsequent activation of caspase-9 and caspase-3. Additionally, ADSCs-exo lowered the expression of RANKL both at the mRNA and protein levels, as well as the ratio of RANKL/OPG at the gene level. As determined by tartrate-resistant acid phosphatase staining, reduced osteoclastogenesis was further validated in bone marrow monocytes cultured under conditioned medium from exosome-treated MLO-Y4. Together, ADSCs-exo could antagonize H/SD induced osteocyte apoptosis and osteocyte-mediated osteoclastogenesis, indicating the therapeutic potential of ADSCs-exo in age-related bone disease.
Collapse
|
1178
|
Jia Y, Jiang J, Lu X, Zhang T, Zhao K, Han W, Yang W, Qian Y. Garcinol suppresses RANKL-induced osteoclastogenesis and its underlying mechanism. J Cell Physiol 2018; 234:7498-7509. [PMID: 30471112 DOI: 10.1002/jcp.27511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/10/2018] [Indexed: 01/13/2023]
Abstract
Osteoclasts (OCs) are multinuclear giant cells responsible for bone resorption, and an excessive bone resorption by OCs plays an important role in osteoporosis. Commonly used drugs for the treatment of osteoporosis have severe side effects. As such, identification of alternative treatments is essential. Garcinol, a polyisoprenylated benzophenone extracted from the fruit of Garcinia indica, has shown a strong antitumor effect through the nuclear factor-κB (NF-κB) and mitogen-associated protein kinases (MAPK) signaling pathways. However, the role of garcinol in the osteoclastogenesis is still unclear. Here, we demonstrated that garcinol can inhibit the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis, osteoclastogenesis-related gene expression, the f-actin ring, and resorption pit formation. In addition, garcinol abrogated RANKL-induced osteoclastogenesis by attenuating the degradation of the MAPK, NF-κB, and PI3K-AKT signaling pathway as well as downstream factors c-jun, c-fos, and NFATC1. In vivo, suppression of osteoclastogenesis by garcinol was evidenced by marked inhibition of lipopolysaccharide-induced bone resorption. In conclusion, our data demonstrated that garcinol inhibited the RANKL-induced osteoclastogenesis by suppressing the MAPK, NF-κB, and PI3K-AKT signaling pathways and thus has potential as a novel therapeutic option for osteolytic bone diseases.
Collapse
Affiliation(s)
- Yewei Jia
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Jiawei Jiang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Xuanyuan Lu
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Tan Zhang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kangxian Zhao
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| |
Collapse
|
1179
|
Li M, Yang Y. Quaternized chitosan promotes the antiproliferative effect of vemurafenib in melanoma cells by increasing cell permeability. Onco Targets Ther 2018; 11:8293-8299. [PMID: 30538498 PMCID: PMC6255049 DOI: 10.2147/ott.s183311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background As one of the most invasive cutaneous carcinomas among all types of skin cancer, malignant melanoma remains a severe challenge in oncology and plastic surgery. Selective small-molecule inhibitors of V600E-mutant B-Raf (vemurafenib, for instance) have demonstrated satisfactory therapeutic efficacy in melanoma patients. However, acquired resistance during the period of drug administration has limited their clinical application. Materials and methods In the present study, human melanoma cells with the B-RafV600E mutation were treated with the indicated concentrations of vemurafenib, quaternized chitosan, or a combination of vemurafenib and quaternized chitosan. Cell proliferation and viability were evaluated using cell counting kit-8 assay and DAPI staining, and the IC50 values for vemurafenib in melanoma cells were also determined. Cell apoptosis was evaluated by Live/Dead cell staining using confocal laser scanning microscopy and Annexin V-FITC Apoptosis detection using flow cytometry, respectively. The leakage of ATP and K+ into the cell supernatants was measured to evaluate cell permeability. Furthermore, the surface charge variation of melanoma cells after drug treatment was determined by measuring the zeta potential of the cell membrane to clarify the electrostatic interaction between quaternized chitosan and the cells. Results Our results indicated that the addition of quaternized chitosan could promote the antiproliferative effect of vemurafenib in melanoma cells and could also promote the cell apoptosis of melanoma cells treated with vemurafenib. In addition, quaternized chitosan could increase cell permeability at early stages of co-culture, thus contributing to the improvement in intracellular drug uptake. Meanwhile, the majority of the negative surface charge of the cells was counteracted by the quaternized chitosan, indicating that the surface charge of melanoma cells was disturbed after the addition of quaternized chitosan. Conclusion This study indicated that disturbance of the surface charge of the cell membrane by quaternized chitosan is an important mechanism involved in changes in cell permeability, which promote the antiproliferative effect of vemurafenib in melanoma cells. Our preliminarily investigation provides new insights into the improvement of clinical melanoma therapy in the future.
Collapse
Affiliation(s)
- Min Li
- Department of Oncology, Changsha Central Hospital, Changsha 410006, Hunan, PR China
| | - Ying Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China, .,State Key Laboratory of Powder Metallurgy, Research Institute of Powder Metallurgy, Central South University, Changsha 410083, PR China,
| |
Collapse
|
1180
|
Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM. A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag 2018; 14:2029-2049. [PMID: 30464484 PMCID: PMC6225907 DOI: 10.2147/tcrm.s138000] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a bone disorder with remarkable changes in bone biologic material and consequent bone structural distraction, affecting millions of people around the world from different ethnic groups. Bone fragility is the worse outcome of the disease, which needs long term therapy and medical management, especially in the elderly. Many involved genes including environmental factors have been introduced as the disease risk factors so far, of which genes should be considered as effective early diagnosis biomarkers, especially for the individuals from high-risk families. In this review, a number of important criteria involved in osteoporosis are addressed and discussed.
Collapse
Affiliation(s)
- Farkhondeh Pouresmaeili
- Infertility and Reproductive Health Research Center (IRHRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Behnam Kamalidehghan
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
- Medical Genetics Center, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran,
| | - Maryam Kamarehei
- Department of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran,
| | - Yong Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
1181
|
Søgaard AJ, Ranhoff AH, Meyer HE, Omsland TK, Nystad W, Tell GS, Holvik K. The association between alcohol consumption and risk of hip fracture differs by age and gender in Cohort of Norway: a NOREPOS study. Osteoporos Int 2018; 29:2457-2467. [PMID: 30006884 DOI: 10.1007/s00198-018-4627-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/28/2018] [Indexed: 01/23/2023]
Abstract
UNLABELLED The association between alcohol consumption and hip fracture differed by gender: Men aged 30-59 years drinking frequently or 14+ gl/week had higher risk than moderate drinkers. No significant association was seen in older men. Women not drinking alcohol had higher risk than those drinking moderately both regarding frequency and amount. INTRODUCTION We aimed to examine alcohol consumption and risk of hip fracture according to age and gender in the population-based Cohort of Norway (1994-2003). METHODS Socio-demographics, lifestyle, and health were self-reported and weight and height were measured in 70,568 men and 71,357 women ≥ 30 years. Information on subsequent hip fractures was retrieved from hospitals' electronic patient registries during 1994-2013. Frequency of alcohol consumption was categorized: never/seldom, moderate (≤ 2-3 times/week), or frequent (≥ 4 times/week), and amount as number of glasses per week: 0, 1-6, 7-13, 14-27, and 28+. Type of alcohol (wine vs. beer/hard liquor) was also examined. Cox's proportional hazards regression was used to estimate hazard ratios (HRs) stratified on gender and baseline age < 60 and ≥ 60 years. RESULTS During median 15-year follow-up, 1558 men and 2511 women suffered a hip fracture. Using moderate drinkers as reference, men < 60 years drinking frequently had multivariable adjusted HR = 1.73 (CI 1.02-2.96) for hip fracture and more than 2.5 times higher risk if they consumed 14+ glasses compared to 1-6 glasses per week. In other groups of age and gender, no statistically significant increased risk was found in those consuming the highest levels of alcohol. Compared to women with moderate or frequent alcohol use, never/seldom-drinking women had the highest fracture risk. In women, use of wine was associated with lower fracture risk than other types of alcohol. CONCLUSIONS Risk of hip fracture was highest in men < 60 years with the highest frequency and amount of alcohol consumption and in non-drinking women.
Collapse
Affiliation(s)
- A J Søgaard
- Division of Mental and Physical Health, Norwegian Institute of Public Health, P.O. Box 4404, 0403, Oslo, Norway.
| | - A H Ranhoff
- Division of Mental and Physical Health, Norwegian Institute of Public Health, P.O. Box 4404, 0403, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - H E Meyer
- Division of Mental and Physical Health, Norwegian Institute of Public Health, P.O. Box 4404, 0403, Oslo, Norway
- Institute of Health and Society, University of Oslo, Oslo, Norway
| | - T K Omsland
- Institute of Health and Society, University of Oslo, Oslo, Norway
| | - W Nystad
- Division of Mental and Physical Health, Norwegian Institute of Public Health, P.O. Box 4404, 0403, Oslo, Norway
| | - G S Tell
- Division of Mental and Physical Health, Norwegian Institute of Public Health, P.O. Box 4404, 0403, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - K Holvik
- Division of Mental and Physical Health, Norwegian Institute of Public Health, P.O. Box 4404, 0403, Oslo, Norway
| |
Collapse
|
1182
|
Jia Y, Zhang H, Yang S, Xi Z, Tang T, Yin R, Zhang W. Electrospun PLGA membrane incorporated with andrographolide-loaded mesoporous silica nanoparticles for sustained antibacterial wound dressing. Nanomedicine (Lond) 2018; 13:2881-2899. [DOI: 10.2217/nnm-2018-0099] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To assess the wound-healing ability of poly(lactic-co-glycolic acid) (PLGA) nanofibrous wound dressing incorporated with andrographolide (Andro)-loaded mesoporous silica nanoparticles (MSNs). Materials & methods: PLGA/Andro-MSNs nanofibrous membrane wound dressings were produced by electrospinning. The effects of MSNs on the hydrophilicity, degradation and mechanical strength of membranes were evaluated. The cumulative release of Andro in vitro was obtained. Cell culture and in vivo tests on infectious models were carried out. Results: The PLGA/Andro-MSNs membrane showed a sustained release of Andro. The incorporation of MSNs into PLGA improved the hydrophilicity of the nanofibrous membranes. Cell culture and in vivo tests showed that PLGA/Andro-MSNs membrane can promote epidermal cell adhesion and reduce inflammation process. Conclusion: PLGA/Andro-MSNs nanofibrous membrane exhibited an efficient wound-healing ability.
Collapse
Affiliation(s)
- Yuhang Jia
- School of Mechanical & Power Engineering, Complex and Intelligent Systems Research Centre, East China University of Science & Technology, Shanghai 200237, China
| | - Hongbo Zhang
- School of Mechanical & Power Engineering, Complex and Intelligent Systems Research Centre, East China University of Science & Technology, Shanghai 200237, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhenhao Xi
- School of Chemical Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ruixue Yin
- School of Mechanical & Power Engineering, Complex and Intelligent Systems Research Centre, East China University of Science & Technology, Shanghai 200237, China
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A2, Canada
| |
Collapse
|
1183
|
Enoxacin and bis-enoxacin stimulate 4T1 murine breast cancer cells to release extracellular vesicles that inhibit osteoclastogenesis. Sci Rep 2018; 8:16182. [PMID: 30385810 PMCID: PMC6212457 DOI: 10.1038/s41598-018-34698-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Enoxacin and its bone-seeking bisphosphonate derivative, bis-enoxacin, have recently captured attention as potential therapeutic agents for the treatment of cancer and bone disease. No differences in growth or survival of 4T1 murine breast cancer cells were detected at a concentration of 50 µM of enoxacin or bis-enoxacin. Growth was perturbed at higher concentrations. Both 50 µM enoxacin and bis-enoxacin stimulated increases in the number of GW/Processing bodies, but there were minimal changes in microRNA levels. Extracellular vesicles (EVs) released from 4T1 cells treated with 50 µM enoxacin or 50 µM bis-enoxacin stimulated proliferation of RAW 264.7 cells, and both significantly inhibited osteoclastogenesis in calcitriol-stimulated mouse marrow. EVs from 4T1 cells treated with enoxacin and bis-enoxacin displayed small reductions in the amount of microRNA (miR)-146a-5p and let-7b-5p. In marked contrast, miR-214-3p, which has been shown to regulate bone remodeling, was increased 22-fold and 30-fold respectively. We conclude that enoxacin and bis-enoxacin trigger the release of EVs from 4T1 cancer cells that inhibit osteoclastogenesis.
Collapse
|
1184
|
Chen J, Tan L, Yu X, Etim IP, Ibrahim M, Yang K. Mechanical properties of magnesium alloys for medical application: A review. J Mech Behav Biomed Mater 2018; 87:68-79. [DOI: 10.1016/j.jmbbm.2018.07.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/23/2017] [Accepted: 07/13/2018] [Indexed: 01/09/2023]
|
1185
|
Adjei IM, Temples MN, Brown SB, Sharma B. Targeted Nanomedicine to Treat Bone Metastasis. Pharmaceutics 2018; 10:E205. [PMID: 30366428 PMCID: PMC6320768 DOI: 10.3390/pharmaceutics10040205] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Bone metastases are common complications of solid tumors, particularly those of the prostate, breast, and lungs. Bone metastases can lead to painful and devastating skeletal-related events (SREs), such as pathological fractures and nerve compressions. Despite advances in treatment for cancers in general, options for bone metastases remain inadequate and generally palliative. Anticancer drugs (chemotherapy and radiopharmaceuticals) do not achieve therapeutic concentrations in the bone and are associated with dose-limiting side effects to healthy tissues. Nanomedicines, with their tunable characteristics, have the potential to improve drug targeting to bone metastases while decreasing side effects for their effective treatment. In this review, we present the current state of the art for nanomedicines to treat bone metastases. We also discuss new treatment modalities enhanced by nanomedicine and their effects on SREs and disease progression.
Collapse
Affiliation(s)
- Isaac M Adjei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Madison N Temples
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Shannon B Brown
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
1186
|
Moorcroft SCT, Jayne DG, Evans SD, Ong ZY. Stimuli‐Responsive Release of Antimicrobials Using Hybrid Inorganic Nanoparticle‐Associated Drug‐Delivery Systems. Macromol Biosci 2018; 18:e1800207. [DOI: 10.1002/mabi.201800207] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Stephen D. Evans
- School of Physics and AstronomyUniversity of Leeds Leeds LS2 9JT UK
| | - Zhan Yuin Ong
- School of Physics and AstronomyUniversity of Leeds Leeds LS2 9JT UK
- School of MedicineUniversity of Leeds Leeds LS2 9JT UK
| |
Collapse
|
1187
|
Chu L, Yang Y, Yang S, Fan Q, Yu Z, Hu XL, James TD, He XP, Tang T. Preferential Colonization of Osteoblasts Over Co-cultured Bacteria on a Bifunctional Biomaterial Surface. Front Microbiol 2018; 9:2219. [PMID: 30333796 PMCID: PMC6176048 DOI: 10.3389/fmicb.2018.02219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022] Open
Abstract
Implant-related infection is a devastating complication in clinical trauma and orthopedics. The aim of this study is to use a bifunctional biomaterial surface in order to investigate the competitive colonization between osteoblasts and bacteria, which is the cause of implant-related infection. A bone-engineering material capable of simultaneously facilitating osteoblast adhesion and inhibiting the growth of Staphylococcus aureus (S. aureus) was prepared. Then, three different co-cultured systems were developed in order to investigate the competitive colonization between the two cohorts on the surface. The results suggested that while the pre-culturing of either cohort compromised the subsequent adhesion of the other according to the ‘race for the surface’ theory, the synergistic effect of preferential cell adhesion and antibacterial activity of the bifunctional surface led to the predominant colonization and survival of osteoblasts, effectively inhibiting the bacterial adhesion and biofilm formation of S. aureus in the co-culture systems with both cohorts. This research offers new insight into the investigation of competitive surface-colonization between osteoblasts and bacteria for implant-related infection.
Collapse
Affiliation(s)
- Linyang Chu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiming Fan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, East China University of Science and Technology, Shanghai, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, United Kingdom.,Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, East China University of Science and Technology, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
1188
|
Ma H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Acta Biomater 2018; 79:37-59. [PMID: 30165201 DOI: 10.1016/j.actbio.2018.08.026] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 02/02/2023]
Abstract
Toward the aim of personalized treatment, three-dimensional (3D) printing technology has been widely used in bone tissue engineering owing to its advantage of a fast, precise, and controllable fabrication process. Conventional bioceramic scaffolds are mainly used for bone tissue engineering; however, there has been a significant change in the application of bioceramic scaffolds during the past several years. Therefore, this review focuses on 3D-printed bioceramic scaffolds with different compositions and hierarchical structures (macro, micro, and nano scales), and their effects on the mechanical, degradation, permeability, and biological properties. Further, this review highlights 3D-printed bioceramic scaffolds for applications extending from bone tissue regeneration to bone tumor therapy. This review emphasizes recent developments in functional 3D-printed bioceramic scaffolds with the ability to be used for both tumor therapy and bone tissue regeneration. Considering the challenges in bone tumor therapy, these functional bioceramic scaffolds have a great potential in repairing bone defects induced by surgery and kill the possibly residual tumor cells to achieve bone tumor therapy. Finally, a brief perspective regarding future directions in this field was also provided. The review not only gives a summary of the research developments in bioceramic science but also offers a new therapy strategy by extending multifunctions of traditional biomaterials toward a specific disease. STATEMENT OF SIGNIFICANCE This review outlines the development tendency of 3D-printed bioceramic scaffolds for applications ranging from bone tissue regeneration to bone tumor therapy. Conventional bioceramic scaffolds are mainly used for bone tissue engineering; however, there has been a significant change in the application of bioceramic scaffolds during the past several years. Therefore, this review focuses on 3D-printed bioceramic scaffolds with different compositions and hierarchical structures (macro, micro, and nano scales), and their effects on the mechanical, degradation, permeability, and biological properties. Further, this review highlights 3D-printed bioceramic scaffolds for applications extending from bone tissue regeneration to bone tumor therapy. This review emphasizes recent developments in the functional 3D-printed bioceramic scaffolds with the ability to be used for both bone tumor therapy and bone tissue regeneration.
Collapse
Affiliation(s)
- Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100043, People's Republic of China
| | - Chun Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100043, People's Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.
| |
Collapse
|
1189
|
Yang Y, Chu L, Yang S, Zhang H, Qin L, Guillaume O, Eglin D, Richards RG, Tang T. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater 2018; 79:265-275. [PMID: 30125670 DOI: 10.1016/j.actbio.2018.08.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/29/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
Infection is one of the pivotal causes of nonunion in large bone defect after trauma or tumor resection. Three-dimensional (3D) composite scaffold with multifunctional-therapeutic properties offer many advantages over allogenic or xenogenic bone grafting for the restoration of challenging infected bone defects. In the previous study, we demonstrated that quaternized chitosan (HACC)-grafted polylactide-co-glycolide (PLGA)/hydroxyapatite (HA) scaffold (PLGA/HA/HACC) via 3D-printing technique exhibited significantly improved antimicrobial and osteoconductive property in vitro, together with good biocompatibility in vivo. Hence, the present study further investigated whether such an innovative bone substitute could effectively inhibit the bacterial biofilm formation and promote bone regeneration in vivo. To evaluate the bone repairing effects of the 3D-printed scaffolds on infected cortical and cancellous bone defects scenarios, eighty female Sprague Dawley rats and thirty-six female New Zealand white rabbits were used to establish infected femoral shaft defect and condyle defect model, respectively. X-ray, micro-CT, microbiological and histopathological analyses were used to assess the anti-infection and bone repairing potential of the dual-functional porous scaffolds. We observed that HACC-grafted PLGA/HA scaffolds exhibited significantly enhanced anti-infection and bone regeneration capability in different infected bone defect models. In addition, the degradation rate of the scaffolds appeared to be closely related to the progress of infection, influencing the bone repairing potential of the scaffolds in infected bone defects models. In general, this investigation is of great significance as it demonstrates promising applications of the 3D-printed dual-functional PLGA/HA/HACC scaffold for repairing different types of bone defect under infection. STATEMENT OF SIGNIFICANCE Currently, it is clinically urgent to exploit bone substitutes with potential of bacterial inhibition and bone regeneration. However, bone scaffolds with relatively low risks of bacterial resistance and tissue toxicity used for combating infected bone defects remain to be developed. We have reported that quaternized chitosan (HACC)-grafted 3D-printed PLGA/HA composite scaffold had enhanced in vitro antimicrobial and osteoconductive property, and well cytocompatibility in our published study. This continuing study further confirmed that HACC-grafted PLGA/HA scaffolds exhibited significantly enhanced anti-infection and bone regeneration efficacy in both cortical bone defect in rat and cancellous bone defect in rabbit under infection. Meanwhile, we also found that the degradation rate of the scaffolds seemed to be closely related to the progress of infection, influencing the bone repairing potential of the scaffolds in infected bone defects models. In conclusion, this study provides significant opportunities to develop a 3D-printed bone scaffold with dual functions used for infected bone defects in future plastic and orthopaedic surgery.
Collapse
|
1190
|
Design of a migration assay for human gingival fibroblasts on biodegradable magnesium surfaces. Acta Biomater 2018; 79:158-167. [PMID: 30172066 DOI: 10.1016/j.actbio.2018.08.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 02/08/2023]
Abstract
A novel regenerative approach to Guided Bone Regeneration (GBR) in dental surgery is based on the development of biodegradable and volume stable barrier membranes made of metallic magnesium. Currently used volume stable barrier membranes are made of titanium-reinforced PTFE or titanium-reinforced collagen membranes, both, however, are accompanied by a high incidence of wound dehiscence resulting in membrane exposure, which leads to an increased infection risk. An exposed membrane could also occur directly after insertion due to insufficient soft tissue coverage of the membrane. In both cases, fast wound margin regeneration is required. As a first step of soft-tissue regeneration, gingival fibroblasts need to migrate over the barrier membrane and close the dehiscent wound. Based on this aim, this study investigated the migration behaviour of human gingival fibroblasts on a magnesium surface. Major experimental challenges such as formation of hydrogen bubbles due to initial magnesium corrosion and non-transparent material surfaces have been addressed to allow cell adhesion and to follow cell migration. The designed scratch-based cell migration assay involved vital fluorescent cell staining on a pre-corroded magnesium membrane to simulate invivo wound dehiscence. The assay has been used to compare cell migration on pre-corroded magnesium to titanium surfaces and tissue culture plastic as control substrates. First results of this assay showed that human gingival fibroblasts migrate slower on pre-corroded magnesium compared to plastic and titanium. However, the scratch was finally closed on all materials. Compared to titanium surfaces and tissue culture plastic, the surface roughness and the surface free energy (SFE) could not explain slower cell migration on magnesium surfaces. Immunohistological investigations of cellular structure revealed, that magnesium ions increased focal adhesion at concentration of additionally 75 mM MgCl2 in cell culture medium. The use of our designed cell migration assay has shown that ionic medium alterations due to magnesium corrosion has a higher impact on the cell migration rate than surface alterations. STATEMENT OF SIGNIFICANCE The design of a migration assay on non-transparent magnesium surfaces will add the option to study cell response to surface modifications, coatings and the corrosion process itself under life view conditions.
Collapse
|
1191
|
Wang M, Tang T. Surface treatment strategies to combat implant-related infection from the beginning. J Orthop Translat 2018; 17:42-54. [PMID: 31194031 PMCID: PMC6551355 DOI: 10.1016/j.jot.2018.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 02/08/2023] Open
Abstract
Orthopaedic implants are recognised as important therapeutic devices in the successful clinical management of a wide range of orthopaedic conditions. However, implant-related infections remain a challenging and not uncommon issue in patients with implanted instrumentation or medical devices. Bacterial adhesion and formation of biofilm on the surface of the implant represent important processes towards progression of infection. Given the intimate association between infection and the implant surface, adequate treatment of the implant surface may help mitigate the risk of infection. This review summarises the current surface treatment technologies and their role in prevention of implant-related infection from the beginning. Translational potential of this article Despite great technological advancements, the prevalence of implant-related infections remains high. Four main challenges can be identified. (i) Insufficient mechanical stability can cause detachment of the implant surface coating, altering the antimicrobial ability of functionalized surfaces. (ii) Regarding drug-loaded coatings, a stable drug release profile is of vital importance for achieving effective bactericidal effect locally; however, burst release of the loaded antibacterial agents remains common. (iii) Although many coatings and modified surfaces provide superior antibacterial action, such functionalisation of surfaces sometimes has a detrimental effect on tissue biocompatibility, impairing the integration of the implants into the surrounding tissue. (iv) Biofilm eradication at the implant surface remains particularly challenging. This review summarised the recent progress made to address the aforementioned problems. By providing a perspective on state-of-the-art surface treatment strategies for medical implants, we hope to support the timely adoption of modern materials and techniques into clinical practice.
Collapse
Affiliation(s)
- Minqi Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
1192
|
Klein Y, Fleissig O, Stabholz A, Chaushu S, Polak D. Bone regeneration with bovine bone impairs orthodontic tooth movement despite proper osseous wound healing in a novel mouse model. J Periodontol 2018; 90:189-199. [PMID: 30059146 DOI: 10.1002/jper.17-0550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The aim of this study was to investigate the biological mechanisms underlying alveolar bone regeneration (ABR) and orthodontic tooth movement into bovine bone (BB) regenerated sites. METHODS Two mouse models were established in C57BL/6 mice. The ABR model was based on osseous defects filled with BB. The orthodontic tooth movement-ABR model was used to move a molar into the regenerated site. Osseous morphometric analysis and tooth movement distance were evaluated with micro-CT. Histologic characteristics and osteoclast (OCS) accumulation were evaluated by hematoxylin and eosin and tartrate-resistant acid phosphatase staining (TRAP). Expression and location of the receptor activator of nuclear factor-kappa B (RANKL) and of osteoprotegerin (OPG) were evaluated by immunofluorescent staining. RESULTS Bone healing peaked at 4 weeks. The distance of the orthodontic tooth movement into the bovine bone was significantly reduced versus that of the nonbovine bone controls. BB particles accumulated along the root's pressure side during orthodontic treatment. Despite the osteoclasts' presence adjacent to the BB particles, no BB resorption was observed. Increased RANKL expression was seen at the orthodontic tooth movement pressure zone, without any change in OPG expression. CONCLUSION The two novel mouse models show that the lack of resorption of BB xenografts renders them inadequate for proper orthodontic tooth movement at a later stage.
Collapse
Affiliation(s)
- Yehuda Klein
- Department of Orthodontics, Hebrew University-Hadassah Faculty of Dental Medicine, Israel.,Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Israel
| | - Omer Fleissig
- Department of Orthodontics, Hebrew University-Hadassah Faculty of Dental Medicine, Israel
| | - Ayala Stabholz
- Department of Periodontology, Hebrew University-Hadassah Faculty of Dental Medicine, Israel
| | - Stella Chaushu
- Department of Orthodontics, Hebrew University-Hadassah Faculty of Dental Medicine, Israel
| | - David Polak
- Department of Orthodontics, Hebrew University-Hadassah Faculty of Dental Medicine, Israel
| |
Collapse
|
1193
|
Tiihonen R, Alaranta R, Helkamaa T, Nurmi-Lüthje I, Kaukonen JP, Lüthje P. A 10-Year Retrospective Study of 490 Hip Fracture Patients: Reoperations, Direct Medical Costs, and Survival. Scand J Surg 2018; 108:178-184. [PMID: 30207202 DOI: 10.1177/1457496918798197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Reoperations after operative treatment of hip fracture patients may be associated with higher costs and inferior survival. We examined the acute hospital costs, long-term reoperation rates, and survival of patients with a new hip fracture. MATERIALS AND METHODS A total of 490 consecutive new hip fracture patients treated at a single center between 31 December 2004 and 6 December 2006 were analyzed retrospectively. Fractures were classified according to Garden and AO. All medical records were checked manually. The costs of reoperations were calculated using the diagnosis-related groups (DRG)-based prices. Survival analysis was performed using the life-table method. The follow-up time was 10 years. RESULTS In all, 70/490 patients (14.3%) needed reoperations. Of all reoperations, 34.2% were performed during the first month and 72.9% within 1 year after the primary operation. The hemiarthroplasty dislocation rate was 8.5%, and mechanical failures of osteosynthesis occurred in 6.2%. Alcohol abuse was associated with a heightened risk of reoperation. The mean direct costs of primary fracture care were lower than the mean costs of reoperations (€7500 vs €9800). The mortality rate at 10 years was 79.8% among non-reoperated patients and 62.9% among reoperated patients. CONCLUSIONS According to our hypothesis, the cost per patient of reoperation in acute care was 31% higher than the corresponding cost of a primary operation. Reoperations increased the overall immediate costs of index fractures by nearly 20%. One-third of all reoperations were performed during the first month and almost 75% within 1 year after the primary operation.
Collapse
Affiliation(s)
- R Tiihonen
- 1 Department of Orthopedics and Traumatology, Päijät-Häme Central Hospital, Lahti, Finland
| | - R Alaranta
- 1 Department of Orthopedics and Traumatology, Päijät-Häme Central Hospital, Lahti, Finland
| | - T Helkamaa
- 2 Department of Orthopedics and Traumatology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - I Nurmi-Lüthje
- 3 Department of Public Health, University of Helsinki, Helsinki, Finland
| | - J-P Kaukonen
- 1 Department of Orthopedics and Traumatology, Päijät-Häme Central Hospital, Lahti, Finland
| | - P Lüthje
- 4 Department of Orthopedics and Traumatology, North Kymi Hospital, Kouvola, Finland
| |
Collapse
|
1194
|
Zhang Q, Tang X, Liu Z, Song X, Peng D, Zhu W, Ouyang Z, Wang W. Hesperetin Prevents Bone Resorption by Inhibiting RANKL-Induced Osteoclastogenesis and Jnk Mediated Irf-3/c-Jun Activation. Front Pharmacol 2018; 9:1028. [PMID: 30254586 PMCID: PMC6142014 DOI: 10.3389/fphar.2018.01028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
Bone homeostasis and resorption is regulated by the proper activation of osteoclasts, whose stimulation largely depends on the receptor activator of nuclear factor κB ligand (RANKL)-RANK signaling. Herein, for the first time, we showed that interferon regulatory factor (Irf)-3 was intimately involved in RANKL-induced osteoclast formation. In addition, hesperetin (Hes) derived from citrus fruit could inhibit RANKL-induced osteoclast differentiation and maturation among three types of osteoclast precursors with inhibited formation of F-actin rings and resorption pits on bone slices. More importantly, by using SP600125, a selective Jnk inhibitor, we showed that Hes was able to significantly attenuate the Jnk downstream expression of Irf-3 and c-Jun, thereby inactivating NF-κB/MAPK signaling and transcriptional factor NFATc-1, leading to suppression of osteoclast-specific genes, which resulted in impaired osteoclastogenesis and functionality. An ovariectomized (OVX) osteoporosis mouse model demonstrated that Hes could increase trabecular bone volume fractions (BV/TV), trabecular thickness, and trabecular number, whereas it decreased trabecular separation in OVX mice with well-preserved trabecular bone architecture and decreased levels of TRAP-positive osteoclasts. This is further evidenced by the diminished serum expression of bone resorption marker CTX and enhanced production of osteoblastic ALP in vivo. Taken together, these results suggested that Hes could inhibit Jnk-mediated Irf-3/c-Jun activation, thus attenuating RANKL-induced osteoclast formation and function both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinqiao Tang
- Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, China
| | - Zhong Liu
- Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, China
| | - Xiaoxia Song
- Department of Respiratory Medicine, Xiangtan Central Hospital, Xiangtan, China
| | - Dan Peng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
1195
|
Martínez-Laguna D, Tebé C, Nogués X, Kassim Javaid M, Cooper C, Moreno V, Diez-Perez A, Collins GS, Prieto-Alhambra D. Fracture risk in type 2 diabetic patients: A clinical prediction tool based on a large population-based cohort. PLoS One 2018; 13:e0203533. [PMID: 30192850 PMCID: PMC6128577 DOI: 10.1371/journal.pone.0203533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND An increased fracture risk has been described as a complication of Type 2 diabetes mellitus (T2DM). Clinical prediction models for general population have a limited predictive accuracy for fractures in T2DM patients. The aim was to develop and validate a clinical prediction tool for the estimation of 5-year hip and major fracture risk in T2DM patients. METHODS AND RESULTS A cohort of newly diagnosed T2DM patients (n = 51,143, aged 50-85, 57% men) was extracted from the Information System for the Development of Research in Primary Care (SIDIAP) database, containing computerized primary care records for >80% of the population of Catalonia, Spain (>6 million people). Patients were followed up from T2DM diagnosis until the earliest of death, transfer out, fracture, or end of study. Cox proportional hazards regression was used to model the 5-year risk of hip and major fracture. Calibration and discrimination were assessed. Hip and major fracture incidence rates were 1.84 [95%CI 1.64 to 2.05] and 7.12 [95%CI 6.72 to 7.53] per 1,000 person-years, respectively. Both hip and major fracture prediction models included age, sex, previous major fracture, statins use, and calcium/vitamin D supplements; previous ischemic heart disease was also included for hip fracture and stroke for major fracture. Discrimination (0.81 for hip and 0.72 for major fracture) and calibration plots support excellent internal validity. CONCLUSIONS The proposed prediction models have good discrimination and calibration for the estimation of both hip and major fracture risk in incident T2DM patients. These tools incorporate key T2DM macrovascular complications generally available in primary care electronic medical records, as well as more generic fracture risk predictors. Future work will focus on validation of these models in external cohorts.
Collapse
Affiliation(s)
- Daniel Martínez-Laguna
- GREMPAL Research Group, IDIAP Jordi Gol Primary Care Research Institute, Autonomous University of Barcelona, Barcelona, Spain
- CIBER of Healthy Ageing and Frailty Research (CIBERFes), Instituto de Salud Carlos III, Majadahonda, Spain
- Ambit Barcelona, Primary Care Department, Institut Catala de la Salut, Barcelona, Spain
| | - Cristian Tebé
- Biostatistics Unit at Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Basic Medical Sciences, Universitat de Barcelona, Barcelona, Spain
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - Xavier Nogués
- CIBER of Healthy Ageing and Frailty Research (CIBERFes), Instituto de Salud Carlos III, Majadahonda, Spain
- Musculoskeletal Research Unit, IMIM-Hospital del Mar, Barcelona, Spain
| | - M Kassim Javaid
- Oxford National Institute for Health Biomedical Research Centre, University of Oxford, Windmill Road, Oxford, United Kingdom
| | - Cyrus Cooper
- Oxford National Institute for Health Biomedical Research Centre, University of Oxford, Windmill Road, Oxford, United Kingdom
- Medical Research Council (MRC) Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- Centre for Statistics in Medicine (CSM), Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Victor Moreno
- Department of Basic Medical Sciences, Universitat de Barcelona, Barcelona, Spain
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Adolfo Diez-Perez
- Musculoskeletal Research Unit, IMIM-Hospital del Mar, Barcelona, Spain
| | - Gary S. Collins
- Oxford National Institute for Health Biomedical Research Centre, University of Oxford, Windmill Road, Oxford, United Kingdom
- Centre for Statistics in Medicine (CSM), Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Daniel Prieto-Alhambra
- GREMPAL Research Group, IDIAP Jordi Gol Primary Care Research Institute, Autonomous University of Barcelona, Barcelona, Spain
- CIBER of Healthy Ageing and Frailty Research (CIBERFes), Instituto de Salud Carlos III, Majadahonda, Spain
- Oxford National Institute for Health Biomedical Research Centre, University of Oxford, Windmill Road, Oxford, United Kingdom
- Centre for Statistics in Medicine (CSM), Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
1196
|
Cai L, Zhang J, Qian J, Li Q, Li H, Yan Y, Wei S, Wei J, Su J. The effects of surface bioactivity and sustained-release of genistein from a mesoporous magnesium-calcium-silicate/PK composite stimulating cell responses in vitro, and promoting osteogenesis and enhancing osseointegration in vivo. Biomater Sci 2018; 6:842-853. [PMID: 29485660 DOI: 10.1039/c7bm01017f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface of a mesoporous magnesium-calcium-silicate (m-MCS)/polyetheretherketone (PK) composite (MPC) was modified by sand blasting, and genistein (GS) was loaded inside the nanopores of the m-MCS on the modified MPC (MPCm) surface. The results showed that compared with MPC, the surface roughness and hydrophilcity of MPCm obviously improved with more m-MCS exposed on its surface. Moreover, no obvious differences in surface roughness and hydrophilcity were found between MPCm and GS loaded MPCm (MPCm-Ge), and both of them possessed an improved apatite mineralization ability in simulated body fluid solution (SBF) compared with MPC, indicating excellent surface bioactivity. Moreover, the MPCm obviously stimulated the adhesion, proliferation, differentiation and gene expressions of MC3T3-E1 cells compared with MPC, and the sustained-release of GS from the MPCm-Ge surface further significantly promoted the cell proliferation, differentiation and gene expression. According to the Micro-CT, histological and SEM analysis, the results demonstrated that the MPCm obviously improved osteogenesis and enhanced osseointegration in vivo compared with MPC, and the release of GS from the MPCm-Ge surface further significantly improved osteogenesis and enhanced osseointegration. In summary, the significant promotion of cell responses in vitro, and the improvements of osteogenesis and the enhancement of osseointegration in vivo were attributed to the effects of surface bioactivity and GS sustained-release from the MPCm-Ge surface. Therefore, MPCm-Ge would be a potential candidate for orthopedic and dental applications.
Collapse
Affiliation(s)
- Liang Cai
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
1197
|
Prevention of bacterial colonization on non-thermal atmospheric plasma treated surgical sutures for control and prevention of surgical site infections. PLoS One 2018; 13:e0202703. [PMID: 30183745 PMCID: PMC6124751 DOI: 10.1371/journal.pone.0202703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
Surgical site infections have a remarkable impact on morbidity, extended hospitalization and mortality. Sutures strongly contribute to development of surgical site infections as they are considered foreign material in the human body. Sutures serve as excellent surfaces for microbial adherence and subsequent colonization, biofilm formation and infection on the site of a surgery. Various antimicrobial sutures have been developed to prevent suture-mediated surgical site infection. However, depending on the site of surgery, antimicrobial sutures may remain ineffective, and antimicrobial agents on them might have drawbacks. Plasma, defined as the fourth state of matter, composed of ionized gas, reactive oxygen and nitrogen species, free radical and neutrals, draws attention for the control and prevention of hospital-acquired infections due to its excellent antimicrobial activities. In the present study, the efficacy of non-thermal atmospheric plasma treatment for prevention of surgical site infections was investigated. First, contaminated poly (glycolic-co-lactic acid), polyglycolic acid, polydioxanone and poly (glycolic acid-co-caprolactone) sutures were treated with non-thermal atmospheric plasma to eradicate contaminating bacteria like Staphylococcus aureus and Escherichia coli. Moreover, sutures were pre-treated with non-thermal atmospheric plasma and then exposed to S. aureus and E. coli. Our results revealed that non-thermal atmospheric plasma treatment effectively eradicates contaminating bacteria on sutures, and non-thermal atmospheric plasma pre-treatment effectively prevents bacterial colonization on sutures without altering their mechanical properties. Chemical characterization of sutures was performed with FT-IR and XPS and results showed that non-thermal atmospheric plasma treatment substantially increased the hydrophilicity of sutures which might be the primary mechanism for the prevention of bacterial colonization. In conclusion, plasma-treated sutures could be considered as novel alternative materials for the control and prevention of surgical site infections.
Collapse
|
1198
|
Romualdo PC, Cunha NBFF, Leoni GB, Sousa-Neto MD, Consolaro A, de Queiroz AM, da Silva RAB, da Silva LAB, Nelson-Filho P. The effect of ovariectomy and 2 antiresorptive therapeutic agents on bone response in rats: A 3-dimensional imaging analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 126:218-225. [PMID: 29748038 DOI: 10.1016/j.oooo.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/14/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate bone mineral density (BMD) and microarchitecture in femurs and maxillary bones of ovariectomized (OVX) rats treated or not treated with alendronate (ALD) or odanacatib (ODN). STUDY DESIGN Twenty rats were divided into groups: SHAM, OVX, OVX/ALD, and OVX/ODN. After 12 weeks, the femurs and maxillae were removed and subjected to 3-dimensional analysis by micro-computed tomography. Results were analyzed with 1-way analysis of variance and Tukey's post hoc test (α = 0.05). RESULTS OVX decreased maxillary and femoral BMD and altered femoral microarchitecture (P < .05). The drugs increased BMD of both types of bones, but only ALD maintained the phenotype similar to the SHAM group. The action of ALD was limited to the femoral trabecular separation (Tb.Sp). OVX and the drugs had no effect on the microarchitecture of the maxilla (P > .05). CONCLUSIONS ALD and ODN therapy increased BMD in both bones after ovariectomy. ALD was more successful than ODN in preserving the morphology of bone similar to the SHAM group. ALD maintained the phenotype for Tb.Sp in the femur, but ODN did not. In the maxillae, neither ovariectomy nor the 2 antiresorptive drugs had significant effects on microarchitecture.
Collapse
Affiliation(s)
- Priscilla Coutinho Romualdo
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | - Graziela Bianchi Leoni
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Manoel Damião Sousa-Neto
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alberto Consolaro
- Department of Oral Pathology, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Alexandra Mussolino de Queiroz
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raquel Assed Bezerra da Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lea Assed Bezerra da Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
1199
|
Otete H, Deleuran T, Fleming KM, Card T, Aithal GP, Jepsen P, West J. Hip fracture risk in patients with alcoholic cirrhosis: A population-based study using English and Danish data. J Hepatol 2018; 69:697-704. [PMID: 29673756 DOI: 10.1016/j.jhep.2018.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Cirrhosis, the prevalence of which is increasing, is a risk factor for osteoporosis and fractures. However, little is known of the actual risk of hip fractures in patients with alcoholic cirrhosis. Using linked primary and secondary care data from the English and Danish nationwide registries, we quantified the hip fracture risk in two national cohorts of patients with alcoholic cirrhosis. METHODS We followed 3,706 English and 17,779 Danish patients with a diagnosis of alcoholic cirrhosis, and we identified matched controls from the general populations. We estimated hazard ratios (HR) of hip fracture for patients vs. controls, adjusted for age, sex and comorbidity. RESULTS The five-year hip fracture risk was raised both in England (2.9% vs. 0.8% for controls) and Denmark (4.6% vs. 0.9% for controls). With confounder adjustment, patients with cirrhosis had fivefold (adjusted HR 5.5; 95% CI 4.3-6.9), and 8.5-fold (adjusted HR 8.5; 95% CI 7.8-9.3) increased rates of hip fracture, in England and Denmark, respectively. This association between alcoholic cirrhosis and risk of hip fracture showed significant interaction with age (p <0.001), being stronger in younger age groups (under 45 years, HR 17.9 and 16.6 for English and Danish patients, respectively) than in patients over 75 years (HR 2.1 and 2.9, respectively). In patients with alcoholic cirrhosis, 30-day mortality following a hip fracture was 11.1% in England and 10.0% in Denmark, giving age-adjusted post-fracture mortality rate ratios of 2.8(95% CI 1.9-3.9) and 2.0(95% CI 1.5-2.7), respectively. CONCLUSIONS Patients with alcoholic cirrhosis have a markedly increased risk of hip fracture and post-hip fracture mortality compared with the general population. These findings support the need for more effort towards fracture prevention in this population, to benefit individuals and reduce the societal burden. LAY SUMMARY Alcoholic cirrhosis creates a large public health burden and is a risk factor for bone fractures. Based on data from England and Denmark, we found that hip fractures occur more than five times more frequently in people with alcoholic cirrhosis than in people without the disease. Additionally, the aftermath of the hip fracture is severe, such that up to 11% of patients with alcoholic cirrhosis die within 30 days after their hip fracture. These results suggest that efforts directed towards fracture prevention in people with alcoholic cirrhosis could be beneficial.
Collapse
Affiliation(s)
- Harmony Otete
- Division of Epidemiology and Public Health, University of Nottingham, City Hospital Campus, Nottingham NG5 1PB, United Kingdom; School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom; School of Medicine, University of Central Lancashire, Harrington building 242, Preston PR1 2HE, United Kingdom.
| | - Thomas Deleuran
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg Denmark
| | - Kate M Fleming
- Department of Public Health and Policy, University of Liverpool, Liverpool L69 3GB, United Kingdom
| | - Tim Card
- Division of Epidemiology and Public Health, University of Nottingham, City Hospital Campus, Nottingham NG5 1PB, United Kingdom; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Guru P Aithal
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Peter Jepsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Joe West
- Division of Epidemiology and Public Health, University of Nottingham, City Hospital Campus, Nottingham NG5 1PB, United Kingdom; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK; NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
1200
|
Jiang L, Lin J, Taggart CC, Bengoechea JA, Scott CJ. Nanodelivery strategies for the treatment of multidrug-resistant bacterial infections. JOURNAL OF INTERDISCIPLINARY NANOMEDICINE 2018; 3:111-121. [PMID: 30443410 PMCID: PMC6220773 DOI: 10.1002/jin2.48] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/27/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
One of the most important health concerns in society is the development of nosocomial infections caused by multidrug-resistant pathogens. The purpose of this review is to discuss the issues in current antibiotic therapies and the ongoing progress of developing new strategies for the treatment of ESKAPE pathogen infections, which is acronymized for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. We not only examine the current issues caused by multidrug resistance but we also examine the barrier effects such as biofilm and intracellular localization exploited by these pathogens to avoid antibiotic exposure. Recent innovations in nanomedicine approaches and antibody antibiotic conjugates are reviewed as potential novel approaches for the treatment of bacterial infection, which ultimately may expand the useful life span of current antibiotics.
Collapse
Affiliation(s)
- Lai Jiang
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Jia Lin
- School of PharmacyQueen's University BelfastBelfastUK
| | - Clifford C. Taggart
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - José A. Bengoechea
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Christopher J. Scott
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| |
Collapse
|