1151
|
Abstract
Recent advances in technological tools for massively parallel, high-throughput sequencing of DNA have enabled the comprehensive characterization of somatic mutations in a large number of tumour samples. In this Review, we describe recent cancer genomic studies that have assembled emerging views of the landscapes of somatic mutations through deep-sequencing analyses of the coding exomes and whole genomes in various cancer types. We discuss the comparative genomics of different cancers, including mutation rates and spectra, as well as the roles of environmental insults that influence these processes. We highlight the developing statistical approaches that are used to identify significantly mutated genes, and discuss the emerging biological and clinical insights from such analyses, as well as the future challenges of translating these genomic data into clinical impacts.
Collapse
Affiliation(s)
- Ian R Watson
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
1152
|
Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y, Yoshida K, Okuno Y, Bando M, Nakato R, Ishikawa S, Sato-Otsubo A, Nagae G, Nishimoto A, Haferlach C, Nowak D, Sato Y, Alpermann T, Nagasaki M, Shimamura T, Tanaka H, Chiba K, Yamamoto R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Nakamaki T, Ishiyama K, Nolte F, Hofmann WK, Miyawaki S, Chiba S, Mori H, Nakauchi H, Koeffler HP, Aburatani H, Haferlach T, Shirahige K, Miyano S, Ogawa S. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet 2013; 45:1232-7. [PMID: 23955599 DOI: 10.1038/ng.2731] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/24/2013] [Indexed: 12/14/2022]
Abstract
Cohesin is a multimeric protein complex that is involved in the cohesion of sister chromatids, post-replicative DNA repair and transcriptional regulation. Here we report recurrent mutations and deletions involving multiple components of the cohesin complex, including STAG2, RAD21, SMC1A and SMC3, in different myeloid neoplasms. These mutations and deletions were mostly mutually exclusive and occurred in 12.1% (19/157) of acute myeloid leukemia, 8.0% (18/224) of myelodysplastic syndromes, 10.2% (9/88) of chronic myelomonocytic leukemia, 6.3% (4/64) of chronic myelogenous leukemia and 1.3% (1/77) of classical myeloproliferative neoplasms. Cohesin-mutated leukemic cells showed reduced amounts of chromatin-bound cohesin components, suggesting a substantial loss of cohesin binding sites on chromatin. The growth of leukemic cell lines harboring a mutation in RAD21 (Kasumi-1 cells) or having severely reduced expression of RAD21 and STAG2 (MOLM-13 cells) was suppressed by forced expression of wild-type RAD21 and wild-type RAD21 and STAG2, respectively. These findings suggest a role for compromised cohesin functions in myeloid leukemogenesis.
Collapse
Affiliation(s)
- Ayana Kon
- Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1153
|
Resilient and resourceful: genome maintenance strategies in hematopoietic stem cells. Exp Hematol 2013; 41:915-23. [PMID: 24067363 DOI: 10.1016/j.exphem.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 01/08/2023]
Abstract
Blood homeostasis is maintained by a rare population of quiescent hematopoietic stem cells (HSCs) that self-renew and differentiate to give rise to all lineages of mature blood cells. In contrast to most other blood cells, HSCs are preserved throughout life, and the maintenance of their genomic integrity is therefore paramount to ensure normal blood production and to prevent leukemic transformation. HSCs are also one of the few blood cells that truly age and exhibit severe functional decline in old organisms, resulting in impaired blood homeostasis and increased risk for hematologic malignancies. In this review, we present the strategies used by HSCs to cope with the many genotoxic insults that they commonly encounter. We briefly describe the DNA-damaging insults that can affect HSC function and the mechanisms that are used by HSCs to prevent, survive, and repair DNA lesions. We also discuss an apparent paradox in HSC biology, in which the genome maintenance strategies used by HSCs to protect their function in fact render them vulnerable to the acquisition of damaging genetic aberrations.
Collapse
|
1154
|
Pemovska T, Kontro M, Yadav B, Edgren H, Eldfors S, Szwajda A, Almusa H, Bespalov MM, Ellonen P, Elonen E, Gjertsen BT, Karjalainen R, Kulesskiy E, Lagström S, Lehto A, Lepistö M, Lundán T, Majumder MM, Marti JML, Mattila P, Murumägi A, Mustjoki S, Palva A, Parsons A, Pirttinen T, Rämet ME, Suvela M, Turunen L, Västrik I, Wolf M, Knowles J, Aittokallio T, Heckman CA, Porkka K, Kallioniemi O, Wennerberg K. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov 2013; 3:1416-29. [PMID: 24056683 DOI: 10.1158/2159-8290.cd-13-0350] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED We present an individualized systems medicine (ISM) approach to optimize cancer drug therapies one patient at a time. ISM is based on (i) molecular profiling and ex vivo drug sensitivity and resistance testing (DSRT) of patients' cancer cells to 187 oncology drugs, (ii) clinical implementation of therapies predicted to be effective, and (iii) studying consecutive samples from the treated patients to understand the basis of resistance. Here, application of ISM to 28 samples from patients with acute myeloid leukemia (AML) uncovered five major taxonomic drug-response subtypes based on DSRT profiles, some with distinct genomic features (e.g., MLL gene fusions in subgroup IV and FLT3-ITD mutations in subgroup V). Therapy based on DSRT resulted in several clinical responses. After progression under DSRT-guided therapies, AML cells displayed significant clonal evolution and novel genomic changes potentially explaining resistance, whereas ex vivo DSRT data showed resistance to the clinically applied drugs and new vulnerabilities to previously ineffective drugs. SIGNIFICANCE Here, we demonstrate an ISM strategy to optimize safe and effective personalized cancer therapies for individual patients as well as to understand and predict disease evolution and the next line of therapy. This approach could facilitate systematic drug repositioning of approved targeted drugs as well as help to prioritize and de-risk emerging drugs for clinical testing.
Collapse
Affiliation(s)
- Tea Pemovska
- 1Institute for Molecular Medicine Finland, FIMM; 2Hematology Research Unit Helsinki, Helsinki University Central Hospital, University of Helsinki, Helsinki; 3Department of Clinical Chemistry and TYKSLAB, Turku University Central Hospital, University of Turku, Turku; 4Department of Internal Medicine, Tampere University Hospital, Tampere, Finland; 5Department of Clinical Science, Hematology Section, University of Bergen; and 6Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1155
|
Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, He X, Liu S, Hoog J, Lu C, Ding L, Griffith OL, Miller C, Larson D, Fulton RS, Harrison M, Mooney T, McMichael JF, Luo J, Tao Y, Goncalves R, Schlosberg C, Hiken JF, Saied L, Sanchez C, Giuntoli T, Bumb C, Cooper C, Kitchens RT, Lin A, Phommaly C, Davies SR, Zhang J, Kavuri MS, McEachern D, Dong YY, Ma C, Pluard T, Naughton M, Bose R, Suresh R, McDowell R, Michel L, Aft R, Gillanders W, DeSchryver K, Wilson RK, Wang S, Mills GB, Gonzalez-Angulo A, Edwards JR, Maher C, Perou CM, Mardis ER, Ellis MJ. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 2013; 4:1116-30. [PMID: 24055055 DOI: 10.1016/j.celrep.2013.08.022] [Citation(s) in RCA: 502] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/16/2013] [Accepted: 08/09/2013] [Indexed: 01/01/2023] Open
Abstract
To characterize patient-derived xenografts (PDXs) for functional studies, we made whole-genome comparisons with originating breast cancers representative of the major intrinsic subtypes. Structural and copy number aberrations were found to be retained with high fidelity. However, at the single-nucleotide level, variable numbers of PDX-specific somatic events were documented, although they were only rarely functionally significant. Variant allele frequencies were often preserved in the PDXs, demonstrating that clonal representation can be transplantable. Estrogen-receptor-positive PDXs were associated with ESR1 ligand-binding-domain mutations, gene amplification, or an ESR1/YAP1 translocation. These events produced different endocrine-therapy-response phenotypes in human, cell line, and PDX endocrine-response studies. Hence, deeply sequenced PDX models are an important resource for the search for genome-forward treatment options and capture endocrine-drug-resistance etiologies that are not observed in standard cell lines. The originating tumor genome provides a benchmark for assessing genetic drift and clonal representation after transplantation.
Collapse
Affiliation(s)
- Shunqiang Li
- Section of Breast Oncology, Division of Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center Breast Cancer Program, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1156
|
Abstract
Patients with low-risk myelodysplastic syndromes (MDS) that rapidly progress to acute myeloid leukemia (AML) remain a challenge in disease management. Using whole-exome sequencing of an MDS patient, we identified a somatic mutation in the BCOR gene also mutated in AML. Sequencing of BCOR and related BCORL1 genes in a cohort of 354 MDS patients identified 4.2% and 0.8% of mutations respectively. BCOR mutations were associated with RUNX1 (P = .002) and DNMT3A mutations (P = .015). BCOR is also mutated in chronic myelomonocytic leukemia patients (7.4%) and BCORL1 in AML patients with myelodysplasia-related changes (9.1%). Using deep sequencing, we show that BCOR mutations arise after mutations affecting genes involved in splicing machinery or epigenetic regulation. In univariate analysis, BCOR mutations were associated with poor prognosis in MDS (overall survival [OS]: P = .013; cumulative incidence of AML transformation: P = .005). Multivariate analysis including age, International Prognostic Scoring System, transfusion dependency, and mutational status confirmed a significant inferior OS to patients with a BCOR mutation (hazard ratio, 3.3; 95% confidence interval, 1.4-8.1; P = .008). These data suggest that BCOR mutations define the clinical course rather than disease initiation. Despite infrequent mutations, BCOR analyses should be considered in risk stratification.
Collapse
|
1157
|
Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013; 122:3616-27; quiz 3699. [PMID: 24030381 DOI: 10.1182/blood-2013-08-518886] [Citation(s) in RCA: 1453] [Impact Index Per Article: 121.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of chronic hematological malignancies characterized by dysplasia, ineffective hematopoiesis and a variable risk of progression to acute myeloid leukemia. Sequencing of MDS genomes has identified mutations in genes implicated in RNA splicing, DNA modification, chromatin regulation, and cell signaling. We sequenced 111 genes across 738 patients with MDS or closely related neoplasms (including chronic myelomonocytic leukemia and MDS-myeloproliferative neoplasms) to explore the role of acquired mutations in MDS biology and clinical phenotype. Seventy-eight percent of patients had 1 or more oncogenic mutations. We identify complex patterns of pairwise association between genes, indicative of epistatic interactions involving components of the spliceosome machinery and epigenetic modifiers. Coupled with inferences on subclonal mutations, these data suggest a hypothesis of genetic "predestination," in which early driver mutations, typically affecting genes involved in RNA splicing, dictate future trajectories of disease evolution with distinct clinical phenotypes. Driver mutations had equivalent prognostic significance, whether clonal or subclonal, and leukemia-free survival deteriorated steadily as numbers of driver mutations increased. Thus, analysis of oncogenic mutations in large, well-characterized cohorts of patients illustrates the interconnections between the cancer genome and disease biology, with considerable potential for clinical application.
Collapse
|
1158
|
Cruceru ML, Neagu M, Demoulin JB, Constantinescu SN. Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms. J Cell Mol Med 2013; 17:1218-35. [PMID: 23998913 PMCID: PMC4159024 DOI: 10.1111/jcmm.12122] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/27/2013] [Indexed: 12/14/2022] Open
Abstract
Despite intense efforts to identify cancer-initiating cells in malignant brain tumours, markers linked to the function of these cells have only very recently begun to be uncovered. The notion of cancer stem cell gained prominence, several molecules and signalling pathways becoming relevant for diagnosis and treatment. Whether a substantial fraction or only a tiny minority of cells in a tumor can initiate and perpetuate cancer, is still debated. The paradigm of cancer-initiating stem cells has initially been developed with respect to blood cancers where chronic conditions such as myeloproliferative neoplasms are due to mutations acquired in a haematopoietic stem cell (HSC), which maintains the normal hierarchy to neoplastic haematopoiesis. In contrast, acute leukaemia transformation of such blood neoplasms appears to derive not only from HSCs but also from committed progenitors that cannot differentiate. This review will focus on putative novel therapy targets represented by markers described to define cancer stem/initiating cells in malignant gliomas, which have been called ‘leukaemia of the brain’, given their rapid migration and evolution. Parallels are drawn with other cancers, especially haematopoietic, given the similar rampant proliferation and treatment resistance of glioblastoma multiforme and secondary acute leukaemias. Genes associated with the malignant conditions and especially expressed in glioma cancer stem cells are intensively searched. Although many such molecules might only coincidentally be expressed in cancer-initiating cells, some may function in the oncogenic process, and those would be the prime candidates for diagnostic and targeted therapy. For the latter, combination therapies are likely to be envisaged, given the robust and plastic signalling networks supporting malignant proliferation.
Collapse
Affiliation(s)
- Maria Linda Cruceru
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | |
Collapse
|
1159
|
Mutation and Lineage Analysis of DNMT3A in BCR-ABL1-negative Chronic Myeloproliferative Neoplasms. INT J GERONTOL 2013. [DOI: 10.1016/j.ijge.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
1160
|
Abstract
Cohesin is a ring-shaped complex, conserved from yeast to human, that was named for its ability to mediate sister chromatid cohesion. This function is essential for chromosome segregation in both mitosis and meiosis, and also for DNA repair. In addition, more recent studies have shown that cohesin influences gene expression during development through mechanisms that likely involve DNA looping and interactions with several transcriptional regulators. Here, we provide an overview of how cohesin functions, highlighting its role both in development and in disease.
Collapse
Affiliation(s)
- Silvia Remeseiro
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | |
Collapse
|
1161
|
Olme CH, Brown N, Finnon R, Bouffler S, Badie C. Frequency of acute myeloid leukaemia-associated mouse chromosome 2 deletions in X-ray exposed immature haematopoietic progenitors and stem cells. Mutat Res 2013; 756:119-26. [PMID: 23665297 PMCID: PMC4028086 DOI: 10.1016/j.mrgentox.2013.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/20/2022]
Abstract
Exposure to ionising radiation can lead to an increased risk of cancer, particularly leukaemia. In radiation-induced acute myeloid leukaemia (rAML), a partial hemizygous deletion of mouse chromosome 2 is a common feature in several susceptible strains. The deletion is an early event detectable 24h after exposure in bone marrow cells using cytogenetic techniques. Expanding clones of bone marrow cells with chromosome 2 deletions can be detected less than a year after exposure to ionising radiation in around half of the irradiated mice. Ultimately, 15-25% of exposed animals develop AML. It is generally assumed that leukaemia originates in an early progenitor cell or haematopoietic stem cell, but it is unknown whether the original chromosome damage occurs at a similar frequency in committed progenitors and stem cells. In this study, we monitored the frequency of chromosome 2 deletions in immature bone marrow cells (Lin(-)) and haematopoietic stem cells/multipotent progenitor cells (LSK) by several techniques, fluorescent in situ hybridisation (FISH) and through use of a reporter gene model, flow cytometry and colony forming units in spleen (CFU-S) following ex vivo or in vivo exposure. We showed that partial chromosome 2 deletions are present in the LSK subpopulation, but cannot be detected in Lin(-) cells and CFU-S12 cells. Furthermore, we transplanted irradiated Lin(-) or LSK cells into host animals to determine whether specific irradiated cell populations acquire an increased proliferative advantage compared to unirradiated cells. Interestingly, the irradiated LSK subpopulation containing cells carrying chromosome 2 deletions does not appear to repopulate as well as the unirradiated population, suggesting that the chromosomal deletion does not provide an advantage for growth and in vivo repopulation, at least at early stages following occurrence.
Collapse
Affiliation(s)
| | | | | | | | - C. Badie
- Cancer Genetics and Cytogenetics Group, Biological Effects Department, Centre for Radiation Chemical and Environmental Hazards, Public Health England, Didcot, Oxfordshire OX11 ORQ, United Kingdom
| |
Collapse
|
1162
|
|
1163
|
Landau DA, Carter SL, Getz G, Wu CJ. Clonal evolution in hematological malignancies and therapeutic implications. Leukemia 2013; 28:34-43. [PMID: 23979521 DOI: 10.1038/leu.2013.248] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/22/2013] [Accepted: 08/14/2013] [Indexed: 12/19/2022]
Abstract
The ability of cancer to evolve and adapt is a principal challenge to therapy in general and to the paradigm of targeted therapy in particular. This ability is fueled by the co-existence of multiple, genetically heterogeneous subpopulations within the cancer cell population. Increasing evidence has supported the idea that these subpopulations are selected in a Darwinian fashion, by which the genetic landscape of the tumor is continuously reshaped. Massively parallel sequencing has enabled a recent surge in our ability to study this process, adding to previous efforts using cytogenetic methods and targeted sequencing. Altogether, these studies reveal the complex evolutionary trajectories occurring across individual hematological malignancies. They also suggest that while clonal evolution may contribute to resistance to therapy, treatment may also hasten the evolutionary process. New insights into this process challenge us to understand the impact of treatment on clonal evolution and inspire the development of novel prognostic and therapeutic strategies.
Collapse
Affiliation(s)
- D A Landau
- 1] Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA [2] Broad Institute, Cambridge, MA, USA [3] Department of Hematology, Yale Cancer Center, New Haven, CT, USA [4] Université Paris Diderot, Paris, France
| | | | - G Getz
- 1] Broad Institute, Cambridge, MA, USA [2] Massachusetts General Hospital Cancer Center and Department of Pathology, Boston, MA, USA
| | - C J Wu
- 1] Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA [2] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA [3] Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
1164
|
Chen K, Navin NE, Wang Y, Schmidt HK, Wallis JW, Niu B, Fan X, Zhao H, McLellan MD, Hoadley KA, Mardis ER, Ley TJ, Perou CM, Wilson RK, Ding L. BreakTrans: uncovering the genomic architecture of gene fusions. Genome Biol 2013; 14:R87. [PMID: 23972288 PMCID: PMC4054677 DOI: 10.1186/gb-2013-14-8-r87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/23/2013] [Indexed: 01/18/2023] Open
Abstract
Producing gene fusions through genomic structural rearrangements is a major mechanism for tumor evolution. Therefore, accurately detecting gene fusions and the originating rearrangements is of great importance for personalized cancer diagnosis and targeted therapy. We present a tool, BreakTrans, that systematically maps predicted gene fusions to structural rearrangements. Thus, BreakTrans not only validates both types of predictions, but also provides mechanistic interpretations. BreakTrans effectively validates known fusions and discovers novel events in a breast cancer cell line. Applying BreakTrans to 43 breast cancer samples in The Cancer Genome Atlas identifies 90 genomically validated gene fusions. BreakTrans is available at http://bioinformatics.mdanderson.org/main/BreakTrans.
Collapse
|
1165
|
Zuurbier L, Gutierrez A, Mullighan CG, Canté-Barrett K, Gevaert AO, de Rooi J, Li Y, Smits WK, Buijs-Gladdines JGCAM, Sonneveld E, Look AT, Horstmann M, Pieters R, Meijerink JPP. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors. Haematologica 2013; 99:94-102. [PMID: 23975177 DOI: 10.3324/haematol.2013.090233] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients.
Collapse
|
1166
|
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinsk M, Jäger N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdés-Mas R, van Buuren MM, van ’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Australian Pancreatic Cancer Genome Initiative, ICGC Breast Cancer Consortium, ICGC MMML-Seq Consortium, ICGC PedBrain, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature 2013; 500:415-421. [PMID: 23945592 PMCID: PMC3776390 DOI: 10.1038/nature12477 10.1038/nature12666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/19/2013] [Indexed: 09/19/2023]
Abstract
All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
Collapse
Affiliation(s)
- Ludmil B. Alexandrov
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Serena Nik-Zainal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
- Department of Medical Genetics, Box 134, Addenbrooke’s Hospital NHS Trust, Hills Road, Cambridge CB2 0QQ
| | - David C. Wedge
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Samuel A.J.R. Aparicio
- Molecular Oncology, Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver V5Z 1L3, Canada
- Centre for Translational and Applied Genomics, Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, G227-2211 Wesbrook Mall, British Columbia, Vancouver V6T 2B5, Canada
| | - Sam Behjati
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
- Department of Paediatrics, University of Cambridge, Hills Road, Cambridge, CB2 2XY
| | - Andrew V. Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1BD, United Kingdom
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, Scotland G4 0SF, United Kingdom
- The Kinghorn Cancer Centre, 370 Victoria Street, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
| | - Graham R. Bignell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Niccolo Bolli
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK
| | - Ake Borg
- Department of Oncology, Lund University, SE-221 85 Lund, Sweden
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
- The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Sandrine Boyault
- Plateforme de Bioinformatique Synergie Lyon Cancer, Centre Léon Bérard, 28 rue Laennec, 69373 LYON CEDEX 08
| | - Birgit Burkhardt
- NHL-BFM Study Center and Department of Pediatric Hematology and Oncology, University Children’s Hospital, Münster, Germany
- NHL-BFM Study Center and Department of Pediatric Hematology and Oncology, University Children’s Hospital, Giessen, Germany
| | - Adam P. Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE
| | - Helen R. Davies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Christine Desmedt
- Breast Cancer Translational Res Lab - BCTL, Université Libre de Bruxelles - Institut Jules Bordet, Boulevard de Waterloo, 125, B-1000 Brussels
| | - Roland Eils
- Department of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Jórunn Erla Eyfjörd
- Cancer Research Laboratory, Faculty of Medicine, Biomedical Centre, University of Iceland, 101 Reykjavik, Iceland
| | - John A. Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mel Greaves
- Department of Haemato-oncology, Institute of Cancer Research, London
| | - Fumie Hosoda
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Barbara Hutter
- Department of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Tomislav Ilicic
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Sandrine Imbeaud
- INSERM, UMR-674, Génomique Fonctionnelle des Tumeurs Solides, Institut Universitaire d’Hematologie (IUH), Paris, France
- Université Paris Descartes, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Marcin Imielinsk
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Natalie Jäger
- Department of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - David T.W. Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Jones
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Oncology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sunil R. Lakhani
- The University of Queensland Centre for Clinical Research, School of Medicine and Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston 4029,Brisbane, QLD, Australia
| | - Carlos López-Otín
- Dpt. Bioquímica y Biología Molecular, IUOPA-Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sancha Martin
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Nikhil C. Munshi
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Boston Veterans Administration Healthcare System, West Roxbury, MA
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Paul A. Northcott
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marina Pajic
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1BD, United Kingdom
| | - Elli Papaemmanuil
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Angelo Paradiso
- Clinical Experimental Oncology Laboratory, National Cancer Institute, Via Amendola, 209, 70126, Bari, Italy
| | - John V. Pearson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Xose S. Puente
- Dpt. Bioquímica y Biología Molecular, IUOPA-Universidad de Oviedo, 33006 Oviedo, Spain
| | - Keiran Raine
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Manasa Ramakrishna
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Andrea L. Richardson
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital 75 Francis St. Boston, MA 02115, USA
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University,Kiel, Germany
| | - Matthias Schlesner
- Department of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Ton N. Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Paul N. Span
- Department of Radiation Oncology and department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500HB Nijmegen,the Netherlands
| | - Jon W. Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Andrew N.J. Tutt
- Breakthrough Breast Cancer Research Unit, King’s College London School of Medicine, London, UK
| | - Rafael Valdés-Mas
- Dpt. Bioquímica y Biología Molecular, IUOPA-Universidad de Oviedo, 33006 Oviedo, Spain
| | - Marit M. van Buuren
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Laura van ’t Veer
- The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands
| | - Anne Vincent-Salomon
- Institut Curie , Departement de Pathologie, INSERM U830, 26 rue d’Ulm 75248 PARIS CEDEX 05, France
| | - Nicola Waddell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Lucy R. Yates
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | | | | | | | | | - Jessica Zucman-Rossi
- INSERM, UMR-674, Génomique Fonctionnelle des Tumeurs Solides, Institut Universitaire d’Hematologie (IUH), Paris, France
- Université Paris Descartes, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - P. Andrew Futreal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Ultan McDermott
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthew Meyerson
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sean M. Grimmond
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Elías Campo
- Unidad de Hematopatología, Servicio de Anatomía Patológica, Hospital Clínic, Universitat de Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Stefan M. Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg
| | - Peter J. Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK
| | - Michael R. Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| |
Collapse
|
1167
|
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinsk M, Jäger N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdés-Mas R, van Buuren MM, van ’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Australian Pancreatic Cancer Genome Initiative, ICGC Breast Cancer Consortium, ICGC MMML-Seq Consortium, ICGC PedBrain, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature 2013; 500:415-21. [PMID: 23945592 PMCID: PMC3776390 DOI: 10.1038/nature12477] [Citation(s) in RCA: 7234] [Impact Index Per Article: 602.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
Collapse
Affiliation(s)
- Ludmil B. Alexandrov
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Serena Nik-Zainal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
- Department of Medical Genetics, Box 134, Addenbrooke’s Hospital NHS Trust, Hills Road, Cambridge CB2 0QQ
| | - David C. Wedge
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Samuel A.J.R. Aparicio
- Molecular Oncology, Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver V5Z 1L3, Canada
- Centre for Translational and Applied Genomics, Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver V5Z 1L3, Canada
- Department of Pathology, University of British Columbia, G227-2211 Wesbrook Mall, British Columbia, Vancouver V6T 2B5, Canada
| | - Sam Behjati
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
- Department of Paediatrics, University of Cambridge, Hills Road, Cambridge, CB2 2XY
| | - Andrew V. Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1BD, United Kingdom
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, Scotland G4 0SF, United Kingdom
- The Kinghorn Cancer Centre, 370 Victoria Street, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia
- Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia
| | - Graham R. Bignell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Niccolo Bolli
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK
| | - Ake Borg
- Department of Oncology, Lund University, SE-221 85 Lund, Sweden
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
- The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Sandrine Boyault
- Plateforme de Bioinformatique Synergie Lyon Cancer, Centre Léon Bérard, 28 rue Laennec, 69373 LYON CEDEX 08
| | - Birgit Burkhardt
- NHL-BFM Study Center and Department of Pediatric Hematology and Oncology, University Children’s Hospital, Münster, Germany
- NHL-BFM Study Center and Department of Pediatric Hematology and Oncology, University Children’s Hospital, Giessen, Germany
| | - Adam P. Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE
| | - Helen R. Davies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Christine Desmedt
- Breast Cancer Translational Res Lab - BCTL, Université Libre de Bruxelles - Institut Jules Bordet, Boulevard de Waterloo, 125, B-1000 Brussels
| | - Roland Eils
- Department of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Jórunn Erla Eyfjörd
- Cancer Research Laboratory, Faculty of Medicine, Biomedical Centre, University of Iceland, 101 Reykjavik, Iceland
| | - John A. Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mel Greaves
- Department of Haemato-oncology, Institute of Cancer Research, London
| | - Fumie Hosoda
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Barbara Hutter
- Department of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Tomislav Ilicic
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Sandrine Imbeaud
- INSERM, UMR-674, Génomique Fonctionnelle des Tumeurs Solides, Institut Universitaire d’Hematologie (IUH), Paris, France
- Université Paris Descartes, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Marcin Imielinsk
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Natalie Jäger
- Department of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - David T.W. Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Jones
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Oncology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sunil R. Lakhani
- The University of Queensland Centre for Clinical Research, School of Medicine and Pathology Queensland, The Royal Brisbane & Women’s Hospital, Herston 4029,Brisbane, QLD, Australia
| | - Carlos López-Otín
- Dpt. Bioquímica y Biología Molecular, IUOPA-Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sancha Martin
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Nikhil C. Munshi
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Boston Veterans Administration Healthcare System, West Roxbury, MA
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Paul A. Northcott
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marina Pajic
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland G61 1BD, United Kingdom
| | - Elli Papaemmanuil
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Angelo Paradiso
- Clinical Experimental Oncology Laboratory, National Cancer Institute, Via Amendola, 209, 70126, Bari, Italy
| | - John V. Pearson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Xose S. Puente
- Dpt. Bioquímica y Biología Molecular, IUOPA-Universidad de Oviedo, 33006 Oviedo, Spain
| | - Keiran Raine
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Manasa Ramakrishna
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Andrea L. Richardson
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women’s Hospital 75 Francis St. Boston, MA 02115, USA
| | - Julia Richter
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University,Kiel, Germany
| | - Matthias Schlesner
- Department of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Ton N. Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Paul N. Span
- Department of Radiation Oncology and department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500HB Nijmegen,the Netherlands
| | - Jon W. Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Andrew N.J. Tutt
- Breakthrough Breast Cancer Research Unit, King’s College London School of Medicine, London, UK
| | - Rafael Valdés-Mas
- Dpt. Bioquímica y Biología Molecular, IUOPA-Universidad de Oviedo, 33006 Oviedo, Spain
| | - Marit M. van Buuren
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Laura van ’t Veer
- The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands
| | - Anne Vincent-Salomon
- Institut Curie , Departement de Pathologie, INSERM U830, 26 rue d’Ulm 75248 PARIS CEDEX 05, France
| | - Nicola Waddell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Lucy R. Yates
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | | | | | | | | | - Jessica Zucman-Rossi
- INSERM, UMR-674, Génomique Fonctionnelle des Tumeurs Solides, Institut Universitaire d’Hematologie (IUH), Paris, France
- Université Paris Descartes, Labex Immuno-oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - P. Andrew Futreal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Ultan McDermott
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthew Meyerson
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sean M. Grimmond
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Elías Campo
- Unidad de Hematopatología, Servicio de Anatomía Patológica, Hospital Clínic, Universitat de Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Stefan M. Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg
| | - Peter J. Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK
| | - Michael R. Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA
| |
Collapse
|
1168
|
Sajesh BV, Lichtensztejn Z, McManus KJ. Sister chromatid cohesion defects are associated with chromosome instability in Hodgkin lymphoma cells. BMC Cancer 2013; 13:391. [PMID: 23962039 PMCID: PMC3751861 DOI: 10.1186/1471-2407-13-391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/19/2013] [Indexed: 12/25/2022] Open
Abstract
Background Chromosome instability manifests as an abnormal chromosome complement and is a pathogenic event in cancer. Although a correlation between abnormal chromosome numbers and cancer exist, the underlying mechanisms that cause chromosome instability are poorly understood. Recent data suggests that aberrant sister chromatid cohesion causes chromosome instability and thus contributes to the development of cancer. Cohesion normally functions by tethering nascently synthesized chromatids together to prevent premature segregation and thus chromosome instability. Although the prevalence of aberrant cohesion has been reported for some solid tumors, its prevalence within liquid tumors is unknown. Consequently, the current study was undertaken to evaluate aberrant cohesion within Hodgkin lymphoma, a lymphoid malignancy that frequently exhibits chromosome instability. Methods Using established cytogenetic techniques, the prevalence of chromosome instability and aberrant cohesion was examined within mitotic spreads generated from five commonly employed Hodgkin lymphoma cell lines (L-1236, KM-H2, L-428, L-540 and HDLM-2) and a lymphocyte control. Indirect immunofluorescence and Western blot analyses were performed to evaluate the localization and expression of six critical proteins involved in the regulation of sister chromatid cohesion. Results We first confirmed that all five Hodgkin lymphoma cell lines exhibited chromosome instability relative to the lymphocyte control. We then determined that each Hodgkin lymphoma cell line exhibited cohesion defects that were subsequently classified into mild, moderate or severe categories. Surprisingly, ~50% of the mitotic spreads generated from L-540 and HDLM-2 harbored cohesion defects. To gain mechanistic insight into the underlying cause of the aberrant cohesion we examined the localization and expression of six critical proteins involved in cohesion. Although all proteins produced the expected nuclear localization pattern, striking differences in RAD21 expression was observed: RAD21 expression was lowest in L-540 and highest within HDLM-2. Conclusion We conclude that aberrant cohesion is a common feature of all five Hodgkin lymphoma cell lines evaluated. We further conclude that aberrant RAD21 expression is a strong candidate to underlie aberrant cohesion, chromosome instability and contribute to the development of the disease. Our findings support a growing body of evidence suggesting that cohesion defects and aberrant RAD21 expression are pathogenic events that contribute to tumor development.
Collapse
Affiliation(s)
- Babu V Sajesh
- Manitoba Institute of Cell Biology and the Department of Biochemistry & Medical Genetics, University of Manitoba, ON6010 - 675 McDermot Avenue, Winnipeg, Manitoba MB R3E 0V9, Canada
| | | | | |
Collapse
|
1169
|
Monitoring of residual disease by next-generation deep-sequencing of RUNX1 mutations can identify acute myeloid leukemia patients with resistant disease. Leukemia 2013; 28:129-37. [PMID: 23958918 DOI: 10.1038/leu.2013.239] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 01/10/2023]
Abstract
We studied the utility and clinical relevance of RUNX1 (runt-related transcription factor 1) mutations and their application as residual disease detection markers using next-generation deep-sequencing. Mutation screening was prospectively performed in 814 acute myeloid leukemia patients. At diagnosis, 211/814 (25.9%) patients harbored mutations with a median clone size of 39% (range: 2-96%). Furthermore, in 57 patients paired samples from diagnosis and relapse were analyzed. In 47/57 (82.5%) cases the same alterations detected at diagnosis were present at relapse, whereas in 1/57 (1.8%) cases the mutation from the diagnostic sample was no longer detectable. Discrepancies were observed in 9/57 (15.8%) cases, also including the occurrence of novel RUNX1 mutations not restricted to those regions affected at diagnosis. Moreover, in 103 patients the prognostic impact of residual levels of RUNX1 mutations during complete remission was studied. Separation of patients according to median residual mutation burden into 'good responders' and 'poor responders' (median: 3.61%; range: 0.03-48.0%) resulted in significant differences of both event-free (median 21.0 vs. 5.7 months, P<0.001) and overall survival (OS; median 56.9 vs. 32.0 months, P=0.002). In conclusion, deep-sequencing revealed that RUNX1 mutations qualify as patient-specific markers for individualized disease monitoring. The measurement of mutation load may refine the assignment into distinct risk categories and treatment strategies.
Collapse
|
1170
|
Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia 2013; 28:1-14. [DOI: 10.1038/leu.2013.242] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 01/02/2023]
|
1171
|
Lee RS, Roberts CWM. Rhabdoid tumors: an initial clue to the role of chromatin remodeling in cancer. Brain Pathol 2013; 23:200-5. [PMID: 23432645 DOI: 10.1111/bpa.12021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 12/25/2022] Open
Abstract
The discovery of biallelic, inactivating SMARCB1 mutations in rhabdoid tumors (RTs) over a decade ago represented the first recognized link between chromatin remodeling and tumor suppression. SMARCB1 is a core subunit of the SWI/SNF chromatin remodeling complex, and the recent emergence of frequent mutations in genes that encode subunits of this complex across a wide variety of cancers suggests that perturbation of this chromatin remodeling complex constitutes a key driver of cancer formation. Despite the highly aggressive nature of RTs, they are genetically simple cancers that appear to lack chromosomal instability and contain very few mutations. Indeed, the mutation rate in RTs is among the lowest of all cancers sequenced, with loss of SMARCB1 as essentially the sole recurrent event. Given the genetic simplicity of this disease, understanding the chromatin dysregulation caused by SMARCB1 loss may provide more general insight into how epigenetic alterations can contribute to oncogenic transformation and may reveal opportunities for targeted therapy not only of RT but also the variety of other SWI/SNF mutant cancers.
Collapse
Affiliation(s)
- Ryan S Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | |
Collapse
|
1172
|
Abstract
Hematology Oncology has a rich history including few crucial therapeutic innovations. These were possible because of the evolution of the cell and molecular biology allowing a better understanding of basic mechanisms of cancerogenesis. We propose here to summarize the most important therapeutic innovations since the beginning of Hematology/Oncology history. We also describe evolution of therapeutic strategies themselves. New insights and therapeutic perspectives for next future are also discussed.
Collapse
|
1173
|
Lin TL, Lipe B. Research Highlights. Per Med 2013. [DOI: 10.2217/pme.13.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Tara L Lin
- University of Kansas Cancer Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS 66205, USA
| | - Brea Lipe
- University of Kansas Cancer Center, 2330 Shawnee Mission Parkway, Suite 210, Westwood, KS 66205, USA
| |
Collapse
|
1174
|
Ruben JM, Visser LL, Bontkes HJ, Westers TM, Ossenkoppele GJ, de Gruijl TD, van de Loosdrecht AA. Targeting the acute myeloid leukemic stem cell compartment by enhancing tumor cell-based vaccines. Immunotherapy 2013; 5:859-68. [DOI: 10.2217/imt.13.76] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Harvesting the potential of the immune system in order to eradicate (residual) acute myeloid leukemia (AML) cells is the long pursued goal of immunotherapy in AML. Strategies using apoptotic tumor cell vaccines have been explored for many years, without significant clinical improvements. In recent years insight has been gained into the mechanisms activating and interfering with tumor-directed immunity. With the arrival of novel immune-modulating agents allowing for the interference with regulatory molecules and interaction with immune-propelling mechanisms, new doors are opening for increasing vaccination efficacy. Combined with advances in the design of apoptotic tumor-based vaccines, we are on the verge of creating an effective AML vaccine strategy, offering a much needed novel therapeutic option for this devastating disease.
Collapse
Affiliation(s)
- Jurjen M Ruben
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Lindy L Visser
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Hetty J Bontkes
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands.
| |
Collapse
|
1175
|
Bisling KE, Brewin JN, McGovern AP, Horne GA, Rider T, Stewart HJ, Ramsahoye BH, Chevassut TJ. DNMT3A mutations at R882 hotspot are only found in major clones of acute myeloid leukemia. Leuk Lymphoma 2013; 55:711-4. [DOI: 10.3109/10428194.2013.811580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
1176
|
Merker JD, Roskin KM, Ng D, Pan C, Fisk DG, King JJ, Hoh R, Stadler M, Okumoto LM, Abidi P, Hewitt R, Jones CD, Gojenola L, Clark MJ, Zhang B, Cherry AM, George TI, Snyder M, Boyd SD, Zehnder JL, Fire AZ, Gotlib J. Comprehensive whole-genome sequencing of an early-stage primary myelofibrosis patient defines low mutational burden and non-recurrent candidate genes. Haematologica 2013; 98:1689-96. [PMID: 23872309 DOI: 10.3324/haematol.2013.092379] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In order to identify novel somatic mutations associated with classic BCR/ABL1-negative myeloproliferative neoplasms, we performed high-coverage genome sequencing of DNA from peripheral blood granulocytes and cultured skin fibroblasts from a patient with MPL W515K-positive primary myelofibrosis. The primary myelofibrosis genome had a low somatic mutation rate, consistent with that observed in similar hematopoietic tumor genomes. Interfacing of whole-genome DNA sequence data with RNA expression data identified three somatic mutations of potential functional significance: i) a nonsense mutation in CARD6, implicated in modulation of NF-kappaB activation; ii) a 19-base pair deletion involving a potential regulatory region in the 5'-untranslated region of BRD2, implicated in transcriptional regulation and cell cycle control; and iii) a non-synonymous point mutation in KIAA0355, an uncharacterized protein. Additional mutations in three genes (CAP2, SOX30, and MFRP) were also evident, albeit with no support for expression at the RNA level. Re-sequencing of these six genes in 178 patients with polycythemia vera, essential thrombocythemia, and myelofibrosis did not identify recurrent somatic mutations in these genes. Finally, we describe methods for reducing false-positive variant calls in the analysis of hematologic malignancies with a low somatic mutation rate. This trial is registered with ClinicalTrials.gov (NCT01108159).
Collapse
|
1177
|
Kulasekararaj AG, Mohamedali AM, Mufti GJ. Recent advances in understanding the molecular pathogenesis of myelodysplastic syndromes. Br J Haematol 2013; 162:587-605. [PMID: 23869491 DOI: 10.1111/bjh.12435] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The advent of novel genomic sequencing technologies has aided the identification of somatically acquired genetic abnormalities up to 80% of myelodysplastic syndrome (MDS) patients. Novel recurrent genetic mutations in pathways such as RNA splicing, DNA methylation and histone modification and cohesion complexes, underscore the molecular heterogeneity seen in this clinically varied disease. Functional studies to establish a causative link between genomic aberrations and MDS biogenesis are still in their infancy. The deluge of this molecular information, once validated on a larger cohort, will be incorporated into prognostic systems and clinical practise, and also hopefully aid in MDS therapeutics, especially in guiding targeted therapy.
Collapse
Affiliation(s)
- Austin G Kulasekararaj
- Department of Haematological Medicine, King's College London School of Medicine, London, UK
| | | | | |
Collapse
|
1178
|
Abstract
PURPOSE OF REVIEW Acute myeloid leukaemia (AML) is a heterogeneous disease with a variable response to therapy. The heterogeneity of AML is evident from variations in morphology, immunophenotype, cytogenetics and molecular abnormalities. The introduction of genome-wide technologies has enabled an even more detailed molecular analysis of AML. As a result, the molecular landscape of AML is rapidly evolving. The purpose of this review is to discuss the recent advances made in this field, with a special focus on risk stratification of AML. RECENT FINDINGS Clinical AML has been analysed in great molecular detail by gene expression profiling and more recently through epigenetic profiling and next generation sequencing. This has resulted in the identification of novel biomarkers, some of which appear to have a consistent clinical impact in AML, that is mutations in the genes encoding DNA (cytosine-5)-methyltransferase 3 alpha (DNMT3A), additional sex combs-like 1 (ASXL1), tet methylcytosine dioxygenase 2 (TET2) and Runt-related transcription factor 1 (RUNX1). In addition, massively parallel sequencing has revealed a great mutational heterogeneity as well as temporal clonal evolution in AML. SUMMARY The list of acquired mutations with clinical value in AML is growing. Clinical implementation of this multitude of markers will require integrated approaches and selection of markers to facilitate AML risk stratification in the future. The revealed molecular heterogeneity and evolution in AML will have implications for developing targeted therapies.
Collapse
|
1179
|
Abstract
PURPOSE OF REVIEW We summarize recent advances for acute myeloid leukemia (AML) in older patients, with a focus on immunotherapeutics. Although the recently updated US SEER data still show that the majority of older AML patients do not receive any therapy, this reality is slowly changing. Advances in our understanding of the biology of AML and in the field of immunology are facilitating the development of alternative therapeutic options for patients, affording more and novel opportunities for potentially curative treatment. RECENT FINDINGS Data from multiple cooperative groups show that older patients benefit from the incorporation of gemtuzumab ozogamicin, an anti-CD33 mAb toxin, into induction regimens. The first prospective study for reduced-intensity conditioning allogeneic hematopoietic stem cell transplantation in older AML patients was reported at the American Society of Hematology Annual Meeting, 2012; the approach was feasible and improved disease-free survival over conventional chemotherapy. Proof-of-concept trials targeting specific antigens such as WT1 or novel unique leukemia-associated antigens are currently underway, as well as other trials using chimeric antigen receptor T cells or (natural killer/effector cells in nontransplantation settings. SUMMARY Wider application of immunotherapies such as allogeneic hematopoietic stem cell transplantation with reduced-intensity conditioning have altered the landscape and offer potential for cure of an increasing number of older AML patients.
Collapse
|
1180
|
The Impact of FLT3 Mutations on the Development of Acute Myeloid Leukemias. LEUKEMIA RESEARCH AND TREATMENT 2013; 2013:275760. [PMID: 23936658 PMCID: PMC3725705 DOI: 10.1155/2013/275760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/30/2013] [Accepted: 05/14/2013] [Indexed: 11/17/2022]
Abstract
The development of the genetic studies on acute myeloid leukemias (AMLs) has led to the identification of some recurrent genetic abnormalities. Their discovery was of fundamental importance not only for a better understanding of the molecular pathogenesis of AMLs, but also for the identification of new therapeutic targets. In this context, it is essential to identify AML-associated “driver” mutations, which have a causative role in leukemogenesis. Evidences accumulated during the last years indicate that activating internal tandem duplication mutations in FLT3 (FLT3-ITD), detected in about 20% of AMLs, represents driver mutations and valid therapeutic targets in AMLs. Furthermore, the screening of FLT3-ITD mutations has also considerably helped to improve the identification of more accurate prognostic criteria and of the therapeutic selection of patients.
Collapse
|
1181
|
Jones DTW, Hutter B, Jäger N, Korshunov A, Kool M, Warnatz HJ, Zichner T, Lambert SR, Ryzhova M, Quang DAK, Fontebasso AM, Stütz AM, Hutter S, Zuckermann M, Sturm D, Gronych J, Lasitschka B, Schmidt S, Seker-Cin H, Witt H, Sultan M, Ralser M, Northcott PA, Hovestadt V, Bender S, Pfaff E, Stark S, Faury D, Schwartzentruber J, Majewski J, Weber UD, Zapatka M, Raeder B, Schlesner M, Worth CL, Bartholomae CC, von Kalle C, Imbusch CD, Radomski S, Lawerenz C, van Sluis P, Koster J, Volckmann R, Versteeg R, Lehrach H, Monoranu C, Winkler B, Unterberg A, Herold-Mende C, Milde T, Kulozik AE, Ebinger M, Schuhmann MU, Cho YJ, Pomeroy SL, von Deimling A, Witt O, Taylor MD, Wolf S, Karajannis MA, Eberhart CG, Scheurlen W, Hasselblatt M, Ligon KL, Kieran MW, Korbel JO, Yaspo ML, Brors B, Felsberg J, Reifenberger G, Collins VP, Jabado N, Eils R, Lichter P, Pfister SM. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 2013; 45:927-32. [PMID: 23817572 DOI: 10.1038/ng.2682] [Citation(s) in RCA: 606] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/03/2013] [Indexed: 02/08/2023]
Abstract
Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.
Collapse
Affiliation(s)
- David T W Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1182
|
Prebet T, Carbuccia N, Raslova H, Favier R, Rey J, Arnoulet C, Vey N, Vainchenker W, Birnbaum D, Mozziconacci MJ. Concomitant germ-lineRUNX1and acquiredASXL1mutations in a T-cell acute lymphoblastic leukemia. Eur J Haematol 2013; 91:277-279. [DOI: 10.1111/ejh.12147] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Nadine Carbuccia
- Centre de Recherche en Cancérologie de Marseille; Laboratoire d'Oncologie Moléculaire; UMR1068 Inserm; Institut Paoli-Calmettes; Marseille; France
| | - Hana Raslova
- INSERM U1009; Institut Gustave Roussy; Villejuif; France
| | - Rémi Favier
- INSERM U1009; Institut Gustave Roussy; Villejuif; France
| | - Jerome Rey
- Département d'Hématologie; Institut Paoli-Calmettes; Marseille; France
| | - Christine Arnoulet
- Département de BioPathologie; Institut Paoli-Calmettes; Marseille; France
| | | | | | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille; Laboratoire d'Oncologie Moléculaire; UMR1068 Inserm; Institut Paoli-Calmettes; Marseille; France
| | | |
Collapse
|
1183
|
Abstract
Technological advances in the laboratory have led to substantial improvements in clinical decision making through the introduction of pretreatment prognostic risk stratification factors in acute myeloid leukaemia (AML). Unfortunately, similar progress has not been made in treatment response criteria, with the definition of 'complete remission' in AML largely unchanged for over half a century. Several clinical trials have demonstrated that high-sensitivity measurements of residual disease burden during or after treatment can be performed, that results are predictive for clinical outcome and can be used to improve outcomes by guiding additional therapeutic intervention to patients in clinical complete remission, but at increased relapse risk. We review these recent trials, the characteristics and challenges of the modalities currently used to detect minimal residual disease (MRD), and outline opportunities to both refine detection and improve clinical use of MRD measurements. MRD measurement is already the standard of care in other myeloid malignancies, such as chronic myelogenous leukaemia and acute promyelocytic leukaemia (APL). It is our belief that response criteria for non-APL AML should be updated to include assessment for molecular complete remission and recommendations for post-consolidation surveillance should include regular monitoring for molecular relapse as standard of care.
Collapse
Affiliation(s)
- Christopher S Hourigan
- Myeloid Malignancies Section, Hematology Branch, National Heart, Lung and Blood Institute, 10 Centre Drive, Bethesda, MD 20892-1583, USA.
| | | |
Collapse
|
1184
|
Sajesh BV, Guppy BJ, McManus KJ. Synthetic genetic targeting of genome instability in cancer. Cancers (Basel) 2013; 5:739-61. [PMID: 24202319 PMCID: PMC3795363 DOI: 10.3390/cancers5030739] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 12/20/2022] Open
Abstract
Cancer is a leading cause of death throughout the World. A limitation of many current chemotherapeutic approaches is that their cytotoxic effects are not restricted to cancer cells, and adverse side effects can occur within normal tissues. Consequently, novel strategies are urgently needed to better target cancer cells. As we approach the era of personalized medicine, targeting the specific molecular defect(s) within a given patient's tumor will become a more effective treatment strategy than traditional approaches that often target a given cancer type or sub-type. Synthetic genetic interactions are now being examined for their therapeutic potential and are designed to target the specific genetic and epigenetic phenomena associated with tumor formation, and thus are predicted to be highly selective. In general, two complementary approaches have been employed, including synthetic lethality and synthetic dosage lethality, to target aberrant expression and/or function associated with tumor suppressor genes and oncogenes, respectively. Here we discuss the concepts of synthetic lethality and synthetic dosage lethality, and explain three general experimental approaches designed to identify novel genetic interactors. We present examples and discuss the merits and caveats of each approach. Finally, we provide insight into the subsequent pre-clinical work required to validate novel candidate drug targets.
Collapse
Affiliation(s)
- Babu V Sajesh
- Manitoba Institute of Cell Biology, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0V9, Canada.
| | | | | |
Collapse
|
1185
|
Riley DR, Sieber KB, Robinson KM, White JR, Ganesan A, Nourbakhsh S, Dunning Hotopp JC. Bacteria-human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput Biol 2013; 9:e1003107. [PMID: 23840181 PMCID: PMC3688693 DOI: 10.1371/journal.pcbi.1003107] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/01/2013] [Indexed: 12/14/2022] Open
Abstract
There are 10× more bacterial cells in our bodies from the microbiome than human cells. Viral DNA is known to integrate in the human genome, but the integration of bacterial DNA has not been described. Using publicly available sequence data from the human genome project, the 1000 Genomes Project, and The Cancer Genome Atlas (TCGA), we examined bacterial DNA integration into the human somatic genome. Here we present evidence that bacterial DNA integrates into the human somatic genome through an RNA intermediate, and that such integrations are detected more frequently in (a) tumors than normal samples, (b) RNA than DNA samples, and (c) the mitochondrial genome than the nuclear genome. Hundreds of thousands of paired reads support random integration of Acinetobacter-like DNA in the human mitochondrial genome in acute myeloid leukemia samples. Numerous read pairs across multiple stomach adenocarcinoma samples support specific integration of Pseudomonas-like DNA in the 5′-UTR and 3′-UTR of four proto-oncogenes that are up-regulated in their transcription, consistent with conversion to an oncogene. These data support our hypothesis that bacterial integrations occur in the human somatic genome and may play a role in carcinogenesis. We anticipate that the application of our approach to additional cancer genome projects will lead to the more frequent detection of bacterial DNA integrations in tumors that are in close proximity to the human microbiome. There are 10× more bacterial cells in the human body than there are human cells that are part of the human microbiome. Many of those bacteria are in constant, intimate contact with human cells. We sought to establish if bacterial cells insert their own DNA into the human genome. Such random mutations could cause disease in the same manner that mutagens like UV rays from the sun or chemicals in cigarettes induce mutations. We detected the integration of bacterial DNA in the human genome more readily in tumors than normal samples. In particular, extensive amounts of DNA with similarity to Acinetobacter DNA were fused to human mitochondrial DNA in acute myeloid leukemia samples. We also identified specific integrations of DNA with similarity to Pseudomonas DNA near the untranslated regulatory regions of four proto-oncogenes. This supports our hypothesis that bacterial integrations occur in the human somatic genome that may potentially play a role in carcinogenesis. Further study in this area may provide new avenues for cancer prevention.
Collapse
Affiliation(s)
- David R. Riley
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Karsten B. Sieber
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly M. Robinson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James Robert White
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ashwinkumar Ganesan
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Computer Science and Electrical Engineering Department, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Syrus Nourbakhsh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- University of Maryland College Park, College Park, Maryland, United States of America
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
1186
|
Mrózek K, Nicolet D, Maharry KS, Carroll AJ, Marcucci G, Bloomfield CD. Reply to K. Orendi et al. J Clin Oncol 2013; 31:2361-2. [DOI: 10.1200/jco.2013.49.2504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH; and Alliance for Clinical Trials in Oncology Statistics and Data Center, Mayo Clinic, Rochester, MN
| | - Kati S. Maharry
- The Ohio State University Comprehensive Cancer Center, Columbus, OH; and Alliance for Clinical Trials in Oncology Statistics and Data Center, Mayo Clinic, Rochester, MN
| | | | - Guido Marcucci
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | |
Collapse
|
1187
|
Simon R, Roychowdhury S. Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov 2013; 12:358-69. [PMID: 23629504 DOI: 10.1038/nrd3979] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recent surge in high-throughput sequencing of cancer genomes has supported an expanding molecular classification of cancer. These studies have identified putative predictive biomarkers signifying aberrant oncogene pathway activation and may provide a rationale for matching patients with molecularly targeted therapies in clinical trials. Here, we discuss some of the challenges of adapting these data for rare cancers or molecular subsets of certain cancers, which will require aligning the availability of investigational agents, rapid turnaround of clinical grade sequencing, molecular eligibility and reconsidering clinical trial design and end points.
Collapse
Affiliation(s)
- Richard Simon
- Biometric Research Branch, US National Cancer Institute, Bethesda, Maryland 20892-7434, USA
| | | |
Collapse
|
1188
|
The rate of spontaneous mutations in human myeloid cells. Mutat Res 2013; 749:49-57. [PMID: 23748046 DOI: 10.1016/j.mrfmmm.2013.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/09/2023]
Abstract
The mutation rate (μ) is likely to be a key parameter in leukemogenesis, but historically, it has been difficult to measure in humans. The PIG-A gene has some advantages for the detection of spontaneous mutations because it is X-linked, and therefore only one mutation is required to disrupt its function. Furthermore, the PIG-A-null phenotype is readily detected by flow cytometry. Using PIG-A, we have now provided the first in vitro measurement of μ in myeloid cells, using cultures of CD34+ cells that are transduced with either the AML-ETO or the MLL-AF9 fusion genes and expanded with cytokines. For the AML-ETO cultures, the median μ value was ∼9.4×10(-7) (range ∼3.6-23×10(-7)) per cell division. In contrast, few spontaneous mutations were observed in the MLL-AF9 cultures. Knockdown of p53 or introduction of mutant NRAS or FLT3 alleles did not have much of an effect on μ. Based on these data, we provide a model to predict whether hypermutability must occur in the process of leukemogenesis.
Collapse
|
1189
|
Kayser S, Levis MJ. FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations. Leuk Lymphoma 2013; 55:243-55. [PMID: 23631653 DOI: 10.3109/10428194.2013.800198] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Internal tandem duplications of the FMS-like tyrosine kinase 3 (FLT3) gene are one of the most frequent gene mutations in acute myeloid leukemia (AML) and are associated with poor clinical outcome. The remission rate is high with intensive chemotherapy, but most patients eventually relapse. During the last decade, FLT3 mutations have emerged as an attractive target for a molecularly specific treatment strategy. Targeting FLT3 receptor tyrosine kinases in AML has shown encouraging results in the treatment of FLT3 mutated AML, but in most patients responses are incomplete and not sustained. Newer, more specific compounds seem to have a higher potency and selectivity against FLT3. During therapy with FLT3 tyrosine kinase inhibitors (TKIs) the induction of acquired resistance has emerged as a clinical problem. Therefore, optimization of the targeted therapy and potential treatment options to overcome resistance is currently the focus of clinical research. In this review we discuss the use and limitations of TKIs as a therapeutic strategy for the treatment of FLT3 mutated AML, including mechanisms of resistance to TKIs as well as possible novel strategies to improve FLT3 inhibitor therapy.
Collapse
Affiliation(s)
- Sabine Kayser
- Department of Internal Medicine III, University Hospital of Ulm , Germany
| | | |
Collapse
|
1190
|
Werner B, Dingli D, Traulsen A. A deterministic model for the occurrence and dynamics of multiple mutations in hierarchically organized tissues. J R Soc Interface 2013; 10:20130349. [PMID: 23740488 PMCID: PMC4043170 DOI: 10.1098/rsif.2013.0349] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancers are rarely caused by single mutations, but often develop as a result of the combined effects of multiple mutations. For most cells, the number of possible cell divisions is limited because of various biological constraints, such as progressive telomere shortening, cell senescence cascades or a hierarchically organized tissue structure. Thus, the risk of accumulating cells carrying multiple mutations is low. Nonetheless, many diseases are based on the accumulation of such multiple mutations. We model a general, hierarchically organized tissue by a multi-compartment approach, allowing any number of mutations within a cell. We derive closed solutions for the deterministic clonal dynamics and the reproductive capacity of single clones. Our results hold for the average dynamics in a hierarchical tissue characterized by an arbitrary combination of proliferation parameters. We show that hierarchically organized tissues strongly suppress cells carrying multiple mutations and derive closed solutions for the expected size and diversity of clonal populations founded by a single mutant within the hierarchy. We discuss the example of childhood acute lymphoblastic leukaemia in detail and find good agreement between our predicted results and recently observed clonal diversities in patients. This result can contribute to the explanation of very diverse mutation profiles observed by whole genome sequencing of many different cancers.
Collapse
Affiliation(s)
- Benjamin Werner
- Evolutionary Theory Group, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | |
Collapse
|
1191
|
Price JC, Pollock LM, Rudd ML, Fogoros SK, Mohamed H, Hanigan CL, Le Gallo M, Program NIHISC(NISCCS, Zhang S, Cruz P, Cherukuri PF, Hansen NF, McManus KJ, Godwin AK, Sgroi DC, Mullikin JC, Merino MJ, Hieter P, Bell DW. Sequencing of candidate chromosome instability genes in endometrial cancers reveals somatic mutations in ESCO1, CHTF18, and MRE11A. PLoS One 2013; 8:e63313. [PMID: 23755103 PMCID: PMC3670891 DOI: 10.1371/journal.pone.0063313] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/01/2013] [Indexed: 01/10/2023] Open
Abstract
Most endometrial cancers can be classified histologically as endometrioid, serous, or clear cell. Non-endometrioid endometrial cancers (NEECs; serous and clear cell) are the most clinically aggressive of the three major histotypes and are characterized by aneuploidy, a feature of chromosome instability. The genetic alterations that underlie chromosome instability in endometrial cancer are poorly understood. In the present study, we used Sanger sequencing to search for nucleotide variants in the coding exons and splice junctions of 21 candidate chromosome instability genes, including 19 genes implicated in sister chromatid cohesion, from 24 primary, microsatellite-stable NEECs. Somatic mutations were verified by sequencing matched normal DNAs. We subsequently resequenced mutated genes from 41 additional NEECs as well as 42 endometrioid ECs (EECs). We uncovered nonsynonymous somatic mutations in ESCO1, CHTF18, and MRE11A in, respectively, 3.7% (4 of 107), 1.9% (2 of 107), and 1.9% (2 of 107) of endometrial tumors. Overall, 7.7% (5 of 65) of NEECs and 2.4% (1 of 42) of EECs had somatically mutated one or more of the three genes. A subset of mutations are predicted to impact protein function. The co-occurrence of somatic mutations in ESCO1 and CHTF18 was statistically significant (P = 0.0011, two-tailed Fisher's exact test). This is the first report of somatic mutations within ESCO1 and CHTF18 in endometrial tumors and of MRE11A mutations in microsatellite-stable endometrial tumors. Our findings warrant future studies to determine whether these mutations are driver events that contribute to the pathogenesis of endometrial cancer.
Collapse
Affiliation(s)
- Jessica C. Price
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lana M. Pollock
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Meghan L. Rudd
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah K. Fogoros
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hassan Mohamed
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christin L. Hanigan
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Matthieu Le Gallo
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Suiyuan Zhang
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pedro Cruz
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Praveen F. Cherukuri
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy F. Hansen
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kirk J. McManus
- Department of Biochemistry and Medical Genetics, University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, Manitoba, Canada
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Dennis C. Sgroi
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - James C. Mullikin
- Intramural Sequencing Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria J. Merino
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daphne W. Bell
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
1192
|
Exome sequencing identifies putative drivers of progression of transient myeloproliferative disorder to AMKL in infants with Down syndrome. Blood 2013; 122:554-61. [PMID: 23733339 DOI: 10.1182/blood-2013-03-491936] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Some neonates with Down syndrome (DS) are diagnosed with self-regressing transient myeloproliferative disorder (TMD), and 20% to 30% of those progress to acute megakaryoblastic leukemia (AMKL). We performed exome sequencing in 7 TMD/AMKL cases and copy-number analysis in these and 10 additional cases. All TMD/AMKL samples contained GATA1 mutations. No exome-sequenced TMD/AMKL sample had other recurrently mutated genes. However, 2 of 5 TMD cases, and all AMKL cases, showed mutations/deletions other than GATA1, in genes proven as transformation drivers in non-DS leukemia (EZH2, APC, FLT3, JAK1, PARK2-PACRG, EXT1, DLEC1, and SMC3). One patient at the TMD stage revealed 2 clonal expansions with different GATA1 mutations, of which 1 clone had an additional driver mutation. Interestingly, it was the other clone that gave rise to AMKL after accumulating mutations in 7 other genes. Data suggest that GATA1 mutations alone are sufficient for clonal expansions, and additional driver mutations at the TMD stage do not necessarily predict AMKL progression. Later in infancy, leukemic progression requires "third-hit driver" mutations/somatic copy-number alterations found in non-DS leukemias. Putative driver mutations affecting WNT (wingless-related integration site), JAK-STAT (Janus kinase/signal transducer and activator of transcription), or MAPK/PI3K (mitogen-activated kinase/phosphatidylinositol-3 kinase) pathways were found in all cases, aberrant activation of which converges on overexpression of MYC.
Collapse
|
1193
|
Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson AG, Hoadley K, Triche TJ, Laird PW, Baty JD, Fulton LL, Fulton R, Heath SE, Kalicki-Veizer J, Kandoth C, Klco JM, Koboldt DC, Kanchi KL, Kulkarni S, Lamprecht TL, Larson DE, Lin L, Lu C, McLellan MD, McMichael JF, Payton J, Schmidt H, Spencer DH, Tomasson MH, Wallis JW, Wartman LD, Watson MA, Welch J, Wendl MC, Ally A, Balasundaram M, Birol I, Butterfield Y, Chiu R, Chu A, Chuah E, Chun HJ, Corbett R, Dhalla N, Guin R, He A, Hirst C, Hirst M, Holt RA, Jones S, Karsan A, Lee D, Li HI, Marra MA, Mayo M, Moore RA, Mungall K, Parker J, Pleasance E, Plettner P, Schein J, Stoll D, Swanson L, Tam A, Thiessen N, Varhol R, Wye N, Zhao Y, Gabriel S, Getz G, Sougnez C, Zou L, Leiserson MDM, Vandin F, Wu HT, Applebaum F, Baylin SB, Akbani R, Broom BM, Chen K, Motter TC, Nguyen K, Weinstein JN, Zhang N, Ferguson ML, Adams C, Black A, Bowen J, Gastier-Foster J, Grossman T, Lichtenberg T, Wise L, Davidsen T, Demchok JA, Shaw KRM, Sheth M, Sofia HJ, Yang L, Downing JR, Eley G. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368:2059-74. [PMID: 23634996 PMCID: PMC3767041 DOI: 10.1056/nejmoa1301689] [Citation(s) in RCA: 3887] [Impact Index Per Article: 323.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Many mutations that contribute to the pathogenesis of acute myeloid leukemia (AML) are undefined. The relationships between patterns of mutations and epigenetic phenotypes are not yet clear. METHODS We analyzed the genomes of 200 clinically annotated adult cases of de novo AML, using either whole-genome sequencing (50 cases) or whole-exome sequencing (150 cases), along with RNA and microRNA sequencing and DNA-methylation analysis. RESULTS AML genomes have fewer mutations than most other adult cancers, with an average of only 13 mutations found in genes. Of these, an average of 5 are in genes that are recurrently mutated in AML. A total of 23 genes were significantly mutated, and another 237 were mutated in two or more samples. Nearly all samples had at least 1 nonsynonymous mutation in one of nine categories of genes that are almost certainly relevant for pathogenesis, including transcription-factor fusions (18% of cases), the gene encoding nucleophosmin (NPM1) (27%), tumor-suppressor genes (16%), DNA-methylation-related genes (44%), signaling genes (59%), chromatin-modifying genes (30%), myeloid transcription-factor genes (22%), cohesin-complex genes (13%), and spliceosome-complex genes (14%). Patterns of cooperation and mutual exclusivity suggested strong biologic relationships among several of the genes and categories. CONCLUSIONS We identified at least one potential driver mutation in nearly all AML samples and found that a complex interplay of genetic events contributes to AML pathogenesis in individual patients. The databases from this study are widely available to serve as a foundation for further investigations of AML pathogenesis, classification, and risk stratification. (Funded by the National Institutes of Health.).
Collapse
|
1194
|
Abstract
Mutations in the nucleophosmin 1 (NPM1) gene are considered a founder event in the pathogenesis of acute myeloid leukemia (AML). To address the role of clonal evolution in relapsed NPM1-mutated (NPM1mut) AML, we applied high-resolution, genome-wide, single-nucleotide polymorphism array profiling to detect copy number alterations (CNAs) and uniparental disomies (UPDs) and performed comprehensive gene mutation screening in 53 paired bone marrow/peripheral blood samples obtained at diagnosis and relapse. At diagnosis, 15 aberrations (CNAs, n = 10; UPDs, n = 5) were identified in 13 patients (25%), whereas at relapse, 56 genomic alterations (CNAs, n = 46; UPDs, n = 10) were detected in 29 patients (55%) indicating an increase in genomic complexity. Recurrent aberrations acquired at relapse included deletions affecting tumor suppressor genes (ETV6 [n = 3], TP53 [n = 2], NF1 [n = 2], WT1 [n = 3], FHIT [n = 2]) and homozygous FLT3 mutations acquired via UPD13q (n = 7). DNMT3A mutations (DNMT3Amut) showed the highest stability (97%). Persistence of DNMT3Amut in 5 patients who lost NPM1mut at relapse suggests that DNMT3Amut may precede NPM1mut in AML pathogenesis. Of note, all relapse samples shared at least 1 genetic aberration with the matched primary AML sample, implying common ancestral clones. In conclusion, our study reveals novel insights into clonal evolution in NPM1mut AML.
Collapse
|
1195
|
Abstract
Genetic analysis of hematologic malignancies over the past 5 years has revealed abundant mutations in epigenetic regulators in all classes of disorders. Here, we summarize the observations made within our review series on the role of epigenetics in hematology. We highlight the clinical implications of mutations in epigenetic regulators and outline what we envision are some of the major areas that merit future research. Recent findings may have immediate prognostic value, but also offer new targets for drug development. However, the pleiotropic action of these regulators indicates caution is warranted and argues for investment in understanding of their underlying mechanisms of action as we proceed to exploit these findings for the benefit of patients.
Collapse
|
1196
|
Oricchio E, Wendel HG. Functional genomics lead to new therapies in follicular lymphoma. Ann N Y Acad Sci 2013; 1293:18-24. [PMID: 23676193 DOI: 10.1111/nyas.12120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent technological advances allow analysis of genomic changes in cancer in unprecedented detail. The next challenge is to prioritize the multitude of genetic aberrations found and identify therapeutic opportunities. We recently completed a study that illustrates the use of unbiased genetic screens and murine cancer models to find therapeutic targets among complex genomic data. We genetically dissected the common deletion of chromosome 6q and identified the ephrin receptor A7 (EPHA7) as a tumor suppressor in lymphoma. Notably, EPHA7 encodes a soluble splice variant that acts as an extrinsic tumor suppressor. Accordingly, we developed an antibody-based strategy to specifically deliver EPHA7 back to tumors that have lost this gene. Recent sequencing studies have implicated EPHA7 in lung cancer and other tumors, suggesting a broader therapeutic potential for antibody-mediated delivery of this tumor suppressor for cancer therapy. Together, our comprehensive approach provides new insights into cancer biology and may directly lead to the development of new cancer therapies.
Collapse
Affiliation(s)
- Elisa Oricchio
- Cancer Biology & Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | |
Collapse
|
1197
|
Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) in acute promyelocytic leukemia. Int J Hematol 2013; 97:717-25. [DOI: 10.1007/s12185-013-1354-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 01/10/2023]
|
1198
|
Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, Crabtree GR. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 2013; 45:592-601. [PMID: 23644491 DOI: 10.1038/ng.2628] [Citation(s) in RCA: 1071] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/08/2013] [Indexed: 12/13/2022]
Abstract
Subunits of mammalian SWI/SNF (mSWI/SNF or BAF) complexes have recently been implicated as tumor suppressors in human malignancies. To understand the full extent of their involvement, we conducted a proteomic analysis of endogenous mSWI/SNF complexes, which identified several new dedicated, stable subunits not found in yeast SWI/SNF complexes, including BCL7A, BCL7B and BCL7C, BCL11A and BCL11B, BRD9 and SS18. Incorporating these new members, we determined mSWI/SNF subunit mutation frequency in exome and whole-genome sequencing studies of primary human tumors. Notably, mSWI/SNF subunits are mutated in 19.6% of all human tumors reported in 44 studies. Our analysis suggests that specific subunits protect against cancer in specific tissues. In addition, mutations affecting more than one subunit, defined here as compound heterozygosity, are prevalent in certain cancers. Our studies demonstrate that mSWI/SNF is the most frequently mutated chromatin-regulatory complex (CRC) in human cancer, exhibiting a broad mutation pattern, similar to that of TP53. Thus, proper functioning of polymorphic BAF complexes may constitute a major mechanism of tumor suppression.
Collapse
Affiliation(s)
- Cigall Kadoch
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
1199
|
Larsson CA, Cote G, Quintás-Cardama A. The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome. Mol Cancer Res 2013; 11:815-27. [PMID: 23645565 DOI: 10.1158/1541-7786.mcr-12-0695] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Over the past few years, large-scale genomic studies of patients with myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML) have unveiled recurrent somatic mutations in genes involved in epigenetic regulation (DNMT3A, IDH1/2, TET2, ASXL1, EZH2 and MLL) and the spliceosomal machinery (SF3B1, U2AF1, SRSF2, ZRSR2, SF3A1, PRPF40B, U2AF2, and SF1). The identification of these mutations and their impact on prognostication has led to improvements in risk-stratification strategies and has also provided new potential targets for the treatment of these myeloid malignancies. In this review, we discuss the most recently identified genetic abnormalities described in MDS and AML and appraise the current status quo of the dynamics of acquisition of mutant alleles in the pathogenesis of AML, during the transformation from MDS to AML, and in the context of relapse after conventional chemotherapy. IMPLICATIONS Identification of somatic mutations in AML and MDS suggests new targets for therapeutic development.
Collapse
Affiliation(s)
- Connie A Larsson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 428, Houston, TX 77030, USA.
| | | | | |
Collapse
|
1200
|
O'Neil NJ, van Pel DM, Hieter P. Synthetic lethality and cancer: cohesin and PARP at the replication fork. Trends Genet 2013; 29:290-7. [PMID: 23333522 PMCID: PMC3868440 DOI: 10.1016/j.tig.2012.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/28/2012] [Accepted: 12/14/2012] [Indexed: 01/19/2023]
Abstract
Cohesins are mutated in a significant number of tumors of various types making them attractive targets for chemotherapeutic intervention. However, cohesins have a spectrum of cellular roles including sister chromatid cohesion, transcription, replication, and repair. Which of these roles are central to cancer biology and which roles can be exploited for therapeutic intervention? Genetic interaction networks in yeast have identified synthetic lethal interactions between mutations in cohesin and replication fork mediators. These interactions are conserved in worms and in human cells suggesting that inhibition of replication fork stability mediators such as poly (ADP-ribose) polymerase (PARP) could result in the specific killing of tumors with cohesin mutations. These findings also highlight the utility of genetic interaction networks in model organisms for the identification of clinically relevant interactions. Here, we review this type of approach, emphasizing the power of synthetic lethal interactions to reveal new avenues for developing cancer therapeutics.
Collapse
Affiliation(s)
- Nigel J O'Neil
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | |
Collapse
|