1201
|
Jiang Y, Zhang Y, Chen W, Liu C, Li X, Sun D, Liu Z, Xu Y, Mao X, Guo Q, Lin N. Achyranthes bidentata extract exerts osteoprotective effects on steroid-induced osteonecrosis of the femoral head in rats by regulating RANKL/RANK/OPG signaling. J Transl Med 2014; 12:334. [PMID: 25471933 PMCID: PMC4256888 DOI: 10.1186/s12967-014-0334-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/18/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (steroid-induced ONFH) presents great challenges due to the various effects of steroids on multi-system pathways involved into osteoblast differentiation, osteoblast and osteoclast apoptosis, lipid metabolism, calcium metabolism and coagulation. As one of the most frequently used herbs in Traditional Chinese Medicine formulas that are prescribed for the regulation of bone and mineral metabolism, the therapeutic effects of Achyranthes bidentata on steroid-induced ONFH remain unclear. Thus, the aim of the current study was to verify whether Achyranthes bidentata extract (ABE) can be used to prevent steroid-induced ONFH and to investigate its underlying pharmacological mechanisms. METHODS Steroid-induced ONFH rat models were established to evaluate the effects of ABE treatment on osteonecrotic changes and repair processes. Microfocal computed tomography (Micro-CT) was performed to assess the effects of ABE treatment on bone mass, microstructure, and vascularization. Then, the effects of ABE treatment on osteoclast differentiation and bone formation were also evaluated in vivo and in vitro. In addition, receptor activator of nuclear factor kappa B (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) expression in sera, femoral heads and bone marrow-derived mesenchymal stem cells (BMSCs) were detected at both protein and mRNA levels. RESULTS The ratio of empty lacuna, adipose tissue area, and adipocyte perimeter in the bone marrow were markedly lower in the ABE treatment groups than in the model group. Micro-CT evaluation indicated that ABE treatment could improve the microstructure of the trabecular bone, increase bone mineral density and promote vascularization in steroid-induced ONFH rats. Moreover, ABE treatment inhibited osteoclast differentiation and activated bone formation markers. Interestingly, OPG downregulation, RANK and RANKL upregulation, and an increased ratio of RANKL to OPG in sera and necrotic femoral head could be reversed by ABE treatment, which also effectively inhibited RANKL-induced osteoclast differentiation and regulated RANKL and OPG expression of in vitro. CONCLUSION ABE may prevent steroid-induced ONFH and alleviate steroid-induced bone deterioration by regulating the RANKL/RANK/OPG signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No, 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| |
Collapse
|
1202
|
Recurrent adamantinoma in the thoracolumbar spine successfully treated by three-level total en bloc spondylectomy by a single posterior approach. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 24 Suppl 4:S514-21. [PMID: 25337858 DOI: 10.1007/s00586-014-3625-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Adamantinoma is a low-grade primary malignant bone tumour with slow growth and local recurrence. Its occurrence in the spine is extremely rare, particularly with multilevel involvement. This paper wants to present the first case involving a patient with recurrent thoracolumbar spinal adamantinoma, who underwent a successful three-level spondylectomy for en bloc resection. METHODS A 24-year-old man with osteolytic masses of T11 and T12 vertebral bodies was performed curettage by a posterior approach in 2008. The pathology report showed the excised neoplasm was a rare adamantinoma. This patient underwent a tumorectomy again because of its local recurrence nearly 3 years later. In 2012, it was unfortunately revealed that the excised tumour had relapsed and had spread to the L1 vertebral body. Due to its repeated recurrence and aggressive lesion, total en bloc spondylectomy (TES) for this malignant tumour was thought to be the best option for preventing repeated recurrence and possible cure. TES for T11-L1 thoracolumbar spine was performed and spinal reconstruction was completed with instrumentation and a titanium mesh cage through a one-stage single posterior approach. RESULTS After three-level TES, neurological deficits of the patient demonstrated good recovery and no evidence of adamantinoma recurrence or deformity was found at 2-year follow-up. CONCLUSIONS This is the first case involving multilevel thoracolumbar spinal adamantinoma with repeated recurrence to be successfully treated by three-level TES by a single posterior approach.
Collapse
|
1203
|
Singh S, Suri A. Targeting the testis-specific heat-shock protein 70-2 (HSP70-2) reduces cellular growth, migration, and invasion in renal cell carcinoma cells. Tumour Biol 2014; 35:12695-706. [PMID: 25213699 DOI: 10.1007/s13277-014-2594-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/03/2014] [Indexed: 01/24/2023] Open
Abstract
Renal cell carcinoma (RCC) represents one of the most resistant tumors to radiotherapy and chemotherapy. Current therapies for the RCC patients are limited owing to lack of diagnosis and therapeutic treatments. Testis-specific heat-shock protein 70-2 (HSP70-2), a member of HSP70 chaperone family, has been shown to be associated with various cancers. In the present study, we investigated the putative role of HSP70-2 in various malignant properties of the RCC cells. HSP70-2 messenger RNA (mRNA) and protein expression was investigated in A704, ACHN, and Caki-1 cells derived from the RCC patients. We assessed the expression of HSP70-2 gene and protein by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The expression of HSP70-2 protein was further validated by performing indirect immunofluorescence (IIF) and flow cytometry. The malignant properties of high-grade invasive A704 and Caki-1 cells, such as cellular proliferation, colony formation, migration, invasion, and wound healing, were evaluated by silencing the expression of HSP70-2 gene in these cells. Statistical significance was defined using Student's t test. Our RT-PCR and Western blotting data showed the expression of HSP70-2 in all RCC cells. Our results showed that HSP70-2 was predominantly expressed in cytoplasm and found to be colocalized with endoplasmic reticulum, mitochondria, Golgi body, and plasma membrane but not the nuclear envelope. Knockdown of HSP70-2 expression with specific short hairpin RNA (shRNA) demonstrated significant reduction in cell growth and colony formation. Further, a marked reduction in cell migration and invasion was also observed, indicating the potential role of HSP70-2 in metastasis. Collectively, our data suggest that HSP70-2 plays a key role in cancerous growth and invasive potential of RCC cells. Thus, HSP70-2 could serve as a novel potential therapeutic target for the RCC.
Collapse
Affiliation(s)
- Swarnendra Singh
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | | |
Collapse
|
1204
|
MiR-17-5p modulates osteoblastic differentiation and cell proliferation by targeting SMAD7 in non-traumatic osteonecrosis. Exp Mol Med 2014; 46:e107. [PMID: 25060766 PMCID: PMC4119212 DOI: 10.1038/emm.2014.43] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/19/2014] [Accepted: 05/02/2014] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) have recently been recognized to have a role in human orthopedic disorders. The objective of our study was to explore the expression profile and biological function of miRNA-17-5p (miR-17-5p), which is well known to be related to cancer cell proliferation and invasion, in osteoblastic differentiation and in cell proliferation. The expression levels of miR-17-5p in the femoral head mesenchymal stem cells of 20 patients with non-traumatic osteonecrosis (ON) and 10 patients with osteoarthritis (OA) were examined by quantitative reverse transcription-PCR (qRT-PCR). Furthermore, the interaction between miR-17-5p and SMAD7 was observed. We found that in non-traumatic ON samples the level of mature miR-17-5p was significantly lower than that of OA samples (P=0.0002). By targeting SMAD7, miR-17-5p promoted nuclear translocation of β-catenin, enhanced expression of COL1A1 and finally facilitated the proliferation and differentiation of HMSC-bm cells. We also demonstrated that restoring expression of SMAD7 in HMSC-bm cells partially reversed the function of miR-17-5p. Together, our data suggested a theory that dysfunction of a network containing miR-17-5p, SMAD7 and β-catenin could contribute to ON pathogenesis. The present study prompts the potential clinical value of miR-17-5p in non-traumatic ON.
Collapse
|
1205
|
Summary of the various treatments for osteonecrosis of the femoral head by mechanism: A review. Exp Ther Med 2014; 8:700-706. [PMID: 25120585 PMCID: PMC4113634 DOI: 10.3892/etm.2014.1811] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/04/2014] [Indexed: 12/20/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH), also known as femoral head avascular necrosis, is a pathological state with a number of possible etiologies including steroid administration, alcohol abuse, traumatic events, vascular injury and idiopathic origins. ONFH causes a reduction in the vascular supply to the subchondral bone of the femoral head, which results in osteocyte death and the collapse of the articular surface. Treatments for ONFH include non-weight-bearing therapy, physical support, the promotion of osteoclast apoptosis, and the reduction of osteoblast and osteocyte apoptosis. The aim of the present review was to summarize the treatments for ONFH by mechanism from a new perspective and to describe the condition with an emphasis on treatment options.
Collapse
|
1206
|
Shi DA, Sun Y, Yin J, Fan X, Duan H, Liu N, He W. Cajan leaf combined with bone marrow-derived mesenchymal stem cells for the treatment of osteonecrosis of the femoral head. Exp Ther Med 2014; 7:1471-1475. [PMID: 24926328 PMCID: PMC4043602 DOI: 10.3892/etm.2014.1622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/09/2014] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to observe the curative effect of traditional Chinese cajan leaves, combined with administration of bone marrow-derived mesenchymal stem cells (BMSCs), on osteonecrosis of the femoral head (ONFH) in rats and to investigate the underlying mechanisms. A total of 40 rat ONFH models were established through liquid nitrogen freezing and were subsequently divided into groups: A, control; B, treated with cajan leaf; C, treated with BMSCs and D, treated with cajan leaf combined with BMSCs. Samples were obtained 30 days following treatment, and immunohistochemical staining of vascular endothelial growth factor (VEGF) and image analysis were performed. Chondrocytes and vascular endothelial cells were stained as a result of immunohistochemical staining and group D exhibited markedly deeper staining, and a significantly larger number of stained cells, compared with group A. Thus, in the present study, cajan leaf combined with BMSCs was shown to promote VEGF expression and improve ONFH repair.
Collapse
Affiliation(s)
- DA Shi
- Department of Orthopedics of Traditional Chinese Medicine, Hong Hui Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Yindi Sun
- Department of Orthopedics of Traditional Chinese Medicine, Hong Hui Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Jichao Yin
- Department of Orthopedics of Traditional Chinese Medicine, Hong Hui Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Xiaochen Fan
- Department of Orthopedics of Traditional Chinese Medicine, Hong Hui Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Honghao Duan
- Department of Orthopedics of Traditional Chinese Medicine, Hong Hui Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Na Liu
- Department of Orthopedics of Traditional Chinese Medicine, Hong Hui Hospital Affiliated to Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Wei He
- Department of Orthopedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
1207
|
Jain M, Singh R. Ankle arthrodesis in tubercular arthritis using anterior bridge plating: a report of 2 cases. Foot (Edinb) 2014; 24:81-5. [PMID: 24698516 DOI: 10.1016/j.foot.2014.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 02/04/2023]
Abstract
Ankle arthrodesis is a common procedure for tubercular arthritis in India. However, attaining fusion in osteoporotic bones is difficult to achieve by both external and internal fixation methods described in the literature. We report two cases for ankle arthrodesis using an anterior approach to the ankle and internal fixation with a bridging anteriorly placed AO L/AO T plate. Both ankles were fused. The surgical technique is simple, easily reproducible and gives excellent results.
Collapse
Affiliation(s)
- Mantu Jain
- Department of Orthopaedic Surgery, Pt. J.N.M. Medical College, Raipur, Chhattisgarh, India
| | - Roop Singh
- Department of Orthopaedic Surgery, Pt. B.D. Sharma PGIMS, Rohtak, Haryana, India.
| |
Collapse
|
1208
|
Xenotransplantation of human mesenchymal stem cells for repair of osteochondral defects in rabbits using osteochondral biphasic composite constructs. Knee Surg Sports Traumatol Arthrosc 2014; 22:1434-44. [PMID: 23370989 DOI: 10.1007/s00167-013-2426-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/21/2013] [Indexed: 01/22/2023]
Abstract
PURPOSE The aim of this work is to investigate the feasibility of non-autologous transplantation of human mesenchymal stem cells (hMSCs) with or without differentiation for the regeneration of osteochondral defects in rabbits using a biphasic composite construct composed of platelet-rich fibrin glue (PR-FG) and hydroxyapatite. METHODS After isolation and culture, hMSCs were seeded on biphasic composite constructs (hydroxyapatite + PR-FG) and transplanted into osteochondral defects of adult New Zealand white rabbits. Treatment of individual defects was applied by random assignment to one of five groups: (1) control, defects untreated; (2) hydroxyapatite, defects filled with hydroxyapatite only; (3) hydroxyapatite + PR-FG, defects filled with a composite of hydroxyapatite and PR-FG; (4) hydroxyapatite + PR-FG + undifferentiated hMSCs; and (5) hydroxyapatite + PR-FG + differentiated hMSCs. Rabbits were killed at 4 or 8 weeks post-surgery, at which time osteochondral repair was macroscopically and histologically evaluated and scored using the modified International Cartilage Repair Society scoring system. RESULTS The group in which defects were seeded with differentiated hMSCs (group 5) showed superior healing of osteochondral defects based on macroscopic and histological observations compared to other groups. Specifically, 8 weeks after implantation, defects were filled with more hyaline-like cartilage and were better integrated with the surrounding native cartilage. The histological scores were significantly better than those of other groups (16.3 at 8 weeks, p < 0.01). CONCLUSION Xenogeneic transplantation of differentiated hMSCs using a biphasic composite construct effectively repaired osteochondral defect in a rabbit model. Differentiated hMSCs showed superior healing of chondral lesion to undifferentiated hMSCs.
Collapse
|
1209
|
Xiong X, Wang Y, Liu C, Lu Q, Liu T, Chen G, Rao H, Luo S. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells. Exp Cell Res 2014; 326:78-89. [PMID: 24880126 DOI: 10.1016/j.yexcr.2014.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 01/09/2023]
Abstract
Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233-620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer.
Collapse
Affiliation(s)
- Xiangyang Xiong
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006, China; Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yao Wang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Quqin Lu
- Department of Biostatistics & Epidemiology, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Tao Liu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006, China
| | - Guoan Chen
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hai Rao
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu District, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
1210
|
George B, Bresson D, Bouazza S, Froelich S, Mandonnet E, Hamdi S, Orabi M, Polivka M, Cazorla A, Adle-Biassette H, Guichard JP, Duet M, Gayat E, Vallée F, Canova CH, Riet F, Bolle S, Calugaru V, Dendale R, Mazeron JJ, Feuvret L, Boissier E, Vignot S, Puget S, Sainte-Rose C, Beccaria K. [Chordoma]. Neurochirurgie 2014; 60:63-140. [PMID: 24856008 DOI: 10.1016/j.neuchi.2014.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/14/2014] [Accepted: 03/11/2014] [Indexed: 12/28/2022]
Abstract
PURPOSES To review in the literature, all the epidemiological, clinical, radiological, histological and therapeutic data regarding chordomas as well as various notochordal entities: ecchordosis physaliphora, intradural and intraparenchymatous chordomas, benign notochordal cell tumors, parachordomas and extra-axial chordomas. To identify different types of chordomas, including familial forms, associations with tuberous sclerosis, Ollier's disease and Maffucci's syndrome, forms with metastasis and seeding. To assess the recent data regarding molecular biology and progress in targeted therapy. To compare the different types of radiotherapy, especially protontherapy and their therapeutic effects. To review the largest series of chordomas in their different localizations (skull base, sacrum and mobile spine) from the literature. MATERIALS The series of 136 chordomas treated and followed up over 20 years (1972-2012) in the department of neurosurgery at Lariboisière hospital is reviewed. It includes: 58 chordomas of the skull base, 47 of the craniocervical junction, 23 of the cervical spine and 8 from the lombosacral region. Similarly, 31 chordomas in children (less than 18 years of age), observed in the departments of neurosurgery of les Enfants-Malades and Lariboisière hospitals, are presented. They were observed between 1976 and 2010 and were located intracranially (n=22 including 13 with cervical extension), 4 at the craniocervical junction level and 5 in the cervical spine. METHODS In the entire Lariboisière series and in the different groups of localization, different parameters were analyzed: the delay of diagnosis, of follow-up, of occurrence of metastasis, recurrence and death, the number of primary patients and patients referred to us after progression or recurrence and the number of deaths, recurrences and metastases. The influence of the quality of resection (total, subtotal and partial) on the prognosis is also presented. Kaplan-Meier actuarial curves of overall survival and disease free survival were performed in the entire series, including the different groups of localization based on the following 4 parameters: age, primary and secondary patients, quality of resection and protontherapy. In the pediatric series, a similar analysis was carried-out but was limited by the small number of patients in the subgroups. RESULTS In the Lariboisière series, the mean delay of diagnosis is 10 months and the mean follow-up is 80 months in each group. The delay before recurrence, metastasis and death is always better for the skull base chordomas and worse for those of the craniocervical junction, which have similar results to those of the cervical spine. Similar figures were observed as regards the number of deaths, metastases and recurrences. Quality of resection is the major factor of prognosis with 20.5 % of deaths and 28 % of recurrences after total resection as compared to 52.5 % and 47.5 % after subtotal resection. This is still more obvious in the group of skull base chordomas. Adding protontherapy to a total resection can still improve the results but there is no change after subtotal resection. The actuarial curve of overall survival shows a clear cut in the slope with some chordomas having a fast evolution towards recurrence and death in less than 4 years and others having a long survival of sometimes more than 20 years. Also, age has no influence on the prognosis. In primary patients, disease free survival is better than in secondary patients but not in overall survival. Protontherapy only improves the overall survival in the entire series and in the skull base group. Total resection improves both the overall and disease free survival in each group. Finally, the adjunct of protontherapy after total resection is clearly demonstrated. In the pediatric series, the median follow-up is 5.7 years. Overall survival and disease free survival are respectively 63 % and 54.3 %. Factors of prognosis are the histological type (atypical forms), localization (worse for the cervical spine and better for the clivus) and again it will depend on the quality of resection. CONCLUSIONS Many different pathologies derived from the notochord can be observed: some are remnants, some may be precursors of chordomas and some have similar features but are probably not genuine chordomas. To-day, immuno-histological studies should permit to differentiate them from real chordomas. Improving knowledge of molecular biology raises hopes for complementary treatments but to date the quality of surgical resection is still the main factor of prognosis. Complementary protontherapy seems useful, especially in skull base chordomas, which have better overall results than those of the craniocervical junction and of the cervical spine. However, we are still lacking an intrinsic marker of evolution to differentiate the slow growing chordomas with an indolent evolution from aggressive types leading rapidly to recurrence and death on which more aggressive treatments should be applied.
Collapse
Affiliation(s)
- B George
- Service de neurochirurgie, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France.
| | - D Bresson
- Service de neurochirurgie, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - S Bouazza
- Service de neurochirurgie, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - S Froelich
- Service de neurochirurgie, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - E Mandonnet
- Service de neurochirurgie, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - S Hamdi
- Service de neurochirurgie, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - M Orabi
- Service de neurochirurgie, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - M Polivka
- Service d'anatomopathologie, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - A Cazorla
- Service d'anatomopathologie, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - H Adle-Biassette
- Service d'anatomopathologie, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - J-P Guichard
- Service de neuroradiologie, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - M Duet
- Service de médecine nucléaire, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - E Gayat
- Service d'anesthésie-réanimation, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - F Vallée
- Service d'anesthésie-réanimation, hôpital Lariboisière, 2, rue Ambroise-Paré, 75010 Paris, France
| | - C-H Canova
- Service de radiothérapie et d'oncologie médicale, hôpital de la Salpêtrière, institut Gustave-Roussy, institut Curie, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - F Riet
- Service de radiothérapie et d'oncologie médicale, hôpital de la Salpêtrière, institut Gustave-Roussy, institut Curie, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - S Bolle
- Service de radiothérapie et d'oncologie médicale, hôpital de la Salpêtrière, institut Gustave-Roussy, institut Curie, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - V Calugaru
- Service de radiothérapie et d'oncologie médicale, hôpital de la Salpêtrière, institut Gustave-Roussy, institut Curie, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - R Dendale
- Service de radiothérapie et d'oncologie médicale, hôpital de la Salpêtrière, institut Gustave-Roussy, institut Curie, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - J-J Mazeron
- Service de radiothérapie et d'oncologie médicale, hôpital de la Salpêtrière, institut Gustave-Roussy, institut Curie, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - L Feuvret
- Service de radiothérapie et d'oncologie médicale, hôpital de la Salpêtrière, institut Gustave-Roussy, institut Curie, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - E Boissier
- Service de radiothérapie et d'oncologie médicale, hôpital de la Salpêtrière, institut Gustave-Roussy, institut Curie, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - S Vignot
- Service de radiothérapie et d'oncologie médicale, hôpital de la Salpêtrière, institut Gustave-Roussy, institut Curie, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - S Puget
- Service de neurochirurgie, hôpital Necker, 149, rue de Sèvres, 75015 Paris, France
| | - C Sainte-Rose
- Service de neurochirurgie, hôpital Necker, 149, rue de Sèvres, 75015 Paris, France
| | - K Beccaria
- Service de neurochirurgie, hôpital Necker, 149, rue de Sèvres, 75015 Paris, France
| |
Collapse
|
1211
|
Lau RL, Perruccio AV, Evans HMK, Mahomed SR, Mahomed NN, Gandhi R. Stem cell therapy for the treatment of early stage avascular necrosis of the femoral head: a systematic review. BMC Musculoskelet Disord 2014; 15:156. [PMID: 24886648 PMCID: PMC4038713 DOI: 10.1186/1471-2474-15-156] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/07/2014] [Indexed: 12/11/2022] Open
Abstract
Background Avascular necrosis (AVN) of the femoral head (FH) is believed to be caused by a multitude of etiologic factors and is associated with significant morbidity in younger populations. Eventually, the disease progresses and results in FH collapse. Thus, a focus on early disease management aimed at joint preservation by preventing or delaying progression is key. The use of stem cells (SC) for the treatment of AVN of the FH has been proposed. We undertook a systematic review of the medical literature examining the use of SC for the treatment of early stage (precollapse) AVN of the FH, in both pre-clinical and clinical studies. Methods Data collected included: Pre-clinical studies – model of AVN, variety and dosage of SC, histologic and imaging analyses. Clinical studies – study design, classification and etiology of AVN, SC dosage and treatment protocol, incidence of disease progression, patient reported outcomes, volume of necrotic lesion and hip survivorship. Results In pre-clinical studies, the use of SC uniformly demonstrated improvements in osteogenesis and angiogenesis, yet source of implanted SC was variable. In clinical studies, groups treated with SC showed significant improvements in patient reported outcomes; however hip survivorship was not affected. Discrepancies regarding dose of SC, AVN etiology and disease severity were present. Conclusions Routine use of this treatment method will first require further research into dose and quality optimization as well as confirmed improvements in hip survivorship.
Collapse
Affiliation(s)
| | | | | | | | | | - Rajiv Gandhi
- Division of Orthopaedic Surgery, Toronto Western Hospital, 399 Bathurst Street EW 1-427, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
1212
|
Houdek MT, Wyles CC, Martin JR, Sierra RJ. Stem cell treatment for avascular necrosis of the femoral head: current perspectives. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2014; 7:65-70. [PMID: 24744611 PMCID: PMC3986287 DOI: 10.2147/sccaa.s36584] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Avascular necrosis (AVN) of the femoral head is a progressive disease that predominantly affects younger patients. Although the exact pathophysiology of AVN has yet to be elucidated, the disease is characterized by a vascular insult to the blood supply of the femoral head, which can lead to collapse of the femoral head and subsequent degenerative changes. If AVN is diagnosed in the early stages of the disease, it may be possible to attempt surgical procedures which preserve the hip joint, including decompression of the femoral head augmented with concentrated bone marrow. The use of autologous stem cells has shown promise in halting the progression of AVN of the femoral head, and subsequently preventing young patients from undergoing total hip arthroplasty. The purpose of this study was to review the current use of stem cells for the treatment of AVN of the femoral head.
Collapse
Affiliation(s)
| | - Cody C Wyles
- School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - John R Martin
- Department of Orthopedic Surgery, Rochester, MN, USA
| | | |
Collapse
|
1213
|
Teng Y, Ross JL, Cowell JK. The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. JAKSTAT 2014; 3:e28086. [PMID: 24778926 PMCID: PMC3995737 DOI: 10.4161/jkst.28086] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 12/18/2022] Open
Abstract
JAK-STAT3 signaling, while regulating many aspects of cancer development and progression, promotes invasion and metastasis through activation of key metastasis promoting genes such as WASF3. STAT3 promotes WASF3 expression and JAK2 independently activates it, which is required for invasion. JAK-STAT3 signaling is dependent on WASF3 function, since its inactivation in cells expressing JAK-STAT3 suppresses invasion. WASF3 overexpression leads to activation of NFκB and ZEB1 which also promote invasion through regulation of target genes involved in metastasis. NFκB frequently cooperates with STAT3 to upregulate metastasis promoting genes such as matrix metalloproteinases and cytokines, as well as to suppress microRNAs which can suppresses invasion. This better understanding of the complex role played by JAK-STAT3 in the regulation of cell movement, invasion, and metastasis provides opportunities to suppress this lethal aspect of cancer progression by not only targeting the JAK and STAT3 proteins directly, but also some of the downstream effectors of JAK-STAT3 signaling.
Collapse
Affiliation(s)
- Yong Teng
- Georgia Regents University Cancer Center; Augusta, GA USA
| | - James L Ross
- Georgia Regents University Cancer Center; Augusta, GA USA
| | - John K Cowell
- Georgia Regents University Cancer Center; Augusta, GA USA
| |
Collapse
|
1214
|
Jiang Y, Zhang Y, Zhang H, Zhu B, Li P, Lu C, Xu Y, Chen W, Lin N. Pravastatin prevents steroid-induced osteonecrosis in rats by suppressing PPARγ expression and activating Wnt signaling pathway. Exp Biol Med (Maywood) 2014; 239:347-55. [PMID: 24510055 DOI: 10.1177/1535370213519215] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Steroid-induced osteonecrosis of the femoral head (steroid-induced ONFH) is characterized by increase of intraosseous pressure because of lipid metabolism disturbance such as elevation of adipogenesis and fat cell hypertrophy in the bone marrow, subsequently leading to disturbances of coagulation-fibrinolysis system in the femoral head and finally resulting in bone ischemia. Pravastatin has been demonstrated to be useful in preventing steroid-induced ONFH in animal models. However, its exact mechanisms acting on this disease have not been fully elucidated. To address this problem, steroid-induced ONFH rat model was constructed to evaluate the effects of pravastatin treatment on the osteonecrotic changes and repair processes. Then, Micro-CT-based micro-angiography was performed to assess the effects of pravastatin treatment on vascularization. In addition, serum lipid levels were detected by haematological examination. After that, the expression of peroxisome proliferator-activated receptor gamma (PPARγ), Wnt3a, low density lipoprotein receptor-related protein 5 (LRP5), β-catenin and runt-related transcription factor 2 (RUNX2) at both mRNA and protein levels were further detected by immunohistochemistry, real-time quantitative PCR, and Western blot analyses. The results, the ratio of empty lacuna, adipose tissue area, and adipocyte perimeter in the bone marrow were dramatically lower in the pravastatin treatment groups than in the model group (all P < 0.05). Moreover, by micro-CT quantification, pravastatin treatment dose-dependently increased vessel volume, vessel surface, percentage of vessel volume, and vessel thickness of the femoral heads of steroid-induced ONFH rats. Importantly, pravastatin treatment could prevent steroid-induced ONFH by suppressing the expression of PPARγ, and increasing the expression of Wnt3a, LRP5, β-catenin, and RUNX2, at both mRNA and protein levels, in the femoral heads of steroid-induced ONFH rats. In conclusion, Pravastatin may prevent steroid-induced ONFH by suppressing PPARγ expression and activating Wnt signaling pathway.
Collapse
Affiliation(s)
- Yini Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | | | | | | | | | | | | | | |
Collapse
|
1215
|
Genetic association of the P-glycoprotein gene ABCB1 polymorphisms with the risk for steroid-induced osteonecrosis of the femoral head in Chinese population. Mol Biol Rep 2014; 41:3135-46. [DOI: 10.1007/s11033-014-3173-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 01/16/2014] [Indexed: 01/14/2023]
|
1216
|
Hunter MC, O’Hagan KL, Kenyon A, Dhanani KCH, Prinsloo E, Edkins AL. Hsp90 binds directly to fibronectin (FN) and inhibition reduces the extracellular fibronectin matrix in breast cancer cells. PLoS One 2014; 9:e86842. [PMID: 24466266 PMCID: PMC3899338 DOI: 10.1371/journal.pone.0086842] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 12/16/2013] [Indexed: 12/30/2022] Open
Abstract
Heat shock protein 90 (Hsp90) has been identified in the extracellular space and has been shown to chaperone a finite number of extracellular proteins involved in cell migration and invasion. We used chemical cross-linking and immunoprecipitation followed by tandem mass spectrometry (MS/MS) to isolate a complex containing Hsp90 and the matrix protein fibronectin (FN) from breast cancer cells. Further analysis showed direct binding of Hsp90 to FN using an in vitro co-immunoprecipitation assay, a solid phase binding assay and surface plasmon resonance (SPR) spectroscopy. Confocal microscopy showed regions of co-localisation of Hsp90 and FN in breast cancer cell lines. Exogenous Hsp90β was shown to increase the formation of extracellular FN matrix in the Hs578T cell line, whilst knockdown or inhibition of Hsp90 led to a reduction in the levels of both soluble and insoluble FN and could be partially rescued by addition of exogenous Hsp90β. Treatment of cells with novobiocin led to internalization of FN into vesicles that were positive for the presence of the lysosomal marker, LAMP-1. Taken together, the direct interaction between FN and Hsp90, as well as the decreased levels of both soluble and insoluble FN upon Hsp90 inhibition or knockdown, suggested that FN may be a new client protein for Hsp90 and that Hsp90 was involved in FN matrix assembly and/or stability. The identification of FN as a putative client protein of Hsp90 suggests a role for Hsp90 in FN matrix stability, which is important for a number of fundamental cellular processes including embryogenesis, wound healing, cell migration and metastasis.
Collapse
Affiliation(s)
- Morgan C. Hunter
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Kyle L. O’Hagan
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Amy Kenyon
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Karim C. H. Dhanani
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Earl Prinsloo
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Adrienne L. Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
- * E-mail:
| |
Collapse
|
1217
|
Wang T, Liao T, Wang H, Deng W, Yu D. Transplantation of bone marrow stromal cells overexpressing human vascular endothelial growth factor 165 enhances tissue repair in a rat model of radiation-induced injury. Chin Med J (Engl) 2014; 127:1093-1099. [PMID: 24622441 DOI: 10.3760/cma.j.issn.0366-6999.20132337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND The multilineage differentiation potential ability of bone marrow stromal cells (BMSCs) showed great potential in tissue engineering, while vascular endothelial growth factor 165 (VEGF165) promotes vasculogenesis and further promotes tissue regeneration. This study aimed to assess the ability of rat BMSCs expressing human VEGF A165 (hVEGF165) to promote tissue repair in rat model of radiation-induced injury. METHODS Rat BMSCs were isolated from the tibia. Plasmid DNA expressing hVEGF165 was stably transfected into BMSCs using liposomes. The right hindlimb muscle of 40 rats was irradiated using a (60)Co γ source (total dose 30 Gy). The animals were divided into four groups (n = 10): not injected with BMSCs (control; group 1) or intramuscularly injected two times (once in 2 weeks) with pcDNA(TM)3.1-transfected BMSCs (group 2), untransfected BMSCs (group 3), or hVEGF165-transfected BMSCs (group 4). Angiography was performed 1 week after the last injection of BMSCs; samples of the hindlimb muscle were subjected to transmission electron microscopy, ultrastructural analysis, reverse transcription-PCR (RT-PCR), Western blotting, and immunohistochemistry. RESULTS Rat BMSCs with multipotent differentiation capacity were isolated. hVEGF165-transfected BMSCs overexpressed hVEGF165 mRNA and protein. Injection of BMSCs (groups 2-4) increased the average vessel number, density, diameter, and cross-sectional area; mRNA expression of the myogenic markers including myoblast determination protein, myogenin, and a-smooth muscle actin; and CD31 protein expression; and promoted the repair of blood vessels and myofibers after radiation-induced injury compared to group 1; each of these parameters and hVEGF165 mRNA or protein expression were markedly improved in rats injected with hVEGF165-transfected BMSCs compared to groups 2 and 3. CONCLUSIONS BMSCs expressing hVEGF165 enhanced the repair of radiation-induced tissue injury by promoting vasculogenesis and muscle fiber regeneration. BMSCs expressing hVEGF165 may have potential clinical applications.
Collapse
Affiliation(s)
- Tao Wang
- Department of Oral and Maxillofacial Surgery, People's Hospital of Hainan Province, Haikou, Hainan 570311, China.
| | - Tian'an Liao
- Department of Oral and Maxillofacial Surgery, People's Hospital of Hainan Province, Haikou, Hainan 570311, China
| | - Hong Wang
- Department of Oral and Maxillofacial Surgery, People's Hospital of Hainan Province, Haikou, Hainan 570311, China
| | - Wei Deng
- Department of Oral and Maxillofacial Surgery, People's Hospital of Hainan Province, Haikou, Hainan 570311, China
| | - Dahai Yu
- Department of Oral Maxillofacial Surgery, Stomatological Hospital, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
1218
|
Jeon JE, Vaquette C, Klein TJ, Hutmacher DW. Perspectives in Multiphasic Osteochondral Tissue Engineering. Anat Rec (Hoboken) 2013; 297:26-35. [DOI: 10.1002/ar.22795] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Affiliation(s)
- June E. Jeon
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Cedryck Vaquette
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Travis J. Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology 60 Musk Ave., Kelvin Grove, QLD, 4059, Australia
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive Atlanta, GA 30332, USA
| |
Collapse
|
1219
|
Mao Q, Jin H, Liao F, Xiao L, Chen D, Tong P. The efficacy of targeted intraarterial delivery of concentrated autologous bone marrow containing mononuclear cells in the treatment of osteonecrosis of the femoral head: a five year follow-up study. Bone 2013; 57:509-16. [PMID: 23994171 PMCID: PMC3927161 DOI: 10.1016/j.bone.2013.08.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 06/29/2013] [Accepted: 08/16/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the efficacy and safety of targeted delivery of autologous bone marrow mononuclear cells (BMMCs), which are highly enriched with mesenchymal stem cells (BMMSCs), via medial circumflex femoral artery in the treatment of osteonecrosis of the femoral head (ONFH). METHODS 62 patients (78 hips) with ONFH were recruited in this study. All of these patients were treated with BMMCs perfusion via medial circumflex femoral artery. The concentrated BMMCs (30-60ml) were gained from autologous bone marrow (100-200ml) harvested from anterior iliac crest and then were intra-arterially perfused into the femoral head. Ficat stage was used to classify the radiological stage of ONFH. Harris hip score was used to evaluate the clinical symptoms of osteonecrosis. Ficat stage and Harris hip scores were assessed at onset of treatment at 6, 12, 24, 36, 48 and 60months after the initial treatment. Total hip arthroplasty (THA) was also assessed as an endpoint at each follow-up. RESULTS A follow-up on the patient was done at the end of five years, and 92.31% (72 of 78) of hips achieved a satisfactory clinical result while only 6 hips (7.69%) progressed to clinical failure and required THA. Radiological progression was noted in 34 of 78 hips (43.59%); the overall rate of collapse was 38.24% (26 of 68 hips) in stage-I and stage-II hip combinations and 12.5% (2 of 16) in stage-I hips and 46.15% (24 of 52) in stage-II hips. The mean time of conversion to THA was 3years (1 to 5years) and the average time to collapse were 3.5years (1-5years). The mean Harris hip score increased from 59 points at baseline to 75 points at 12months, 82 points at 24months, 81 points at 36months, 79 points at 48months and 74 points at 60months. Five years after the treatment, 3 of 10 hips (30%) in stage-III had deteriorated to clinical failure whereas only 3 of 68 hips (4.41%) in stage-I and II combination had progressed to clinical failure (p<0.05). Kaplan-Meier survival analysis showed a significant difference in the time to failure between the pre-collapse hips (Ficat stage-I and II) and the post-collapse hips (Ficat stage-III) at five years follow-up (Log-rank test; p<0.01). No complication was found in any patients. CONCLUSIONS Autologous BMMSC perfusion via the medial circumflex femoral artery can relieve symptoms, improve hip function and delay the progression of ONFH. The clinical outcome is better when it is applied prior to the collapse. This work demonstrates that autologous BMMSC perfusion via the medial circumflex femoral artery is a safe, effective and minimally invasive treatment strategy for early-stage ONFH.
Collapse
Affiliation(s)
- Qiang Mao
- Zhejiang Chinese Medical University, Hangzhou 310053 Zhejiang Province, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou 310053 Zhejiang Province, China
| | - Hongting Jin
- Zhejiang Chinese Medical University, Hangzhou 310053 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou 310053 Zhejiang Province, China
| | - Fei Liao
- Zhejiang Chinese Medical University, Hangzhou 310053 Zhejiang Province, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006 Zhejiang Province, China
| | - Luwei Xiao
- Zhejiang Chinese Medical University, Hangzhou 310053 Zhejiang Province, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou 310053 Zhejiang Province, China
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Peijian Tong
- Zhejiang Chinese Medical University, Hangzhou 310053 Zhejiang Province, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006 Zhejiang Province, China
- Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou 310053 Zhejiang Province, China
- Corresponding author at: The First Affiliated Hospital of Zhejiang Chinese Medical University, You Dian Road NO.54, Hangzhou 310006 Zhejiang Province, People's Republic of China. Fax: +86 571 86613684. (P. Tong)
| |
Collapse
|
1220
|
Cissell DD, Hu JC, Griffiths LG, Athanasiou KA. Antigen removal for the production of biomechanically functional, xenogeneic tissue grafts. J Biomech 2013; 47:1987-96. [PMID: 24268315 DOI: 10.1016/j.jbiomech.2013.10.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
Abstract
Xenogeneic tissues are derived from other animal species and provide a source of material for engineering mechanically functional tissue grafts, such as heart valves, tendons, ligaments, and cartilage. Xenogeneic tissues, however, contain molecules, known as antigens, which invoke an immune reaction following implantation into a patient. Therefore, it is necessary to remove the antigens from a xenogeneic tissue to prevent immune rejection of the graft. Antigen removal can be accomplished by treating a tissue with solutions and/or physical processes that disrupt cells and solubilize, degrade, or mask antigens. However, processes used for cell and antigen removal from tissues often have deleterious effects on the extracellular matrix (ECM) of the tissue, rendering the tissue unsuitable for implantation due to poor mechanical properties. Thus, the goal of an antigen removal process should be to reduce the antigen content of a xenogeneic tissue while preserving its mechanical functionality. To expand the clinical use of antigen-removed xenogeneic tissues as biomechanically functional grafts, it is essential that researchers examine tissue antigen content, ECM composition and architecture, and mechanical properties as new antigen removal processes are developed.
Collapse
Affiliation(s)
- Derek D Cissell
- Department of Orthopaedic Surgery, University of California, Davis, CA, USA; Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Leigh G Griffiths
- Department of Veterinary Medicine: Medicine and Epidemiology, University of California, Davis, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Davis, CA, USA; Department of Orthopaedic Surgery, University of California, Davis, CA, USA.
| |
Collapse
|
1221
|
Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet Immunol Immunopathol 2013; 156:99-106. [DOI: 10.1016/j.vetimm.2013.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/25/2013] [Accepted: 09/12/2013] [Indexed: 01/14/2023]
|
1222
|
Sun Z, Yang S, Ye S, Zhang Y, Xu W, Zhang B, Liu X, Mo F, Hua W. Aberrant CpG islands' hypermethylation of ABCB1 in mesenchymal stem cells of patients with steroid-associated osteonecrosis. J Rheumatol 2013; 40:1913-20. [PMID: 24037553 DOI: 10.3899/jrheum.130191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Patients carrying an ABCB1 polymorphism have a higher risk of developing osteonecrosis of the femoral head (ONFH). We investigated whether aberrant dinucleotide CpG islands' hypermethylation of ABCB1 gene existed in mesenchymal stem cells (MSC) of patients with ONFH, which results in cell dysfunction. METHODS Bone marrow was collected from the proximal femur of patients with glucocorticoid (GC)-associated ONFH (n = 22) and patients with new femoral neck fractures (n = 25). MSC were isolated by density gradient centrifugation. We investigated cell viability, intracellular reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), the amount of P-glycoprotein (P-gp) and ABCB1 transcripts, and methylation at CpG islands of ABCB1 promoter from both the femoral neck fractures group and the GC-associated ONFH group treated with or without the DNA methyltransferase inhibitor, 5'-Aza-2-deoxycytidine (5'-Aza-dC). RESULTS We observed that MSC from GC-associated ONFH groups showed reduced proliferation ability, elevated ROS levels, and depressed MMP when compared with the other 2 groups. Low levels of P-gp and ABCB1 transcript, as well as ABCB1 gene hypermethylation, in patients with GC-associated ONFH were also noted. Treatment with 5'-Aza-dC rapidly restored ABCB1 expression. Analysis of general expression revealed that aberrant CpG islands' hypermethylation of ABCB1 caused sensitivity to GC and induced changes in the proliferation and oxidative stress of MSC under GC administration. CONCLUSION These data suggest that aberrant CpG islands' hypermethylation of ABCB1 gene may be responsible for individual differences in the development of GC-associated ONFH.
Collapse
Affiliation(s)
- Zhibo Sun
- From the Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
1223
|
Lin H, Zhou J, Shen L, Ruan Y, Dong J, Guo C, Chen Z. Biotin-conjugated anti-CD44 antibody-avidin binding system for the improvement of chondrocyte adhesion to scaffolds. J Biomed Mater Res A 2013; 102:1140-8. [PMID: 23630032 DOI: 10.1002/jbm.a.34770] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/09/2013] [Accepted: 04/23/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Lin
- Department of Orthopaedic Surgery; Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Jian Zhou
- Department of Orthopaedic Surgery; Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Longxiang Shen
- Department of Orthopaedic Surgery; The 6th Hospital of Shanghai; Shanghai Jiaotong University; Shanghai 200233 China
| | - Yuhui Ruan
- Department of Macromolecular Science; Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Advanced Materials Laboratory, Fudan University; Shanghai 200433 China
| | - Jian Dong
- Department of Orthopaedic Surgery; Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Changan Guo
- Department of Orthopaedic Surgery; Zhongshan Hospital, Fudan University; Shanghai 200032 China
| | - Zhengrong Chen
- Department of Orthopaedic Surgery; Zhongshan Hospital, Fudan University; Shanghai 200032 China
| |
Collapse
|
1224
|
Kestner CJ, Glisson RR, DeOrio JK, Nunley JA. A biomechanical analysis of two anterior ankle arthrodesis systems. Foot Ankle Int 2013; 34:1006-11. [PMID: 23539168 DOI: 10.1177/1071100713484007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND An increasingly popular ankle fusion method uses plates and screws positioned on the anterior aspect of the tibiotalar joint. This study compared the mechanical properties of 2 contemporary plate systems for ankle arthrodesis, one based on a single anterior plate and the other comprising paired anteromedial and anterolateral plates. METHODS Ten matched pairs of fresh-frozen cadaver ankle joints underwent arthrodesis with a single anatomically contoured anterior plate or 2 anatomic plates applied anteromedially and anterolaterally. Each arthrodesed specimen was subjected to controlled sagittal and coronal plane bending and internal and external rotation. Tibiotalar joint bending stiffness, bending angulation, torsional stiffness, and joint rotation were documented. RESULTS Bending stiffness of the 2-plate system was 1.5 to 5 times greater than that of the single-plate system in plantarflexion, dorsiflexion, eversion, and inversion (P = .005-.050). Angulation in each bending direction was several-fold greater than for the single plate (P = .005-.014) at the peak applied moment. Torsional stiffness of the 2-plate system nearly doubled that of the single plate in both rotation directions (P = .014, P = .005). Approximately half as much arthrodesis site rotation occurred with 2-plate fixation at the peak applied torque (P = .005, P = .007). CONCLUSION The tested 2-plate arthrodesis system has the potential to optimize arthrodesis site stiffness compared with fixation with a contemporary single plate. CLINICAL RELEVANCE Use of the stiffer 2-plate system could improve the clinical fusion rate, especially in patients with suboptimal bone quality.
Collapse
|
1225
|
Ding H, Gao YS, Hu C, Wang Y, Wang CG, Yin JM, Sun Y, Zhang CQ. HIF-1α transgenic bone marrow cells can promote tissue repair in cases of corticosteroid-induced osteonecrosis of the femoral head in rabbits. PLoS One 2013; 8:e63628. [PMID: 23675495 PMCID: PMC3652809 DOI: 10.1371/journal.pone.0063628] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/04/2013] [Indexed: 02/01/2023] Open
Abstract
Although corticosteroid-induced osteonecrosis of the femoral head (ONFH) is common, the treatment for it remains limited and largely ineffective. We examined whether implantation of hypoxia inducible factor-1α (HIF-1α) transgenic bone marrow cells (BMCs) can promote the repair of the necrotic area of corticosteroid-induced ONFH. In this study, we confirmed that HIF-1α gene transfection could enhance mRNA expression of osteogenic genes in BMCs in vitro. Alkaline phosphatase activity assay and alizarin red-S staining indicated HIF-1α transgenic BMCs had enhanced osteogenic differentiation capacity in vitro. Furthermore, enzyme linked immunosorbent assay (ELISA) for VEGF revealed HIF-1α transgenic BMCs secreted more VEGF as compared to normal BMCs. An experimental rabbit model of early-stage corticosteroid-induced ONFH was established and used for an evaluation of cytotherapy. Transplantation of HIF-1α transgenic BMCs dramatically improved the bone regeneration of the necrotic area of the femoral head. The number and volume of blood vessel were significantly increased in the necrotic area of the femoral head compared to the control groups. These results support HIF-1α transgenic BMCs have enhanced osteogenic and angiogenic activity in vitro and in vivo. Transplantation of HIF-1α transgenic BMCs can potentially promote the repair of the necrotic area of corticosteroid-induced ONFH.
Collapse
Affiliation(s)
- Hao Ding
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - You-Shui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Hu
- Shanghai Key Laboratory of Regulatory Biology, School of life Sciences, East China Normal University, Shanghai, China
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan-Gui Wang
- Shanghai Key Laboratory of Regulatory Biology, School of life Sciences, East China Normal University, Shanghai, China
| | - Ji-Min Yin
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Sun
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
1226
|
Osteogenic induction protects rat bone marrow-derived mesenchymal stem cells against hypoxia-induced apoptosis in vitro. J Surg Res 2013; 184:873-9. [PMID: 23643178 DOI: 10.1016/j.jss.2013.03.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 02/26/2013] [Accepted: 03/26/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (BMSCs) undergo hypoxia-induced apoptosis when cells are transplanted from a normoxic to a hypoxic microenvironment in vivo. The effect of the osteogenic microenvironment on BMSCs under hypoxic conditions has not yet been revealed. MATERIALS AND METHODS In the current study, we investigated the effects on BMSCs of hypoxia and osteogenic induction (OI) individually and in combination. We isolated BMSCs from rat bone marrow and confirmed them by recognition of surface antigens using cytometry. After passaging the BMSCs to the third generation, we treated them with the following conditions: 1% oxygen and OI, normoxia and OI, and 1% oxygen without OI; normoxia without OI was the control condition. On days 3, 7, 14, and 21, we detected the expression levels of hypoxia inducible factor-1α and alkaline phosphate via Western blotting. Cellular apoptosis was detected by Hoechst staining and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine, 5'-triphosphate nick end labeling; caspase activity was also detected. RESULTS The expression of hypoxia inducible factor-1α was induced and up-regulated when BMSCs were grown under 1% oxygen. The incidence of terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine, 5'-triphosphatenick end labeling-positive cells in the hypoxia plus OI group was much lower than that in the hypoxia group without OI. Caspase activity increased on days 3, 7, 14, and 21. The absolute value of caspase was statistically higher in the BMSC hypoxia group than in the other three groups, whose values were similar to each other. CONCLUSIONS Osteogenic induction could protect BMSCs against hypoxia-induced apoptosis. Bone marrow-derived mesenchymal stem cells may be appropriate candidate cells for cytotherapy for skeletal diseases.
Collapse
|
1227
|
Mu B, Zhang H, Cai X, Yang J, Shen Y, Chen B, Liang S. Screening of multiple myeloma by polyclonal rabbit anti-human plasmacytoma cell immunoglobulin. PLoS One 2013; 8:e59117. [PMID: 23560043 PMCID: PMC3613404 DOI: 10.1371/journal.pone.0059117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
Antibody-based immunotherapy has been effectively used for tumor treatment. However, to date, only a few tumor-associated antigens (TAAs) or therapeutic targets have been identified. Identification of more immunogenic antigens is essential for improvements in multiple myeloma (MM) diagnosis and therapy. In this study, we synthesized a polyclonal antibody (PAb) by immunizing rabbits with whole human plasmacytoma ARH-77 cells and identified MM-associated antigens, including enlonase, adipophilin, and HSP90s, among others, via proteomic technologies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that 200 µg/mL PAb inhibits the proliferation of ARH-77 cells by over 50% within 48 h. Flow cytometric assay indicated that PAb treatment significantly increases the number of apoptotic cells compared with other treatments (52.1% vs. NS, 7.3% or control rabbit IgG, 9.9%). In vivo, PAb delayed tumor growth and prolonged the lifespan of mice. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that PAb also induces statistically significant changes in apoptosis compared with other treatments (P<0.05). We therefore conclude that PAb could be used for the effective screening and identification of TAA. PAb may have certain anti-tumor functions in vitro and in vivo. As such, its combination with proteomic technologies could be a promising approach for sieving TAA for the diagnosis and therapy of MM.
Collapse
Affiliation(s)
- Bo Mu
- The Medical Biology Staff Room of North Sichuan Medical College, Sichuan Nanchong, PR China.
| | | | | | | | | | | | | |
Collapse
|
1228
|
Xu W, Li X, Huang W, Wang Y, Han S, Chen S, Xu L, Yang X, Liu T, Xiao J. Factors affecting prognosis of patients with giant cell tumors of the mobile spine: retrospective analysis of 102 patients in a single center. Ann Surg Oncol 2013; 20:804-810. [PMID: 23096699 DOI: 10.1245/s10434-012-2707-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Giant cell tumor (GCT) of the mobile spine is a benign tumor, but it can be potentially aggressive. There is not much published information on GCT of the mobile spine as a result of rarity of the disease, and there are controversies over prognostic factors of the condition. METHODS A retrospective analysis of GCT of the mobile spine was performed by survival analysis. Recurrence-free survival (RFS) was defined as the interval between the date of surgery and the date of recurrence. The postoperative RFS rate was estimated by the Kaplan-Meier method. Factors with P values of ≤0.1 were subjected to multivariate analysis for RFS by proportional hazard analysis. P values of ≤0.5 were considered statistically significant. RESULTS A total of 102 patients with GCT of the mobile spine were included in the study. The mean follow-up period was 39.9 (median 26.0, range 2-153) months. Thirty-eight patients developed recurrence. The univariate and multivariate analysis suggested that age less than 40 years, total spondylectomy either by en bloc or piecemeal method, and administration of bisphosphonate were independent favorable prognostic factors. Subgroup analysis by excluding patients before the year 2000 further confirmed our findings. CONCLUSIONS The removal of the entire osseous compartment either by en bloc or piecemeal method in combination with the long-term use of bisphosphonate could significantly reduce the recurrence rate of GCT of the mobile spine. Age less than 40 years is a favorable prognostic factor for GCT in the mobile spine.
Collapse
Affiliation(s)
- Wei Xu
- Spine Tumor Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1229
|
Wang C, Wang J, Zhang Y, Yuan C, Liu D, Pei Y, Li X, Wu Z, Li Y, Guo Z. A canine model of femoral head osteonecrosis induced by an ethanol injection navigated by a novel template. Int J Med Sci 2013; 10:1451-8. [PMID: 24046517 PMCID: PMC3775100 DOI: 10.7150/ijms.6314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/13/2013] [Indexed: 12/13/2022] Open
Abstract
There is no consensus on how to establish models of osteonecrosis of the femoral head (ONFH) in large mammals. The aim of this study was to investigate the effectiveness of a novel canine model of ONFH, induced by a navigated injection of absolute ethanol. Using three-dimensional reconstruction and rapid prototyping manufacturing techniques, a new template was designed and processed to navigate the ethanol injection. The femoral heads of 18 adult dogs were injected with ethanol. Macroscopic, X-ray and histological examinations were performed at 3, 6, and 9 weeks after the operation. Further, computed tomography (CT), magnetic resonance imaging (MRI), and radionuclide scans were performed 6 weeks postoperatively. Three weeks after the operation, the femoral heads showed evidence of osteonecrosis including increasing numbers of empty lacunae, decreased hematopoietic cells, and destroyed adipose tissue in the medullary cavity, which increased in severity at the subsequent follow-up evaluations at 6 and 9 weeks. Fractured trabeculae and fibrous tissue were noted 9 weeks postoperatively. Image analysis also revealed evidence of osteonecrosis, such as several osteopenic areas with sclerotic rims on the X-ray, several areas of low bone mineral density with sclerosis on the CT scan, increased uptake of the nuclide species in MRI, and an inhomogeneous long T2 signal on the radioisotopic images. Ethanol injection navigated by our novel template was successful in establishing a canine model of ONFH. This model can be used to test new treatment modalities for human ONFH.
Collapse
Affiliation(s)
- Cairu Wang
- 1. Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China; ; 2. Department of Orthopedics, General Hospital of Chengdu Military Region, Chengdu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1230
|
Therapeutic application of mesenchymal stem cells in bone and joint diseases. Clin Exp Med 2012; 14:13-24. [DOI: 10.1007/s10238-012-0218-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023]
|
1231
|
Treatment of femoral head osteonecrosis with advanced cell therapy in sheep. Arch Orthop Trauma Surg 2012; 132:1611-8. [PMID: 22821379 DOI: 10.1007/s00402-012-1584-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Indexed: 02/09/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the efficacy of core decompression associated with advanced cell therapy for the treatment of femoral head osteonecrosis in an established sheep model. METHODS Early stage osteonecrosis of the right hip was induced cryogenically in 15 mature sheep. At 6 weeks, the sheep were divided into three groups, Group A: core decompression only; Group B: core decompression followed by implantation of an acellular bone matrix scaffold; Group C: core decompression followed by implantation of a cultured BMSC loaded bone matrix scaffold. At 12 weeks, MRI hip studies were performed and then the proximal femur was harvested for histological analysis. RESULTS In the group of advanced cell therapy, Group C, there was a tendency to higher values of the relative surface of newly formed bone with a mean of 20.3 versus 11.27 % in Group A and 13.04 % in Group B but it was not statistically significant. However, the mean relative volume of immature osteoid was 8.6 % in Group A, 14.97 in Group B, and 53.49 % in Group C (p < 0.05), revealing a greater capacity of osteoid production in the sheep treated with BMSCs. MRI findings were not conclusive due to constant bone edema artifact in all cases. CONCLUSIONS Our findings indicate that a BMCSs loaded bone matrix scaffold is capable of stimulating bone regeneration more effectively than isolated core decompression or in association with an acellular scaffold in a preclinical femoral head osteonecrosis model in sheep.
Collapse
|
1232
|
Esparza R, Gortazar AR, Forriol F. Cell study of the three areas of the meniscus: effect of growth factors in an experimental model in sheep. J Orthop Res 2012; 30:1647-51. [PMID: 22447524 DOI: 10.1002/jor.22110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 02/23/2012] [Indexed: 02/04/2023]
Abstract
Meniscus had two areas with different vascular supply. Cells of the two areas and the synovium were monolayer cultivated. We analyzed the expression of genes of Col1, Col 2A, MMP-2, MMP-13, and aggrecan in a baseline state and after incubation with VEGF, TGF-β, FGF, and IGF. We found that the growth factors used produced a major increase in the MMP-13 in all three areas. In the vascular area, the stimulation of MMP-3 was produced by FGF, while in the synovial and avascular areas, it was caused by TGF-β. MMP-2 was only stimulated in the synovial area by IGF. Col 2A was stimulated in the synovial area by VEGF, and in the avascular area by TGF-β, FGF, and IGF, whereas Col 1 was stimulated in the avascular area by IGF, FGF, and VEGF. The vascular or avascular areas of the meniscus, behave differently in terms of repair, and their cells express different factors. The growth factors act in a different way in each meniscal area.
Collapse
Affiliation(s)
- Raul Esparza
- Orthopaedic Department, School of Medicine, University CEU Campus de Montepríncipe, 28886 - Boadilla del Monte, Madrid, Spain
| | | | | |
Collapse
|
1233
|
|
1234
|
Huang L, Chen K, Ye JC, Tang Y, Yang R, Wang P, Shen HY. Modified total en bloc spondylectomy for thoracolumbar spinal tumors via a single posterior approach. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2012; 22:556-64. [PMID: 22864795 DOI: 10.1007/s00586-012-2460-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 07/09/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE The objectives of this study were to describe our surgical management with a modified total en bloc spondylectomy (TES) and to evaluate the clinical effects in patients with thoracolumbar tumors. METHODS Sixteen consecutive patients with thoracolumbar neoplasms underwent a modified TES via single posterior approach followed by dorsoventral reconstruction from December 2008 to July 2011. Details of the modified technique were described and the patients' clinical information was retrospectively reviewed and analyzed. RESULTS Significant improvements in neurological function were achieved in most of the patients. Local pain or radicular leg pain was relieved postoperatively. The mean operation time was 7.2 h, with an average blood loss of 2,300 ml. No major complications, instrumentation failure or local recurrence was found at the final follow-up. Five patients died of the disease during mean 14-month (3.0-23) follow-up. CONCLUSIONS The modified TES with a single posterior approach is feasible, safe and effective for thoracolumbar spine tumors.
Collapse
Affiliation(s)
- Lin Huang
- Department of Orthopedics, Memorial Hospital of Sun Yat-sen University, Institute of Spinal Cord Injury, Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong Province 510120, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
1235
|
Kaushik AP, Das A, Cui Q. Osteonecrosis of the femoral head: An update in year 2012. World J Orthop 2012; 3:49-57. [PMID: 22655222 PMCID: PMC3364317 DOI: 10.5312/wjo.v3.i5.49] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/20/2012] [Accepted: 05/13/2012] [Indexed: 02/06/2023] Open
Abstract
Osteonecrosis is a phenomenon involving disruption to the vascular supply to the femoral head, resulting in articular surface collapse and eventual osteoarthritis. Although alcoholism, steroid use, and hip trauma remain the most common causes, several other etiologies for osteonecrosis have been identified. Basic science research utilizing animal models and stem cell applications continue to further elucidate the pathophysiology of osteonecrosis and promise novel treatment options in the future. Clinical studies evaluating modern joint-sparing procedures have demonstrated significant improvements in outcomes, but hip arthroplasty is still the most common procedure performed in these affected younger adults. Further advances in joint-preserving procedures are required and will be widely studied in the coming decade.
Collapse
|
1236
|
Co-culture of mesenchymal stem cells with umbilical vein endothelial cells under hypoxic condition. ACTA ACUST UNITED AC 2012; 32:173-180. [PMID: 22528216 DOI: 10.1007/s11596-012-0031-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Indexed: 02/06/2023]
Abstract
By co-culturing humm mesenchymal stem cells (hMSCs) and human umbilical rein endothelial cells (HUVECs) under hypoxia and creating a microenvironment similar to that of transplanted hMSCs for the treatment of avascular ni ANFH, the effect of hMSCs on survival, apoptosis, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) under the hypoxic condition were investigated in vitro. hMSCs and HUVECs were cultured and identified in vitro. Three kinds of conditioned media, CdM-CdM(NOR), CdM-CdM(HYP) and HUVEC-CdM(HYP) were prepared. HUVECs were cultured with these conditioned media under hypoxia. The survival rate, apoptosis rate, migration and angiogenesis of HUVECs were respectively detected by CCK-8, flow cytometry, Transwell and tube formation assay. The content of SDF-1α, VEGF and IL-6 in CdM was determined by ELISA. Our results showed that hMSCs and HUVECs were cultured and identified successfully. Compared with MSC-CdM(NOR) and HUVEC-CdM(HYP) groups, the survival rate, migration and angiogenesis of HUVECs in MSC-CdM(HYP) group were significantly increased while the apoptosis rate was declined (P<0.05). Moreover, the expression of SDF-1α, VEGF and IL-6 in MSC-CdM(HYP) group was up-regulated. Under hypoxia, the apoptosis of HUVECs was inhibited while survival, migration and angiogenesis were improved by co-culture of hMSCs and HUVECs. The underlying mechanism may be that hMSCs could secrete a number of cytokines and improve niche, which might be helpful in the treatment of femoral head necrosis.
Collapse
|
1237
|
Abstract
Awareness of the need for prevention of glucocorticoid-induced fractures is growing, but glucocorticoid administration is often overlooked as the most common cause of nontraumatic osteonecrosis. Glucocorticoid-induced osteonecrosis develops in 9-40% of patients receiving long-term therapy although it may also occur with short-term exposure to high doses, after intra-articular injection, and without glucocorticoid-induced osteoporosis. The name, osteonecrosis, is misleading because the primary histopathological lesion is osteocyte apoptosis. Apoptotic osteocytes persist because they are anatomically unavailable for phagocytosis and, with glucocorticoid excess, decreased bone remodeling retards their replacement. Glucocorticoid-induced osteocyte apoptosis, a cumulative and unrepairable defect, uniquely disrupts the mechanosensory function of the osteocyte-lacunar-canalicular system and thus starts the inexorable sequence of events leading to collapse of the femoral head. Current evidence indicates that bisphosphonates may rapidly reduce pain, increase ambulation, and delay joint collapse in patients with osteonecrosis.
Collapse
Affiliation(s)
- Robert S Weinstein
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| |
Collapse
|
1238
|
A lactose-binding lectin from the marine sponge Cinachyrella apion (Cal) induces cell death in human cervical adenocarcinoma cells. Mar Drugs 2012; 10:727-743. [PMID: 22690140 PMCID: PMC3366672 DOI: 10.3390/md10040727] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/23/2012] [Accepted: 03/05/2012] [Indexed: 01/03/2023] Open
Abstract
Cancer represents a set of more than 100 diseases, including malignant tumors from different locations. Strategies inducing differentiation have had limited success in the treatment of established cancers. Marine sponges are a biological reservoir of bioactive molecules, especially lectins. Several animal and plant lectins were purified with antitumor activity, mitogenic, anti-inflammatory and antiviral, but there are few reports in the literature describing the mechanism of action of lectins purified from marine sponges to induce apoptosis in human tumor cells. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL) was evaluated with respect to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death in tumor cells. The antiproliferative activity of CaL was tested against HeLa, PC3 and 3T3 cell lines, with highest growth inhibition for HeLa, reducing cell growth at a dose dependent manner (0.5–10 µg/mL). Hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC50 (10 µg/mL) for both trials and twice the IC50 for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. Results showed that lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase and acting as both dependent and/or independent of caspases pathway. These results indicate the potential of CaL in studies of medicine for treating cancer.
Collapse
|
1239
|
Rackwitz L, Eden L, Reppenhagen S, Reichert JC, Jakob F, Walles H, Pullig O, Tuan RS, Rudert M, Nöth U. Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head. Stem Cell Res Ther 2012; 3:7. [PMID: 22356811 PMCID: PMC3340551 DOI: 10.1186/scrt98] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Avascular necrosis (AVN) of the femoral head is a debilitating disease of multifactorial genesis, predominately affects young patients, and often leads to the development of secondary osteoarthritis. The evolving field of regenerative medicine offers promising treatment strategies using cells, biomaterial scaffolds, and bioactive factors, which might improve clinical outcome. Early stages of AVN with preserved structural integrity of the subchondral plate are accessible to retrograde surgical procedures, such as core decompression to reduce the intraosseous pressure and to induce bone remodeling. The additive application of concentrated bone marrow aspirates, ex vivo expanded mesenchymal stem cells, and osteogenic or angiogenic growth factors (or both) holds great potential to improve bone regeneration. In contrast, advanced stages of AVN with collapsed subchondral bone require an osteochondral reconstruction to preserve the physiological joint function. Analogously to strategies for osteochondral reconstruction in the knee, anterograde surgical techniques, such as osteochondral transplantation (mosaicplasty), matrix-based autologous chondrocyte implantation, or the use of acellular scaffolds alone, might preserve joint function and reduce the need for hip replacement. This review summarizes recent experimental accomplishments and initial clinical findings in the field of regenerative medicine which apply cells, growth factors, and matrices to address the clinical problem of AVN.
Collapse
Affiliation(s)
- Lars Rackwitz
- Orthopaedic Center for Musculoskeletal Research, Department of Orthopaedic Surgery König-Ludwig-Haus, Julius-Maximilians-University Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1240
|
Teng Y, Ngoka L, Mei Y, Lesoon L, Cowell JK. HSP90 and HSP70 proteins are essential for stabilization and activation of WASF3 metastasis-promoting protein. J Biol Chem 2012; 287:10051-10059. [PMID: 22315230 DOI: 10.1074/jbc.m111.335000] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inactivation of HSP90 and HSP70 leads to loss of invasion in a variety of cancer cell types, presumably as a result of destabilization of, as yet, undefined clients of these molecular chaperones that influence this phenotype. The WASF3 gene has been shown to be up-regulated in high-grade tumors and its down-regulation leads to loss of invasion and metastasis. WASF3 phosphorylation by ABL kinase is essential for its ability to regulate invasion. Mass spectroscopy analysis now shows that HSP90 is present in the WASF3 immunocomplex from prostate cancer cells. Inactivation of HSP90 in these and other cell types does not affect WASF3 stability but prevents its phosphoactivation as a result of destabilization of ABL. HSP70 was also found in the WASF3 immunocomplex and inactivation of HSP70 results in destabilization of WASF3 through proteasome degradation. Knockdown of WASF3, HSP90, and HSP70 individually, all lead to loss of invasion but as knockdown of WASF3 in the presence of robust expression of HSP90/70 has the same effect, it seems that the influence these chaperone proteins have on invasion is mediated, at least in part, by their control over the critical invasion promoting capacity of the WASF3 protein. Overexpression of HSP70 in WASF3 null cells does not enhance invasion. These observations suggest that targeting HSP90/70 may have efficacy in reducing cancer cell invasion.
Collapse
Affiliation(s)
- Yong Teng
- Georgia Health Sciences University Cancer Center, Augusta, Georgia 30912
| | - Lambert Ngoka
- Georgia Health Sciences University Cancer Center, Augusta, Georgia 30912
| | - Yun Mei
- Georgia Health Sciences University Cancer Center, Augusta, Georgia 30912
| | - Leslieann Lesoon
- Georgia Health Sciences University Cancer Center, Augusta, Georgia 30912
| | - John K Cowell
- Georgia Health Sciences University Cancer Center, Augusta, Georgia 30912.
| |
Collapse
|
1241
|
A review of the treatment methods for cartilage defects. Vet Comp Orthop Traumatol 2012; 25:263-72. [PMID: 22286150 DOI: 10.3415/vcot-11-05-0070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 01/12/2012] [Indexed: 11/17/2022]
Abstract
The purpose of this article is to provide a broad review of the literature related to the treatment of cartilage defects and degenerated cartilage in animals with some inferences to the treatment in humans. Methods range from the insertion of osteochondral tissue or cells to the application of radio frequency or insertion of scaffolds and growth factors alone or in combination. Debridement, microfracture, radio frequency, and chondrocyte implantation are all methods normally utilized when treating smaller articular cartilage defects. Scaffolds and mosaicplasty are examples of methods to treat larger defects. This review will cover all major treatment methods currently used to treat articular cartilage defects.
Collapse
|
1242
|
Hang D, Wang Q, Guo C, Chen Z, Yan Z. Treatment of osteonecrosis of the femoral head with VEGF165 transgenic bone marrow mesenchymal stem cells in mongrel dogs. Cells Tissues Organs 2011; 195:495-506. [PMID: 22056983 DOI: 10.1159/000329502] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2011] [Indexed: 02/06/2023] Open
Abstract
We evaluated the efficacy of vascular endothelial growth factor 165 (VEGF(165)) transgenic bone marrow mesenchymal stem cells (BMSCs) for the repair of early-stage osteonecrosis of the femoral head (ONFH) in mature mongrel dogs. This animal model was surgically established by femoral neck osteotomy and subsequent repinning. Twenty-seven dogs (54 hips) were divided into 3 equal-sized groups: a pCI-neo-VEGF(165) BMSC group, a pCI-neo BMSC group and a core decompression-alone group. The lipofectamine was used to introduce the VEGF(165) gene into the BMSCs. After core decompression, transgenic and non-transgenic autologous BMSCs were implanted. Therapeutic efficacy, including new bone formation and neovascularization in the femoral head, was examined by computed radiography, single-photon emission computed tomography, histological and histomorphometric analysis and immunofluorescent staining for von Willebrand factor in pathological sections. The femoral osteotomy site healed completely by the 4th week after the osteotomy surgery and regions of histologically evident osteonecrosis were found 12 weeks later. A regular arrangement of trabeculae and obvious bone regeneration were observed in the animals receiving implanted VEGF-transgenic BMSCs. The quantity of newly generated capillaries was significantly increased in the pCI-neo-VEGF(165) BMSC group, but there was no significant difference between the pCI-neo BMSC group and the core decompression-alone group. These results demonstrated that VEGF(165) transgenic autologous BMSCs enhanced bone reconstruction and blood vessel regeneration in the ONFH model. Compared with non-transgenic BMSCs, this approach could provide advanced benefits in the treatment of ONFH.
Collapse
Affiliation(s)
- Donghua Hang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
1243
|
The anatomic compression arthrodesis technique with anterior plate augmentation for ankle arthrodesis. Foot Ankle Clin 2011; 16:91-101. [PMID: 21338933 DOI: 10.1016/j.fcl.2010.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The anatomic compression arthrodesis technique with anterior plate augmentation is an effective technique that results in a high union rate, improved functional outcome, and an acceptable complication rate. This technique can be used for both primary ankle arthrodesis and salvage cases with significant bone loss. The authors believe the anterior plate is a useful complement to standard multiplanar screw fixation, and the increased rigidity provided by the anterior plate effectively counters forces, particularly in the sagittal plane, that may otherwise lead to failure of multiplanar screw constructs.
Collapse
|
1244
|
Li ZH, Liao W, Cui XL, Zhao Q, Liu M, Chen YH, Liu TS, Liu NL, Wang F, Yi Y, Shao NS. Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head. Int J Med Sci 2011; 8:74-83. [PMID: 21234272 PMCID: PMC3020395 DOI: 10.7150/ijms.8.74] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 01/01/2011] [Indexed: 01/06/2023] Open
Abstract
In this study, we investigated the feasibility and safety of intravenous transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) for femoral head repair, and observed the migration and distribution of MSCs in hosts. MSCs were labeled with green fluorescent protein (GFP) in vitro and injected into nude mice via vena caudalis, and the distribution of MSCs was dynamically monitored at 0, 6, 24, 48, 72 and 96 h after transplantation. Two weeks after the establishment of a rabbit model of femoral head necrosis, GFP labeled MSCs were injected into these rabbits via ear vein, immunological rejection and graft versus host disease were observed and necrotic and normal femoral heads, bone marrows, lungs, and livers were harvested at 2, 4 and 6 w after transplantation. The sections of these tissues were observed under fluorescent microscope. More than 70 % MSCs were successfully labeled with GFP at 72 h after labeling. MSCs were uniformly distributed in multiple organs and tissues including brain, lungs, heart, kidneys, intestine and bilateral hip joints of nude mice. In rabbits, at 6 w after intravenous transplantation, GFP labeled MSCs were noted in the lungs, liver, bone marrow and normal and necrotic femoral heads of rabbits, and the number of MSCs in bone marrow was higher than that in the, femoral head, liver and lungs. Furthermore, the number of MSCs peaked at 6 w after transplantation. Moreover, no immunological rejection and graft versus host disease were found after transplantation in rabbits. Our results revealed intravenously implanted MSCs could migrate into the femoral head of hosts, and especially migrate directionally and survive in the necrotic femoral heads. Thus, it is feasible and safe to treat femoral head necrosis by intravenous transplantation of allogeneic MSCs.
Collapse
Affiliation(s)
- Zhang-hua Li
- Department of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1245
|
Takedown of Painful Ankle Fusion and Total Ankle Replacement Using a 3-Component Ankle Prosthesis. TECHNIQUES IN FOOT AND ANKLE SURGERY 2010. [DOI: 10.1097/btf.0b013e3181fd379c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
1246
|
Gao YS, Zhang CQ. Cytotherapy of osteonecrosis of the femoral head: a mini review. INTERNATIONAL ORTHOPAEDICS 2010; 34:779-782. [PMID: 20361186 PMCID: PMC2989020 DOI: 10.1007/s00264-010-1009-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/11/2010] [Accepted: 03/20/2010] [Indexed: 12/12/2022]
Abstract
The pathogenesis and aetiology of nontraumatic osteonecrosis of the femoral head has not been revealed completely. However, with advances in stem cell research and regenerative medicine, it is believed that the onset of osteonecrosis of the femoral head probably has a cellular origin, and the possible therapy of osteonecrosis of the femoral head based on cytotherapy has great potential. In this review, the aetiology of osteonecrosis of the femoral head, animal experiments and clinical applications of cytotherapy are summarized and analysed. Current problems and future challenges are discussed.
Collapse
Affiliation(s)
- You-Shui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, No. 600 Yishan Road, Shanghai, 200233 China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, No. 600 Yishan Road, Shanghai, 200233 China
| |
Collapse
|
1247
|
Zhu FB, Cai XZ, Yan SG, Zhu HX, Li R. The effects of local and systemic alendronate delivery on wear debris-induced osteolysis in vivo. J Orthop Res 2010; 28:893-9. [PMID: 20058267 DOI: 10.1002/jor.21062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the effects of locally and systemically administered alendronate on wear debris-induced osteolysis in vivo. Endotoxin-free titanium particles were injected into rabbit femurs, prior to insertion of a nonweight-bearing polymethylmethacrylate plug into the distal femur canal. Then the particles were repeatedly injected into the knee 2, 4, and 6 weeks after the implantation. Alendronate was incorporated at three different concentrations (0.1, 0.5, and 1.0 wt %) into bone cement for local delivery. For systemic delivery, alendronate was subcutaneously injected (1.0 mg/kg/week) 1 week after the implantation and then once a week until sacrifice. Eight weeks postoperatively, there was significant evidence of osteolysis surrounding the plug in the control group compared with markedly blocked osteolysis in the 0.5 wt % and the 1.0 wt % groups, and the systemic group. There was a concentration-dependent effect of alendronate-loaded bone cement on the improvement of peri-prosthetic bone stock. Notably, no significant differences were found between the 0.5 wt % and the systemic group in peri-prosthetic bone stock and implant fixation. Collectively, although the biological efficacy after the systemic delivery of alendronate was slightly higher than that in the local treatment groups, alendronate-loaded bone cement may be therapeutically effective in inhibiting titanium particle-induced osteolysis in vivo.
Collapse
Affiliation(s)
- Fang-Bing Zhu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | | | | | | | | |
Collapse
|
1248
|
Lafforgue P. Mesenchymal stem cells: A new biotherapy for bone disease? Joint Bone Spine 2010; 77:99-101. [DOI: 10.1016/j.jbspin.2010.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2009] [Indexed: 10/19/2022]
|
1249
|
Sun Y, Feng Y, Zhang C. The effect of bone marrow mononuclear cells on vascularization and bone regeneration in steroid-induced osteonecrosis of the femoral head. Joint Bone Spine 2009; 76:685-90. [DOI: 10.1016/j.jbspin.2009.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 04/02/2009] [Indexed: 11/15/2022]
|