1251
|
Chen P, Nagai A, Tsutsumi Y, Ashida M, Doi H, Hanawa T. Differences in the calcification of preosteoblast cultured on sputter-deposited titanium, zirconium, and gold. J Biomed Mater Res A 2015; 104:639-651. [PMID: 26488234 DOI: 10.1002/jbm.a.35598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/06/2015] [Accepted: 10/20/2015] [Indexed: 11/05/2022]
Abstract
In this study, osteogenic differentiation and calcification of preosteoblast (MC3T3-E1) cultured on sputter-deposited titanium (Ti), zirconium (Zr), and gold (Au) on cover glasses were evaluated to understand the differences in bone formation ability among these three metals; these metals show the same high corrosion resistance, but Ti and Zr are covered by surface passive oxide film while Au is not covered by the oxide film. Ti and Zr promoted cellular proliferation without osteogenic differentiation. Cells cultured on Ti and Zr expressed higher levels of Runx2, Col1α1, and Akp2 at an earlier stage, which indicated faster promotion of osteogenic differentiation, as compared to those cultured on Au. Moreover, after 21 days of culture, the Bglap1 and Ifitm5 expression peaks in cells cultured on Ti and Zr were higher than those in cells cultured on Au, which indicated faster promotion of calcification. Cells cultured on Ti showed an advantage in osteogenic differentiation at an early stage, while cells on Zr showed better calcification promotion with a long-term culture. The amount of extracellular calcified deposits was in good agreement with the gene expression results. On the other hand, the intracellular calcium content of cells on Au specimens was higher than that of cells on Ti and Zr specimens. The results indicate that preosteoblasts on Ti and Zr showed faster osteogenic differentiation and calcification than those on Au, whereas Au improved the intracellular calcium content. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 639-651, 2016.
Collapse
Affiliation(s)
- Peng Chen
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Akiko Nagai
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Yusuke Tsutsumi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Maki Ashida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Hisashi Doi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| | - Takao Hanawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-Ku, Tokyo, 101-0062, Japan
| |
Collapse
|
1252
|
Freeman FE, Allen AB, Stevens HY, Guldberg RE, McNamara LM. Effects of in vitro endochondral priming and pre-vascularisation of human MSC cellular aggregates in vivo. Stem Cell Res Ther 2015; 6:218. [PMID: 26541817 PMCID: PMC4635553 DOI: 10.1186/s13287-015-0210-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/02/2015] [Accepted: 10/21/2015] [Indexed: 01/09/2023] Open
Abstract
Introduction During endochondral ossification, both the production of a cartilage template and the subsequent vascularisation of that template are essential precursors to bone tissue formation. Recent studies have found the application of both chondrogenic and vascular priming of mesenchymal stem cells (MSCs) enhanced the mineralisation potential of MSCs in vitro whilst also allowing for immature vessel formation. However, the in vivo viability, vascularisation and mineralisation potential of MSC aggregates that have been pre-conditioned in vitro by a combination of chondrogenic and vascular priming, has yet to be established. In this study, we test the hypothesis that a tissue regeneration approach that incorporates both chondrogenic priming of MSCs, to first form a cartilage template, and subsequent pre-vascularisation of the cartilage constructs, by co-culture with human umbilical vein endothelial cells (HUVECs) in vitro, will improve vessel infiltration and thus mineral formation once implanted in vivo. Methods Human MSCs were chondrogenically primed for 21 days, after which they were co-cultured with MSCs and HUVECs and cultured in endothelial growth medium for another 21 days. These aggregates were then implanted subcutaneously in nude rats for 4 weeks. We used a combination of bioluminescent imaging, microcomputed tomography, histology (Masson’s trichrome and Alizarin Red) and immunohistochemistry (CD31, CD146, and α-smooth actin) to assess the vascularisation and mineralisation potential of these MSC aggregates in vivo. Results Pre-vascularised cartilaginous aggregates were found to have mature endogenous vessels (indicated by α-smooth muscle actin walls and erythrocytes) after 4 weeks subcutaneous implantation, and also viable human MSCs (detected by bioluminescent imaging) 21 days after subcutaneous implantation. In contrast, aggregates that were not pre-vascularised had no vessels within the aggregate interior and human MSCs did not remain viable beyond 14 days. Interestingly, the pre-vascularised cartilaginous aggregates were also the only group to have mineralised nodules within the cellular aggregates, whereas mineralisation occurred in the alginate surrounding the aggregates for all other groups. Conclusions Taken together these results indicate that a combined chondrogenic priming and pre-vascularisation approach for in vitro culture of MSC aggregates shows enhanced vessel formation and increased mineralisation within the cellular aggregate when implanted subcutaneously in vivo.
Collapse
Affiliation(s)
- Fiona E Freeman
- Centre for Biomechanics Research (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland.
| | - Ashley B Allen
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA.
| | - Hazel Y Stevens
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA.
| | - Robert E Guldberg
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA.
| | - Laoise M McNamara
- Centre for Biomechanics Research (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
1253
|
CHEN LIN, LI BAOLIN, XIAO XIAO, MENG QINGGANG, LI WEI, YU QIAN, BI JIAQI, CHENG YONG, QU ZHIWEI. Preparation and evaluation of an Arg-Gly-Asp-modified chitosan/hydroxyapatite scaffold for application in bone tissue engineering. Mol Med Rep 2015; 12:7263-70. [PMID: 26459053 PMCID: PMC4626170 DOI: 10.3892/mmr.2015.4371] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 08/07/2015] [Indexed: 11/26/2022] Open
Abstract
Bone tissue engineering has become a promising method for the repair of bone defects, and the production of a scaffold with high cell affinity and osseointegrative properties is crucial for successful bone substitute. Chitosan (CS)/hydroxyapatite (HA) composite was prepared by in situ compositing combined with lyophilization, and further modified by arginine‑glycine‑aspartic acid (RGD) via physical adsorption. In order to evaluate the cell adhesion rate, viability, morphology, and alkaline phosphatase (ALP) activity, the RGD‑CS/HA scaffold was seeded with bone marrow stromal cells (BMSCs). The osseointegrative properties of the RGD‑CS/HA scaffold were evaluated by in vivo heterotopic ossification and in vivo bone defect repair. After 4 h culture with the RGD‑CS/HA scaffold, the adhesion rate of the BMSCs was 80.7%. After 3 days, BMSCs were fusiform in shape and evenly distributed on the RGD‑CS/HA scaffold. Formation of extracellular matrix and numerous cell‑cell interactions were observed after 48 h of culture, with an ALP content of 0.006 ± 0.0008 U/l/ng. Furthermore, the osseointegrative ability and biomechanical properties of the RGD‑CS/HA scaffold were comparable to that of normal bone tissue. The biocompatibility, cytocompatibility, histocompatibility and osseointegrative properties of the RGD‑CS/HA scaffold support its use in bone tissue engineering applications.
Collapse
Affiliation(s)
- LIN CHEN
- Department of Pathogenic Microorganisms, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - BAOLIN LI
- Department of Orthopedic Surgery, The First Hospital of Harbin City, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - XIAO XIAO
- Department of Orthopedic Surgery, The First Hospital of Harbin City, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - QINGGANG MENG
- Department of Orthopedic Surgery, The First Hospital of Harbin City, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - WEI LI
- Department of Orthopedic Surgery, The First Hospital of Harbin City, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - QIAN YU
- Department of Orthopedics, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - JIAQI BI
- Department of Orthopedic Surgery, The First Hospital of Harbin City, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - YONG CHENG
- Department of Orthopedic Surgery, The First Hospital of Harbin City, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - ZHIWEI QU
- Department of Orthopedic Surgery, The First Hospital of Harbin City, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
- Correspondence to: Professor Zhiwei Qu, Department of Orthopaedic Surgery, The First Hospital of Harbin City, Harbin Medical University, 149 Mai Mai Street, Daoli, Harbin, Heilongjiang 150001, P.R. China, E-mail:
| |
Collapse
|
1254
|
Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev 2015; 94:126-40. [PMID: 25777059 DOI: 10.1016/j.addr.2015.03.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/27/2015] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli.
Collapse
Affiliation(s)
- Sonia Font Tellado
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Elizabeth R Balmayor
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Martijn Van Griensven
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
1255
|
Zhang R, Lee P, Lui VCH, Chen Y, Liu X, Lok CN, To M, Yeung KWK, Wong KKY. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2015; 11:1949-59. [PMID: 26282383 DOI: 10.1016/j.nano.2015.07.016] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 12/29/2022]
Abstract
UNLABELLED The potential use of osteo-conducive biomaterials in the promotion of bone fracture healing has attracted wide attention. This study investigated if silver nanoparticles (AgNps) could promote the proliferation and osteogenesis of mesenchymal stem cells (MSCs), and improve bone fracture healing. We showed that AgNps promoted MSCs' proliferation and osteogenic differentiation in vitro. Using a mouse femoral facture model, AgNps encapsulated in collagen promoted the formation of fracture callus, and induced early closure of the fracture gap. AgNps may promote the formation of the callus and the subsequent end joining of the fracture bone via multiple routes: (i) chemo-attraction of MSCs and fibroblasts to migrate to the fracture site; (ii) induction of the proliferation of MSCs; (iii) induction of osteogenic differentiation of MSCs via induction/activation of TGF-β/BMP signaling in MSCs. We concluded that AgNps might be beneficial as an adjunct treatment for bone fracture healing clinically. FROM THE CLINICAL EDITOR Silver nanoparticles are widely used in wound management in the clinical setting. In this article, the authors demonstrated a novel application in that these nanoparticles were efficient in promoting osteoblastic differentiation in both in-vitro and in-vivo studies. The findings may provide a new treatment direction for bone fracture in the future.
Collapse
Affiliation(s)
- Ruizhong Zhang
- Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China; Department of Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Puiyan Lee
- Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Vincent C H Lui
- Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yan Chen
- Department of Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Xuelai Liu
- Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Chun Nam Lok
- Department of Chemistry, Faculty of Science, University of Hong Kong, Hong Kong, China
| | - Michael To
- Department of Orthopaedics, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kelvin W K Yeung
- Department of Orthopaedics, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kenneth K Y Wong
- Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
1256
|
HAp granules encapsulated oxidized alginate–gelatin–biphasic calcium phosphate hydrogel for bone regeneration. Int J Biol Macromol 2015; 81:898-911. [DOI: 10.1016/j.ijbiomac.2015.09.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 01/14/2023]
|
1257
|
Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems. Adv Drug Deliv Rev 2015; 94:116-25. [PMID: 25817732 DOI: 10.1016/j.addr.2015.03.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/27/2015] [Accepted: 03/20/2015] [Indexed: 01/31/2023]
Abstract
One of the major problems with bone tissue engineering is the development of a rapid vascularization after implantation to supply the growing osteoblast cells with the nutrients to grow and survive as well as to remove waste products. It has been demonstrated that capillary-like structures produced in vitro will anastomose rapidly after implantation and become functioning blood vessels. For this reason, in recent years many studies have examined a variety of human osteoblast and endothelial cell co-culture systems in order to distribute osteoblasts on all parts of the bone scaffold and at the same time provide conditions for the endothelial cells to migrate to form a network of capillary-like structures throughout the osteoblast-colonized scaffold. The movement and proliferation of endothelial cells to form capillary-like structures is known as angiogenesis and is dependent on a variety of pro-angiogenic factors. This review summarizes human 2- and 3-D co-culture models to date, the types and origins of cells used in the co-cultures and the proangiogenic factors that have been identified in the co-culture models.
Collapse
|
1258
|
Mishra R, Roux BM, Posukonis M, Bodamer E, Brey EM, Fisher JP, Dean D. Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds. Biomaterials 2015; 77:255-66. [PMID: 26606451 DOI: 10.1016/j.biomaterials.2015.10.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
Abstract
The importance of vascularization in the field of bone tissue engineering has been established by previous studies. The present work proposes a novel poly(propylene fumarate) (PPF)/fibrin composite scaffold for the development of vascularized neobone tissue. The effect of prevascularization (i.e., in vitro pre-culture prior to implantation) with human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) on in vivo vascularization of scaffolds was determined. Five conditions were studied: no pre-culture (NP), 1 week pre-culture (1P), 2 week pre-culture (2P), 3 week pre-culture (3P), and scaffolds without cells (control, C). Scaffolds were implanted subcutaneously in a severe combined immunodeficiency (SCID) mouse model for 9 days. During in vitro studies, CD31 staining showed a significant increase in vascular network area over 3 weeks of culture. Vascular density was significantly higher in vivo when comparing the NP and 3P groups. Immunohistochemical staining of human CD-31 expression indicated spreading of vascular networks with increasing pre-culture time. These vascular networks were perfused with mouse blood indicated by perfused lectin staining in human CD-31 positive vessels. Our results demonstrate that in vitro prevascularization supports in vivo vascularization in PPF/fibrin scaffolds.
Collapse
Affiliation(s)
- Ruchi Mishra
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| | - Brianna M Roux
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines Jr. V.A. Hospital, Hines, IL, USA
| | - Megan Posukonis
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| | - Emily Bodamer
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA
| | - Eric M Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Research Service, Edward Hines Jr. V.A. Hospital, Hines, IL, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - David Dean
- Department of Plastic Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
1259
|
Thrivikraman G, Lee PS, Hess R, Haenchen V, Basu B, Scharnweber D. Interplay of Substrate Conductivity, Cellular Microenvironment, and Pulsatile Electrical Stimulation toward Osteogenesis of Human Mesenchymal Stem Cells in Vitro. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23015-23028. [PMID: 26418613 DOI: 10.1021/acsami.5b06390] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The influences of physical stimuli such as surface elasticity, topography, and chemistry over mesenchymal stem cell proliferation and differentiation are well investigated. In this context, a fundamentally different approach was adopted, and we have demonstrated the interplay of inherent substrate conductivity, defined chemical composition of cellular microenvironment, and intermittent delivery of electric pulses to drive mesenchymal stem cell differentiation toward osteogenesis. For this, conducting polyaniline (PANI) substrates were coated with collagen type 1 (Coll) alone or in association with sulfated hyaluronan (sHya) to form artificial extracellular matrix (aECM), which mimics the native microenvironment of bone tissue. Further, bone marrow derived human mesenchymal stem cells (hMSCs) were cultured on these moderately conductive (10(-4)-10(-3) S/cm) aECM coated PANI substrates and exposed intermittently to pulsed electric field (PEF) generated through transformer-like coupling (TLC) approach over 28 days. On the basis of critical analysis over an array of end points, it was inferred that Coll/sHya coated PANI (PANI/Coll/sHya) substrates had enhanced proliferative capacity of hMSCs up to 28 days in culture, even in the absence of PEF stimulation. On the contrary, the adopted PEF stimulation protocol (7 ms rectangular pulses, 3.6 mV/cm, 10 Hz) is shown to enhance osteogenic differentiation potential of hMSCs. Additionally, PEF stimulated hMSCs had also displayed different morphological characteristics as their nonstimulated counterparts. Concomitantly, earlier onset of ALP activity was also observed on PANI/Coll/sHya substrates and resulted in more calcium deposition. Moreover, real-time polymerase chain reaction results indicated higher mRNA levels of alkaline phosphatase and osteocalcin, whereas the expression of other osteogenic markers such as Runt-related transcription factor 2, Col1A, and osteopontin exhibited a dynamic pattern similar to control cells that are cultured in osteogenic medium. Taken together, our experimental results illustrate the interplay of multiple parameters such as substrate conductivity, electric field stimulation, and aECM coating on the modulation of hMSC proliferation and differentiation in vitro.
Collapse
Affiliation(s)
- Greeshma Thrivikraman
- Max Bergmann Center of Biomaterials, Technische Universität Dresden , Budapester Straße 27, 01069 Dresden, Germany
- Centre for Nano Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Poh S Lee
- Max Bergmann Center of Biomaterials, Technische Universität Dresden , Budapester Straße 27, 01069 Dresden, Germany
| | - Ricarda Hess
- Max Bergmann Center of Biomaterials, Technische Universität Dresden , Budapester Straße 27, 01069 Dresden, Germany
| | - Vanessa Haenchen
- Max Bergmann Center of Biomaterials, Technische Universität Dresden , Budapester Straße 27, 01069 Dresden, Germany
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science , Bangalore 560012, India
| | - Dieter Scharnweber
- Max Bergmann Center of Biomaterials, Technische Universität Dresden , Budapester Straße 27, 01069 Dresden, Germany
| |
Collapse
|
1260
|
Overcoming translational challenges - The delivery of mechanical stimuli in vivo. Int J Biochem Cell Biol 2015; 69:162-72. [PMID: 26482595 DOI: 10.1016/j.biocel.2015.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Despite major medical advances, non-union bone fractures and skeletal defects continue to place significant burden on the patient, the clinicians and the healthcare system as a whole. Current bone substitute approaches are still limited in effectiveness and to date no adequate bone substitute material has been developed for routine clinical application. Tissue engineering presents a novel approach to tackling this clinical burden and developing an acceptable solution for the treatment of skeletal defects. Over the past three decades the field has evolved to appreciate the key biological, material and physical parameters influencing the development of a cell-based tissue engineered therapy and to create associated technologies to exploit such parameters. In recent years a number of therapies have started progressing along the pre-clinical pipeline to build a case for regulatory approval and ultimately clinical adoption. However, little emphasis has been given to the translational challenges faced when moving from "bench-to-bedside". One particular challenge lies in the delivery of functional mechanical stimuli to implanted cell populations to activate and promote osteogenic activities. This review introduces novel bio-magnetic approaches to overcoming this challenge.
Collapse
|
1261
|
Gomes MF, Valva VN, Vieira EMM, Giannasi LC, Salgado MAC, Vilela-Goulart MG. Homogenous demineralized dentin matrix and platelet-rich plasma for bone tissue engineering in cranioplasty of diabetic rabbits: biochemical, radiographic, and histological analysis. Int J Oral Maxillofac Surg 2015; 45:255-66. [PMID: 26482638 DOI: 10.1016/j.ijom.2015.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 10/22/2022]
Abstract
This study evaluated the effects of homogenous demineralized dentin matrix (HDDM) slices and platelet-rich plasma (PRP) in surgical defects created in the parietal bones of alloxan-induced diabetic rabbits, treated with a guided bone regeneration technique. Biochemical, radiographic, and histological analyses were performed. Sixty adult New Zealand rabbits were divided into five groups of 12: normoglycaemic (control, C), diabetic (D), diabetic with a PTFE membrane (DM), diabetic with a PTFE membrane and HDDM slices (DM-HDDM), and diabetic with PTFE membrane and PRP (DM-PRP). The quantity and quality of bone mass was greatest in the DM-HDDM group (respective radiographic and histological analyses: at 15 days, 71.70 ± 16.50 and 50.80 ± 1.52; 30 days, 62.73 ± 16.51 and 54.20 ± 1.23; 60 days, 63.03 ± 11.04 and 59.91 ± 3.32; 90 days, 103.60 ± 24.86 and 78.99 ± 1.34), followed by the DM-PRP group (respective radiographic and histological analyses: at 15 days 23.00 ± 2.74 and 20.66 ± 7.45; 30 days 31.92 ± 6.06 and 25.31 ± 5.59; 60 days 25.29 ± 16.30 and 46.73 ± 2.07; 90 days 38.10 ± 14.04 and 53.38 ± 9.20). PRP greatly enhanced vascularization during the bone repair process. Abnormal calcium metabolism was statistically significant in the DM-PRP group (P<0.001) for all four time intervals studied, especially when compared to the DM-HDDM group. Alkaline phosphatase activity was significantly higher in the DM-HDDM group (P<0.001) in comparison to the C, D, and DM-PRP groups, confirming the findings of intense osteoblastic activity and increased bone mineralization. Thus, HDDM promoted superior bone architectural microstructure in bone defects in diabetic rabbits due to its effective osteoinductive and osteoconductive activity, whereas PRP stimulated angiogenesis and red bone marrow formation.
Collapse
Affiliation(s)
- M F Gomes
- Bioscience Center for Patients with Special Health Needs (CEBAPE), Institute of Science and Technology - Campus São José dos Campos (UNESP), São Paulo, Brazil.
| | - V N Valva
- Bioscience Center for Patients with Special Health Needs (CEBAPE), Institute of Science and Technology - Campus São José dos Campos (UNESP), São Paulo, Brazil
| | - E M M Vieira
- Integrated Dental Sciences College, University of Cuiabá, Mato Grosso, Brazil
| | - L C Giannasi
- Bioscience Center for Patients with Special Health Needs (CEBAPE), Institute of Science and Technology - Campus São José dos Campos (UNESP), São Paulo, Brazil
| | - M A C Salgado
- Bioscience Center for Patients with Special Health Needs (CEBAPE), Institute of Science and Technology - Campus São José dos Campos (UNESP), São Paulo, Brazil
| | - M G Vilela-Goulart
- Bioscience Center for Patients with Special Health Needs (CEBAPE), Institute of Science and Technology - Campus São José dos Campos (UNESP), São Paulo, Brazil
| |
Collapse
|
1262
|
Mishra R, Raina DB, Pelkonen M, Lidgren L, Tägil M, Kumar A. Study of in Vitro and in Vivo Bone Formation in Composite Cryogels and the Influence of Electrical Stimulation. Int J Biol Sci 2015; 11:1325-36. [PMID: 26535027 PMCID: PMC4624309 DOI: 10.7150/ijbs.13139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/08/2015] [Indexed: 11/22/2022] Open
Abstract
This work studies osteoinduction and bone conduction in polyvinyl alcohol-tetraethylorthosilicate-alginate-calcium oxide (PTAC) biocomposite cryogels along with the synergistic effect of electrical stimulation. In vitro osteoinduction of C2C12 myoblast towards osteogenic lineage is demonstrated through alkaline phosphatase assay, scanning electron microscopy and energy dispersive X-ray spectroscopy. These results were followed by in vivo implantation studies of PTAC biocomposite cryogel scaffolds in the bone conduction chamber model depicting bone formation after 24 days based on immunohistological staining for osteogenic markers, i.e., collagen type I (Col I), osteocalcin (OCN), osteopontin (OPN) and bone sialoprotein (BSP). Further, osteogenic differentiation of murine mesenchymal stem cells was studied with and without electrical stimulation. The q-PCR analysis shows that the electrically stimulated cryogels exhibit ~ 6 folds higher collagen type I and ~ 10 folds higher osteopontin mRNA level, in comparison to the unstimulated cryogels. Thus, PTAC biocomposite cryogels present osteoinductive and osteoconductive properties during in vitro and in vivo studies and support osteogenic differentiation of mesenchymal stem cells under the influence of electrical stimulation.
Collapse
Affiliation(s)
- Ruchi Mishra
- 1. Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| | - Deepak Bushan Raina
- 1. Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India ; 2. Department of Orthopedics, Clinical Sciences, Lund University, Lund-221 85, Sweden
| | - Mea Pelkonen
- 2. Department of Orthopedics, Clinical Sciences, Lund University, Lund-221 85, Sweden
| | - Lars Lidgren
- 2. Department of Orthopedics, Clinical Sciences, Lund University, Lund-221 85, Sweden
| | - Magnus Tägil
- 2. Department of Orthopedics, Clinical Sciences, Lund University, Lund-221 85, Sweden
| | - Ashok Kumar
- 1. Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| |
Collapse
|
1263
|
Auer JA, Grainger DW. Fracture management in horses: Where have we been and where are we going? Vet J 2015; 206:5-14. [DOI: 10.1016/j.tvjl.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 12/31/2022]
|
1264
|
Narayanan G, Gupta BS, Tonelli AE. Enhanced mechanical properties of poly (ε-caprolactone) nanofibers produced by the addition of non-stoichiometric inclusion complexes of poly (ε-caprolactone) and α-cyclodextrin. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.08.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
1265
|
Babu N, Charles N, Rai R, Mathur S, Runwal SH. Unicystic Ameloblastoma of Mandible Treated with an Innovative Approach: A Clinical Case Report. J Clin Diagn Res 2015; 9:ZD11-3. [PMID: 26393220 DOI: 10.7860/jcdr/2015/13908.6177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/22/2015] [Indexed: 11/24/2022]
Abstract
Ameloblastoma is a true benign neoplasm with its origin from remnants of odontogenic epithelium. Unicystic ameloblastoma presents as a cystic lesion which clinically, radiographically, and macroscopically mimics a mandibular cyst, but microscopically exhibits ameloblastic epithelium lining part of the cyst cavity, with or without intraluminal growth and tumour infiltration into the fibrous connective tissue wall. An important and perplexing aspect associated with ameloblastoma is its management. We hereby present a case of unicystic ameloblastoma in a 63-year-old female and report an innovative technique of treating the case with split iliac crest graft.
Collapse
Affiliation(s)
- Narendra Babu
- Specialist, Department of Oral and Maxillofacial Surgery, CMDC , Jaipur, Rajasthan, India
| | - Nsc Charles
- Specialist, Department of Oral and Maxillofacial Pathology, CMDC , Jaipur, Rajasthan, India
| | - Raj Rai
- Professor and Head, Department of Oral and Maxillofacial Surgery, Dr. G.D. Pol Foundation's, Y.M.T. Dental College & Hospital, Kharghar , Navi Mumbai, Maharashtra, India
| | - Smita Mathur
- Professor and Head, Department of Oral and Maxillofacial Pathology, Triveni Dental College , Bilaspur, Chhattisgarh, India
| | - Sameer Hemant Runwal
- Studeny, Bharti Vidyapeeth Deemed University Dental College and Hospital , Pune, Maharashtra, India
| |
Collapse
|
1266
|
Liu J, Zhao L, Ni L, Qiao C, Li D, Sun H, Zhang Z. The effect of synthetic α-tricalcium phosphate on osteogenic differentiation of rat bone mesenchymal stem cells. Am J Transl Res 2015; 7:1588-1601. [PMID: 26550458 PMCID: PMC4626420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/09/2015] [Indexed: 06/05/2023]
Abstract
The reconstruction of large bone defects has been the focus in bone tissue engineering research. By acting as synthetic frameworks for cell growth and tissue formation, biomaterials can play a critical role in bone tissue engineering. Among various biomaterials, calcium phosphate based materials include hydroxyapatite (HA), α-tricalcium phosphate (α-TCP), and β-tricalcium phosphate (β-TCP) are widely used as scaffold materials in bone tissue engineering. However, little is known about the effect of α-TCP alone on the osteogenic differentiation of the BMSCs. To this end, we synthesized α-TCP using a novel co-precipitation method. The synthetic α-TCP was then incubated with rat BMSCs under osteogenic inductive medium culture conditions, followed by the analysis of the mRNA levels of various osteogenesis-related genes, including ALP, Rux2, COL-I, and SP7, using a quantitative RT-PCR method. Following incubation of BMSCs with 20 μg/ml α-TCP, cells reached confluency after 7 days. Additionally, the MTT analysis showed that α-TCP at concentration of 10-20 μg/ml had good biocompatibility with BMSCs, showing no significant inhibition of rat BMSCs proliferation. Furthermore, the synthetic α-TCP (20 μg/ml), when incubated with rat BMSCs in the osteogenic culture medium, increased the mRNA levels of various osteogenesis-related genes, including ALP, Rux2, COL-I, and SP7. Finally, treatment of synthetic α-TCP (20 μg/ml) potentiated calcium nodule formations after incubation with rat BMSCs in osteogenic culture medium for 21 days, as compared with non-treated control. Taken together, the results in the present study suggested that α-TCP alone likely promotes rat BMSCs osteogenic differentiation through up-regulating ALP, Col-I, Runx2, and SP7 gene expression.
Collapse
Affiliation(s)
- Jinzhong Liu
- Department of Oral Pathology, School of Stomatology, Jilin UniversityChangchun 130021, China
| | - Liang Zhao
- Department of Oral Pathology, School of Stomatology, Jilin UniversityChangchun 130021, China
| | - Ling Ni
- State Key laboratory Inorganic Synthesis and Preparative Chemistry, Jinlin UniversityChangchun 130012, China
| | - Chunyan Qiao
- Department of Oral Pathology, School of Stomatology, Jilin UniversityChangchun 130021, China
| | - Daowei Li
- Department of Oral Pathology, School of Stomatology, Jilin UniversityChangchun 130021, China
| | - Hongchen Sun
- Department of Oral Pathology, School of Stomatology, Jilin UniversityChangchun 130021, China
| | - Zongtao Zhang
- State Key laboratory Inorganic Synthesis and Preparative Chemistry, Jinlin UniversityChangchun 130012, China
| |
Collapse
|
1267
|
Barbeck M, Najman S, Stojanović S, Mitić Ž, Živković JM, Choukroun J, Kovačević P, Sader R, James Kirkpatrick C, Ghanaati S. Addition of blood to a phycogenic bone substitute leads to increased
in vivo
vascularization. Biomed Mater 2015; 10:055007. [DOI: 10.1088/1748-6041/10/5/055007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
1268
|
Bone critical defect repair with poloxamine-cyclodextrin supramolecular gels. Int J Pharm 2015; 495:463-473. [PMID: 26362078 DOI: 10.1016/j.ijpharm.2015.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/03/2015] [Accepted: 09/05/2015] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate the osteoinductive capacity of a poloxamine (Tetronic(®) 908, T) and α-cyclodextrin (αCD) supramolecular gel (T-CD) as scaffold in a critical size defect in rat calvaria. The T-CD gel was evaluated solely and after being loaded with simvastatin (SV) and bone morphogenetic protein (BMP-2) separately and in combinations in order to reduce the doses of the active substances. Three doses of SV (7.5, 75, 750 μg) and two doses of BMP-2 (3 and 6 μg) were tested. The histology and histomorphometrical analysis showed improved bone repair with T-CD compared to T, probably due to better release control of both SV and BMP-2. In addition, as T-CD eroded more slowly than poloxamine alone, it remained longer in the defect site. Although synergism was not obtained with BMP-2 and SV, according to the observed regeneration of the defect, the dose of BMP-2 and SV can be reduced to 3 μg and 7.5 μg, respectively.
Collapse
|
1269
|
A nano-micro alternating multilayer scaffold loading with rBMSCs and BMP-2 for bone tissue engineering. Colloids Surf B Biointerfaces 2015; 133:286-95. [DOI: 10.1016/j.colsurfb.2015.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022]
|
1270
|
Koupaei N, Karkhaneh A, Daliri Joupari M. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds. J Biomed Mater Res A 2015; 103:3919-26. [DOI: 10.1002/jbm.a.35513] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/10/2015] [Accepted: 05/19/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Narjes Koupaei
- Department of Biomedical Engineering, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Morteza Daliri Joupari
- Department of Animal and Marine Biotechnology; National Institute of Genetic Engineering and Biotechnology; Tehran Iran
| |
Collapse
|
1271
|
Chen WC, Ko CL, Yang JK, Wu HY, Lin JH. Comparison and preparation of multilayered polylactic acid fabric strengthen calcium phosphate-based bone substitutes for orthopedic applications. J Artif Organs 2015; 19:70-9. [PMID: 26280316 DOI: 10.1007/s10047-015-0863-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/04/2015] [Indexed: 11/28/2022]
Abstract
An attempt to maintain the three-dimensional space into restorative sites through the conveniently pack porous fillers are general used strategy. Advancement in the manufacturing protective shells in the scaffolds, which would be filled with brittle ceramic grafts for the development of highly connective pores provides the approach to solve crack problem for generating the tissues. Therefore, multilayered braided and alkalized poly(lactic acid) (PLA) composites with calcium phosphate bone cement (CPC) were synthesized and compared. The PLA/CPC composites were divided into various groups according to a series of heat-treatment temperatures (100-190 °C) and periods (1-3 h) and then characterized. The effects of 24-h immersion on the strength decay resistance of the samples were compared. Results showed that the residual oil capped on the surfaces of alkalized PLA braid was removed, and the structure was unaltered. However, the reduced tensile stress of alkalized PLA braids was due to ester-group formation by hydrolysis. Mechanical test results of PLA/CPC composites showed that the strength significantly increased after heat treatment, except when the heating temperature was higher than the PLA melting point at approximately 160-170 °C. The degree of PLA after recrystallization became higher than that of unheated composites, thereby leading to reduced strength and toughness of the specimen. Braiding fibers of biodegradable PLA reinforced and toughened the structure particularly of the extra-brittle material of thin-sheet CPC after implantation.
Collapse
Affiliation(s)
- Wen-Cheng Chen
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, 100, Wenhwa Rd., Seatwen, Taichung, 40724, Taiwan.
| | - Chia-Ling Ko
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, 100, Wenhwa Rd., Seatwen, Taichung, 40724, Taiwan
| | - Jia-Kai Yang
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, 100, Wenhwa Rd., Seatwen, Taichung, 40724, Taiwan
| | - Hui-Yu Wu
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, 100, Wenhwa Rd., Seatwen, Taichung, 40724, Taiwan
| | - Jia-Horng Lin
- Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, Feng Chia University, 100, Wenhwa Rd., Seatwen, Taichung, 40724, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
1272
|
Bae S, Lee HJ, Lee JS, Webb K. Cell-Mediated Dexamethasone Release from Semi-IPNs Stimulates Osteogenic Differentiation of Encapsulated Mesenchymal Stem Cells. Biomacromolecules 2015; 16:2757-65. [PMID: 26259127 DOI: 10.1021/acs.biomac.5b00694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Scaffold-based delivery of bioactive molecules capable of directing stem cell differentiation is critical to the development of point-of-care cell therapy for orthopedic repair. Dexamethasone-conjugated hyaluronic acid (HA-DXM) was synthesized and combined with hydrolytically degradable, photo-cross-linkable PEG-bis(2-acryloyloxy propanoate) (PEG-bis-AP) to form semi-IPNs. Dexamethasone (DX) release was limited in physiological buffer and substantially increased in the presence of encapsulated human mesenchymal stem cells (hMSCs) or exogenous hyaluronidase, confirming that release occurred primarily by a cell-mediated enzymatic mechanism. hMSCs encapsulated in PEG-bis-AP/HA-DXM semi-IPNs increased osteoblast-specific gene expression, alkaline phosphatase activity, and matrix mineralization, attaining levels that were not significantly different from positive controls consisting of hMSCs in PEG-bis-AP/native HA cultured with DX supplementation in the culture medium. These studies demonstrate that PEG-bis-AP/HA-DXM semi-IPNs can provide cell-mediated release of bioactive free DX that induces hMSC osteogenic differentiation. This approach offers an efficient system for local delivery of osteogenic molecules empowering point of care applications.
Collapse
Affiliation(s)
- Sooneon Bae
- Microenvironmental Engineering Laboratory and ‡Drug Design, Development, and Delivery Laboratory, Department of Bioengineering, Clemson University , 301 Rhodes Research Center, Clemson, South Carolina 29634, United States
| | - Ho-Joon Lee
- Microenvironmental Engineering Laboratory and ‡Drug Design, Development, and Delivery Laboratory, Department of Bioengineering, Clemson University , 301 Rhodes Research Center, Clemson, South Carolina 29634, United States
| | - Jeoung Soo Lee
- Microenvironmental Engineering Laboratory and ‡Drug Design, Development, and Delivery Laboratory, Department of Bioengineering, Clemson University , 301 Rhodes Research Center, Clemson, South Carolina 29634, United States
| | - Ken Webb
- Microenvironmental Engineering Laboratory and ‡Drug Design, Development, and Delivery Laboratory, Department of Bioengineering, Clemson University , 301 Rhodes Research Center, Clemson, South Carolina 29634, United States
| |
Collapse
|
1273
|
Dini F, Barsotti G, Puppi D, Coli A, Briganti A, Giannessi E, Miragliotta V, Mota C, Pirosa A, Stornelli MR, Gabellieri P, Carlucci F, Chiellini F. Tailored star poly (ε-caprolactone) wet-spun scaffolds for in vivo regeneration of long bone critical size defects. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515597928] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One of the most challenging requirements of a successful bone tissue engineering approach is the development of scaffolds specifically tailored to individual tissue defects. Besides materials chemistry, well-defined scaffold’s structural features at the micro- and macro-levels are needed for optimal bone in-growth. In this study, polymeric fibrous scaffolds with a controlled internal network of pores and modelled on the anatomical shape and dimensions of a critical size bone defect in a rabbit’s radius model were developed by employing a computer-aided wet-spinning technique. The tailored scaffolds made of star poly(ε-caprolactone) or star poly(ε-caprolactone)–hydroxyapatite composite material were implanted into 20-mm segmental defects created in radial diaphysis of New Zealand white rabbits. Bone regeneration and tissue response were assessed by X-rays and histological analysis at 4, 8 and 12 weeks after surgery. No signs of macroscopic and microscopic inflammatory reactions were detected, and the developed scaffolds showed a good ability to support and promote the bone regeneration process. However, no significant differences in osteoconductivity were observed between star poly(ε-caprolactone) and star poly(ε-caprolactone)–hydroxyapatite scaffolds. Long-term study on implanted star poly(ε-caprolactone) scaffolds confirmed the presence of signs of bone regeneration and remodelling, particularly evident at 24 weeks.
Collapse
Affiliation(s)
- Francesca Dini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Dario Puppi
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Alessandra Coli
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Angela Briganti
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | | | - Carlos Mota
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Alessandro Pirosa
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | | | - Paolo Gabellieri
- Operative Unit of Orthopedic and Traumatology, Hospital of Cecina, Cecina, Italy
| | - Fabio Carlucci
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Federica Chiellini
- BIOLab Research Group, UdR-INSTM Pisa, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
1274
|
Bayer EA, Gottardi R, Fedorchak MV, Little SR. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration. J Control Release 2015; 219:129-140. [PMID: 26264834 DOI: 10.1016/j.jconrel.2015.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
Abstract
Bone regeneration is a complex process, that in vivo, requires the highly coordinated presentation of biochemical cues to promote the various stages of angiogenesis and osteogenesis. Taking inspiration from the natural healing process, a wide variety of growth factors are currently being released within next generation tissue engineered scaffolds (in a variety of ways) in order to heal non-union fractures and bone defects. This review will focus on the delivery of multiple growth factors to the bone regeneration niche, specifically 1) dual growth factor delivery signaling and crosstalk, 2) the importance of growth factor timing and temporal separation, and 3) the engineering of delivery systems that allow for temporal control over presentation of soluble growth factors. Alternative methods for growth factor presentation, including the use of gene therapy and platelet-rich plasma scaffolds, are also discussed.
Collapse
Affiliation(s)
- E A Bayer
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA
| | - R Gottardi
- The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Orthopedic Surgery, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA; RiMED Foundation, Palermo, Italy
| | - M V Fedorchak
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Ophthalmology, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA
| | - S R Little
- The University of Pittsburgh, Department of Bioengineering, USA; The University of Pittsburgh, Department of Chemical Engineering, USA; The University of Pittsburgh, Department of Immunology, USA; The University of Pittsburgh, The McGowan Institute for Regenerative Medicine, USA.
| |
Collapse
|
1275
|
Cvetković VJ, Najdanović JG, Vukelić-Nikolić MĐ, Stojanović S, Najman SJ. Osteogenic potential of in vitro osteo-induced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in an ectopic model. INTERNATIONAL ORTHOPAEDICS 2015; 39:2173-80. [PMID: 26231492 DOI: 10.1007/s00264-015-2929-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/03/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE The osteogenic potential of in vitro osteo-induced adipose-derived mesenchymal stem cells (ADSCs) combined with platelet-rich plasma (PRP) and implanted on bone mineral matrix (BMM) carrier was examined in a subcutaneous model in Balb/c mice. METHODS In vitro osteogenic differentiation of ADSCs was monitored by relative bone-related gene expression and osteocalcin expression at the third, seventh and 15th day. Test implants consisting of in vitro osteo-induced ADSCs, PRP and BMM (OPC implants) and control implants consisting of PRP and BMM (PC implants) were examined. The relative expression of the bone-related genes encoding osterix, osteocalcin, collagen type I α1 and alkaline phosphatase was examined in implants extracted at one, two, four and eight weeks. Histochemical, immunohistochemical and histomorphometric analyses of implants extracted at two and eight weeks were performed. RESULTS The highest relative expression of bone-related genes and osteocalcin expression was found at the 15th day of in vitro osteogenic induction of the ADSCs. Permanent and continuous increased expression of bone-related genes was noticed in OPC implants at eight weeks. Expression peaks of bone-related genes in PC implants were at two and four weeks, but they significantly decreased at eight weeks. The signs of resorption, formation of callus-like tissue positive for osteocalcin and increased presence of bone cells were found in OPC implants compared with PC implants. A higher percentage of infiltrated tissue and vascularisation was found in OPC than in PC implants. CONCLUSIONS The combination of in vitro osteo-induced ADSCs and PRP on BMM carrier represents a promising approach for bone regeneration.
Collapse
Affiliation(s)
- Vladimir J Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia.
| | - Jelena G Najdanović
- Institute of Biology and Human Genetics, Faculty of Medicine, University of Niš, dr Zoran Djindjić Boulevard 81, 18000, Niš, Serbia.
| | - Marija Đ Vukelić-Nikolić
- Institute of Biology and Human Genetics, Faculty of Medicine, University of Niš, dr Zoran Djindjić Boulevard 81, 18000, Niš, Serbia.
| | - Sanja Stojanović
- Institute of Biology and Human Genetics, Faculty of Medicine, University of Niš, dr Zoran Djindjić Boulevard 81, 18000, Niš, Serbia.
| | - Stevo J Najman
- Institute of Biology and Human Genetics, Faculty of Medicine, University of Niš, dr Zoran Djindjić Boulevard 81, 18000, Niš, Serbia.
| |
Collapse
|
1276
|
Herberg S, Aguilar-Perez A, Howie RN, Kondrikova G, Periyasamy-Thandavan S, Elsalanty ME, Shi X, Hill WD, Cray JJ. Mesenchymal stem cell expression of SDF-1β synergizes with BMP-2 to augment cell-mediated healing of critical-sized mouse calvarial defects. J Tissue Eng Regen Med 2015; 11:1806-1819. [PMID: 26227988 DOI: 10.1002/term.2078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/28/2015] [Accepted: 06/16/2015] [Indexed: 01/07/2023]
Abstract
Bone has the potential for spontaneous healing. This process, however, often fails in patients with comorbidities. Tissue engineering combining functional cells, biomaterials and osteoinductive cues may provide alternative treatment strategies. We have recently demonstrated that stromal cell-derived factor-1β (SDF-1β) works in concert with bone morphogenetic protein-2 (BMP-2) to potentiate osteogenic differentiation of bone marrow-derived mesenchymal stem/stromal cells (BMSCs). Here, we test the hypothesis that SDF-1β overexpressed in Tet-Off-SDF-1β BMSCs, delivered on acellular dermal matrix (ADM), synergistically augments BMP-2-induced healing of critical-sized mouse calvarial defects. BMSC therapies alone showed limited bone healing, which was increased with co-delivery of BMP-2. This was further enhanced in Tet-Off-SDF-1β BMSCs + BMP-2. Only limited BMSC retention on ADM constructs was observed after 4 weeks in vivo, which was increased with BMP-2 co-delivery. In vitro cell proliferation studies showed that supplementing BMP-2 to Tet-Off BMSCs significantly increased the cell number during the first 24 h. Consequently, the increased cell numbers decreased the detectable BMP-2 levels in the medium, but increased cell-associated BMP-2. The data suggest that SDF-1β provides synergistic effects supporting BMP-2-induced, BMSC-mediated bone formation and appears suitable for optimization of bone augmentation in combination therapy protocols. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Samuel Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Alexandra Aguilar-Perez
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Cellular and Molecular Biology, Universidad Central del Caribe, Bayamón, Puerto Rico, USA
| | - R Nicole Howie
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Galina Kondrikova
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | | | - Mohammed E Elsalanty
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Oral Biology, Georgia Regents University, Augusta, GA, USA.,Department of Orthopedic Surgery, Georgia Regents University, Augusta, GA, USA.,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Xingming Shi
- Department of Orthopedic Surgery, Georgia Regents University, Augusta, GA, USA.,Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, USA.,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - William D Hill
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Orthopedic Surgery, Georgia Regents University, Augusta, GA, USA.,Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, USA.,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA.,Charlie Norwood VA Medical Centre, Augusta, GA, USA
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
1277
|
High Field Sodium MRI Assessment of Stem Cell Chondrogenesis in a Tissue-Engineered Matrix. Ann Biomed Eng 2015; 44:1120-7. [PMID: 26168719 DOI: 10.1007/s10439-015-1382-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/02/2015] [Indexed: 02/01/2023]
Abstract
The development of non-invasive assessment techniques in vitro and in vivo is essential for monitoring and evaluating the growth of engineered cartilage tissues. Magnetic resonance imaging (MRI) is the leading non-invasive imaging modality used for assessing engineered cartilage. Typical MRI uses water proton relaxation times (T1 and T2) and apparent diffusion coefficient (ADC) to assess tissue growth. These techniques, while excellent in providing the first assurance of tissue growth, are unspecific to monitor the progress of engineered cartilage extracellular matrix components. In the current article, we present high field (11.7 T, (1)H freq. = 500 MHz) sodium MRI assessment of tissue-engineered cartilage at the early stage of tissue growth in vitro. We observed the chondrogenesis of human bone marrow derived stromal cells seeded in a gradient polymer-hydrogel matrix made out of poly(85 lactide-co-15 glycolide)--PuraMatrix™ for 4 weeks. We calculated the sodium concentration in the engineered constructs using a model of sodium MRI voxels that takes into account scaffold volume, cell density and amount of glycosaminoglycan (GAG). The sodium concentration was then converted to the fixed charge density (FCD) and compared with FCD derived from biochemical GAG analysis. Despite the small amount of GAG present in the engineered constructs, the sodium MRI derived FCD is found to be correlated (Pearson correlation coefficient R = 0.79) with the FCD derived from biochemical analysis. We conclude that sodium MRI could prove to be an invaluable tool in assessing engineered cartilage quantitatively during the repair or regeneration of cartilage defects.
Collapse
|
1278
|
Synergistic activity of polarised osteoblasts inside condensations cause their differentiation. Sci Rep 2015; 5:11838. [PMID: 26146365 PMCID: PMC4491713 DOI: 10.1038/srep11838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/18/2015] [Indexed: 01/08/2023] Open
Abstract
Condensation of pre-osteogenic, or pre-chondrogenic, cells is the first of a series of processes that initiate skeletal development. We present a validated, novel, three-dimensional agent-based model of in vitro intramembranous osteogenic condensation. The model, informed by system heterogeneity and relying on an interaction-reliant strategy, is shown to be sensitive to ‘rules’ capturing condensation growth and can be employed to track activity of individual cells to observe their macroscopic impact. It, therefore, makes available previously inaccessible data, offering new insights and providing a new context for exploring the emergence, as well as normal and abnormal development, of osteogenic structures. Of the several stages of condensation we investigate osteoblast ‘burial’ within the osteoid they deposit. The mechanisms underlying entrapment – required for osteoblasts to differentiate into osteocytes – remain a matter of conjecture with several hypotheses claiming to capture this important transition. Computational examination of this transition indicates that osteoblasts neither turn off nor slow down their matrix secreting genes – a widely held view; nor do they secrete matrix randomly. The model further reveals that osteoblasts display polarised behaviour to deposit osteoid. This is both an important addition to our understanding of condensation and an important validation of the model’s utility.
Collapse
|
1279
|
Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for Bone Regenerative Engineering. Adv Healthc Mater 2015; 4:1268-85. [PMID: 25846250 PMCID: PMC4507442 DOI: 10.1002/adhm.201400760] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/21/2015] [Indexed: 01/08/2023]
Abstract
Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the "tissue engineering" concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as "regenerative engineering". In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. The exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration is highlighted. Particular attention is given to the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts.
Collapse
Affiliation(s)
- Xiaohua Yu
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Xiaoyan Tang
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06268
| | - Shalini V. Gohil
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T. Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06268, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06268
| |
Collapse
|
1280
|
Hardy JG, Geissler SA, Aguilar D, Villancio-Wolter MK, Mouser DJ, Sukhavasi RC, Cornelison RC, Tien LW, Preda RC, Hayden RS, Chow JK, Nguy L, Kaplan DL, Schmidt CE. Instructive Conductive 3D Silk Foam-Based Bone Tissue Scaffolds Enable Electrical Stimulation of Stem Cells for Enhanced Osteogenic Differentiation. Macromol Biosci 2015; 15:1490-6. [PMID: 26033953 DOI: 10.1002/mabi.201500171] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/06/2015] [Indexed: 11/11/2022]
Abstract
Stimuli-responsive materials enabling the behavior of the cells that reside within them to be controlled are vital for the development of instructive tissue scaffolds for tissue engineering. Herein, we describe the preparation of conductive silk foam-based bone tissue scaffolds that enable the electrical stimulation of human mesenchymal stem cells (HMSCs) to enhance their differentiation toward osteogenic outcomes.
Collapse
Affiliation(s)
- John G Hardy
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, 32611, USA. .,Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA. .,Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155, USA.
| | - Sydney A Geissler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, 32611, USA.,Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - David Aguilar
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Maria K Villancio-Wolter
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, 32611, USA
| | - David J Mouser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Rushi C Sukhavasi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - R Chase Cornelison
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, 32611, USA.,Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Lee W Tien
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155, USA
| | - R Carmen Preda
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155, USA
| | - Rebecca S Hayden
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155, USA
| | - Jacqueline K Chow
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Lindsey Nguy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155, USA.
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, 32611, USA. .,Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
1281
|
Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res 2015; 56:175-94. [PMID: 25803622 DOI: 10.3109/03008207.2015.1027341] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro assays can be useful in determining biological mechanism and optimizing scaffold parameters, however translation of the in vitro results to clinics is generally hard. Animal experimentation is a better approximation than in vitro tests, and usage of animal models is often essential in extrapolating the experimental results and translating the information in a human clinical setting. In addition, usage of animal models to study fracture healing is useful to answer questions related to the most effective method to treat humans. There are several factors that should be considered when selecting an animal model. These include availability of the animal, cost, ease of handling and care, size of the animal, acceptability to society, resistance to surgery, infection and disease, biological properties analogous to humans, bone structure and composition, as well as bone modeling and remodeling characteristics. Animal experiments on bone healing have been conducted on small and large animals, including mice, rats, rabbits, dogs, pigs, goats and sheep. This review also describes the molecular events during various steps of fracture healing and explains different means of fracture healing evaluation including biomechanical, histopathological and radiological assessments.
Collapse
Affiliation(s)
- Amin Bigham-Sadegh
- Faculty of Veterinary Medicine, Department of Veterinary Surgery and Radiology, Shahrekord University , Shahrekord , Iran and
| | | |
Collapse
|
1282
|
Insulin-like growth factor binding protein-3 affects osteogenic efficacy on dental implants in rat mandible. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:490-6. [PMID: 26117781 DOI: 10.1016/j.msec.2015.05.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/28/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
Insulin like growth factor binding protein-3 (IGFBP-3) in bone cells and its utilization in dental implants have not been well studied. The aim of this study was to determine the osteogenic efficacy of chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 coated titanium (Ti) implants. Ch-GNPs were conjugated with IGFBP-3 plasmid DNA through a coacervation process. Conjugation was cast over Ti surfaces, and cells were seeded on coated surfaces. For in vitro analysis the expression of different proteins was analyzed by immunoblotting. For in vivo analysis, Ch-GNP/IGFBP-3 coated implants were installed in rat mandibles. Four weeks post-implantation, mandibles were examined by microcomputed tomography (μCT), immunohistochemistry, hematoxylin & eosin and tartrate resistance acid phosphatase staining. In vitro overexpressed Ch-GNP/IGFBP-3 coated Ti surfaces was associated with activation of extracellular signal related kinase (ERK), inhibition of the stress activated protein c-Jun N-terminal kinase (JNK) and enhanced bone morphogenetic protein (BMP)-2 and 7 compared to control. Further, in vivo, Ch-GNP/IGFBP-3 coated implants were associated with inhibition of implant induced osteoclastogenesis molecules, receptor activator of nuclear factor kappa-B ligand (RANKL) and enhanced expression of osteogenic molecules including BMP2/7 and osteopontin (OPN). The μCT analysis demonstrated that IGFBP-3 increased the volume of newly formed bone surrounding the implants compared to control (n=5; p<0.05). These results support the view that IGFBP-3 overexpression diminishes osteoclastogenesis and enhances osteogenesis of Ti implants, and can serve as a potent molecule for the development of good implantation.
Collapse
|
1283
|
Osteogenic Potential of Dental Mesenchymal Stem Cells in Preclinical Studies: A Systematic Review Using Modified ARRIVE and CONSORT Guidelines. Stem Cells Int 2015; 2015:378368. [PMID: 26106427 PMCID: PMC4464683 DOI: 10.1155/2015/378368] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/01/2015] [Indexed: 12/22/2022] Open
Abstract
Background and Objective. Dental stem cell-based tissue engineered constructs are emerging as a promising alternative to autologous bone transfer for treating bone defects. The purpose of this review is to systematically assess the preclinical in vivo and in vitro studies which have evaluated the efficacy of dental stem cells on bone regeneration. Methods. A literature search was conducted in Ovid Medline, Embase, PubMed, and Web of Science up to October 2014. Implantation of dental stem cells in animal models for evaluating bone regeneration and/or in vitro studies demonstrating osteogenic potential of dental stem cells were included. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were used to ensure the quality of the search. Modified ARRIVE (Animal research: reporting in invivo experiments) and CONSORT (Consolidated reporting of trials) were used to critically analyze the selected studies. Results. From 1914 citations, 207 full-text articles were screened and 137 studies were included in this review. Because of the heterogeneity observed in the studies selected, meta-analysis was not possible. Conclusion. Both in vivo and in vitro studies indicate the potential use of dental stem cells in bone regeneration. However well-designed randomized animal trials are needed before moving into clinical trials.
Collapse
|
1284
|
Stevanović M, Filipović N, Djurdjević J, Lukić M, Milenković M, Boccaccini A. 45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity. Colloids Surf B Biointerfaces 2015; 132:208-15. [PMID: 26047884 DOI: 10.1016/j.colsurfb.2015.05.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/27/2015] [Accepted: 05/13/2015] [Indexed: 12/16/2022]
Abstract
In the bone tissue engineering field, there is a growing interest in the application of bioactive glass scaffolds (45S5Bioglass(®)) due to their bone bonding ability, osteoconductivity and osteoinductivity. However, such scaffolds still lack some of the required functionalities to enable the successful formation of new bone, e.g. effective antibacterial properties. A large number of studies suggest that selenium (Se) has significant role in antioxidant protection, enhanced immune surveillance and modulation of cell proliferation. Selenium nanoparticles (SeNp) have also been reported to possess antibacterial as well as antiviral activities. In this investigation, uniform, stable, amorphous SeNp have been synthesized and additionally immobilized within spherical PLGA particles (PLGA/SeNp). These particles were used to coat bioactive glass-based scaffolds synthesized by the foam replica method. Samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). SeNp, 45S5Bioglass(®)/SeNp and 45S5Bioglass(®)/PLGA/SeNp showed a considerable antibacterial activity against Gram positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis, one of the main causative agents of orthopedic infections. The functionalized Se-coated bioactive glass scaffolds represent a new family of bioactive, antibacterial scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Magdalena Stevanović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia.
| | - Nenad Filipović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Jelena Djurdjević
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Miodrag Lukić
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Marina Milenković
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aldo Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
1285
|
Aryal R, Chen XP, Fang C, Hu YC. Bone morphogenetic protein-2 and vascular endothelial growth factor in bone tissue regeneration: new insight and perspectives. Orthop Surg 2015; 6:171-8. [PMID: 25179350 DOI: 10.1111/os.12112] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/18/2014] [Indexed: 12/20/2022] Open
Abstract
The study of bone tissue regeneration in orthopaedic diseases has stimulated great interest among bone tissue engineering specialists and orthopaedic surgeons. Combinations of biomaterials, growth factors and stem cells for repairing bone have been much studied and researched, yet remain a challenge for both scientists and clinicians pursuing regenerative medicine. The purpose of this review was to elucidate the role of sequential release of bone morphogenetic protein-2 and vascular endothelial growth factor in producing better outcomes in the field of bone tissue regeneration.
Collapse
|
1286
|
Wang T, Yang X, Qi X, Jiang C. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. J Transl Med 2015; 13:152. [PMID: 25952675 PMCID: PMC4429830 DOI: 10.1186/s12967-015-0499-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/21/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Osteoinduction and proliferation of bone-marrow stromal cells (BMSCs) in three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds have not been studied throughly and are technically challenging. This study aimed to optimize nanocomposites of 3D PCL scaffolds to provide superior adhesion, proliferation and differentiation environment for BMSCs in this scenario. METHODS BMSCs were isolated and cultured in a novel 3D tissue culture poly(ε-caprolactone) (PCL) scaffold coated with poly-lysine, hydroxyapatite (HAp), collagen and HAp/collagen. Cell morphology was observed and BMSC biomarkers for osteogenesis, osteoblast differentiation and activation were analyzed. RESULTS Scanning Electron Microscope (SEM) micrographs showed that coating materials were uniformly deposited on the surface of PCL scaffolds and BMSCs grew and aggregated to form clusters during 3D culture. Both mRNA and protein levels of the key players of osteogenesis and osteoblast differentiation and activation, including runt-related transcription factor 2 (Runx2), alkaline phosphates (ALP), osterix, osteocalcin, and RANKL, were significantly higher in BMSCs seeded in PCL scaffolds coated with HAp or HAp/collagen than those seeded in uncoated PCL scaffolds, whereas the expression levels were not significantly different in collagen or poly-lysine coated PCL scaffolds. In addition, poly-lysine, collagen, HAp/collagen, and HAp coated PCL scaffolds had significantly more viable cells than uncoated PCL scaffolds, especially scaffolds with HAp/collagen and collagen-alone coatings. That BMSCs in HAp or HAp/collagen PCL scaffolds had remarkably higher ALP activities than those in collagen-coated alone or uncoated PCL scaffolds indicating higher osteogenic differentiation levels of BMSCs in HAp or HAp/collagen PCL scaffolds. Moreover, morphological changes of BMSCs after four-week of 3D culture confirmed that BMSCs successfully differentiated into osteoblast with spread-out phenotype in HAp/collagen coated PCL scaffolds. CONCLUSION This study showed a proof of concept for preparing biomimetic 3D poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds with excellent osteoinduction and proliferation capacity for bone regeneration.
Collapse
Affiliation(s)
- Ting Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Rd, Shanghai, 200233, China.
| | - Xiaoyan Yang
- Department of Medicine, Northwestern University, Chicago, IL, 60208, USA.
| | - Xin Qi
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Rd, Shanghai, 200233, China.
| | - Chaoyin Jiang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Rd, Shanghai, 200233, China.
| |
Collapse
|
1287
|
Wang P, Liu X, Zhao L, Weir MD, Sun J, Chen W, Man Y, Xu HHK. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium. Acta Biomater 2015; 18:236-48. [PMID: 25712391 DOI: 10.1016/j.actbio.2015.02.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/03/2015] [Accepted: 02/13/2015] [Indexed: 02/05/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are an exciting cell source with great potential for tissue engineering. Human bone marrow mesenchymal stem cells (hBMSCs) have been used in clinics but are limited by several disadvantages, hence alternative sources of MSCs such as umbilical cord MSCs (hUCMSCs) are being investigated. However, there has been no report comparing hiPSCs, hUCMSCs and hBMSCs for bone regeneration. The objectives of this pilot study were to investigate hiPSCs, hUCMSCs and hBMSCs for bone tissue engineering, and compare their bone regeneration via seeding on biofunctionalized macroporous calcium phosphate cement (CPC) in rat cranial defects. For all three types of cells, approximately 90% of the cells remained alive on CPC scaffolds. Osteogenic genes were up-regulated, and mineral synthesis by cells increased with time in vitro for all three types of cells. The new bone area fractions at 12weeks (mean±sd; n=6) were (30.4±5.8)%, (27.4±9.7)% and (22.6±4.7)% in hiPSC-MSC-CPC, hUCMSC-CPC and hBMSC-CPC respectively, compared to (11.0±6.3)% for control (p<0.05). No significant differences were detected among the three types of stem cells (p>0.1). New blood vessel density was higher in cell-seeded groups than control (p<0.05). De novo bone formation and participation by implanted cells was confirmed via immunohistochemical staining. In conclusion, (1) hiPSCs, hUCMSCs and hBMSCs greatly enhanced bone regeneration, more than doubling the new bone amount of cell-free CPC control; (2) hiPSC-MSCs and hUCMSCs represented viable alternatives to hBMSCs; (3) biofunctionalized macroporous CPC-stem cell constructs had a robust capacity for bone regeneration.
Collapse
Affiliation(s)
- Ping Wang
- Biomaterials & Tissue Engineering Division, Department of Endodontics Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xian Liu
- Biomaterials & Tissue Engineering Division, Department of Endodontics Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Zhao
- Biomaterials & Tissue Engineering Division, Department of Endodontics Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Jirun Sun
- Dr. Anthony Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
| | - Wenchuan Chen
- Biomaterials & Tissue Engineering Division, Department of Endodontics Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
1288
|
Asutay F, Acar HA, Yolcu U, Kırtay M, Alan H. Dental stem cell sources and their potentials for bone tissue engineering. J Istanb Univ Fac Dent 2015; 49:51-56. [PMID: 28955537 PMCID: PMC5573487 DOI: 10.17096/jiufd.42908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/05/2014] [Indexed: 12/17/2022] Open
Abstract
Tissue engineering arouses excitement in all
medical fields that deal with bone healing. The
ultimate aim of these approaches are to shorten
the healing process, obtain highly differentiated
functional tissues and eliminate the need for a second
surgical site required for autogenous bone grafts.
Mesenchymal stem cells have been increasingly
used in the experiments which were conducted in
these fields and the results are promising. Dental
stem cells have come to the forefront both because
of their relative ease of access and also their
superior characteristics. This article investigates
the importance of dental stem cells for bone tissue
engineering and their regeneration potentials.
Collapse
Affiliation(s)
- Fatih Asutay
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyon Kocatepe University, Turkey
| | - H Ahmet Acar
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Bezm-i Alem Vakıf University, Turkey
| | - Umit Yolcu
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, İnönü University, Turkey
| | - Mustafa Kırtay
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, İnönü University, Turkey
| | - Hilal Alan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, İnönü University, Turkey
| |
Collapse
|
1289
|
Tevlin R, Atashroo D, Duscher D, Mc Ardle A, Gurtner GC, Wan DC, Longaker MT. Impact of surgical innovation on tissue repair in the surgical patient. Br J Surg 2015; 102:e41-55. [PMID: 25627135 DOI: 10.1002/bjs.9672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Throughout history, surgeons have been prolific innovators, which is hardly surprising as most surgeons innovate daily, tailoring their intervention to the intrinsic uniqueness of each operation, each patient and each disease. Innovation can be defined as the application of better solutions that meet new requirements, unarticulated needs or existing market needs. In the past two decades, surgical innovation has significantly improved patient outcomes, complication rates and length of hospital stay. There is one key area that has great potential to change the face of surgical practice and which is still in its infancy: the realm of regenerative medicine and tissue engineering. METHODS A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key surgical innovations influencing regenerative medicine, with a focus on osseous, cutaneous and soft tissue reconstruction. RESULTS This review describes recent advances in regenerative medicine, documenting key innovations in osseous, cutaneous and soft tissue regeneration that have brought regenerative medicine to the forefront of the surgical imagination. CONCLUSION Surgical innovation in the emerging field of regenerative medicine has the ability to make a major impact on surgery on a daily basis.
Collapse
Affiliation(s)
- R Tevlin
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford, California, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
1290
|
|
1291
|
Kaul H, Ventikos Y. On the genealogy of tissue engineering and regenerative medicine. TISSUE ENGINEERING. PART B, REVIEWS 2015; 21:203-17. [PMID: 25343302 PMCID: PMC4390213 DOI: 10.1089/ten.teb.2014.0285] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this article, we identify and discuss a timeline of historical events and scientific breakthroughs that shaped the principles of tissue engineering and regenerative medicine (TERM). We explore the origins of TERM concepts in myths, their application in the ancient era, their resurgence during Enlightenment, and, finally, their systematic codification into an emerging scientific and technological framework in recent past. The development of computational/mathematical approaches in TERM is also briefly discussed.
Collapse
Affiliation(s)
- Himanshu Kaul
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
1292
|
Wen C, Yan H, Fu S, Qian Y, Wang D, Wang C. Allogeneic adipose-derived stem cells regenerate bone in a critical-sized ulna segmental defect. Exp Biol Med (Maywood) 2015; 241:1401-9. [PMID: 25819682 DOI: 10.1177/1535370215576298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 01/28/2015] [Indexed: 12/17/2022] Open
Abstract
Adipose-derived stem cells (ASCs) with multilineage potential can be induced into osteoblasts, adipocytes and chondrocytes. ASCs as seed cell are widely used in the field of tissue engineering, but most studies either use autologous cells as the source or an immunodeficient animal as the host. In our present study, we explored the feasibility of applying allogeneic ASCs and demineralized bone matrix (DBM) scaffolds for repairing tubular bone defects without using immunosuppressive therapy. Allogeneic ASCs were expanded and seeded on DBM scaffolds and induced to differentiate along the osteogenic lineage. Eight Sprague-Dawley (SD) rats were used in this study and bilateral critical-sized defects (8 mm) of the ulna were created and divided into two groups: with ASC-DBM constructs or DBM alone. The systemic immune response and the extent of bone healing were evaluated post-operatively. Twenty-four weeks after implantation, digital radiography (DR) testing showed that new bones had formed in the experimental group. By contrast, no bone tissue formation was observed in the control group. This study demonstrated that allogeneic ASCs could promote bone regeneration and repair tubular bone defects combined with DBM by histologically typical bone without systemic immune response.
Collapse
Affiliation(s)
- Congji Wen
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China Department of Plastic Surgery, Yancheng First Peoples' Hospital, 16 Yue He Road, People's Republic of China. 224000
| | - Hai Yan
- Department of Orthepedics, Nantong Rich Hospital, No. 2000 Lake Avenue, Nantong, 226010, People's Republic of China
| | - Shibo Fu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Yunliang Qian
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| |
Collapse
|
1293
|
Evdokimov PV, Putlyaev VI, Ievlev VM, Klimashina ES, Safronova TV. Osteoconductive ceramics with a specified system of interconnected pores based on double calcium alkali metal phosphates. DOKLADY CHEMISTRY 2015. [DOI: 10.1134/s0012500815020056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
1294
|
Coelho PG, Hollister SJ, Flanagan CL, Fernandes PR. Bioresorbable scaffolds for bone tissue engineering: Optimal design, fabrication, mechanical testing and scale-size effects analysis. Med Eng Phys 2015; 37:287-96. [DOI: 10.1016/j.medengphy.2015.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 11/25/2014] [Accepted: 01/11/2015] [Indexed: 11/29/2022]
|
1295
|
Stoppel WL, Ghezzi CE, McNamara SL, Black LD, Kaplan DL. Clinical applications of naturally derived biopolymer-based scaffolds for regenerative medicine. Ann Biomed Eng 2015; 43:657-80. [PMID: 25537688 PMCID: PMC8196399 DOI: 10.1007/s10439-014-1206-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/26/2014] [Indexed: 01/05/2023]
Abstract
Naturally derived polymeric biomaterials, such as collagens, silks, elastins, alginates, and fibrins are utilized in tissue engineering due to their biocompatibility, bioactivity, and tunable mechanical and degradation kinetics. The use of these natural biopolymers in biomedical applications is advantageous because they do not release cytotoxic degradation products, are often processed using environmentally-friendly aqueous-based methods, and their degradation rates within biological systems can be manipulated by modifying the starting formulation or processing conditions. For these reasons, many recent in vivo investigations and FDA-approval of new biomaterials for clinical use have utilized natural biopolymers as matrices for cell delivery and as scaffolds for cell-free support of native tissues. This review highlights biopolymer-based scaffolds used in clinical applications for the regeneration and repair of native tissues, with a focus on bone, skeletal muscle, peripheral nerve, cardiac muscle, and cornea substitutes.
Collapse
Affiliation(s)
- Whitney L. Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chiara E. Ghezzi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Stephanie L. McNamara
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- The Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
1296
|
Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, Giannobile WV. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 2015; 31:317-38. [PMID: 25701146 DOI: 10.1016/j.dental.2015.01.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/19/2014] [Accepted: 01/11/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The focus of this review is to summarize recent advances on regenerative technologies (scaffolding matrices, cell/gene therapy and biologic drug delivery) to promote reconstruction of tooth and dental implant-associated bone defects. METHODS An overview of scaffolds developed for application in bone regeneration is presented with an emphasis on identifying the primary criteria required for optimized scaffold design for the purpose of regenerating physiologically functional osseous tissues. Growth factors and other biologics with clinical potential for osteogenesis are examined, with a comprehensive assessment of pre-clinical and clinical studies. Potential novel improvements to current matrix-based delivery platforms for increased control of growth factor spatiotemporal release kinetics are highlighting including recent advancements in stem cell and gene therapy. RESULTS An analysis of existing scaffold materials, their strategic design for tissue regeneration, and use of growth factors for improved bone formation in oral regenerative therapies results in the identification of current limitations and required improvements to continue moving the field of bone tissue engineering forward into the clinical arena. SIGNIFICANCE Development of optimized scaffolding matrices for the predictable regeneration of structurally and physiologically functional osseous tissues is still an elusive goal. The introduction of growth factor biologics and cells has the potential to improve the biomimetic properties and regenerative potential of scaffold-based delivery platforms for next-generation patient-specific treatments with greater clinical outcome predictability.
Collapse
Affiliation(s)
- Sophia P Pilipchuk
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| | - Alexandra B Plonka
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Alberto Monje
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Andrei D Taut
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Alejandro Lanis
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Benjamin Kang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - William V Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, 1011 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
1297
|
Harrison R, Criss ZK, Feller L, Modi SP, Hardy JG, Schmidt CE, Suggs LJ, Murphy MB. Mechanical properties of α-tricalcium phosphate-based bone cements incorporating regenerative biomaterials for filling bone defects exposed to low mechanical loads. J Biomed Mater Res B Appl Biomater 2015; 104:149-57. [PMID: 25677680 DOI: 10.1002/jbm.b.33362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/30/2014] [Accepted: 12/17/2014] [Indexed: 12/25/2022]
Abstract
Calcium phosphate-based cements with enhanced regenerative potential are promising biomaterials for the healing of bone defects in procedures such as percutaneous vertebroplasty. With a view to the use of such cements for low load bearing applications such as sinus augmentation or filling extraction sites. However, the inclusion of certain species into bone cement formulations has the potential to diminish the mechanical properties of the formulations and thereby reduce their prospects for clinical translation. Consequently, we have prepared α-tricalcium phosphate (α-TCP)-based bone cements including materials that we would expect to improve their regenerative potential, and describe the mechanical properties of the resulting formulations herein. Formulations incorporated α-TCP, hydroxyapatite, biopolymer-thickened wetting agents, sutures, and platelet poor plasma. The mechanical properties of the composites were composition dependent, and optimized formulations had clinically relevant mechanical properties. Such calcium phosphate-based cements have potential as replacements for cements such as those based on polymethylmethacrylate.
Collapse
Affiliation(s)
- Reed Harrison
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712
| | - Zachary K Criss
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712
| | - Lacie Feller
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712
| | - Shan P Modi
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712
| | - John G Hardy
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, 32611-6131
| | - Christine E Schmidt
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, 32611-6131
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712
| | - Matthew B Murphy
- Department of Biomedical Engineering, The University of Texas at Austin, Texas, 78712
| |
Collapse
|
1298
|
Ishijima M, Hirota M, Park W, Honda MJ, Tsukimura N, Isokawa K, Ishigami T, Ogawa T. Osteogenic cell sheets reinforced with photofunctionalized micro-thin titanium. J Biomater Appl 2015; 29:1372-84. [PMID: 25604095 DOI: 10.1177/0885328214567693] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell sheet technology has been used to deliver cells in single-sheet form with an intact extracellular matrix for soft tissue repair and regeneration. Here, we hypothesized that titanium-reinforced cell sheets could be constructed for bone tissue engineering and regeneration. Fifty-µm-thick titanium plates containing apertures were prepared and roughened by acid etching, some of which were photofunctionalized with 12 min of UV light treatment. Cell sheets were prepared by culturing rat calvarial periosteum-derived cells on temperature-responsive culture dishes and attached to titanium plates. Titanium-reinforced osteogenic cell sheet construction was conditional on various technical and material factors: cell sheets needed to be double-sided and sandwich the titanium plate, and the titanium plates needed to be micro thin and contain apertures to allow close apposition of the two cell sheets. Critically, titanium plates needed to be UV-photofunctionalized to ensure adherence and retention of cell sheets. Single-sided cell sheets or double-sided cell sheets on as-made titanium contracted and deformed within 4 days of incubation. Titanium-reinforced cell sheets on photofunctionalized titanium were structurally stable at least up to 14 days, developed the expected osteogenic phenotypes (ALP production and mineralization), and maintained structural integrity without functional degradation. Successful construction of titanium-reinforced osteogenic cell sheets was associated with increased cell attachment, retention, and expression of vinculin, an adhesion protein by photofunctionalization. This study identified the technical and material requirements for constructing titanium-reinforced osteogenic cell sheets. Future in vivo studies are warranted to test these titanium-reinforced cell sheets as stably transplantable, mechanically durable, and shape controllable osteogenic devices.
Collapse
Affiliation(s)
- Manabu Ishijima
- Laboratory of Bone and Implant Sciences (LBIS), The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Makoto Hirota
- Laboratory of Bone and Implant Sciences (LBIS), The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Wonhee Park
- Laboratory of Bone and Implant Sciences (LBIS), The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Masaki J Honda
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | - Naoki Tsukimura
- Laboratory of Bone and Implant Sciences (LBIS), The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Keitaro Isokawa
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan
| | - Tomohiko Ishigami
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Takahiro Ogawa
- Laboratory of Bone and Implant Sciences (LBIS), The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
1299
|
Peric M, Dumic-Cule I, Grcevic D, Matijasic M, Verbanac D, Paul R, Grgurevic L, Trkulja V, Bagi CM, Vukicevic S. The rational use of animal models in the evaluation of novel bone regenerative therapies. Bone 2015; 70:73-86. [PMID: 25029375 DOI: 10.1016/j.bone.2014.07.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 12/31/2022]
Abstract
Bone has a high potential for endogenous self-repair. However, due to population aging, human diseases with impaired bone regeneration are on the rise. Current strategies to facilitate bone healing include various biomolecules, cellular therapies, biomaterials and different combinations of these. Animal models for testing novel regenerative therapies remain the gold standard in pre-clinical phases of drug discovery and development. Despite improvements in animal experimentation, excessive poorly designed animal studies with inappropriate endpoints and inaccurate conclusions are being conducted. In this review, we discuss animal models, procedures, methods and technologies used in bone repair studies with the aim to assist investigators in planning and performing scientifically sound experiments that respect the wellbeing of animals. In the process of designing an animal study for bone repair investigators should consider: skeletal characteristics of the selected animal species; a suitable animal model that mimics the intended clinical indication; an appropriate assessment plan with validated methods, markers, timing, endpoints and scoring systems; relevant dosing and statistically pre-justified sample sizes and evaluation methods; synchronization of the study with regulatory requirements and additional evaluations specific to cell-based approaches. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Mihaela Peric
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia.
| | - Ivo Dumic-Cule
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia
| | - Danka Grcevic
- University of Zagreb School of Medicine, Department of Physiology and Immunology, Salata 3, Zagreb, Croatia
| | - Mario Matijasic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia
| | - Donatella Verbanac
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia
| | - Ruth Paul
- Paul Regulatory Services Ltd, Fisher Hill Way, Cardiff CF15 8DR, UK
| | - Lovorka Grgurevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia
| | - Vladimir Trkulja
- University of Zagreb School of Medicine, Department of Pharmacology, Salata 11, Zagreb, Croatia
| | - Cedo M Bagi
- Pfizer Inc., Global Research and Development, Global Science and Technology, 100 Eastern Point Road, Groton, CT 06340, USA
| | - Slobodan Vukicevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia.
| |
Collapse
|
1300
|
Li L, Zhou G, Wang Y, Yang G, Ding S, Zhou S. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials 2015; 37:218-29. [DOI: 10.1016/j.biomaterials.2014.10.015] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/02/2014] [Indexed: 12/25/2022]
|