1301
|
Grob P, Cruse MJ, Inouye C, Peris M, Penczek PA, Tjian R, Nogales E. Cryo-electron microscopy studies of human TFIID: conformational breathing in the integration of gene regulatory cues. Structure 2006; 14:511-20. [PMID: 16531235 DOI: 10.1016/j.str.2005.11.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 11/11/2005] [Accepted: 11/16/2005] [Indexed: 11/20/2022]
Abstract
The multisubunit transcription factor TFIID is essential for directing eukaryotic promoter recognition and mediating interactions with activators/cofactors during assembly of the preinitiation complex. Despite its central role in transcription initiation and regulation, structural knowledge of the TFIID complex has so far been largely limited to electron microscopy studies of negatively stained samples. Here, we present a cryo-electron microscopy 3D reconstruction of the large endogenous human TFIID complex. The improved cryopreservation has allowed for a more detailed definition of the structural elements in the complex and for the detection, by an extensive statistical analysis of the data, of a conformational opening and closing of the cavity central to the TFIID architecture. We propose that these density rearrangements in the structure are a likely reflection of the plasticity of the interactions between TFIID and its many partner proteins.
Collapse
Affiliation(s)
- Patricia Grob
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
1302
|
van Rooyen JM, Abratt VR, Sewell BT. Three-dimensional Structure of a Type III Glutamine Synthetase by Single-particle Reconstruction. J Mol Biol 2006; 361:796-810. [PMID: 16879836 DOI: 10.1016/j.jmb.2006.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 06/05/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
GlnN, the type III glutamine synthetase (GSIII) from the medically important, anaerobic, opportunistic pathogen Bacteroides fragilis, has 82.8 kDa subunits that share only 9% sequence identity with the type I glutamine synthetases (GSI), the only family for which a structure is known. Active GlnN was found predominantly in a single peak that eluted from a calibrated gel-filtration chromatography column at a position equaivalent to 0.86(+/-0.08) MDa. Negative-stain electron microscopy enabled the identification of double-ringed particles and single hexameric rings ("pinwheels") resulting from partial staining. A 2D average of these pinwheels showed marked similarity to the corresponding structures found in preparations of GSI, except that the arms of the subunits were 40% longer. Reconstructions from particles embedded in vitreous ice showed that GlnN has a double-ringed, dodecameric structure with a 6-fold dihedral space group (D6) symmetry and dimensions of 17.0 nm parallel with the 6-fold axis and 18.3 nm parallel with the 2-fold axes. The structures, combined with a sequence alignment based on structural principles, showed how many aspects of the structure of GSI, and most notably the alpha/beta barrel fold active site were preserved. There was evidence for the presence of this structure in the reconstructed volume, thus, identifying the indentations between the pinwheel spokes as putative active sites and suggesting conservation of the overall molecular geometry found in GSI despite their low level of global homology. Furthermore, docking of GSI into the reconstruction left sufficient plausibly located unoccupied density to account for the additional residues in GSIII, thus validating the structure.
Collapse
Affiliation(s)
- Jason M van Rooyen
- Electron Microscope Unit, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | | | | |
Collapse
|
1303
|
Abstract
Electron microscope tomography produces three-dimensional reconstructions and has been used to image organelles both isolated and in situ, providing new insight into their structure and function. It is analogous to the various tomographies used in medical imaging. Compared with light microscopy, electron tomography offers an improvement in resolution of 30- to 80-fold and currently ranges from 3 to 8 nm, thus filling the gap between high-resolution structure determinations of isolated macromolecules and larger-scale studies on cells and tissues by light microscopy. Here, we provide an introduction to electron tomography and applications of the method in characterizing organelle architecture that also show its power for suggesting functional significance. Further improvements in labeling modalities, imaging tools, specimen preparation, and reconstruction algorithms promise to increase the quality and breadth of reconstructions by electron tomography and eventually to allow the mapping of the cellular proteomes onto detailed three-dimensional models of cellular structure.
Collapse
Affiliation(s)
- Terrence G Frey
- Department of Biology, San Diego State University, San Diego, California 92182-4614, USA.
| | | | | |
Collapse
|
1304
|
Abstract
Splicing is an essential step of gene expression in which introns are removed from pre-mRNA to generate mature mRNA that can be translated by the ribosome. This reaction is catalyzed by a large and dynamic macromolecular RNP complex called the spliceosome. The spliceosome is formed by the stepwise integration of five snRNPs composed of U1, U2, U4, U5, and U6 snRNAs and more than 150 proteins binding sequentially to pre-mRNA. To study the structure of this particularly dynamic RNP machine that undergoes many changes in composition and conformation, single-particle cryo-electron microscopy (cryo-EM) is currently the method of choice. In this review, we present the results of these cryo-EM studies along with some new perspectives on structural and functional aspects of splicing, and we outline the perspectives and limitations of the cryo-EM technique in obtaining structural information about macromolecular complexes, such as the spliceosome, involved in splicing.
Collapse
Affiliation(s)
- Holger Stark
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | | |
Collapse
|
1305
|
Clarey MG, Erzberger JP, Grob P, Leschziner AE, Berger JM, Nogales E, Botchan M. Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex. Nat Struct Mol Biol 2006; 13:684-90. [PMID: 16829958 DOI: 10.1038/nsmb1121] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 06/21/2006] [Indexed: 11/09/2022]
Abstract
Structural details of initiator proteins for DNA replication have provided clues to the molecular events in this process. EM reconstructions of the Drosophila melanogaster origin recognition complex (ORC) reveal nucleotide-dependent conformational changes in the core of the complex. All five AAA+ domains in ORC contain a conserved structural element that, in DnaA, promotes formation of a right-handed helix, indicating that helical AAA+ substructures may be a feature of all initiators. A DnaA helical pentamer can be docked into ORC, and the location of Orc5 uniquely positions this core. The results suggest that ATP-dependent conformational changes observed in ORC derive from reorientation of the AAA+ domains. By analogy to the DNA-wrapping activity of DnaA, we posit that ORC together with Cdc6 prepares origin DNA for helicase loading through mechanisms related to the established pathway of prokaryotes.
Collapse
Affiliation(s)
- Megan G Clarey
- Division of Biochemistry & Molecular Biology, Molecular & Cell Biology Department, 1 Barker Hall, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
1306
|
Tang L, Gilcrease EB, Casjens SR, Johnson JE. Highly discriminatory binding of capsid-cementing proteins in bacteriophage L. Structure 2006; 14:837-45. [PMID: 16698545 DOI: 10.1016/j.str.2006.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 12/31/2022]
Abstract
Cementing proteins that bind to the virion surface have been described in double-stranded DNA viruses such as herpesvirus, adenovirus, and numerous bacteriophages. The three-dimensional structure of bacteriophage L determined by electron cryo-microscopy reveals binding modes of two cementing proteins-one, called Dec, encoded by phage gene orf134 and the other by an as yet unidentified gene. These two proteins form homotrimers and bind at the quasi 3-fold axes nearest the icosahedral 2-fold axes and at the icosahedral 3-fold vertices, respectively. They do not bind at the quasi 3-fold axes near the icosahedral 5-fold vertices. These observations indicate precise recognition of the two cementing proteins at a subset of the quasi equivalent sites on the phage capsid. Sequence analysis shows striking similarity between the C-terminal portion of phage L Dec protein and five regions in the long tail fiber of a T4-like phage, suggesting functional parallelism between them.
Collapse
Affiliation(s)
- Liang Tang
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
1307
|
Pullan L, Mullapudi S, Huang Z, Baldwin PR, Chin C, Sun W, Tsujimoto S, Kolodziej SJ, Stoops JK, Lee JC, Waxham MN, Bean AJ, Penczek PA. The endosome-associated protein Hrs is hexameric and controls cargo sorting as a "master molecule". Structure 2006; 14:661-71. [PMID: 16615908 DOI: 10.1016/j.str.2006.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/22/2005] [Accepted: 01/19/2006] [Indexed: 11/20/2022]
Abstract
The structure of the endosomal-associated protein, Hrs, has been determined with cryo-electron microscopy. Hrs interacts with a number of proteins, including SNAP-25 and STAM1, forming a complex that binds ubiquitin moieties. Analytical ultracentrifugation studies revealed that Hrs exists as a hexamer. The symmetry and the structure of the hexameric form of Hrs were determined with the single-particle reconstruction method. Hrs comprises three antiparallel dimers with a central core and distinct caps on either end. Crystal structures of VHS and FYVE domains fit into the Hrs end caps in the EM density map. Thus, the location of domains that interact with the endosomal membrane, the VHS, FYVE, and C-terminal domains, facilitates the anchorage of Hrs to the membrane, initiating the functional processes of Hrs on the endosome. Based on our model, the Hrs hexamer interacts with the membrane and acts as a "master molecule" that presents multiple sites for protein binding.
Collapse
Affiliation(s)
- Lee Pullan
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1308
|
Wang YA, Yu X, Yip C, Strynadka NC, Egelman EH. Structural Polymorphism in Bacterial EspA Filaments Revealed by Cryo-EM and an Improved Approach to Helical Reconstruction. Structure 2006; 14:1189-96. [PMID: 16843900 DOI: 10.1016/j.str.2006.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/19/2006] [Accepted: 05/19/2006] [Indexed: 01/18/2023]
Abstract
The traditional Fourier-Bessel approach to three-dimensional reconstruction from electron microscopic (EM) images of helical polymers involves averaging over filaments, assuming a homogeneous structure and symmetry. We have used a real-space reconstruction approach to study the EspA filaments formed by enteropathogenic E. coli. In negative stain, the symmetry of these filaments is ambiguous, and we suggest that such ambiguities may be more prevalent than realized. Using cryo-EM of frozen-hydrated filaments, we find that these filaments have a fixed twist with 5.6 subunits per turn but an axial rise per subunit that varies from about 3.6 A to 5.6 A. Reconstructions at approximately 15 A resolution show a switching between the more compressed and extended filaments in the packing of putative alpha helices around the hollow lumen. Outside of a crystal, where there is nothing to maintain long-range order, the structural polymorphism in helical polymers may be much greater than has been assumed.
Collapse
Affiliation(s)
- Ying A Wang
- Department of Biochemistry and Molecular Genetics, Box 800733, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
1309
|
Renault L, Chou HT, Chiu PL, Hill RM, Zeng X, Gipson B, Zhang ZY, Cheng A, Unger V, Stahlberg H. Milestones in electron crystallography. J Comput Aided Mol Des 2006; 20:519-27. [PMID: 17103018 PMCID: PMC2194810 DOI: 10.1007/s10822-006-9075-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 08/29/2006] [Indexed: 10/23/2022]
Abstract
Electron crystallography determines the structure of membrane embedded proteins in the two-dimensionally crystallized state by cryo-transmission electron microscopy imaging and computer structure reconstruction. Milestones on the path to the structure are high-level expression, purification of functional protein, reconstitution into two-dimensional lipid membrane crystals, high-resolution imaging, and structure determination by computer image processing. Here we review the current state of these methods. We also created an Internet information exchange platform for electron crystallography, where guidelines for imaging and data processing method are maintained. The server (http://2dx.org) provides the electron crystallography community with a central information exchange platform, which is structured in blog and Wiki form, allowing visitors to add comments or discussions. It currently offers a detailed step-by-step introduction to image processing with the MRC software program. The server is also a repository for the 2dx software package, a user-friendly image processing system for 2D membrane protein crystals.
Collapse
Affiliation(s)
- Ludovic Renault
- Molecular and Cellular Biology, College of Biological Sciences, University of California at Davis, Briggs Hall, 1 Shields Ave., Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1310
|
Jiang M, Ji Q, McEwen BF. Automated extraction of fine features of kinetochore microtubules and plus-ends from electron tomography volume. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2006; 15:2035-48. [PMID: 16830922 DOI: 10.1109/tip.2006.877054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Kinetochore microtubules (KMTs) and the associated plus-ends have been areas of intense investigation in both cell biology and molecular medicine. Though electron tomography opens up new possibilities in understanding their function by imaging their high-resolution structures, the interpretation of the acquired data remains an obstacle because of the complex and cluttered cellular environment. As a result, practical segmentation of the electron tomography data has been dominated by manual operation, which is time consuming and subjective. In this paper, we propose a model-based automated approach to extracting KMTs and the associated plus-ends with a coarse-to-fine scale scheme consisting of volume preprocessing, microtubule segmentation and plus-end tracing. In volume preprocessing, we first apply an anisotropic invariant wavelet transform and a tube-enhancing filter to enhance the microtubules at coarse level for localization. This is followed with a surface-enhancing filter to accentuate the fine microtubule boundary features. The microtubule body is then segmented using a modified active shape model method. Starting from the segmented microtubule body, the plus-ends are extracted with a probabilistic tracing method improved with rectangular window based feature detection and the integration of multiple cues. Experimental results demonstrate that our automated method produces results comparable to manual segmentation but using only a fraction of the manual segmentation time.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Electrical, Computer and System Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | |
Collapse
|
1311
|
Li W, Sengupta J, Rath BK, Frank J. Functional conformations of the L11-ribosomal RNA complex revealed by correlative analysis of cryo-EM and molecular dynamics simulations. RNA (NEW YORK, N.Y.) 2006; 12:1240-53. [PMID: 16682558 PMCID: PMC1484425 DOI: 10.1261/rna.2294806] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The interaction between the GTPase-associated center (GAC) and the aminoacyl-tRNA.EF-Tu.GTP ternary complex is of crucial importance in the dynamic process of decoding and tRNA accommodation. The GAC includes protein L11 and helices 43-44 of 23S rRNA (referred to as L11-rRNA complex). In this study, a method of fitting based on a systematic comparison between cryo-electron microscopy (cryo-EM) density maps and structures obtained by molecular dynamics simulations has been developed. This method has led to the finding of atomic models of the GAC that fit the EM maps with much improved cross-correlation coefficients compared with the fitting of the X-ray structure. Two types of conformations of the L11-rRNA complex, produced by the simulations, match the cryo-EM maps representing the states either bound or unbound to the aa-tRNA.EF-Tu.GTP ternary complex. In the bound state, the N-terminal domain of L11 is extended from its position in the crystal structure, and the base of nucleotide A1067 in the 23S ribosomal RNA is flipped out. This position of the base allows the RNA to reach the elbow region of the aminoacyl-tRNA when the latter is bound in the A/T site. In the unbound state, the N-terminal domain of L11 is rotated only slightly, and A1067 of the RNA is flipped back into the less-solvent-exposed position, as in the crystal structure. By matching our experimental cryo-EM maps with much improved cross-correlation coefficients compared to the crystal structure, these two conformations prove to be strong candidates of the two functional states.
Collapse
Affiliation(s)
- Wen Li
- Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
1312
|
Slagter-Jäger JG, Allen GS, Smith D, Hahn IA, Frank J, Belfort M. Visualization of a group II intron in the 23S rRNA of a stable ribosome. Proc Natl Acad Sci U S A 2006; 103:9838-43. [PMID: 16785426 PMCID: PMC1502540 DOI: 10.1073/pnas.0603956103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thousands of introns have been localized to rRNA genes throughout the three domains of life. The consequences of the presence of either a spliced or an unspliced intron in a rRNA for ribosome assembly and packaging are largely unknown. To help address these questions, and to begin an intron imaging study, we selected a member of the self-splicing group II intron family, which is hypothesized to be the progenitor not only of spliceosomal introns but also of non-LTR retrotransposons. We cloned the self-splicing group II Ll.LtrB intron from Lactococcus lactis into L. lactis 23S rRNA. The 2,492-nt Ll.LtrB intron comprises a catalytic core and an ORF, which encodes a protein, LtrA. LtrA forms a ribonucleoprotein (RNP) complex with the intron RNA to mediate splicing and mobility. The chimeric 23S-intron RNA was shown to be splicing proficient in its native host in the presence of LtrA. Furthermore, a low-resolution cryo-EM reconstruction of the L. lactis ribosome fused to the intron-LtrA RNP of a splicing-defective Ll.LtrB intron was obtained. The image revealed the intron as a large, well defined structure. The activity and structural integrity of the intron indicate not only that it can coexist with the ribosome but also that its presence permits the assembly of a stable ribosome. Additionally, we view our results as a proof of principle that ribosome chimeras may be generally useful for studying a wide variety of structured RNAs and RNP complexes that are not amenable to NMR, crystallographic, or single-particle cryo-EM methodologies.
Collapse
Affiliation(s)
- Jacoba G. Slagter-Jäger
- *Center for Medical Science, Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208; and
| | - Gregory S. Allen
- Health Research, Inc. at the Wadsworth Center, Howard Hughes Medical Institute, Empire State Plaza, Albany, NY 12201
| | - Dorie Smith
- *Center for Medical Science, Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208; and
| | - Ingrid A. Hahn
- Health Research, Inc. at the Wadsworth Center, Howard Hughes Medical Institute, Empire State Plaza, Albany, NY 12201
| | - Joachim Frank
- Health Research, Inc. at the Wadsworth Center, Howard Hughes Medical Institute, Empire State Plaza, Albany, NY 12201
| | - Marlene Belfort
- *Center for Medical Science, Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208; and
| |
Collapse
|
1313
|
Baldwin PR, Penczek PA. The Transform Class in SPARX and EMAN2. J Struct Biol 2006; 157:250-61. [PMID: 16861004 DOI: 10.1016/j.jsb.2006.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/10/2006] [Accepted: 06/15/2006] [Indexed: 11/18/2022]
Abstract
We describe the Transform Class in SPARX/EMAN2 that is designed to handle rigid body motions of two- and three-dimensional data. We describe relationships between Eulerian angles conventions used in different electron microscopy software packages, as well as give examples of the simple scripts that execute conversions of Eulerian angles between these packages and handle other related tasks. The Transform Class is also responsible for generating point-group symmetry operations as well as generating quasi-evenly distributed points on the sphere (which is used in creating reference projections for structure refinement procedures in single particle reconstruction). We discuss how this is carried out internally in the code, and how symmetry operations are accessed through the SPARX interactive interface. We present a comprehensive description of symmetry operations for all point-group symmetries, as implemented in the class. Finally, we provide solutions to a number of typical problems associated with rotation operations-alignment of markers for dual-axis tomography, delineations of asymmetric subunits, quasi-uniform distribution of projection directions and such, and provide examples how these problems are solved using operations in the Transform Class.
Collapse
Affiliation(s)
- P R Baldwin
- The University of Texas, Houston Medical Center, Department of Biochemistry and Molecular Biology, Houston, TX 77030, USA
| | | |
Collapse
|
1314
|
Mu XQ, Bullitt E. Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Proc Natl Acad Sci U S A 2006; 103:9861-6. [PMID: 16782819 PMCID: PMC1502544 DOI: 10.1073/pnas.0509620103] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-resolution structures of macromolecular complexes offer unparalleled insight into the workings of biological systems and hence the interplay of these systems in health and disease. We have adopted a multifaceted approach to understanding the pathogenically important structure of P-pili, the class I adhesion pili from pyelonephritic Escherichia coli. Our approach combines electron cryomicroscopy, site-directed mutagenesis, homology modeling, and energy calculations, resulting in a high-resolution model of PapA, the major structural element of these pili. Fitting of the modeled PapA subunit into the electron cryomicroscopy data provides a detailed view of these pilins within the supramolecular architecture of the pilus filament. A structural hinge in the N-terminal region of the subunit is located at the site of a newly resolved electron density that protrudes from the P-pilus surface. The structural flexibility provided by this hinge is necessary for assembly of P-pili, illustrating one solution to construction of large macromolecular complexes from small repeating units. These data support our hypothesis that domain-swapped pilin subunits transit the outer cell membrane vertically and rotate about the hinge for final positioning into the pilus filament. Our data confirm and supply a structural basis for much previous genetic, biochemical, and structural data. This model of the P-pilus filament provides an insight into the mechanism of assembly of a macromolecular complex essential for initiation of kidney infection by these bacteria.
Collapse
Affiliation(s)
- Xiang-Qi Mu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
- *To whom correspondence should be addressed at:
Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, W302, Boston, MA 02118-2526. E-mail:
| |
Collapse
|
1315
|
Pomfret AJ, Rice WJ, Stokes DL. Application of the iterative helical real-space reconstruction method to large membranous tubular crystals of P-type ATPases. J Struct Biol 2006; 157:106-16. [PMID: 16879984 PMCID: PMC4040983 DOI: 10.1016/j.jsb.2006.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
Since the development of three-dimensional helical reconstruction methods in the 1960's, advances in Fourier-Bessel methods have facilitated structure determination to near-atomic resolution. A recently developed iterative helical real-space reconstruction (IHRSR) method provides an alternative that uses single-particle analysis in conjunction with the imposition of helical symmetry. In this work, we have adapted the IHRSR algorithm to work with frozen-hydrated tubular crystals of P-type ATPases. In particular, we have implemented layer-line filtering to improve the signal-to-noise ratio, Wiener-filtering to compensate for the contrast transfer function, solvent flattening to improve reference reconstructions, out-of-plane tilt compensation to deal with flexibility in three dimensions, systematic calculation of Fourier shell correlations to track the progress of the refinement, and tools to control parameters as the refinement progresses. We have tested this procedure on datasets from Na(+)/K(+)-ATPase, rabbit skeletal Ca(2+)-ATPase and scallop Ca(2+)-ATPase in order to evaluate the potential for sub-nanometer resolution as well as the robustness in the presence of disorder. We found that Fourier-Bessel methods perform better for well-ordered samples of skeletal Ca(2+)-ATPase and Na(+)/K(+)-ATPase, although improvements to IHRSR are discussed that should reduce this disparity. On the other hand, IHRSR was very effective for scallop Ca(2+)-ATPase, which was too disordered to analyze by Fourier-Bessel methods.
Collapse
Affiliation(s)
- Andrew J Pomfret
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
1316
|
Yang C, Penczek PA, Leith A, Asturias FJ, Ng EG, Glaeser RM, Frank J. The parallelization of SPIDER on distributed-memory computers using MPI. J Struct Biol 2006; 157:240-9. [PMID: 16859923 DOI: 10.1016/j.jsb.2006.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
We describe the strategies and implementation details we employed to parallelize the SPIDER software package on distributed-memory parallel computers using the message passing interface (MPI). The MPI-enabled SPIDER preserves the interactive command line and batch interface used in the sequential version of SPIDER, thus does not require users to modify their existing batch programs. We show the excellent performance of the MPI-enabled SPIDER when it is used to perform multi-reference alignment and 3-D reconstruction operations on a number of different computing platforms. We point out some performance issues when the MPI-enabled SPIDER is used for a complete 3-D projection matching refinement run, and propose several ways to further improve the parallel performance of SPIDER on distributed-memory machines.
Collapse
Affiliation(s)
- Chao Yang
- Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
1317
|
Stroupe ME, Tange TØ, Thomas DR, Moore MJ, Grigorieff N. The three-dimensional arcitecture of the EJC core. J Mol Biol 2006; 360:743-9. [PMID: 16797590 DOI: 10.1016/j.jmb.2006.05.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/12/2006] [Accepted: 05/19/2006] [Indexed: 11/29/2022]
Abstract
The exon junction complex (EJC) is a macromolecular complex deposited at splice junctions on mRNAs as a consequence of splicing. At the core of the EJC are four proteins: eIF4AIII, a member of the DExH/D-box family of NTP-dependent RNA binding proteins, Y14, Magoh, and MLN51. These proteins form a stable heterotetramer that remains bound to the mRNA throughout many different cellular environments. We have determined the three-dimensional (3D) structure of this EJC core using negative-stain random-conical tilt electron microscopy. This structure represents the first structure of a DExH/D-box protein in complex with its binding partners. The EJC core is a four-lobed complex with a central channel and dimensions consistent with its known RNA footprint of about ten nucleotides. Using known X-ray crystallographic structures and a model of three of the four components, we propose a model for complex assembly on RNA and explain how Y14:Magoh may influence eIF4AIII's RNA binding.
Collapse
Affiliation(s)
- M Elizabeth Stroupe
- Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | |
Collapse
|
1318
|
Chavan M, Chen Z, Li G, Schindelin H, Lennarz WJ, Li H. Dimeric organization of the yeast oligosaccharyl transferase complex. Proc Natl Acad Sci U S A 2006; 103:8947-52. [PMID: 16754853 PMCID: PMC1482546 DOI: 10.1073/pnas.0603262103] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzyme complex oligosaccharyl transferase (OT) catalyzes N-glycosylation in the lumen of the endoplasmic reticulum. The yeast OT complex is composed of nine subunits, all of which are transmembrane proteins. Several lines of evidence, including our previous split-ubiquitin studies, have suggested an oligomeric organization of the OT complex, but the exact oligomeric nature has been unclear. By FLAG epitope tagging the Ost4p subunit of the OT complex, we purified the OT enzyme complex by using the nondenaturing detergent digitonin and a one-step immunoaffinity technique. The digitonin-solubilized OT complex was catalytically active, and all nine subunits were present in the enzyme complex. The purified OT complex had an apparent mass of approximately 500 kDa, suggesting a dimeric configuration, which was confirmed by biochemical studies. EM showed homogenous individual particles and revealed a dimeric structure of the OT complexes that was consistent with our biochemical studies. A 3D structure of the dimeric OT complex at 25-A resolution was reconstructed from EM images. We suggest that the dimeric structure of OT might be required for effective association with the translocon dimer and for its allosteric regulation during cotranslational glycosylation.
Collapse
Affiliation(s)
- Manasi Chavan
- *Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
| | - Zhiqiang Chen
- Rudolf Virchow Center for Experimental Biomedicine and Institute of Structural Biology, University of Würzburg, 97078 Würzburg, Germany
| | - Guangtao Li
- *Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
| | - Hermann Schindelin
- *Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
- Rudolf Virchow Center for Experimental Biomedicine and Institute of Structural Biology, University of Würzburg, 97078 Würzburg, Germany
| | - William J. Lennarz
- *Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794
- To whom correspondence may be addressed. E-mail:
or
| | - Huilin Li
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
1319
|
Galkin VE, Orlova A, Fattoum A, Walsh MP, Egelman EH. The CH-domain of calponin does not determine the modes of calponin binding to F-actin. J Mol Biol 2006; 359:478-85. [PMID: 16626733 DOI: 10.1016/j.jmb.2006.03.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Revised: 03/15/2006] [Accepted: 03/20/2006] [Indexed: 11/30/2022]
Abstract
Many actin-binding proteins have been observed to have a modular architecture. One of the most abundant modules is the calponin-homology (CH) domain, found as tandem repeats in proteins that cross-link actin filaments (such as fimbrin, spectrin and alpha-actinin) or link the actin cytoskeleton to intermediate filaments (such as plectin). In proteins such as the eponymous calponin, IQGAP1, and Scp1, a single CH-domain exists, but there has been some controversy over whether this domain binds to actin filaments. A previous three-dimensional reconstruction of the calponin-F-actin complex has led to the conclusion that the visualized portion of calponin bound to actin belongs to its amino-terminal homology (CH) domain. We show, using a calponin fragment lacking the CH-domain, that this domain is not bound to F-actin, and cannot be positioning calponin on F-actin as hypothesized. Further, using classification methods, we show a multiplicity in cooperative modes of binding of calponin to F-actin, similar to what has been observed for other actin-binding proteins such as tropomyosin and cofilin. Our results suggest that the form and function of the structurally conserved CH-domain found in many other actin-binding proteins have diverged. This has broad implications for inferring function from the presence of structurally conserved domains.
Collapse
Affiliation(s)
- Vitold E Galkin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | | | | | | | | |
Collapse
|
1320
|
Grigorieff N. FREALIGN: high-resolution refinement of single particle structures. J Struct Biol 2006; 157:117-25. [PMID: 16828314 DOI: 10.1016/j.jsb.2006.05.004] [Citation(s) in RCA: 382] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/14/2006] [Accepted: 05/16/2006] [Indexed: 11/23/2022]
Abstract
The refinement of three-dimensional reconstructions and correction for the contrast transfer function of the microscope are important steps in the determination of macromolecular structures by single particle electron microscopy. The algorithms implemented in the computer program FREALIGN are optimized to perform these tasks efficiently. A general overview and details on how to use FREALIGN are provided. The program is free and available for download on the author's web page.
Collapse
Affiliation(s)
- Nikolaus Grigorieff
- Howard Hughes Medical Institute, Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
1321
|
Fokine A, Battisti AJ, Kostyuchenko VA, Black LW, Rossmann MG. Cryo-EM structure of a bacteriophage T4 gp24 bypass mutant: The evolution of pentameric vertex proteins in icosahedral viruses. J Struct Biol 2006; 154:255-9. [PMID: 16530424 DOI: 10.1016/j.jsb.2006.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 11/26/2022]
Abstract
Many large viral capsids require special pentameric proteins at their fivefold vertices. Nevertheless, deletion of the special vertex protein gene product 24 (gp24) in bacteriophage T4 can be compensated by mutations in the homologous major capsid protein gp23. The structure of such a mutant virus, determined by cryo-electron microscopy to 26 angstroms, shows that the gp24 pentamers are replaced by mutant major capsid protein (gp23) pentamers at the vertices, thus re-creating a viral capsid prior to the evolution of specialized major capsid proteins and vertex proteins. The mutant gp23* pentamer is structurally similar to the wild-type gp24* pentamer but the insertion domain is slightly more distant from the gp23* pentamer center. There are additional SOC molecules around the gp23* pentamers in the mutant virus that were not present around the gp24* pentamers in the wild-type virus.
Collapse
Affiliation(s)
- Andrei Fokine
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | |
Collapse
|
1322
|
Müller SA, Pozidis C, Stone R, Meesters C, Chami M, Engel A, Economou A, Stahlberg H. Double hexameric ring assembly of the type III protein translocase ATPase HrcN. Mol Microbiol 2006; 61:119-25. [PMID: 16824099 DOI: 10.1111/j.1365-2958.2006.05219.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The specialized type III secretion (T3S) apparatus of pathogenic and symbiotic Gram-negative bacteria comprises a complex transmembrane organelle and an ATPase homologous to the F1-ATPase beta subunit. The T3S ATPase HrcN of Pseudomonas syringae associates with the inner membrane, and its ATP hydrolytic activity is stimulated by dodecamerization. The structure of dodecameric HrcN (HrcN12) determined to 1.6 nm by cryo-electron microscopy is presented. HrcN12 comprises two hexameric rings that are probably stacked face-to-face by the association of their C-terminal domains. It is 11.5 +/- 1.0 nm in diameter, 12.0 +/- 2.0 nm high and has a 2.0-3.8 nm wide inner channel. This structure is compared to a homology model based on the structure of the F1-beta-ATPase. A model for its incorporation within the T3S apparatus is presented.
Collapse
Affiliation(s)
- Shirley A Müller
- M. E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
1323
|
De Carlo S, Chen B, Hoover TR, Kondrashkina E, Nogales E, Nixon BT. The structural basis for regulated assembly and function of the transcriptional activator NtrC. Genes Dev 2006; 20:1485-95. [PMID: 16751184 PMCID: PMC1475761 DOI: 10.1101/gad.1418306] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 04/04/2006] [Indexed: 11/25/2022]
Abstract
In two-component signal transduction, an input triggers phosphorylation of receiver domains that regulate the status of output modules. One such module is the AAA+ ATPase domain in bacterial enhancer-binding proteins that remodel the sigma(54) form of RNA polymerase. We report X-ray solution scattering and electron microscopy structures of the activated, full-length nitrogen-regulatory protein C (NtrC) showing a novel mechanism for regulation of AAA+ ATPase assembly via the juxtaposition of the receiver domains and ATPase ring. Accompanying the hydrolysis cycle that is required for transcriptional activation, we observed major order-disorder changes in the GAFTGA loops involved in sigma(54) binding, as well as in the DNA-binding domains.
Collapse
Affiliation(s)
- Sacha De Carlo
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
1324
|
Radermacher M, Ruiz T, Clason T, Benjamin S, Brandt U, Zickermann V. The three-dimensional structure of complex I from Yarrowia lipolytica: a highly dynamic enzyme. J Struct Biol 2006; 154:269-79. [PMID: 16621601 PMCID: PMC1764498 DOI: 10.1016/j.jsb.2006.02.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 02/24/2006] [Accepted: 02/24/2006] [Indexed: 10/24/2022]
Abstract
The structure of complex I from Yarrowia lipolytica was determined by three-dimensional electron microscopy. A random conical data set was collected from deep stain embedded particles. More than 14000 image pairs were analyzed. Through extensive classification combined with three-dimensional reconstruction, it was possible for the first time to show a much more detailed substructure of the complex. The peripheral arm is subdivided in at least six domains. The membrane arm shows two major protrusions on its matrix facing side and exhibits a channel like feature on the side facing the cytoplasm. Structures resembling a tether connecting the subunits near the catalytic center with the protrusions of the membrane arm provide a second connection between matrix and membrane domain.
Collapse
Affiliation(s)
- M Radermacher
- University of Vermont, College of Medicine, Department of Molecular Physiology and Biophysics, Burlington, VT, USA.
| | | | | | | | | | | |
Collapse
|
1325
|
Crampton DJ, Ohi M, Qimron U, Walz T, Richardson CC. Oligomeric states of bacteriophage T7 gene 4 primase/helicase. J Mol Biol 2006; 360:667-77. [PMID: 16777142 DOI: 10.1016/j.jmb.2006.05.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/08/2006] [Accepted: 05/15/2006] [Indexed: 11/27/2022]
Abstract
Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative stain electron microscopy or electrophoretic analysis using polyacrylamide gels. We find that hexamers predominate in the presence of either dTTP or beta,gamma-methylene dTTP whereas the ratio between hexamers and heptamers is nearly the converse in the presence of dTDP. When formed, heptamers are unable to efficiently bind either single-stranded DNA or double-stranded DNA. We postulate that a switch between heptamer to hexamer may provide a ring-opening mechanism for the single-stranded DNA binding pathway. Accordingly, we observe that in the presence of both nucleoside di- and triphosphates the gene 4 protein exists as a hexamer when bound to single-stranded DNA and as a mixture of heptamer and hexamer when not bound to single-stranded DNA. Furthermore, altering regions of the gene 4 protein postulated to be conformational switches for dTTP-dependent helicase activity leads to modulation of the heptamer to hexamer ratio.
Collapse
Affiliation(s)
- Donald J Crampton
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
1326
|
Kortekaas J, Müller SA, Ringler P, Gregorini M, Weynants VE, Rutten L, Bos MP, Tommassen J. Immunogenicity and structural characterisation of an in vitro folded meningococcal siderophore receptor (FrpB, FetA). Microbes Infect 2006; 8:2145-53. [PMID: 16797200 DOI: 10.1016/j.micinf.2006.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 11/19/2022]
Abstract
The iron-limitation-inducible protein FrpB of Neisseria meningitidis is an outer-membrane-localized siderophore receptor. Because of its abundance and its capacity to elicit bactericidal antibodies, it is considered a vaccine candidate. Bactericidal antibodies against FrpB are, however, type-specific. Hence, an FrpB-based vaccine should comprise several FrpB variants to be capable of providing broad protection. To facilitate the development of a meningococcal subunit vaccine, we have established a procedure to obtain large quantities of the protein in a native-like conformation. The protein was expressed without its signal sequence in Escherichia coli, where it accumulated in inclusion bodies. After in vitro folding, the protein was biochemically, biophysically and biologically characterised. Our results show that in vitro folded FrpB assembles into oligomers, presumably dimers, and that it induces high levels of bactericidal antibodies in laboratory animals.
Collapse
Affiliation(s)
- Jeroen Kortekaas
- Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
1327
|
Woolford D, Ericksson G, Rothnagel R, Muller D, Landsberg MJ, Pantelic RS, McDowall A, Pailthorpe B, Young PR, Hankamer B, Banks J. SwarmPS: rapid, semi-automated single particle selection software. J Struct Biol 2006; 157:174-88. [PMID: 16774837 DOI: 10.1016/j.jsb.2006.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/23/2006] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
Single particle analysis (SPA) coupled with high-resolution electron cryo-microscopy is emerging as a powerful technique for the structure determination of membrane protein complexes and soluble macromolecular assemblies. Current estimates suggest that approximately 10(4)-10(5) particle projections are required to attain a 3A resolution 3D reconstruction (symmetry dependent). Selecting this number of molecular projections differing in size, shape and symmetry is a rate-limiting step for the automation of 3D image reconstruction. Here, we present Swarm(PS), a feature rich GUI based software package to manage large scale, semi-automated particle picking projects. The software provides cross-correlation and edge-detection algorithms. Algorithm-specific parameters are transparently and automatically determined through user interaction with the image, rather than by trial and error. Other features include multiple image handling (approximately 10(2)), local and global particle selection options, interactive image freezing, automatic particle centering, and full manual override to correct false positives and negatives. Swarm(PS) is user friendly, flexible, extensible, fast, and capable of exporting boxed out projection images, or particle coordinates, compatible with downstream image processing suites.
Collapse
Affiliation(s)
- David Woolford
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1328
|
Eifler N, Vetsch M, Gregorini M, Ringler P, Chami M, Philippsen A, Fritz A, Müller SA, Glockshuber R, Engel A, Grauschopf U. Cytotoxin ClyA from Escherichia coli assembles to a 13-meric pore independent of its redox-state. EMBO J 2006; 25:2652-61. [PMID: 16688219 PMCID: PMC1478193 DOI: 10.1038/sj.emboj.7601130] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 04/13/2006] [Indexed: 11/09/2022] Open
Abstract
ClyA is a pore-forming toxin from virulent Escherichia coli and Salmonella enterica strains. Here, we show that the intrinsic hemolytic activity of ClyA is independent of its redox state, and that the assembly of both reduced and oxidized ClyA to the ring-shaped oligomer is triggered by contact with lipid or detergent. A rate-limiting conformational transition in membrane-bound ClyA monomers precedes their assembly to the functional pore. We obtained a three-dimensional model of the detergent-induced oligomeric complex at 12 A resolution by combining cryo- and negative stain electron microscopy with mass measurements by scanning transmission electron microscopy. The model reveals that 13 ClyA monomers assemble into a cylinder with a hydrophobic cap region, which may be critical for membrane insertion.
Collapse
Affiliation(s)
- Nora Eifler
- Maurice E Müller Institute for Microscopy, Biozentrum, University of Basel, Basel, Switzerland
| | - Michael Vetsch
- Institute for Molecular Biology & Biophysics, ETH Zürich, Zürich, Switzerland
| | - Marco Gregorini
- Maurice E Müller Institute for Microscopy, Biozentrum, University of Basel, Basel, Switzerland
| | - Philippe Ringler
- Maurice E Müller Institute for Microscopy, Biozentrum, University of Basel, Basel, Switzerland
| | - Mohamed Chami
- Maurice E Müller Institute for Microscopy, Biozentrum, University of Basel, Basel, Switzerland
| | - Ansgar Philippsen
- Maurice E Müller Institute for Microscopy, Biozentrum, University of Basel, Basel, Switzerland
| | - Andrea Fritz
- Institute for Molecular Biology & Biophysics, ETH Zürich, Zürich, Switzerland
| | - Shirley A Müller
- Maurice E Müller Institute for Microscopy, Biozentrum, University of Basel, Basel, Switzerland
| | - Rudi Glockshuber
- Institute for Molecular Biology & Biophysics, ETH Zürich, Zürich, Switzerland
| | - Andreas Engel
- Maurice E Müller Institute for Microscopy, Biozentrum, University of Basel, Basel, Switzerland
- Maurice E Müller Institute for Microscopy, Bonzentrum, University of Basel, 4056 Basel, Switzerland. Tel.: +41 61 267 22 61; Fax: +41 61 267 21 09; E-mail:
| | - Ulla Grauschopf
- Institute for Molecular Biology & Biophysics, ETH Zürich, Zürich, Switzerland
- Institute for Molecular Biology & Biophysics, ETH Zürich, 8093 Zürich, Switzerland. Tel.: +41 44 633 24 82; Fax: +41 44 633 10 36; E-mail:
| |
Collapse
|
1329
|
Namy O, Moran SJ, Stuart DI, Gilbert RJC, Brierley I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 2006; 441:244-7. [PMID: 16688178 PMCID: PMC7094908 DOI: 10.1038/nature04735] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/20/2006] [Indexed: 11/09/2022]
Abstract
The triplet-based genetic code requires that translating ribosomes maintain the reading frame of a messenger RNA faithfully to ensure correct protein synthesis. However, in programmed -1 ribosomal frameshifting, a specific subversion of frame maintenance takes place, wherein the ribosome is forced to shift one nucleotide backwards into an overlapping reading frame and to translate an entirely new sequence of amino acids. This process is indispensable in the replication of numerous viral pathogens, including HIV and the coronavirus associated with severe acute respiratory syndrome, and is also exploited in the expression of several cellular genes. Frameshifting is promoted by an mRNA signal composed of two essential elements: a heptanucleotide 'slippery' sequence and an adjacent mRNA secondary structure, most often an mRNA pseudoknot. How these components operate together to manipulate the ribosome is unknown. Here we describe the observation of a ribosome-mRNA pseudoknot complex that is stalled in the process of -1 frameshifting. Cryoelectron microscopic imaging of purified mammalian 80S ribosomes from rabbit reticulocytes paused at a coronavirus pseudoknot reveals an intermediate of the frameshifting process. From this it can be seen how the pseudoknot interacts with the ribosome to block the mRNA entrance channel, compromising the translocation process and leading to a spring-like deformation of the P-site transfer RNA. In addition, we identify movements of the likely eukaryotic ribosomal helicase and confirm a direct interaction between the translocase eEF2 and the P-site tRNA. Together, the structural changes provide a mechanical explanation of how the pseudoknot manipulates the ribosome into a different reading frame.
Collapse
Affiliation(s)
- Olivier Namy
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK
- Present Address: Institut de Génétique et Microbiologie, UMR8621, Université Paris-Sud, 91405 Orsay, France
| | - Stephen J. Moran
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford, Roosevelt Drive, OX3 7BN UK
| | - David I. Stuart
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford, Roosevelt Drive, OX3 7BN UK
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QH Oxford, UK
| | - Robert J. C. Gilbert
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford, Roosevelt Drive, OX3 7BN UK
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, OX1 3QH Oxford, UK
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, UK
| |
Collapse
|
1330
|
Al-Khayat HA, Morris EP, Kensler RW, Squire JM. 3D structure of relaxed fish muscle myosin filaments by single particle analysis. J Struct Biol 2006; 155:202-17. [PMID: 16731006 DOI: 10.1016/j.jsb.2006.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 01/16/2006] [Indexed: 11/30/2022]
Abstract
To understand the structural changes involved in the force-producing myosin cross-bridge cycle in vertebrate muscle it is necessary to know the arrangement and conformation of the myosin heads at the start of the cycle (i.e. the relaxed state). Myosin filaments isolated from goldfish muscle under relaxing conditions and viewed in negative stain by electron microscopy (EM) were divided into segments and subjected to three-dimensional (3D) single particle analysis without imposing helical symmetry. This allowed the known systematic departure from helicity characteristic of vertebrate striated muscle myosin filaments to be preserved and visualised. The resulting 3D reconstruction reveals details to about 55 A resolution of the myosin head density distribution in the three non-equivalent head 'crowns' in the 429 A myosin filament repeat. The analysis maintained the well-documented axial perturbations of the myosin head crowns and revealed substantial azimuthal perturbations between crowns with relatively little radial perturbation. Azimuthal rotations between crowns were approximately 60 degrees , 60 degrees and 0 degrees , rather than the regular 40 degrees characteristic of an unperturbed helix. The new density map correlates quite well with the head conformations analysed in other EM studies and in the relaxed fish muscle myosin filament structure modelled from X-ray fibre diffraction data. The reconstruction provides information on the polarity of the myosin head array in the A-band, important in understanding the geometry of the myosin head interaction with actin during the cross-bridge cycle, and supports a number of conclusions previously inferred by other methods. The observed azimuthal head perturbations are consistent with the X-ray modelling results from intact muscle, indicating that the observed perturbations are an intrinsic property of the myosin filaments and are not induced by the proximity of actin filaments in the muscle A-band lattice. Comparison of the axial density profile derived in this study with the axial density profile of the X-ray model of the fish myosin filaments which was restricted to contributions from the myosin heads allows the identification of a non-myosin density peak associated with the azimuthally perturbed head crown which can be interpreted as a possible location for C-protein or X-protein (MyBP-C or -X). This position for C-protein is also consistent with the C-zone interference function deduced from previous analysis of the meridional X-ray pattern from frog muscle. It appears that, along with other functions, C-(X-) protein may have the role of slewing the heads of one crown so that they do not clash with the neighbouring actin filaments, but are readily available to interact with actin when the muscle is activated.
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Biological Structure and Function Section, Biomedical Sciences Division, Imperial College London, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
1331
|
Lin G, Hu G, Tsu C, Kunes YZ, Li H, Dick L, Parsons T, Li P, Chen Z, Zwickl P, Weich N, Nathan C. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol Microbiol 2006; 59:1405-16. [PMID: 16468985 DOI: 10.1111/j.1365-2958.2005.05035.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genes predicted to be associated with the putative proteasome of Mycobacterium tuberculosis (Mtb) play a critical role in defence of the bacillus against nitrosative stress. However, proteasomes are uncommon in eubacteria and it remains to be established whether Mtb's prcBA genes in fact encode a proteasome. We found that coexpression of recombinant PrcB and PrcA in Escherichia coli over a prolonged period at 37 degrees C allowed formation of an alpha(7)beta(7)beta(7)alpha(7), 750 kDa cylindrical stack of four rings in which all 14 beta-subunits were proteolytically processed to expose the active site threonine. In contrast to another Actinomycete, Rhodococcus erythropolis, Mtb's beta-chain propeptide was not required for particle assembly. Peptidolytic activity of the 750 kDa particle towards a hydrophobic oligopeptide was nearly two orders of magnitude less than that of the Rhodococcus 20S proteasome, and unlike eukaryotic and archaeal proteasomes, activity of the Mtb 750 kDa particle could not be stimulated by SDS, Mg(2+) or Ca(2+). Electron microscopy revealed what appeared to be obstructed alpha-rings in the Mtb 750 kDa particle. Deletion of the N-terminal octapeptide from Mtb's alpha-chain led to disappearance of the apparent obstruction and a marked increase of peptidolytic activity. Unlike proteasomes isolated from other Actinomycetes, the open-gate Mtb mutant 750 kDa particle cleaved oligopeptides not only after hydrophobic residues but also after basic, acidic and small, neutral amino acids. Thus, Mtb encodes a broadly active, gated proteasome that may work in concert with an endogenous activator.
Collapse
Affiliation(s)
- Gang Lin
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1332
|
Hu G, Lin G, Wang M, Dick L, Xu RM, Nathan C, Li H. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol Microbiol 2006; 59:1417-28. [PMID: 16468986 DOI: 10.1111/j.1365-2958.2005.05036.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 A resolution reveals a substrate-binding pocket with composite features of the distinct beta1, beta2 and beta5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the alpha-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapetides of the alpha-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-beta-(1-naphthyl)-L-alanine-L-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis.
Collapse
Affiliation(s)
- Guiqing Hu
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973, USA
| | | | | | | | | | | | | |
Collapse
|
1333
|
Penczek PA, Yang C, Frank J, Spahn CMT. Estimation of variance in single-particle reconstruction using the bootstrap technique. J Struct Biol 2006; 154:168-83. [PMID: 16510296 DOI: 10.1016/j.jsb.2006.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/12/2006] [Accepted: 01/17/2006] [Indexed: 11/24/2022]
Abstract
Density maps of a molecule obtained by single-particle reconstruction from thousands of molecule projections exhibit strong changes in local definition and reproducibility, as a consequence of conformational variability of the molecule and non-stoichiometry of ligand binding. These changes complicate the interpretation of density maps in terms of molecular structure. A three-dimensional (3-D) variance map provides an effective tool to assess the structural definition in each volume element. In this work, the different contributions to the 3-D variance in a single-particle reconstruction are discussed, and an effective method for the estimation of the 3-D variance map is proposed, using a bootstrap technique of sampling. Computations with test data confirm the viability, computational efficiency, and accuracy of the method under conditions encountered in practical circumstances.
Collapse
Affiliation(s)
- Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin, MSB 6.218, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
1334
|
Fernández JJ, Li S, Crowther RA. CTF determination and correction in electron cryotomography. Ultramicroscopy 2006; 106:587-96. [PMID: 16616422 DOI: 10.1016/j.ultramic.2006.02.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 11/23/2022]
Abstract
Electron cryotomography (cryoET) has the potential to elucidate the structure of complex biological specimens at molecular resolution but technical and computational improvements are still needed. This work addresses the determination and correction of the contrast transfer function (CTF) of the electron microscope in cryoET. Our approach to CTF detection and defocus determination depends on strip-based periodogram averaging, extended throughout the tilt series to overcome the low contrast conditions found in cryoET. A method for CTF correction that deals with the defocus gradient in images of tilted specimens is also proposed. These approaches to CTF determination and correction have been applied here to several examples of cryoET of pleomorphic specimens and of single particles. CTF correction is essential for improving the resolution, particularly in those studies that combine cryoET with single particle averaging techniques.
Collapse
Affiliation(s)
- J J Fernández
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
1335
|
Prangishvili D, Vestergaard G, Häring M, Aramayo R, Basta T, Rachel R, Garrett RA. Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle. J Mol Biol 2006; 359:1203-16. [PMID: 16677670 DOI: 10.1016/j.jmb.2006.04.027] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 04/12/2006] [Accepted: 04/14/2006] [Indexed: 11/22/2022]
Abstract
A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long tails at each pointed end, at temperatures close to that of the natural habitat, 85 degrees C. The extracellularly developed tails constitute tubes, which terminate in an anchor-like structure that is not observed in the tail-less particles. A thin filament is located within the tube, which exhibits a periodic structure. Tail development produces a one half reduction in the volume of the virion, concurrent with a slight expansion of the virion surface. The circular, double-stranded DNA genome contains 62,730 bp and is exceptional for a crenarchaeal virus in that it carries four putative transposable elements as well as genes, which previously have been associated only with archaeal self-transmissable plasmids. In total, it encodes 72 predicted proteins, including 11 structural proteins with molecular masses in the range of 12 to 90 kDa. Several of the larger proteins are rich in coiled coil and/or low complexity sequence domains, which are unusual for archaea. One protein, in particular P800, resembles an intermediate filament protein in its structural properties. It is modified in the two-tailed, but not in the tail-less, virion particles and it may contribute to viral tail development. Exceptionally for a crenarchaeal virus, infection with ATV results either in viral replication and subsequent cell lysis or in conversion of the infected cell to a lysogen. The lysogenic cycle involves integration of the viral genome into the host chromosome, probably facilitated by the virus-encoded integrase and this process can be interrupted by different stress factors.
Collapse
Affiliation(s)
- David Prangishvili
- Molecular Biology of the Gene in Extremophiles Unit, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
1336
|
Lazarov VK, Fraering PC, Ye W, Wolfe MS, Selkoe DJ, Li H. Electron microscopic structure of purified, active gamma-secretase reveals an aqueous intramembrane chamber and two pores. Proc Natl Acad Sci U S A 2006; 103:6889-94. [PMID: 16636269 PMCID: PMC1458989 DOI: 10.1073/pnas.0602321103] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gamma-secretase is an intramembrane-cleaving aspartyl protease required for the normal development of metazoans because it processes Notch within cellular membranes to release its signaling domain. More than two dozen additional substrates of diverse functions have been reported, including the Notch ligands Delta and Jagged, N- and E-cadherins, and a sodium channel subunit. The protease is causally implicated in Alzheimer's disease because it releases the neurotoxic amyloid beta-peptide (Abeta) from its precursor, APP. Gamma-secretase occurs as a large complex containing presenilin (bearing the active site aspartates), nicastrin, Aph-1, and Pen-2. Because the complex contains at least 18 transmembrane domains, crystallographic approaches to its structure are difficult and remote. We recently purified the human complex essentially to homogeneity from stably expressing mammalian cells. Here, we use EM and single-particle image analysis on the purified enzyme, which produces physiological ratios of Abeta40 and Abeta42, to obtain structural information on an intramembrane protease. The 3D EM structure revealed a large, cylindrical interior chamber of approximately 20-40 A in length, consistent with a proteinaceous proteolytic site that is occluded from the hydrophobic environment of the lipid bilayer. Lectin tagging of the nicastrin ectodomain enabled proper orientation of the globular, approximately 120-A-long complex within the membrane and revealed approximately 20-A pores at the top and bottom that provide potential exit ports for cleavage products to the extra- and intracellular compartments. Our reconstructed 3D map provides a physical basis for hydrolysis of transmembrane substrates within a lipid bilayer and release of the products into distinct subcellular compartments.
Collapse
Affiliation(s)
- Vlado K. Lazarov
- *Biology Department, Brookhaven National Laboratory, Upton, NY 11973; and
| | - Patrick C. Fraering
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Wenjuan Ye
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Michael S. Wolfe
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Dennis J. Selkoe
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- To whom correspondence may be addressed. E-mail:
or
| | - Huilin Li
- *Biology Department, Brookhaven National Laboratory, Upton, NY 11973; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
1337
|
Valle M, Chen XS, Donate LE, Fanning E, Carazo JM. Structural basis for the cooperative assembly of large T antigen on the origin of replication. J Mol Biol 2006; 357:1295-305. [PMID: 16481006 DOI: 10.1016/j.jmb.2006.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/03/2006] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
Large T antigen (LTag) from simian virus 40 (SV40) is an ATP-driven DNA helicase that specifically recognizes the core of the viral origin of replication (ori), where it oligomerizes as a double hexamer. During this process, binding of the first hexamer stimulates the assembly of a second one. Using electron microscopy, we show that the N-terminal part of LTag that includes the origin-binding domain does not present a stable quaternary structure in single hexamers. This disordered region, however, is well arranged within the LTag double hexamer after specific ori recognition, where it mediates the interactions between hexamers and constructs a separated structural module at their junction. We conclude that full assembly of LTag hexamers occurs only within the dodecamer, and requires the specific hexamer-hexamer interactions established upon binding to the origin of replication. This mechanism provides the structural basis for the cooperative assembly of LTag double hexamer on the cognate viral ori.
Collapse
Affiliation(s)
- Mikel Valle
- Centro Nacional de Biotecnología, Darwin 3, Cantoblanco 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
1338
|
Varsano T, Wolf SG, Pick U. A Chlorophyll a/b-binding Protein Homolog That Is Induced by Iron Deficiency Is Associated with Enlarged Photosystem I Units in the Eucaryotic Alga Dunaliella salina. J Biol Chem 2006; 281:10305-15. [PMID: 16469742 DOI: 10.1074/jbc.m511057200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptation of the halotolerant alga Dunaliella salina to iron deprivation involves extensive changes of chloroplast morphology, photosynthetic activities, and induction of a major 45-kDa chloroplast protein termed Tidi. Partial amino acid sequencing of proteolytic peptides suggested that Tidi resembles chlorophyll a/b-binding proteins which compose light-harvesting antenna complexes (LHC) (Varsano, T., Kaftan, D., and Pick, U. (2003) J. Plant Nutr. 26, 2197-2210). Here we show that Tidi shares the highest amino acid sequence similarity with light-harvesting I chlorophyll a/b-binding proteins from higher plants but has an extended proline-rich N-terminal domain. The accumulation of Tidi is reversed by iron supplementation, and its level is inversely correlated with photosystem I (PS-I) reaction center proteins. In native gel electrophoresis, Tidi co-migrates with enlarged PS-I-LHC-I super-complexes. Single particle electron microscopy analysis revealed that PS-I units from iron-deficient cells are larger (31 and 37 nm in diameter) than PS-I units from control cells (22 nm). The 77 K chlorophyll fluorescence emission spectra of isolated complexes suggest that the Tidi-LHC-I antenna are functionally coupled to the reaction centers of PS-I. These findings indicate that Tidi acts as an accessory antenna of PS-I. The enlargement of PS-I antenna in algae and in cyanobacteria under iron deprivation suggests a common limitation that requires rebalancing of the energy distribution between the two photosystems.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Chlorophyll/chemistry
- Chlorophyll A
- Cloning, Molecular
- Cyanobacteria/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Eukaryota/metabolism
- Immunohistochemistry
- Iron/chemistry
- Iron/metabolism
- Iron Deficiencies
- Light
- Light-Harvesting Protein Complexes/metabolism
- Microscopy, Electron
- Molecular Sequence Data
- Photosystem I Protein Complex/chemistry
- Photosystem I Protein Complex/metabolism
- Proline/chemistry
- Protein Structure, Tertiary
- Proteins/chemistry
- RNA, Messenger/metabolism
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Spectrometry, Fluorescence
- Temperature
- Thylakoids/metabolism
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Tal Varsano
- Department of Biological Chemistry and Electron Microscopy Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
1339
|
Tattum MH, Cohen-Krausz S, Thumanu K, Wharton CW, Khalili-Shirazi A, Jackson GS, Orlova EV, Collinge J, Clarke AR, Saibil HR. Elongated oligomers assemble into mammalian PrP amyloid fibrils. J Mol Biol 2006; 357:975-85. [PMID: 16473369 DOI: 10.1016/j.jmb.2006.01.052] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 11/23/2022]
Abstract
In prion diseases, the mammalian prion protein PrP is converted from a monomeric, mainly alpha-helical state into beta-rich amyloid fibrils. To examine the structure of the misfolded state, amyloid fibrils were grown from a beta form of recombinant mouse PrP (residues 91-231). The beta-PrP precursors assembled slowly into amyloid fibrils with an overall helical twist. The fibrils exhibit immunological reactivity similar to that of ex vivo PrP Sc. Using electron microscopy and image processing, we obtained three-dimensional density maps of two forms of PrP fibrils with slightly different twists. They reveal two intertwined protofilaments with a subunit repeat of approximately 60 A. The repeating unit along each protofilament can be accounted for by elongated oligomers of PrP, suggesting a hierarchical assembly mechanism for the fibrils. The structure reveals flexible crossbridges between the two protofilaments, and subunit contacts along the protofilaments that are likely to reflect specific features of the PrP sequence, in addition to the generic, cross-beta amyloid fold.
Collapse
Affiliation(s)
- M Howard Tattum
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1340
|
Pokidysheva E, Zhang Y, Battisti AJ, Bator-Kelly CM, Chipman PR, Xiao C, Gregorio GG, Hendrickson WA, Kuhn RJ, Rossmann MG. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 2006; 124:485-93. [PMID: 16469696 DOI: 10.1016/j.cell.2005.11.042] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/06/2005] [Accepted: 11/11/2005] [Indexed: 11/22/2022]
Abstract
Dengue virus (DENV) is a significant human pathogen that causes millions of infections and results in about 24,000 deaths each year. Dendritic cell-specific ICAM3 grabbing nonintegrin (DC-SIGN), abundant in immature dendritic cells, was previously reported as being an ancillary receptor interacting with the surface of DENV. The structure of DENV in complex with the carbohydrate recognition domain (CRD) of DC-SIGN was determined by cryo-electron microscopy at 25 A resolution. One CRD monomer was found to bind to two glycosylation sites at Asn67 of two neighboring glycoproteins in each icosahedral asymmetric unit, leaving the third Asn67 residue vacant. The vacancy at the third Asn67 site is a result of the nonequivalence of the glycoprotein environments, leaving space for the primary receptor binding to domain III of E. The use of carbohydrate moieties for receptor binding sites suggests a mechanism for avoiding immune surveillance.
Collapse
Affiliation(s)
- Elena Pokidysheva
- Department of Biological Sciences, Lilly Hall, 915 W. State Street, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1341
|
Clare DK, Bakkes PJ, van Heerikhuizen H, van der Vies SM, Saibil HR. An expanded protein folding cage in the GroEL-gp31 complex. J Mol Biol 2006; 358:905-11. [PMID: 16549073 DOI: 10.1016/j.jmb.2006.02.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/10/2006] [Accepted: 02/13/2006] [Indexed: 11/30/2022]
Abstract
Bacteriophage T4 produces a GroES analogue, gp31, which cooperates with the Escherichia coli GroEL to fold its major coat protein gp23. We have used cryo-electron microscopy and image processing to obtain three-dimensional structures of the E.coli chaperonin GroEL complexed with gp31, in the presence of both ATP and ADP. The GroEL-gp31-ADP map has a resolution of 8.2 A, which allows accurate fitting of the GroEL and gp31 crystal structures. Comparison of this fitted structure with that of the GroEL-GroES-ADP structure previously determined by cryo-electron microscopy shows that the folding cage is expanded. The enlarged volume for folding is consistent with the size of the bacteriophage coat protein gp23, which is the major substrate of GroEL-gp31 chaperonin complex. At 56 kDa, gp23 is close to the maximum size limit of a polypeptide that is thought to fit inside the GroEL-GroES folding cage.
Collapse
Affiliation(s)
- Daniel K Clare
- School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | | | | | | | |
Collapse
|
1342
|
Leschziner AE, Nogales E. The orthogonal tilt reconstruction method: An approach to generating single-class volumes with no missing cone for ab initio reconstruction of asymmetric particles. J Struct Biol 2006; 153:284-99. [PMID: 16431136 DOI: 10.1016/j.jsb.2005.10.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 10/14/2005] [Accepted: 10/19/2005] [Indexed: 11/21/2022]
Abstract
Generating reliable initial models is a critical step in the reconstruction of asymmetric single-particles by 3D electron microscopy. This is particularly difficult to do if heterogeneity is present in the sample. The Random Conical Tilt (RCT) method, arguably the most robust presently to accomplish this task, requires significant user intervention to solve the "missing cone" problem. We present here a novel approach, termed the orthogonal tilt reconstruction method, that eliminates the missing cone altogether, making it possible for single-class volumes to be used directly as initial references in refinement without further processing. The method involves collecting data at +45 degrees and -45 degrees tilts and only requires that particles adopt a relatively large number of orientations on the grid. One tilted data set is used for alignment and classification and the other set--which provides views orthogonal to those in the first--is used for reconstruction, resulting in the absence of a missing cone. We have tested this method with synthetic data and compared its performance to that of the RCT method. We also propose a way of increasing the level of homogeneity in individual 2D classes (and volumes) in a heterogeneous data set and identifying the most homogeneous volumes.
Collapse
Affiliation(s)
- Andres E Leschziner
- Lawrence Berkeley National Laboratory, University of California, Berkeley, USA.
| | | |
Collapse
|
1343
|
Samsó M, Shen X, Allen PD. Structural Characterization of the RyR1–FKBP12 Interaction. J Mol Biol 2006; 356:917-27. [PMID: 16405911 DOI: 10.1016/j.jmb.2005.12.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/05/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
The 12 kDa FK506-binding protein (FKBP12) constitutively binds to the calcium release channel RyR1. Removal of FKBP12 using FK506 or rapamycin causes an increased open probability and an increase in the frequency of sub-conductance states in RyR1. Using cryo-electron microscopy and single-particle image processing, we have determined the 3D difference map of FKBP12 associated with RyR1 at 16 A resolution that can be fitted with the atomic model of FKBP12 in a unique orientation. This has allowed us to better define the surfaces of close apposition between FKBP12 and RyR1. Our results shed light on the role of several FKBP12 residues that had been found critical for the specificity of the RyR1-FKBP12 interaction. As predicted from previous immunoprecipitation studies, our results suggest that Gln3 participates directly in this interaction. The orientation of RyR1-bound FKBP12, with part of its FK506 binding site facing towards RyR1, allows us to propose how FK506 is involved in the dissociation of FKBP12 from RyR1.
Collapse
Affiliation(s)
- Montserrat Samsó
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
1344
|
Kudryashov DS, Galkin VE, Orlova A, Phan M, Egelman EH, Reisler E. Cofilin cross-bridges adjacent actin protomers and replaces part of the longitudinal F-actin interface. J Mol Biol 2006; 358:785-97. [PMID: 16530787 DOI: 10.1016/j.jmb.2006.02.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 01/22/2006] [Accepted: 02/13/2006] [Indexed: 11/25/2022]
Abstract
ADF/cofilins are abundant actin binding proteins critical to the survival of eukaryotic cells. Most ADF/cofilins bind both G and F-actin, sever the filaments and accelerate their treadmilling. These effects are linked to rearrangements of interprotomer contacts, changes in the mean twist, and filament destabilization by ADF/cofilin. Paradoxically, it was reported that under certain in vitro and in vivo conditions cofilin may stabilize actin filaments and nucleate their formation. Here, we show that yeast cofilin and human muscle cofilin (cofilin-2) accelerate the nucleation and elongation of ADP-F-actin and stabilize such filaments. Moreover, cofilin rescues the polymerization of the assembly incompetent tethramethyl rhodamine (TMR)-actin and T203C/C374S yeast mutant actin. Filaments of cofilin-decorated TMR-actin and unlabeled actin are indistinguishable, as revealed by electron microscopy and three-dimensional reconstruction. Our data suggest that ADF/cofilins play an active role in establishing new interprotomer interfaces in F-actin that substitute for disrupted (as in TMR-actin and mutant actin) or weakened (as in ADP-actin) longitudinal contacts in filaments.
Collapse
Affiliation(s)
- D S Kudryashov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
1345
|
Le Gros MA, McDermott G, Larabell CA. X-ray tomography of whole cells. Curr Opin Struct Biol 2006; 15:593-600. [PMID: 16153818 DOI: 10.1016/j.sbi.2005.08.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/09/2005] [Accepted: 08/25/2005] [Indexed: 11/24/2022]
Abstract
X-ray tomography has been shown to provide insights into the internal structure of whole cells that can't be obtained by any other means. With recent advances in instrumentation and the advent of automated cryogenic sample stages, it has become possible to collect isotropic tomographic data from radiation-sensitive cells and to compute reconstructions with a high degree of fidelity to a resolution of 50 nm. The new generation of X-ray optics will extend this resolution limit to 15 nm or better. The development of X-ray tomography of whole cells generates opportunities to study cells, and cellular processes, in a completely new way.
Collapse
Affiliation(s)
- Mark A Le Gros
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
1346
|
Celotto AM, Frank AC, McGrath SW, Fergestad T, Van Voorhies WA, Buttle KF, Mannella CA, Palladino MJ. Mitochondrial encephalomyopathy in Drosophila. J Neurosci 2006; 26:810-20. [PMID: 16421301 PMCID: PMC6675365 DOI: 10.1523/jneurosci.4162-05.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mitochondrial encephalomyopathies are common and devastating multisystem genetic disorders characterized by neuromuscular dysfunction and tissue degeneration. Point mutations in the human mitochondrial ATP6 gene are known to cause several related mitochondrial disorders: NARP (neuropathy, ataxia, and retinitis pigmentosa), MILS (maternally inherited Leigh's syndrome), and FBSN (familial bilateral striatal necrosis). We identified a pathogenic mutation in the Drosophila mitochondrial ATP6 gene that causes progressive, adult-onset neuromuscular dysfunction and myodegeneration. Our results demonstrate ultrastructural defects in the mitochondrial innermembrane, neural dysfunction, and a marked reduction in mitochondrial ATP synthase activity associated with this mutation. This Drosophila mutant recapitulates key features of the human neuromuscular disorders enabling detailed in vivo studies of these enigmatic diseases.
Collapse
Affiliation(s)
- Alicia M Celotto
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
1347
|
Ranson NA, Clare DK, Farr GW, Houldershaw D, Horwich AL, Saibil HR. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nat Struct Mol Biol 2006; 13:147-52. [PMID: 16429154 PMCID: PMC2871290 DOI: 10.1038/nsmb1046] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 12/06/2005] [Indexed: 11/08/2022]
Abstract
The double-ring chaperonin GroEL and its lid-like cochaperonin GroES form asymmetric complexes that, in the ATP-bound state, mediate productive folding in a hydrophilic, GroES-encapsulated chamber, the so-called cis cavity. Upon ATP hydrolysis within the cis ring, the asymmetric complex becomes able to accept non-native polypeptides and ATP in the open, trans ring. Here we have examined the structural basis for this allosteric switch in activity by cryo-EM and single-particle image processing. ATP hydrolysis does not change the conformation of the cis ring, but its effects are transmitted through an inter-ring contact and cause domain rotations in the mobile trans ring. These rigid-body movements in the trans ring lead to disruption of its intra-ring contacts, expansion of the entire ring and opening of both the nucleotide pocket and the substrate-binding domains, admitting ATP and new substrate protein.
Collapse
Affiliation(s)
- Neil A. Ranson
- Astbury Centre for Structural Molecular Biology and Institute of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT. UK
- School of Crystallography and Institute for Structural Molecular Biology, Birkbeck College London, Malet Street, London. WC1E 7HX, UK
| | - Daniel K. Clare
- School of Crystallography and Institute for Structural Molecular Biology, Birkbeck College London, Malet Street, London. WC1E 7HX, UK
| | - George W. Farr
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, CT 06510, USA
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, CT 06510, USA
| | - David Houldershaw
- School of Crystallography and Institute for Structural Molecular Biology, Birkbeck College London, Malet Street, London. WC1E 7HX, UK
| | - Arthur L. Horwich
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, CT 06510, USA
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, CT 06510, USA
| | - Helen R. Saibil
- School of Crystallography and Institute for Structural Molecular Biology, Birkbeck College London, Malet Street, London. WC1E 7HX, UK
| |
Collapse
|
1348
|
Fuschiotti P, Schoehn G, Fender P, Fabry CMS, Hewat EA, Chroboczek J, Ruigrok RWH, Conway JF. Structure of the Dodecahedral Penton Particle from Human Adenovirus Type 3. J Mol Biol 2006; 356:510-20. [PMID: 16375921 DOI: 10.1016/j.jmb.2005.11.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/04/2005] [Accepted: 11/15/2005] [Indexed: 11/19/2022]
Abstract
The sub-viral dodecahedral particle of human adenovirus type 3, composed of the viral penton base and fiber proteins, shares an important characteristic of the entire virus: it can attach to cells and penetrate them. Structure determination of the fiberless dodecahedron by cryo-electron microscopy to 9 Angstroms resolution reveals tightly bound pentamer subunits, with only minimal interfaces between penton bases stabilizing the fragile dodecahedron. The internal cavity of the dodecahedron is approximately 80 Angstroms in diameter, and the interior surface is accessible to solvent through perforations of approximately 20 Angstroms diameter between the pentamer towers. We observe weak density beneath pentamers that we attribute to a penton base peptide including residues 38-48. The intact amino-terminal domain appears to interfere with pentamer-pentamer interactions and its absence by mutation or proteolysis is essential for dodecamer assembly. Differences between the 9 Angstroms dodecahedron structure and the adenovirus serotype 2 (Ad2) crystallographic model correlate closely with differences in sequence. The 3D structure of the dodecahedron including fibers at 16 Angstroms resolution reveals extra density on the top of the penton base that can be attributed to the fiber N terminus. The fiber itself exhibits striations that correlate with features of the atomic structure of the partial Ad2 fiber and that represent a repeat motif present in the amino acid sequence. These new observations offer important insights into particle assembly and stability, as well as the practicality of using the dodecahedron in targeted drug delivery. The structural work provides a sound basis for manipulating the properties of this particle and thereby enhancing its value for such therapeutic use.
Collapse
Affiliation(s)
- P Fuschiotti
- Laboratoire de Microscopie Electronique Structurale, Institut de Biologie Structurale, UMR 5075 CNRS-CEA-UJF, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
1349
|
Rawat U, Gao H, Zavialov A, Gursky R, Ehrenberg M, Frank J. Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. J Mol Biol 2006; 357:1144-53. [PMID: 16476444 DOI: 10.1016/j.jmb.2006.01.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
In eubacteria, termination of translation is signaled by any one of the stop codons UAA, UAG, and UGA moving into the ribosomal A site. Two release factors, RF1 and RF2, recognize and bind to the stop codons with different affinities and trigger the hydrolysis of the ester bond that links the polypeptide with the P-site tRNA. Cryo-electron microscopy (cryo-EM) results obtained in this study show that ribosome-bound RF1 is in an open conformation, unlike the closed conformation observed in the crystal structure of the free factor, allowing its simultaneous access to both the decoding center and the peptidyl-transferase center. These results are similar to those obtained for RF2, but there is an important difference in how the factors bind to protein L11, which forms part of the GTPase-associated center of the large ribosomal subunit. The difference in the binding position, C-terminal domain for RF2 versus N-terminal domain for RF1, explains a body of L11 mutation studies that revealed differential effects on the activity of the two factors. Very recent data obtained with small-angle X-ray scattering now reveal that the solution structure of RF1 is open, as here seen on the ribosome by cryo-EM, and not closed, as seen in the crystal.
Collapse
Affiliation(s)
- Urmila Rawat
- Howard Hughes Medical Institute, University of Michigan School of Medicine, 1150 West Medical Ctr. Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
1350
|
Meng X, Samsó M, Koonce MP. A flexible linkage between the dynein motor and its cargo. J Mol Biol 2006; 357:701-6. [PMID: 16466743 DOI: 10.1016/j.jmb.2006.01.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 01/03/2006] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
We have used an antibody-Fab tag to mark the position of the cytoplasmic dynein amino-terminal tail domain, as it emerges from the main mass of the motor. Electron microscopy and single-particle image analysis reveal that the tag does not assume a rigidly fixed position, but instead can be found at various locations around the planar ring that comprises the motor's backbone. The work suggests that the tail is attached to the motor at a point near the ring center, and that the sequence immediately adjacent to this connection is flexible. Such flexibility argues against a simple-lever arm model for dynein force production.
Collapse
Affiliation(s)
- Xing Meng
- Division of Molecular Medicine, Wadsworth Center, Albany, NY 12201, USA
| | | | | |
Collapse
|