1301
|
Obianyo O, Causey CP, Osborne T, Jones JE, Lee YH, Stallcup MR, Thompson PR. A chloroacetamidine-based inactivator of protein arginine methyltransferase 1: design, synthesis, and in vitro and in vivo evaluation. Chembiochem 2010; 11:1219-23. [PMID: 20480486 PMCID: PMC3060404 DOI: 10.1002/cbic.201000209] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Indexed: 11/07/2022]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the post-translational methylation of arginine residues. PRMT1 is the predominant mammalian isozyme, and is responsible for generating the majority of the asymmetrically dimethylated arginine found in vivo . The dysregulation of this enzyme has been implicated in heart disease and cancer; thus, its inhibition would be useful in the treatment of these diseases. Herein, we describe the most potent PRMT1 inhibitor described to date. This compound, denoted C21, is a chloroacetamidine-containing peptide that is able to irreversibly bind and inactivate the enzyme selectively. We have also shown that the coactivator activity of PRMT1 is selectively inhibited by the compound in cellulo .
Collapse
Affiliation(s)
- Obiamaka Obianyo
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC, 29208
| | - Corey P. Causey
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC, 29208
| | - Tanesha Osborne
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC, 29208
| | - Justin E. Jones
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC, 29208
| | - Young-Ho Lee
- Department of Biochemistry, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90089
| | - Michael R. Stallcup
- Department of Biochemistry, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90089
| | - Paul R. Thompson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC, 29208
| |
Collapse
|
1302
|
Kim C, Lim Y, Yoo BC, Won NH, Kim S, Kim G. Regulation of post-translational protein arginine methylation during HeLa cell cycle. Biochim Biophys Acta Gen Subj 2010; 1800:977-85. [PMID: 20541591 DOI: 10.1016/j.bbagen.2010.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/04/2010] [Accepted: 06/04/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Post-translational arginine methylation which modifies protein-arginyl residues by protein arginine methyltransferase (PRMT) was investigated during synchronized HeLa cell cycle. METHODS The lysates of cells synchronized at each stage were subjected to one and/or two dimensional electrophoresis followed by Western immunoblot using against anti-asymmetric-dimethyl-arginine (ASYM24), anti-symmetric-dimethyl-arginine (SYM10), and subclasses of PRMTs, including PRMT1, PRMT3, PRMT4 (CARM1), PRMT5, PRMT6, and PRMT7 antibodies. RESULTS Proteins with approximate molecular masses of 80 kDa, 68 kDa, and 64 kDa, containing asymmetric-dimethyl-arginine (aDMA) were increased at G0/G1 to G1, which lasted until S phase. In addition, 25 kDa protein of symmetric-dimethyl-arginine (sDMA) was also markedly up-regulated from G0/G1 to G1. The levels of PRMT3, PRMT6 and PRMT7 were concurrently increased during the cell cycle. Two-dimensional gel electrophoresis followed by MALDI-TOF-MS was identified as aDMA-80 kDa and aDMA-68 kDa proteins as heterogeneous nuclear ribonucleoprotein R (hnRNPR), aDMA-64 kDa proteins as cleavage stimulation factor 64 kDa subunit (CstF-64), and sDMA-25 kDa protein as triosephosphate isomerase (TPI). The levels of increased aDMA of hnRNPR were reduced, when HeLa cells were transfected with siRNA for PRMT1, and the aDMA of CstF-64 with siRNA for PRMT3, while depletion of PRMT5 down-regulated sDMA of TPI. CONCLUSION Protein arginine dimethylations of hnRNPR, CstF-64, and TPI were regulated during HeLa cell cycle by respective PRMTs. GENERAL SIGNIFICANCE These results suggest that regulation of arginine dimethylation of hnRNPR, CstF-64, and TPI at G0/G1 to G1 are most likely to modulate the cellular growth and proliferation in HeLa cell cycle.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biological Engineering, Graduate School of Seokyeong University, Seoul 136-704, Republic of Korea
| | | | | | | | | | | |
Collapse
|
1303
|
Affiliation(s)
- Mauricio Montal
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0366;
| |
Collapse
|
1304
|
Mutations in the Cc.rmt1 gene encoding a putative protein arginine methyltransferase alter developmental programs in the basidiomycete Coprinopsis cinerea. Curr Genet 2010; 56:361-7. [PMID: 20495806 DOI: 10.1007/s00294-010-0307-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/23/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
We characterized two developmental mutants of Coprinopsis cinerea, Apa56 and Sac29, newly isolated from a homokaryotic fruiting strain, 326 (Amut Bmut pab1-1), after restriction enzyme-mediated integration (REMI) mutagenesis. Both Apa56 and Sac29 exhibited slower mycelial growth than the parental wild-type strain and failed to initiate fruiting when grown on standard malt extract-yeast extract-glucose medium under 12 h light/12 h dark cycle. Both mutants exhibited unusual differentiation in aerial hyphae: differentiated hyphae lacked clamp connections and exhibited irregular shapes. The differentiated hyphae were similar to the component cells of hyphal knots, but did not form hyphal knots: they spread as dense mycelial mats. When the carbon source (glucose) in the medium was substituted with sucrose or galactose, both strains formed as many hyphal knots as the parental wild type. The hyphal knots formed, however, did not develop into fruiting-body initials, but developed into sclerotia. Molecular genetic analysis revealed that the gene, designated Cc.rmt1, is disrupted by REMI mutagenesis and is responsible for the phenotypes in both mutants. Cc.rmt1 is predicted to encode a putative protein arginine methyltransferase, some homologs of which have been shown to be involved in the regulation of gene expression in eukaryotes.
Collapse
|
1305
|
Nucleolar targeting of coilin is regulated by its hypomethylation state. Chromosoma 2010; 119:527-40. [PMID: 20449600 DOI: 10.1007/s00412-010-0276-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/14/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
Coilin, a molecular marker for Cajal bodies (CBs), is a phosphoprotein that contains a cryptic nucleolar localization signal and multiple interacting domains, such as the RG-box. Post-translational symmetrical dimethylation of arginines on the coilin RG-box is required for the recruitment of the survival motor neuron (SMN) protein and splicing small ribonucleoproteins (snRNPs) to CBs. Here, we analyze the role of the methylation state of coilin in the regulation of its localization to the nucleolus. We use the MCF7 MTAP(-/-) cell line, which lacks the gene encoding 5'-methylthioadenosine phosphorylase (MTAP). This is a key enzyme of the methionine salvage pathway. The reduction of the levels of coilin methylation causes disruption of the canonical CBs and coilin redistribution to nucleoplasmic microfoci and to the nucleolus. Intranucleolar coilin is unmethylated and appears restricted to the dense fibrillar component. Interestingly, intranucleolar coilin is not associated with SMN or snRNPs, and does not interfere with global transcriptional activity. Overexpression of wild-type MTAP reverts the intranucleolar localization of coilin and the disruption of CBs to the normal coilin phenotype. Our results suggest the existence of a dynamic flux of coilin between CBs, nucleoplasm and nucleolus, and indicate that coilin methylation plays a key role in this process.
Collapse
|
1306
|
Chang YI, Hua WK, Yao CL, Hwang SM, Hung YC, Kuan CJ, Leou JS, Lin WJ. Protein-arginine methyltransferase 1 suppresses megakaryocytic differentiation via modulation of the p38 MAPK pathway in K562 cells. J Biol Chem 2010; 285:20595-606. [PMID: 20442406 DOI: 10.1074/jbc.m109.092411] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protein-arginine methyltransferase 1 (PRMT1) plays pivotal roles in various cellular processes. However, its role in megakaryocytic differentiation has yet to be investigated. Human leukemia K562 cells have been used as a model to study hematopoietic differentiation. In this study, we report that ectopic expression of HA-PRMT1 in K562 cells suppressed phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation as demonstrated by changes in cytological characteristics, adhesive properties, and CD41 expression, whereas knockdown of PRMT1 by small interference RNA promoted differentiation. Impairment of the methyltransferase activity of PRMT1 diminished the suppressive effect. These results provide evidence for a novel role of PRMT1 in negative regulation of megakaryocytic differentiation. Activation of ERK MAPK has been shown to be essential for megakaryocytic differentiation, although the role of p38 MAPK is still poorly understood. We show that knockdown of p38alpha MAPK or treatment with the p38 inhibitor SB203580 significantly enhanced PMA-induced megakaryocytic differentiation. Further investigation revealed that PRMT1 promotes activation of p38 MAPK without inhibiting activation of ERK MAPK. In p38alpha knockdown cells, PRMT1 could no longer suppress differentiation. In contrast, enforced expression of p38alpha MAPK suppressed PMA-induced megakaryocytic differentiation of parental K562 as well as PRMT1-knockdown cells. We propose modulation of the p38 MAPK pathway by PRMT1 as a novel mechanism regulating megakaryocytic differentiation. This study thus provides a new perspective on the promotion of megakaryopoiesis.
Collapse
Affiliation(s)
- Yuan-I Chang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
1307
|
TbPRMT6 is a type I protein arginine methyltransferase that contributes to cytokinesis in Trypanosoma brucei. EUKARYOTIC CELL 2010; 9:866-77. [PMID: 20418380 DOI: 10.1128/ec.00018-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Arginine methylation is a widespread posttranslational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). In Saccharomyces cerevisiae and mammals, this modification affects multiple cellular processes, such as chromatin remodeling leading to transcriptional regulation, RNA processing, DNA repair, and cell signaling. The protozoan parasite Trypanosoma brucei possesses five putative PRMTs in its genome. This is a large number of PRMTs relative to other unicellular eukaryotes, suggesting an important role for arginine methylation in trypanosomes. Here, we present the in vitro and in vivo characterization of a T. brucei enzyme homologous to human PRMT6, which we term TbPRMT6. Like human PRMT6, TbPRMT6 is a type I PRMT, catalyzing the production of monomethylarginine and asymmetric dimethylarginine residues. In in vitro methylation assays, TbPRMT6 utilizes bovine histones as a substrate, but it does not methylate several T. brucei glycine/arginine-rich proteins. As such, it exhibits a relatively narrow substrate specificity compared to other T. brucei PRMTs. Knockdown of TbPRMT6 in both procyclic form and bloodstream form T. brucei leads to a modest but reproducible effect on parasite growth in culture. Moreover, upon TbPRMT6 depletion, both PF and BF exhibit aberrant morphologies indicating defects in cell division, and these defects differ in the two life cycle stages. Mass spectrometry of TbPRMT6-associated proteins reveals histones, components of the nuclear pore complex, and flagellar proteins that may represent TbPRMT6 substrates contributing to the observed growth and morphological defects.
Collapse
|
1308
|
Infantino S, Benz B, Waldmann T, Jung M, Schneider R, Reth M. Arginine methylation of the B cell antigen receptor promotes differentiation. J Exp Med 2010; 207:711-9. [PMID: 20231378 PMCID: PMC2856019 DOI: 10.1084/jem.20091303] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 02/11/2010] [Indexed: 12/22/2022] Open
Abstract
Signals processed through the B cell antigen receptor (BCR) control both the proliferation and differentiation of B lymphocytes. How these different signaling modes are established at the BCR is poorly understood. We show that a conserved arginine in the tail sequence of the Igalpha subunit of the BCR is methylated by the protein arginine methyltransferase 1. This modification negatively regulates the calcium and PI-3 kinase pathways of the BCR while promoting signals leading to B cell differentiation. Thus, Igalpha arginine methylation can play an important role in specifying the outcome of BCR signaling.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Arginine/genetics
- Arginine/metabolism
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/transplantation
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/transplantation
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- CD79 Antigens/genetics
- CD79 Antigens/metabolism
- Calcium Signaling/immunology
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Cell Line
- Humans
- Interleukin-7/pharmacology
- Intracellular Signaling Peptides and Proteins/metabolism
- Lymphocyte Activation/physiology
- Methylation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Nitrohydroxyiodophenylacetate/immunology
- Phosphorylation/immunology
- Precursor Cells, B-Lymphoid/cytology
- Precursor Cells, B-Lymphoid/drug effects
- Precursor Cells, B-Lymphoid/metabolism
- Protein Binding/immunology
- Protein-Arginine N-Methyltransferases/antagonists & inhibitors
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Sequence Homology, Amino Acid
- Spleen/cytology
- Spleen/immunology
- Syk Kinase
- Transfection
Collapse
Affiliation(s)
- Simona Infantino
- Center for Biological Signaling Studies, Faculty of Biology and Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| | - Beate Benz
- Center for Biological Signaling Studies, Faculty of Biology and Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| | - Tanja Waldmann
- Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| | - Manfred Jung
- Center for Biological Signaling Studies, Faculty of Biology and Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | | | - Michael Reth
- Center for Biological Signaling Studies, Faculty of Biology and Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Max-Planck-Institute for Immunobiology, 79108 Freiburg, Germany
| |
Collapse
|
1309
|
Siomi MC, Mannen T, Siomi H. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev 2010; 24:636-46. [PMID: 20360382 DOI: 10.1101/gad.1899210] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PIWI (P-element-induced wimpy testis) proteins are a subset of the Argonaute proteins and are expressed predominantly in the germlines of a variety of organisms, including Drosophila and mammals. PIWI proteins associate specifically with PIWI-interacting RNAs (piRNAs), small RNAs that are also expressed predominantly in germlines, and silence transposable DNA elements and other genes showing complementarities to the sequences of associated piRNAs. This mechanism helps to maintain the integrity of the genome and the development of gametes. PIWI proteins have been shown recently to contain symmetrical dimethyl arginines (sDMAs), and this modification is mediated by the methyltransferase PRMT5 (also known as Dart5 or Capsuleen). It was then demonstrated that multiple members of the Tudor (Tud) family of proteins, which are necessary for gametogenesis in both flies and mice, associate with PIWI proteins specifically through sDMAs in various but particular combinations. Although Tud domains in Tud family members are known to be sDMA-binding modules, involvement of the Tudor family at the molecular level in the piRNA pathway has only recently come into focus.
Collapse
Affiliation(s)
- Mikiko C Siomi
- Keio University School of Medicine, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
1310
|
Carascossa S, Dudek P, Cenni B, Briand PA, Picard D. CARM1 mediates the ligand-independent and tamoxifen-resistant activation of the estrogen receptor alpha by cAMP. Genes Dev 2010; 24:708-19. [PMID: 20360387 DOI: 10.1101/gad.568410] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The estrogen receptor alpha (ERalpha) is activated as a transcription factor by both estrogen and a large variety of other extracellular signals. The mechanisms of this ligand-independent activation, notably by cAMP signaling, are still largely unknown. We now close the gap in the signaling pathway between cAMP and ERalpha. Whereas the direct phosphorylation of ERalpha by the cAMP-activated protein kinase A (PKA) is dispensable, the phosphorylation of the coactivator-associated arginine methyltransferase 1 (CARM1) by PKA at a single serine is necessary and sufficient for direct binding to the unliganded hormone-binding domain (HBD) of ERalpha, and the interaction is necessary for cAMP activation of ERalpha. Sustained PKA activity promoting a constitutive interaction may contribute to tamoxifen resistance of breast tumors. Binding and activation involve a novel regulatory groove of the ERalpha HBD. As a result, depending on the activating signal, ERalpha recruits different coactivator complexes to regulate alternate sets of target genes.
Collapse
Affiliation(s)
- Sophie Carascossa
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| | | | | | | | | |
Collapse
|
1311
|
Parry RV, Ward SG. Protein arginine methylation: a new handle on T lymphocytes? Trends Immunol 2010; 31:164-9. [DOI: 10.1016/j.it.2010.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 01/20/2023]
|
1312
|
RSK-mediated phosphorylation in the C/EBP{beta} leucine zipper regulates DNA binding, dimerization, and growth arrest activity. Mol Cell Biol 2010; 30:2621-35. [PMID: 20351173 DOI: 10.1128/mcb.00782-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The bZIP transcription factor C/EBPbeta is a target of Ras signaling that has been implicated in Ras-induced transformation and oncogene-induced senescence (OIS). To gain insights into Ras-C/EBPbeta signaling, we investigated C/EBPbeta activation by oncogenic Ras. We show that C/EBPbeta DNA binding is autorepressed and becomes activated by the Ras-Raf-MEK-ERK-p90(RSK) cascade. Inducible phosphorylation by RSK on Ser273 in the leucine zipper was required for DNA binding. In addition, three other modifications (phosphorylation on Tyr109 [p-Tyr109], p-Ser111, and monomethylation of Arg114 [me-Arg114]) within an N-terminal autoinhibitory domain were important for Ras-induced C/EBPbeta activation and cytostatic activity. Apart from its role in DNA binding, Ser273 phosphorylation also creates an interhelical g<-->e' salt bridge with Lys268 that increases attractive electrostatic interactions between paired leucine zippers and promotes homodimerization. Mutating Ser273 to Ala or Lys268 to Glu decreased C/EBPbeta homodimer formation, whereas heterodimerization with C/EBPgamma was relatively unaffected. The S273A substitution also reduced the antiproliferative activity of C/EBPbeta in Ras(V12)-expressing fibroblasts and decreased binding to target cell cycle genes, while a phosphomimetic substitution (S273D) maintained growth arrest function. Our findings identify four novel C/EBPbeta-activating modifications, including RSK-mediated phosphorylation of a bifunctional residue in the leucine zipper that regulates DNA binding and homodimerization and thereby promotes cell cycle arrest.
Collapse
|
1313
|
Bauer I, Graessle S, Loidl P, Hohenstein K, Brosch G. Novel insights into the functional role of three protein arginine methyltransferases in Aspergillus nidulans. Fungal Genet Biol 2010; 47:551-61. [PMID: 20338257 DOI: 10.1016/j.fgb.2010.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
Abstract
Protein arginine methylation has been implicated in different cellular processes including transcriptional regulation by the modification of histone proteins. Here we demonstrate significant in vitro activities and multifaceted specificities of Aspergillus protein arginine methyltransferases (PRMTs) and we provide evidence for a role of protein methylation in mechanisms of oxidative stress response. We have isolated all three Aspergillus PRMTs from fungal extracts and could assign significant histone specificity to RmtA and RmtC. In addition, both enzymes were able to methylate several non-histone proteins in chromatographic fractions. For endogenous RmtB a remarkable change in its substrate specificity compared to the recombinant enzyme form could be obtained. Phenotypic analysis of mutant strains revealed that growth of DeltarmtA and DeltarmtC strains was significantly reduced under conditions of oxidative stress. Moreover, mycelia of DeltarmtC mutants showed a significant retardation of growth under elevated temperatures.
Collapse
Affiliation(s)
- Ingo Bauer
- Division of Molecular Biology, Biocenter-Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
1314
|
Dalvai M, Bystricky K. The role of histone modifications and variants in regulating gene expression in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15:19-33. [PMID: 20131086 DOI: 10.1007/s10911-010-9167-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/08/2010] [Indexed: 02/03/2023] Open
Abstract
The role of epigenetic phenomena in cancer biology is increasingly being recognized. Here we focus on the mechanisms and enzymes involved in regulating histone methylation and acetylation, and the modulation of histone variant expression and deposition. Implications of these epigenetic marks for tumor development, progression and invasiveness are discussed with a particular emphasis on breast cancer progression.
Collapse
Affiliation(s)
- Mathieu Dalvai
- Université de Toulouse, LBME, 118 route de Narbonne, 31062, Toulouse, France.
| | | |
Collapse
|
1315
|
Teyssier C, Le Romancer M, Sentis S, Jalaguier S, Corbo L, Cavaillès V. Protein arginine methylation in estrogen signaling and estrogen-related cancers. Trends Endocrinol Metab 2010; 21:181-9. [PMID: 20005732 DOI: 10.1016/j.tem.2009.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/13/2009] [Accepted: 11/13/2009] [Indexed: 12/18/2022]
Abstract
Estrogen signaling pathways regulate multiple cellular processes including proliferation and differentiation, and dysregulation of these pathways underlies several human pathologies. Post-translational modifications (PTMs) play an important role in estrogen signaling. This review focuses on recent findings pertinent to arginine methylation of non-histone proteins and their implications in estrogen signaling. We describe protein arginine methyltransferases and demethylases, the role of methylarginine proteins in estrogen action and crosstalk with other PTMs such as phosphorylation and lysine methylation. The relationships between various PTMs form a specific code that is likely to play an important role in hormone signaling. In addition, dysregulation of arginine methylation or of enzymes responsible for these modifications could be key events in estrogen-dependent cancers such as breast cancer.
Collapse
|
1316
|
Abstract
Histone Arg methylation and Lys acetylation have been found to cooperatively regulate the expression of p53-target genes. Peptidylarginine deiminase 4 (PAD4) is an enzyme that citrullinates histone arginine and monomethyl-arginine residues thereby regulating histone Arg methylation. We have recently found that PAD4 serves as a p53 corepressor to regulate histone Arg methylation at the p53-target gene p21/WAF1/CIP1 promoter. However, it has not been tested whether histone Arg citrullination coordinates with other histone modifications to repress transcription. Here, we show that histone deacetylase (HDAC2) and PAD4 interact with p53 through distinct domains and simultaneously associate with the p21 promoter to regulate gene expression. After DNA damage, PAD4 and HDAC2 dissociate from several p53-target gene promoters (for example, p21, GADD45, and PUMA) with a concomitant increase in histone Lys acetylation and Arg methylation at these promoters. Furthermore, PAD4 promoter association and histone Arg modifications are regulated by p53 and HDAC activity. In contrast, HDAC2 promoter association and histone Lys acetylation are affected by p53 and PAD4 activity at minor degrees. Importantly, PAD4 inhibitor Cl-amidine and HDAC inhibitor suberoylanilide hydroxamic acid show additive effects in inducing p21, GADD45, and PUMA expression and inhibiting cancer cell growth in a p53-dependent manner. Our results unveil an important crosstalk between histone deacetylation and citrullination, suggesting that a combination of PAD4 and HDAC2 inhibitors as a potential strategy for cancer treatment.
Collapse
|
1317
|
Suh-Lailam BB, Hevel JM. A fast and efficient method for quantitative measurement of S-adenosyl-l-methionine-dependent methyltransferase activity with protein substrates. Anal Biochem 2010; 398:218-24. [DOI: 10.1016/j.ab.2009.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/07/2009] [Indexed: 01/01/2023]
|
1318
|
Dowden J, Hong W, Parry RV, Pike RA, Ward SG. Toward the development of potent and selective bisubstrate inhibitors of protein arginine methyltransferases. Bioorg Med Chem Lett 2010; 20:2103-5. [PMID: 20219369 DOI: 10.1016/j.bmcl.2010.02.069] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 01/28/2023]
Abstract
Prototype inhibitors of protein arginine methyltransferases (PRMTs) have been constructed by attaching guanidine functionality via a variable linker to non-reactive amine analogues of the cellular co-factor (S)-adenosyl methionine (AdoMet). Potent inhibition of PRMT1 (IC(50) of approximately 3-6 microM) combined with weak inhibition of the lysine methyltransferase SET7 (approximately 50% of activity at 100 microM) was observed for two such compounds.
Collapse
Affiliation(s)
- James Dowden
- School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.
| | | | | | | | | |
Collapse
|
1319
|
Ren J, Wang Y, Liang Y, Zhang Y, Bao S, Xu Z. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis. J Biol Chem 2010; 285:12695-705. [PMID: 20159986 DOI: 10.1074/jbc.m110.103911] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modulation of ribosomal assembly is a fine tuning mechanism for cell number and organ size control. Many ribosomal proteins undergo post-translational modification, but their exact roles remain elusive. Here, we report that ribosomal protein s10 (RPS10) is a novel substrate of an oncoprotein, protein-arginine methyltransferase 5 (PRMT5). We show that PRMT5 interacts with RPS10 and catalyzes its methylation at the Arg(158) and Arg(160) residues. The methylation of RPS10 at Arg(158) and Arg(160) plays a role in the proper assembly of ribosomes, protein synthesis, and optimal cell proliferation. The RPS10-R158K/R160K mutant is not efficiently assembled into ribosomes and is unstable and prone to degradation by the proteasomal pathway. In nucleoli, RPS10 interacts with nucleophosmin/B23 and is predominantly concentrated in the granular component region, which is required for ribosome assembly. The RPS10 methylation mutant interacts weakly with nucleophosmin/B23 and fails to concentrate in the granular component region. Our results suggest that PRMT5 is likely to regulate cell proliferation through the methylation of ribosome proteins, and thus reveal a novel mechanism for PRMT5 in tumorigenesis.
Collapse
Affiliation(s)
- Jinqi Ren
- Institute of Genetics and Developmental Biology, The Key Laboratory of Molecular and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
1320
|
Pang CNI, Gasteiger E, Wilkins MR. Identification of arginine- and lysine-methylation in the proteome of Saccharomyces cerevisiae and its functional implications. BMC Genomics 2010; 11:92. [PMID: 20137074 PMCID: PMC2830191 DOI: 10.1186/1471-2164-11-92] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/05/2010] [Indexed: 02/07/2023] Open
Abstract
Background The methylation of eukaryotic proteins has been proposed to be widespread, but this has not been conclusively shown to date. In this study, we examined 36,854 previously generated peptide mass spectra from 2,607 Saccharomyces cerevisiae proteins for the presence of arginine and lysine methylation. This was done using the FindMod tool and 5 filters that took advantage of the high number of replicate analysis per protein and the presence of overlapping peptides. Results A total of 83 high-confidence lysine and arginine methylation sites were found in 66 proteins. Motif analysis revealed many methylated sites were associated with MK, RGG/RXG/RGX or WXXXR motifs. Functionally, methylated proteins were significantly enriched for protein translation, ribosomal biogenesis and assembly and organellar organisation and were predominantly found in the cytoplasm and ribosome. Intriguingly, methylated proteins were seen to have significantly longer half-life than proteins for which no methylation was found. Some 43% of methylated lysine sites were predicted to be amenable to ubiquitination, suggesting methyl-lysine might block the action of ubiquitin ligase. Conclusions This study suggests protein methylation to be quite widespread, albeit associated with specific functions. Large-scale tandem mass spectroscopy analyses will help to further confirm the modifications reported here.
Collapse
Affiliation(s)
- Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
1321
|
|
1322
|
Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S, Huang H, Chen D, Kodama T, Siomi H, Siomi MC. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J 2010; 28:3820-31. [PMID: 19959991 DOI: 10.1038/emboj.2009.365] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/10/2009] [Indexed: 12/25/2022] Open
Abstract
In Drosophila, the PIWI proteins, Aubergine (Aub), AGO3, and Piwi are expressed in germlines and function in silencing transposons by associating with PIWI-interacting RNAs (piRNAs). Recent studies show that PIWI proteins contain symmetric dimethyl-arginines (sDMAs) and that dPRMT5/Capsuleen/DART5 is the modifying enzyme. Here, we show that Tudor (Tud), one of Tud domain-containing proteins, associates with Aub and AGO3, specifically through their sDMA modifications and that these three proteins form heteromeric complexes. piRNA precursor-like molecules are detected in these complexes. The expression levels of Aub and AGO3, along with their degree of sDMA modification, were not changed by tud mutations. However, the population of transposon-derived piRNAs associated with Aub and AGO3 was altered by tud mutations, whereas the total amounts of small RNAs on Aub and AGO3 was increased. Loss of dprmt5 did not change the stability of Aub, but impaired its association with Tud and lowered piRNA association with Aub. Thus, in germline cells, piRNAs are quality-controlled by dPRMT5 that modifies PIWI proteins, in tight association with Tud.
Collapse
Affiliation(s)
- Kazumichi M Nishida
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1323
|
Friend of Prmt1, a novel chromatin target of protein arginine methyltransferases. Mol Cell Biol 2010; 30:260-72. [PMID: 19858291 DOI: 10.1128/mcb.00645-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We describe the isolation and characterization of Friend of Prmt1 (Fop), a novel chromatin target of protein arginine methyltransferases. Human Fop is encoded by C1orf77, a gene of previously unknown function. We show that Fop is tightly associated with chromatin, and that it is modified by both asymmetric and symmetric arginine methylation in vivo. Furthermore, Fop plays an important role in the ligand-dependent activation of estrogen receptor target genes, including TFF1 (pS2). Fop depletion results in an almost complete block of estradiol-induced promoter occupancy by the estrogen receptor. Our data indicate that Fop recruitment to the promoter is an early critical event in the activation of estradiol-dependent transcription.
Collapse
|
1324
|
Abstract
Histone methylation plays a fundamental role in regulating diverse developmental processes and is also involved in silencing repetitive sequences in order to maintain genome stability. The methylation marks are written on lysine or arginine by distinct enzymes, namely, histone lysine methyltransferases (HKMTs) or protein arginine methyltransferases (PRMTs). Once established, the methylation marks are specifically recognized by the proteins that act as readers and are interpreted into specific biological outcomes. Histone methylation status is dynamic; methylation marks can be removed by eraser enzymes, the histone demethylases (HDMs). The proteins responsible for writing, reading, and erasing the methylation marks are known mostly in animals. During the past several years, a growing body of literature has demonstrated the impact of histone methylation on genome management, transcriptional regulation, and development in plants. The aim of this review is to summarize the biochemical, genetic, and molecular action of histone methylation in two plants, the dicot Arabidopsis and the monocot rice.
Collapse
Affiliation(s)
- Chunyan Liu
- National Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
1325
|
|
1326
|
|
1327
|
Lipson RS, Webb KJ, Clarke SG. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2009; 391:1658-62. [PMID: 20035717 DOI: 10.1016/j.bbrc.2009.12.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These results are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells.
Collapse
Affiliation(s)
- Rebecca S Lipson
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, 607 Charles E Young Drive East, Los Angeles, CA 90095-1569, USA
| | | | | |
Collapse
|
1328
|
ICP27 phosphorylation site mutants display altered functional interactions with cellular export factors Aly/REF and TAP/NXF1 but are able to bind herpes simplex virus 1 RNA. J Virol 2009; 84:2212-22. [PMID: 20015986 DOI: 10.1128/jvi.01388-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27 is a multifunctional regulatory protein that is phosphorylated. Phosphorylation can affect protein localization, protein interactions, and protein function. The major sites of ICP27 that are phosphorylated are serine residues 16 and 18, within a CK2 site adjacent to a leucine-rich region required for ICP27 export, and serine 114, within a PKA site in the nuclear localization signal. Viral mutants bearing serine-to-alanine or glutamic acid substitutions at these sites are defective in viral replication and gene expression. To determine which interactions of ICP27 are impaired, we analyzed the subcellular localization of ICP27 and its colocalization with cellular RNA export factors Aly/REF and TAP/NXF1. In cells infected with phosphorylation site mutants, ICP27 was confined to the nucleus even at very late times after infection. ICP27 did not colocalize with Aly/REF or TAP/NXF1, and overexpression of TAP/NXF1 did not promote the export of ICP27 to the cytoplasm. However, in vitro binding experiments showed that mutant ICP27 was able to bind to the same RNA substrates as the wild type. Nuclear magnetic resonance (NMR) analysis of the N terminus of ICP27 from amino acids 1 to 160, compared to mutants with triple substitutions to alanine or glutamic acid, showed that the mutations affected the overall conformation of the N terminus, such that mutant ICP27 was more flexible and unfolded. These results indicate that these changes in the structure of ICP27 altered in vivo protein interactions that occur in the N terminus but did not prevent RNA binding.
Collapse
|
1329
|
Gross H, Barth S, Palermo RD, Mamiani A, Hennard C, Zimber-Strobl U, West MJ, Kremmer E, Grässer FA. Asymmetric Arginine dimethylation of Epstein-Barr virus nuclear antigen 2 promotes DNA targeting. Virology 2009; 397:299-310. [PMID: 19969318 DOI: 10.1016/j.virol.2009.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/01/2009] [Accepted: 11/10/2009] [Indexed: 11/16/2022]
Abstract
The Epstein-Barr virus (EBV) growth-transforms B-lymphocytes. The virus-encoded nuclear antigen 2 (EBNA2) is essential for transformation and activates gene expression by association with DNA-bound transcription factors such as RBPJkappa (CSL/CBF1). We have previously shown that EBNA2 contains symmetrically dimethylated Arginine (sDMA) residues. Deletion of the RG-repeat results in a reduced ability of the virus to immortalise B-cells. We now show that the RG repeat also contains asymmetrically dimethylated Arginines (aDMA) but neither non-methylated (NMA) Arginines nor citrulline residues. We demonstrate that only aDMA-containing EBNA2 is found in a complex with DNA-bound RBPJkappa in vitro and preferentially associates with the EBNA2-responsive EBV C, LMP1 and LMP2A promoters in vivo. Inhibition of methylation in EBV-infected cells results in reduced expression of the EBNA2-regulated viral gene LMP1, providing additional evidence that methylation is a prerequisite for DNA-binding by EBNA2 via association with the transcription factor RBPJkappa.
Collapse
Affiliation(s)
- Henrik Gross
- Institut für Virologie, Haus 47, Universitätsklinikum, 66421 Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
1330
|
The physiological and pathophysiological role of PRMT1-mediated protein arginine methylation. Pharmacol Res 2009; 60:466-74. [DOI: 10.1016/j.phrs.2009.07.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/20/2009] [Accepted: 07/21/2009] [Indexed: 11/22/2022]
|
1331
|
Yu J, Shin B, Park ES, Yang S, Choi S, Kang M, Rho J. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation. Biochem Biophys Res Commun 2009; 391:322-8. [PMID: 19913501 DOI: 10.1016/j.bbrc.2009.11.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 11/26/2022]
Abstract
Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Microbiology, Chungnam National University, Yuseong-gu, Daejon 305-764, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
1332
|
Chen F, Fulton DJR. An inhibitor of protein arginine methyltransferases, 7,7'-carbonylbis(azanediyl)bis(4-hydroxynaphthalene-2-sulfonic acid (AMI-1), is a potent scavenger of NADPH-oxidase-derived superoxide. Mol Pharmacol 2009; 77:280-7. [PMID: 19903831 DOI: 10.1124/mol.109.061077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The methylation of proteins is an important post-translational mechanism that has been established to influence the activity of nuclear and nucleic acid binding proteins. Much less is known about the importance of protein methylation in the regulation of cytosolic proteins. Increased methylation of proteins is observed in cardiovascular disease and occurs in conjunction with elevated production of reactive oxygen species. However, the nature of the relationship between reactive oxygen species and protein methylation is poorly understood. Therefore, the goal of the current study was to determine whether protein methylation influences the catalytic activity of the NADPH oxidases (Nox), which are a family of enzymes responsible for the generation of superoxide. We found that the selective inhibitor of protein arginine methyltransferases 7,7'-carbonylbis(azanediyl)bis(4-hydroxynaphthalene-2-sulfonic acid (AMI-1) was a potent antagonist of Nox-derived superoxide production. However, structurally and mechanistically dissimilar inhibitors of protein methylation and coexpression of protein arginine methyltransferase 1 did not influence Nox activity. Rather, the effect of AMI-1 was rapidly reversible and could be demonstrated in an assay using chemically synthesized superoxide. We conclude that protein methylation does not regulate the activity of NADPH-oxidases and that AMI-1 is a potent antioxidant with a greater potency than 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron) and 4-hydroxy-2,2,6,6-tetramethylpiperydine-1-oxyl (Tempol).
Collapse
Affiliation(s)
- Feng Chen
- Department of Pharmacology, Medical College of Georgia, Augusta, GA 30912, USA
| | | |
Collapse
|
1333
|
Kim D, Lee J, Cheng D, Li J, Carter C, Richie E, Bedford MT. Enzymatic activity is required for the in vivo functions of CARM1. J Biol Chem 2009; 285:1147-52. [PMID: 19897492 DOI: 10.1074/jbc.m109.035865] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CARM1 is one of nine protein arginine methyltransferases that methylate arginine residues in proteins. CARM1 is recruited by many different transcription factors as a positive regulator. Gene targeting of CARM1 in mice has been performed, and knock-out mice, which are smaller than their wild-type littermates, die just after birth. It has been proposed that CARM1 has functions that are independent of its enzymatic activity. Indeed, CARM1 is found to interact with a number of proteins and may have a scaffolding function in this context. However, CARM1 methylates histone H3, PABP1, AIB1, and a number of splicing factors, which strongly suggests that its impact on transcription and splicing is primarily through its ability to modify these substrates. To unequivocally establish the importance of CARM1 enzymatic activity in vivo, we generated an enzyme-dead knock-in of this protein arginine methyltransferase. We determined that knock-in cells and mice have defects similar to those seen in their knock-out counterparts with respect to the time of embryo lethality, T cell development, adipocyte differentiation, and transcriptional coactivator activity. CARM1 requires its enzymatic activity for all of its known cellular functions. Thus, small molecule inhibitors of CARM1 will incapacitate all of the enzyme's cellular functions.
Collapse
Affiliation(s)
- Daehoon Kim
- Science Park-Research Division, The University of Texas M. D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | | | | | | | | | | | | |
Collapse
|
1334
|
Shi H, Chamond N, Djikeng A, Tschudi C, Ullu E. RNA interference in Trypanosoma brucei: role of the n-terminal RGG domain and the polyribosome association of argonaute. J Biol Chem 2009; 284:36511-36520. [PMID: 19880512 DOI: 10.1074/jbc.m109.073072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Argonaute proteins (AGOs) are central to RNA interference (RNAi) and related silencing pathways. At the core of the RNAi pathway in the ancient parasitic eukaryote Trypanosoma brucei is a single Argonaute protein, TbAGO1, with an established role in the destruction of potentially harmful retroposon transcripts. One notable feature of TbAGO1 is that a fraction sediments with polyribosomes, and this association is facilitated by an arginine/glycine-rich domain (RGG domain) at the N terminus of the protein. Here we report that reducing the size of the RGG domain and, in particular, mutating all arginine residues severely reduced the association of TbAGO1 with polyribosomes and RNAi-induced cleavage of mRNA. However, these mutations did not change the cellular localization of Argonaute and did not affect the accumulation of single-stranded siRNAs, an essential step in the activation of the RNA-induced silencing complex. We further show that mRNA on polyribosomes can be targeted for degradation, although this alliance is not a pre-requisite. Finally, sequestering tubulin mRNAs from translation with antisense morpholino oligonucleotides reduced the RNAi response indicating that mRNAs not engaged in translation may be less accessible to the RNAi machinery. We conclude that the association of the RNAi machinery and target mRNA on polyribosomes promotes an efficient RNAi response. This mechanism may represent an ancient adaptation to ensure that retroposon transcripts are efficiently destroyed, if they become associated with the translational apparatus.
Collapse
Affiliation(s)
- Huafang Shi
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut 06536-8012
| | - Nathalie Chamond
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut 06536-8012
| | - Appolinaire Djikeng
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut 06536-8012
| | - Christian Tschudi
- Department of Epidemiology and Public Health, Yale University Medical School, New Haven, Connecticut 06536-8012.
| | - Elisabetta Ullu
- Department of Internal Medicine, Yale University Medical School, New Haven, Connecticut 06536-8012; Department of Cell Biology, Yale University Medical School, New Haven, Connecticut 06536-8012
| |
Collapse
|
1335
|
Feng Q, He B, Jung SY, Song Y, Qin J, Tsai SY, Tsai MJ, O'Malley BW. Biochemical control of CARM1 enzymatic activity by phosphorylation. J Biol Chem 2009; 284:36167-36174. [PMID: 19843527 DOI: 10.1074/jbc.m109.065524] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is a dual functional coregulator that facilitates transcription initiation by methylation of Arg(17) and Arg(26) of histone H3 and also dictates the subsequent coactivator complex disassembly by methylation of the steroid receptor coactivator family coactivators and p300/cAMP-response element-binding protein-binding protein. However, the regulation of CARM1 enzymatic activity and substrate specificity remains largely unknown. In this study, we report that CARM1 function is regulated by phosphorylation at Ser(217), a residue completely conserved in the type I protein arginine methyltransferase (PRMT) family of enzymes. Comparative analysis of the published CARM1 crystal structures reveals that the hydroxyl group of Ser(217) forms a strong hydrogen bond with the carbonyl oxygen atom of Tyr(154) to lock the cofactor S-adenosylmethionine inside the binding cavity. Phosphorylation of Ser(217) disrupts this hydrogen bond and subsequently abolishes S-adenosylmethionine binding and its methyltransferase activity. Importantly, Tyr(154) is also conserved in the type I PRMT family of enzymes, suggesting a general role of this hydrogen bond in maintaining the holo structure of the type I PRMT catalytic domain. Moreover, we found that phosphorylation at Ser(217) also promoted CARM1 cytoplasmic localization and that this translocation occurred mainly during mitosis. We propose that phosphorylation at Ser(217) serves as a molecular switch for controlling CARM1 enzymatic activity during the cell cycle.
Collapse
Affiliation(s)
- Qin Feng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bin He
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Sung-Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Jun Qin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
1336
|
Puchau B, Zulet MA, Urtiaga G, Navarro-Blasco I, Martínez JA. Asymmetric dimethylarginine association with antioxidants intake in healthy young adults: a role as an indicator of metabolic syndrome features. Metabolism 2009; 58:1483-8. [PMID: 19586644 DOI: 10.1016/j.metabol.2009.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 04/10/2009] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to evaluate the potential associations between serum asymmetric dimethylarginine (ADMA) and several anthropometric, biochemical, and lifestyle features in healthy young adults, emphasizing on the putative effects of the antioxidant intake on ADMA concentrations. Anthropometric and blood pressure measurements as well as lifestyle features and antioxidant intake were analyzed in 93 healthy young adults aged 18 to 34 years. Fasting blood samples were collected for the measurement of glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triacylglycerols, and ADMA concentrations, as well as erythrocyte glutathione peroxidase activity. Nail samples were collected for the analysis of selenium and zinc concentrations. Values of body mass index (P = .004), waist circumference (P = .008), waist-to-height ratio (P = .046), systolic blood pressure (P < .001), serum glucose (P < .001), and nail selenium (P = .004) and zinc (P = .018) were significantly different between subjects with serum ADMA higher and lower than the median (cutoff, 458 nmol/L). Furthermore, ADMA showed a positive association with several adiposity markers such as body weight (P < .001), body mass index (P < .001), waist circumference (P = .006), waist-to-height ratio (P = .020), body fat mass (P = .001), systolic blood pressure (P = .001), and serum glucose (P < .001), whereas erythrocyte glutathione peroxidase activity (P = .021) and nail selenium (P = .040) and zinc values (P = .013) were statistically significant negative predictors of ADMA concentrations. In conclusion, ADMA seems to be related with selenium and zinc status and several anthropometric and biochemical measurements linked to metabolic syndrome in apparently healthy young adults. These findings support a role for antioxidant/trace element intake in the modulation of ADMA, whose assessment may be a marker of metabolic syndrome manifestations.
Collapse
Affiliation(s)
- Blanca Puchau
- Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | |
Collapse
|
1337
|
Jayne S, Rothgiesser KM, Hottiger MO. CARM1 but not its enzymatic activity is required for transcriptional coactivation of NF-kappaB-dependent gene expression. J Mol Biol 2009; 394:485-95. [PMID: 19769987 DOI: 10.1016/j.jmb.2009.09.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/08/2009] [Accepted: 09/15/2009] [Indexed: 02/05/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) belongs to the protein arginine methyltransferase family. It was reported to methylate histone as well as non-histone proteins and thus to be involved in transcriptional activation and mRNA degradation/stability. Here we report the genetic complementation of carm1-/- cells with wild-type CARM1 or an enzymatic inactive mutant of CARM1 to investigate the requirement of CARM1 and its enzymatic activity for nuclear factor kappaB (NF-kappaB)-dependent gene expression. Using custom microarray and quantitative reverse transcription PCR, we could define a subset of NF-kappaB target genes that required CARM1 for their proper expression. Although several tumor necrosis factor-alpha- and phorbol-12-myristate-13-acetate/ionomycin-induced NF-kappaB target genes are CARM1 dependent, CARM1 enzymatic activity was dispensable for gene expression. Interestingly, CARM1 was not required for the stimulus-dependent recruitment of RelA/p65 to chromatin, suggesting that CARM1 is rather contributing in protein complex stabilization. Together, our results confirm the importance of CARM1 as transcriptional cofactor without the involvement of its catalytic activity.
Collapse
Affiliation(s)
- Sandrine Jayne
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
1338
|
Lakowski TM, Zurita-Lopez C, Clarke SG, Frankel A. Approaches to measuring the activities of protein arginine N-methyltransferases. Anal Biochem 2009; 397:1-11. [PMID: 19761747 DOI: 10.1016/j.ab.2009.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 12/15/2022]
Affiliation(s)
- Ted M Lakowski
- The Division of Biomolecular and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
1339
|
Pesiridis GS, Diamond E, Van Duyne GD. Role of pICLn in methylation of Sm proteins by PRMT5. J Biol Chem 2009; 284:21347-59. [PMID: 19520849 PMCID: PMC2755859 DOI: 10.1074/jbc.m109.015578] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/10/2009] [Indexed: 11/25/2022] Open
Abstract
pICln is an essential, highly conserved 26-kDa protein whose functions include binding to Sm proteins in the cytoplasm of human cells and mediating the ordered and regulated assembly of the cell's RNA-splicing machinery by the survival motor neurons complex. pICln also interacts with PRMT5, the enzyme responsible for generating symmetric dimethylarginine modifications on the carboxyl-terminal regions of three of the canonical Sm proteins. To better understand the role of pICln in these cellular processes, we have investigated the properties of pICln and pICln.Sm complexes and the effects that pICln has on the methyltransferase activity of PRMT5. We find that pICln is a monomer in solution, binds with high affinity (K(d) approximately 160 nm) to SmD3-SmB, and forms 1:1 complexes with Sm proteins and Sm protein subcomplexes. The data support an end-capping model of pICln binding that supports current views of how pICln prevents Sm oligomerization on illicit RNA substrates. We have found that by co-expression with pICln, recombinant PRMT5 can be produced in a soluble, active form. PRMT5 alone has promiscuous activity toward a variety of known substrates. In the presence of pICln, however, PRMT5 methylation of Sm proteins is stimulated, but methylation of histones is inhibited. We have also found that mutations in pICln that do not affect Sm protein binding can still have a profound effect on the methyltransferase activity of the PRMT5 complex. Together, the data provide insights into pICln function and represent an important starting point for biochemical analyses of PRMT5.
Collapse
Affiliation(s)
- G. Scott Pesiridis
- From the Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Evan Diamond
- From the Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gregory D. Van Duyne
- From the Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
1340
|
Böger RH, Maas R, Schulze F, Schwedhelm E. Asymmetric dimethylarginine (ADMA) as a prospective marker of cardiovascular disease and mortality--an update on patient populations with a wide range of cardiovascular risk. Pharmacol Res 2009; 60:481-7. [PMID: 19596069 DOI: 10.1016/j.phrs.2009.07.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/05/2009] [Accepted: 07/06/2009] [Indexed: 12/12/2022]
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthases. By inhibiting NO formation, ADMA causes endothelial dysfunction, vasoconstriction, elevation of blood pressure, and aggravation of experimental atherosclerosis. Cross-sectional studies in humans have revealed that ADMA plasma concentration is elevated in numerous populations with vascular diseases or at high cardiovascular risk. However, the potential causal relationship between elevated ADMA and cardiovascular events and mortality in humans can only be revealed in prospective clinical studies. This review gives an overview of currently available data from prospective clinical studies in which ADMA has been measured in populations at high, intermediate, or low global vascular risk. Although the analytical methods used to quantify ADMA varied and statistical approaches to assess the association of ADMA with risk differed, these data reveal that ADMA is significantly associated with an increased risk of incident cardiovascular events and total mortality in subjects at a broad range of global risk. Hazard ratios were mostly in a range comparable to that of traditional cardiovascular risk markers even after multivariable adjustments, suggesting that ADMA may be suitable as a diagnostic marker for risk assessment, and that the biochemical pathways that regulate ADMA may be promising therapeutic approaches to treat cardiovascular disease in the future.
Collapse
Affiliation(s)
- Rainer H Böger
- Institute of Experimental and Clinical Pharmacology, University Medical Center Hamburg-Eppendorf, Germany.
| | | | | | | |
Collapse
|
1341
|
Maas S, Gommans WM. Identification of a selective nuclear import signal in adenosine deaminases acting on RNA. Nucleic Acids Res 2009; 37:5822-9. [PMID: 19617375 PMCID: PMC2761270 DOI: 10.1093/nar/gkp599] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The adenosine deaminases acting on RNA (ADARs) comprise a family of RNA editing enzymes that selectively modify single codons within RNA primary transcripts with often profound impact on protein function. Little is known about the mechanisms that regulate nuclear RNA editing activity. Editing levels show cell-type specific and developmental modulation that does not strictly coincide with observed expression levels of ADARs. Here, we provide evidence for a molecular mechanism that might control nuclear import of specific ADARs and, in turn, nuclear RNA editing. We identify an in vivo ADAR3 interaction partner, importin alpha 1 (KPNA2) that specifically recognizes an arginine-rich ADAR3 sequence motif and show that it acts as a functional nuclear localization sequence. Furthermore, whereas KPNA2, but not KPNA1 or KNPA3, recognizes the ADAR3 NLS, we observe the converse binding specificity with ADAR2. Interestingly, alternative splicing of ADAR2 pre-mRNA introduces an ADAR3-like NLS that alters the interaction profile with the importins. Thus, in vivo RNA editing might be regulated, in part, through controlled subcellular localization of ADARs, which in turn is governed by the coordinated local expression of importin α proteins and ADAR protein variants.
Collapse
Affiliation(s)
- Stefan Maas
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| | | |
Collapse
|
1342
|
Kousaka A, Mori Y, Koyama Y, Taneda T, Miyata S, Tohyama M. The distribution and characterization of endogenous protein arginine N-methyltransferase 8 in mouse CNS. Neuroscience 2009; 163:1146-57. [PMID: 19576965 DOI: 10.1016/j.neuroscience.2009.06.061] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 06/04/2009] [Accepted: 06/27/2009] [Indexed: 11/18/2022]
Abstract
Protein arginine N-methyltransferase (PRMT) 8 was first discovered from a database search for genes harboring four conserved methyltransferase motifs, which shares more than 80% homology to PRMT1 in amino acid [Lee J, Sayegh J, Daniel J, Clarke S, Bedford MT (2005) PRMT8, a new membrane-bound tissue-specific member of the protein arginine methyltransferase family. J Biol Chem 280:32890-32896]. Interestingly, its tissue distribution is strikingly restricted to mouse CNS. To characterize the function in the CNS neurons, we raised an antiserum against PRMT8 to perform immunohistochemistry (IHC) and Western blot analysis. By IHC, the immunoreactivity of endogenous PRMT8 was broadly distributed in the CNS neurons with markedly intense signals in the cerebellum, hippocampal formation, and cortex, but was not detected in the cerebellar granular layer. In some subset of the neurons, the immunoreactivity was observed in the dendrites and axon bundles. The subcellular localization of the immunoreactivity was dominantly nuclear, arguing against the original report that exogenously expressed PRMT8 localizes to the plasma membrane via the N-terminal myristoylation. A series of the exogenously expressed proteins with different in-frame translation initiation codons was tested for comparison with the endogenous protein in molecular size. The third initiator codon produced the protein that was equivalent in size to the endogenous and showed a similar localizing pattern in PC12 cells. In conclusion, PRMT8 is a neuron-specific nuclear enzyme and the N-terminus does not contain the glycine end for myristoylation target.
Collapse
Affiliation(s)
- A Kousaka
- Department of Anatomy and Neuroscience, Graduate School of Medicine, The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Osaka University, 2-2 Yamadaoka, Suita City, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
1343
|
Wolf SS. The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 2009; 66:2109-21. [PMID: 19300908 PMCID: PMC11115746 DOI: 10.1007/s00018-009-0010-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 12/12/2022]
Abstract
Information about the family of protein arginine methyltransferases (PRMTs) has been growing rapidly over the last few years and the emerging role of arginine methylation involved in cellular processes like signaling, RNA processing, gene transcription, and cellular transport function has been investigated. To date, 11 PRMTs gene transcripts have been identified in humans. Almost all PRMTs have been shown to have enzymatic activity and to catalyze arginine methylation. This review will summarize the overall function of human PRMTs and include novel highlights on each family member.
Collapse
Affiliation(s)
- S S Wolf
- Bayer Schering Pharma AG, Global Drug Discovery, TRG Women's Healthcare, Muellerstr 178, 13353, Berlin, Germany.
| |
Collapse
|
1344
|
Abstract
Epigenetic regulation is important in many facets of eukaryotic biology. Recent work has suggested that the basic mechanisms underlying epigenetic regulation extend to eukaryotic parasites. The identification of post-translational histone modifications and chromatin-modifying enzymes is beginning to reveal both common and novel functions for chromatin in these parasites. In this Review, we compare the role of epigenetics in African trypanosomes and humans in several biological processes. We discuss how the study of trypanosome chromatin might help us to better understand the evolution of epigenetic processes.
Collapse
|
1345
|
Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4. Biochem J 2009; 421:253-61. [PMID: 19405910 DOI: 10.1042/bj20090268] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Protein arginine N-methyltransferases (PRMTs) methylate arginine residues within proteins using S-adenosyl-L-methionine (AdoMet) to form S-adenosyl-L-homocysteine and methylarginine residues. All PRMTs produce omega-NG-monomethylarginine (MMA) residues and either asymmetric omega-N(G),N(G)-dimethylarginine (aDMA) or symmetric omega-N(G),N'(G)-dimethylarginine (sDMA) residues, referred to as Type I or Type II activity respectively. Here we report methylation activity from PRMT2 and compare it with PRMT1 activity using UPLC-MS/MS (ultra-performance liquid chromatography-tandem MS), gel electrophoresis, and thin-layer chromatography. We show that PRMT2 is a Type I enzyme and that the ratio of aDMA to MMA produced by PRMTs 1 and 2 is dependent on the substrate, regardless of rate or K(m), suggesting that the reactions for both enzymes are distributive rather than processive. Using UPLC-MS/MS we find that, for PRMT2, the dissociation constant (KAs) and K(m) of AdoMet and the Km of histone H4 are similar to values for PRMT1, whereas the PRMT2 k(cat) is 800-fold less than the PRMT1 k(cat). Although PRMT2 activity is substantially lower than PRMT1 in vitro, the fact that both enzymes selectively methylate histone H4 suggest that PRMT2, like PRMT1, may act as a transcription co-activator through this modification.
Collapse
|
1346
|
Arginine methylation of the ICP27 RGG box regulates the functional interactions of ICP27 with SRPK1 and Aly/REF during herpes simplex virus 1 infection. J Virol 2009; 83:8970-5. [PMID: 19553338 DOI: 10.1128/jvi.00801-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus 1 protein ICP27 is methylated on arginine residues within an RGG box, and arginine methylation regulates ICP27 export to the cytoplasm. Arginine methylation can regulate protein-protein interactions; therefore, we examined the effect of hypomethylation on ICP27's interactions with cellular proteins SRPK1 and Aly/REF, which bind to ICP27 through the RGG box region. During infections with viral mutants containing lysine substitutions or the methylation inhibitor adenosine dialdehyde, the interaction of ICP27 with SRPK1 and Aly/REF was decreased, as determined by coimmunoprecipitation and colocalization studies, indicating that ICP27 RGG box methylation regulates interaction with these proteins.
Collapse
|
1347
|
Michaud-Levesque J, Richard S. Thrombospondin-1 is a transcriptional repression target of PRMT6. J Biol Chem 2009; 284:21338-46. [PMID: 19509293 DOI: 10.1074/jbc.m109.005322] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) is known to catalyze the generation of asymmetric dimethylarginine in polypeptides. Although the cellular role of PRMT6 is not well understood, it has been implicated in human immunodeficiency virus pathogenesis, DNA repair, and transcriptional regulation. PRMT6 is known to methylate histone H3 Arg-2 (H3R2), and this negatively regulates the lysine methylation of H3K4 resulting in gene repression. To identify in a nonbiased manner genes regulated by PRMT6 expression, we performed a microarray analysis on U2OS osteosarcoma cells transfected with control and PRMT6 small interfering RNAs. We identified thrombospondin-1 (TSP-1), a potent natural inhibitor of angiogenesis, as a transcriptional repression target of PRMT6. Moreover, we show that PRMT6-deficient U2OS cells exhibited cell migration defects that were rescued by blocking the secreted TSP-1 with a neutralizing peptide or blocking alpha-TSP-1 antibody. PRMT6 associates with the TSP-1 promoter and regulates the balance of methylation of H3R2 and H3K4, such that in PRMT6-deficient cells H3R2 was hypomethylated and H3K4 was trimethylated at the TSP-1 promoter. Using a TSP-1 promoter reporter gene, we further show that PRMT6 directly regulates the TSP-1 promoter activity. These findings show that TSP-1 is a transcriptional repression target of PRMT6 and suggest that neutralizing the activity of PRMT6 could inhibit tumor progression and therefore may be of cancer therapeutic significance.
Collapse
Affiliation(s)
- Jonathan Michaud-Levesque
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Departments of Oncology and Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | | |
Collapse
|
1348
|
Iwasaki H. Impaired PRMT1 activity in the liver and pancreas of type 2 diabetic Goto-Kakizaki rats. Life Sci 2009; 85:161-6. [PMID: 19467247 DOI: 10.1016/j.lfs.2009.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/21/2009] [Accepted: 05/14/2009] [Indexed: 12/31/2022]
Abstract
AIMS Arginine methylation catalyzed by protein N-arginine methyltransferase (PRMT) 1 is implicated in a variety of cellular processes, although the potential role of PRMT1-mediated methylation in glucose intolerance has not been defined. This study aims to investigate whether alteration of PRMT1 activity contributes to the clinical features of type 2 diabetes. MAIN METHODS Goto-Kakizaki (GK) rats were used as a rodent model of type 2 diabetes. Catalytic activity of PRMT1 and arginine methylation were determined by an in vitro methyltransferase assay and immunoblotting, respectively. Hepatic insulin signaling events, insulin secretion, and pancreatic glucose metabolism were assessed by studies using HepG2 hepatoma cells and isolated pancreatic islets. Methyltransferase activity was attenuated by transfection of a small interfering RNA against PRMT1 (PRMT1-siRNA) or by pretreatment with an inhibitor of methyltransferase, 5'-deoxy-5'-(methylthio)adenosine (MTA). KEY FINDINGS Non-obese, diabetic GK rats exhibited a decrease in their hepatic and pancreatic PRMT1 activity, as compared to the control Wistar rats, which was associated with the impaired arginine methylation of several proteins in the tissues. Transfection of PRMT1-siRNA diminished the agonist-induced activation of insulin signaling and the subsequent suppression of gluconeogenic genes expression in the liver-derived cells. Pretreatment with MTA attenuated the glucose-stimulated insulin secretion, but not glucose utilization, in isolated pancreatic islets of Wistar controls, and its pattern was comparable to that of the GK rats undergoing similar modulation. SIGNIFICANCE The present data demonstrates that the impaired PRMT1 activity may be implicated in glucose intolerance in GK rats through the disturbed hepatic glucose metabolism and insulin secretion.
Collapse
Affiliation(s)
- Hiroaki Iwasaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Toshiba Rinkan Hospital, 7-9-1 Kami-tsuruma, Sagamihara, Kanagawa 228-8585, Japan.
| |
Collapse
|
1349
|
Arginine methylation of the ICP27 RGG box regulates ICP27 export and is required for efficient herpes simplex virus 1 replication. J Virol 2009; 83:5309-20. [PMID: 19321610 DOI: 10.1128/jvi.00238-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The herpes simplex virus 1 (HSV-1) multifunctional regulatory protein ICP27 shuttles between the nucleus and cytoplasm in its role as a viral mRNA export factor. Arginine methylation on glycine- and arginine-rich motifs has been shown to regulate protein export. ICP27 contains an RGG box and has been shown to be methylated during viral infection. We found by mass spectrometric analysis that three arginine residues within the RGG box were methylated. Viral mutants with substitutions of lysine for arginine residues were created as single, double, and triple mutants. Growth of these mutants was impaired and the viral replication cycle was delayed compared to wild-type HSV-1. Most striking was the finding that under conditions of hypomethylation resulting from infection with arginine substitution mutants or treatment of wild-type HSV-1-infected cells with the methylation inhibitor adenosine dialdehyde, ICP27 export to the cytoplasm occurred earlier and was more rapid than wild-type ICP27 export. We conclude that arginine methylation of the ICP27 RGG box regulates its export activity and that early export of ICP27 interferes with the performance of its nuclear functions.
Collapse
|
1350
|
Erhard KF, Stonaker JL, Parkinson SE, Lim JP, Hale CJ, Hollick JB. RNA polymerase IV functions in paramutation in Zea mays. Science 2009; 323:1201-5. [PMID: 19251626 DOI: 10.1126/science.1164508] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plants have distinct RNA polymerase complexes (Pol IV and Pol V) with largely unknown roles in maintaining small RNA-associated gene silencing. Curiously, the eudicot Arabidopsis thaliana is not affected when either function is lost. By use of mutation selection and positional cloning, we showed that the largest subunit of the presumed maize Pol IV is involved in paramutation, an inherited epigenetic change facilitated by an interaction between two alleles, as well as normal maize development. Bioinformatics analyses and nuclear run-on transcription assays indicate that Pol IV does not engage in the efficient RNA synthesis typical of the three major eukaryotic DNA-dependent RNA polymerases. These results indicate that Pol IV employs abnormal RNA polymerase activities to achieve genome-wide silencing and that its absence affects both maize development and heritable epigenetic changes.
Collapse
Affiliation(s)
- Karl F Erhard
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | | | | | |
Collapse
|