1351
|
Tahiliani PD, Singh L, Auer KL, LaFlamme SE. The role of conserved amino acid motifs within the integrin beta3 cytoplasmic domain in triggering focal adhesion kinase phosphorylation. J Biol Chem 1997; 272:7892-8. [PMID: 9065456 DOI: 10.1074/jbc.272.12.7892] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Integrin-mediated adhesion of cells to extracellular matrix proteins triggers a variety of intracellular signaling pathways including a cascade of tyrosine phosphorylations. In many cell types, the cytoplasmic focal adhesion tyrosine kinase, FAK, appears to be the initial protein that becomes tyrosine-phosphorylated in response to adhesion; however, the molecular mechanisms regulating integrin-triggered FAK phosphorylation are not understood. Previous studies have shown that the integrin beta1, beta3, and beta5 subunit cytoplasmic domains all contain sufficient information to trigger FAK phosphorylation when expressed in single-subunit chimeric receptors connected to an extracellular reporter. In the present study, beta3 cytoplasmic domain deletion and substitution mutants were constructed to identify amino acids within the integrin beta3 cytoplasmic domain that regulate its ability to trigger FAK phosphorylation. Cells transiently expressing chimeric receptors containing these mutant cytoplasmic domains were magnetically sorted and assayed for the tyrosine phosphorylation of FAK. Analysis of these mutants indicated that structural information in both the membrane-proximal and C-terminal segments of the beta3 cytoplasmic domain is important for triggering FAK phosphorylation. In the C-terminal segment of the beta3 cytoplasmic domain, the highly conserved NPXY motif was found to be required for the beta3 cytoplasmic domain to trigger FAK phosphorylation. However, the putative FAK binding domain within the N-terminal segment of the beta3 cytoplasmic domain was found to be neither required nor sufficient for this signaling event. We also demonstrate that the serine 752 to proline mutation, known to cause a variant of Glanzmann's thrombasthenia, inhibits the ability of the beta3 cytoplasmic domain to signal FAK phosphorylation, suggesting that a single mutation in the beta3 cytoplasmic domain can inhibit both "inside-out" and "outside-in" integrin signaling.
Collapse
Affiliation(s)
- P D Tahiliani
- Department of Physiology and Cell Biology, Albany Medical College, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
1352
|
Farmer SC, Sun CW, Winnier GE, Hogan BL, Townes TM. The bZIP transcription factor LCR-F1 is essential for mesoderm formation in mouse development. Genes Dev 1997; 11:786-98. [PMID: 9087432 DOI: 10.1101/gad.11.6.786] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
LCR-F1 is a mammalian bZIP transcription factor containing a basic amino acid domain highly homologous to a domain in the Drosophila Cap 'N' Collar and Caenorhabditis elegans SKN-1 proteins. LCR-F1 binds to AP1-like sequences in the human beta-globin locus control region and activates high-level expression of beta-globin genes. To assess the role of LCR-F1 in mammalian development, the mouse Lcrf1 gene was deleted in embryonic stem (ES) cells, and mice derived from these cells were mated to produce Lcrf1 null animals. Homozygous mutant embryos progressed normally to the late egg cylinder stage at approximately 6.5 days post coitus (dpc), but development was arrested before 7.5 dpc. Lcrf1 mutant embryos failed to form a primitive streak and lacked detectable mesoderm. These results demonstrate that LCR-F1 is essential for gastrulation in the mouse and suggest that this transcription factor controls expression of genes critical for the earliest events in mesoderm formation. Interestingly, Lcrf1 null ES cells injected into wild-type blastocysts contributed to all mesodermally derived tissues examined, including erythroid cells producing hemoglobin. These results demonstrate that the Lcrf1 mutation is not cell autonomous and suggest that LCR-F1 regulates expression of signaling molecules essential for gastrulation. The synthesis of normal hemoglobin levels in erythroid cells of chimeras derived from Lcrf1 null cells suggests that LCR-F1 is not essential for globin gene expression. LCR-F1 and the related bZIP transcription factors NF-E2 p45 and NRF2 must compensate for each other in globin gene regulation.
Collapse
Affiliation(s)
- S C Farmer
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
1353
|
Mazaki Y, Hashimoto S, Sabe H. Monocyte cells and cancer cells express novel paxillin isoforms with different binding properties to focal adhesion proteins. J Biol Chem 1997; 272:7437-44. [PMID: 9054445 DOI: 10.1074/jbc.272.11.7437] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The versatility of integrin functions is mediated by engagement of a number of proteins that assemble with integrins. Among them, paxillin is one of the important molecules interacting with a variety of signaling molecules and cytoskeletal building blocks. We report here that paxillin is not a single molecule with a unique physiological property. We identified two human paxillin isoforms, beta and gamma. These isoforms have distinct amino acid insertions; each consists of a distinct exon, at the same site of previously reported paxillin (paxillin alpha). Several proteins were co-precipitated with paxillin, and we found that beta bound to focal adhesion kinase but weakly to vinculin, and gamma bound to vinculin but only weakly to focal adhesion kinase, although both bound equally to talin. No additional proteins were found to bind to beta and gamma over those binding to alpha. Unlike the alpha isoform, beta and gamma mRNAs were not detected in normal tissues, but several cancer cells expressed both alpha and beta proteins simultaneously. All three isoform proteins were expressed in promonocytic cells with ratios comparable with each other, and the expression patterns were altered during differentiation of floating promonocytic cells into adherent macrophage-like cells. Therefore, each isoform of paxillin exhibits distinct expression and different biochemical as well as physiological properties and thereby appears to act as a distinct module involved in different functions of integrins.
Collapse
Affiliation(s)
- Y Mazaki
- Institute for Virus Research, Kyoto University, Kyoto 606, Japan
| | | | | |
Collapse
|
1354
|
Schlaepfer DD, Broome MA, Hunter T. Fibronectin-stimulated signaling from a focal adhesion kinase-c-Src complex: involvement of the Grb2, p130cas, and Nck adaptor proteins. Mol Cell Biol 1997; 17:1702-13. [PMID: 9032297 PMCID: PMC231895 DOI: 10.1128/mcb.17.3.1702] [Citation(s) in RCA: 366] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.
Collapse
Affiliation(s)
- D D Schlaepfer
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
1355
|
Barry ST, Flinn HM, Humphries MJ, Critchley DR, Ridley AJ. Requirement for Rho in integrin signalling. CELL ADHESION AND COMMUNICATION 1997; 4:387-98. [PMID: 9177901 DOI: 10.3109/15419069709004456] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Overnight culture of Swiss 3T3 cells in serum-free medium leads to loss of focal adhesions and associated actin stress fibres, although the cells remain well spread. The small GTP-binding protein Rho is required for the formation of stress fibres and focal adhesions induced by growth factors such as lysophosphatidic acid (LPA) in serum-starved Swiss 3T3 cells, and for the LPA-induced tyrosine phosphorylation of several focal adhesion proteins. Plating of cells on extracellular matrix proteins also stimulates protein tyrosine phosphorylation and the formation of stress fibres and focal adhesions in the absence of added growth factors. These responses were inhibited in cells scrape-loaded with the Rho inhibitor C3 transferase. Focal adhesion and stress fibre formation was also triggered by addition of a peptide GRGDS, which is recognised by a number of integrins and is contained within the cell binding domain of a variety of extracellular matrix proteins. The activity of the GRGDS peptide was blocked by microinjecting cells with C3 transferase, suggesting that peptide binding to integrins stimulates a Rho-dependent assembly of focal adhesions. These experiments indicate that Rho is involved in signalling downstream of integrins.
Collapse
Affiliation(s)
- S T Barry
- Department of Biochemistry, University of Leicester, UK
| | | | | | | | | |
Collapse
|
1356
|
Polte TR, Hanks SK. Complexes of focal adhesion kinase (FAK) and Crk-associated substrate (p130(Cas)) are elevated in cytoskeleton-associated fractions following adhesion and Src transformation. Requirements for Src kinase activity and FAK proline-rich motifs. J Biol Chem 1997; 272:5501-9. [PMID: 9038154 DOI: 10.1074/jbc.272.9.5501] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The focal adhesion kinase (FAK) and Crk-associated substrate, p130(Cas) (Cas), have been implicated in diverse signaling pathways including those mediated by integrins, G-protein-coupled receptors, tyrosine kinase receptors, and the v-src and v-crk oncogenes. The recent identification of a direct interaction between FAK and Cas prompted the examination of potential regulation of FAK.Cas complexes by factors that result in concomitant increase in their phosphotyrosine content, namely cell adhesion and transformation by Src. Both conditions resulted in elevated FAK.Cas complex levels in nonionic detergent-insoluble fractions, indicating increased association with the cytoskeleton. For activated Src, this effect requires an active Src catalytic domain but not its Src homology 2 (SH2) or Src homology 3 (SH3) domains. FAK kinase domain tyrosines 576 and 577 are also required, suggesting that direct phosphorylation of these sites by Src may influence the solubility and/or stability of the complex. FAK-Cas association was only observed in the context of Cas binding to at least one of two distinct proline-rich sites on FAK. These findings firmly establish a direct interaction between FAK and Cas and demonstrate that Src can influence the subcellular localization of the complex by a tyrosine phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- T R Polte
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
1357
|
Hughes PE, Renshaw MW, Pfaff M, Forsyth J, Keivens VM, Schwartz MA, Ginsberg MH. Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 1997; 88:521-30. [PMID: 9038343 DOI: 10.1016/s0092-8674(00)81892-9] [Citation(s) in RCA: 392] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rapid modulation of ligand binding affinity ("activation") is a central property of the integrin cell adhesion receptors. Using a screen for suppressors of integrin activation, we identified the small GTP-binding protein, H-Ras, and its effector kinase, Raf-1, as negative regulators of integrin activation. H-Ras inhibited the activation of integrins with three distinct alpha and beta subunit cytoplasmic domains. Suppression was not associated with integrin phosphorylation and was independent of both mRNA transcription and protein synthesis. Furthermore, suppression correlated with activation of the ERK MAP kinase pathway. Thus, regulation of integrin affinity state is a novel, transcription-independent function of a Ras-linked MAP kinase pathway that may mediate a negative feedback loop in integrin function.
Collapse
Affiliation(s)
- P E Hughes
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
1358
|
Leventhal PS, Shelden EA, Kim B, Feldman EL. Tyrosine phosphorylation of paxillin and focal adhesion kinase during insulin-like growth factor-I-stimulated lamellipodial advance. J Biol Chem 1997; 272:5214-8. [PMID: 9030591 DOI: 10.1074/jbc.272.8.5214] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the current studies, we examined whether focal adhesion kinase (FAK) and paxillin play a role in insulin-like growth factor-I (IGF-I)-stimulated morphological changes in neuronal cells. In SH-SY5Y human neuroblastoma cells, 10 nM IGF-I enhanced the extension of lamellipodia within 30 min. Scanning electron microscopy and staining with rhodamine-phalloidin showed that these lamellipodia displayed ruffles, filopodia, and a distinct meshwork of actin filaments. Immunofluorescent staining identified focal concentrations of FAK, paxillin, and phosphotyrosine within the lamellipodia. Immunoprecipitation experiments revealed that FAK and paxillin are tyrosine-phosphorylated during IGF-I-stimulated lamellipodial extension. Maximal phosphorylation of FAK and paxillin was observed 15-30 min after the addition of 10 nM IGF-I, whereas maximal IGF-I receptor phosphorylation occurred within 5 min. FAK, paxillin, and IGF-I receptor tyrosine phosphorylation had similar concentration-response curves and were inhibited by the receptor blocking antibody alphaIR-3. These results indicate that FAK and paxillin are tyrosine-phosphorylated during IGF-I-stimulated lamellipodial advance and suggest that the tyrosine phosphorylation of these two proteins helps mediate IGF-I-stimulated cell and growth cone motility. These responses contrast directly with recent reports showing insulin-stimulated dephosphorylation of FAK and paxillin.
Collapse
Affiliation(s)
- P S Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
1359
|
Ilić D, Damsky CH, Yamamoto T. Focal adhesion kinase: at the crossroads of signal transduction. J Cell Sci 1997; 110 ( Pt 4):401-7. [PMID: 9067592 DOI: 10.1242/jcs.110.4.401] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Morphogenetic processes during development, including cell migration, depend on signals from both the extracellular matrix (ECM) and soluble signaling factors. Extensive evidence has shown that the nonreceptor tyrosine kinase, focal adhesion kinase (FAK), is activated in response to both kind of signal. The most definitive evidence that FAK is directly downstream of signals initiated by the ECM comes from comparing the phenotypes of mice deficient for FAK and the ECM molecule, fibronectin: in both cases embryos die at about E8.5 and display almost identical severe vascular and other mesodermal defects. It is now clear that there are additional FAK-like proteins, indicating the existence of a FAK family. Furthermore, FAK is not located at adhesive sites in all cells where it is expressed. This, plus extensive data indicating that FAK becomes activated in response to several soluble signaling factors, suggests that the FAK family may be at the crossroads of multiple signaling pathways that affect cell and developmental processes.
Collapse
Affiliation(s)
- D Ilić
- Department of Oncology, Institute of Medical Science, Tokyo University, Minato-ku, Japan
| | | | | |
Collapse
|
1360
|
Abstract
Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase implicated in controlling cellular responses to the engagement of cell-surface integrins, including cell spreading and migration, survival and proliferation. Aberrant FAK signaling may contribute to the process of cell transformation by certain oncoproteins, including v-Src. Progress toward elucidating the events leading to FAK activation following integrin-mediated cell adhesion, as well as events downstream of FAK, has come through the identification of FAK phosphorylation sites and interacting proteins. A signaling partnership is formed between FAK and Src-family kinases, leading to tyrosine phosphorylation of FAK and associated 'docking' proteins Cas and paxillin. Subsequent recruitment of proteins containing Src homology 2 domains, including Grb2 and c-Crk, to the complex is likely to trigger adhesion-induced cellular responses, including changes to the actin cytoskeleton and activation of the Ras-MAP kinase pathway.
Collapse
Affiliation(s)
- S K Hanks
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
1361
|
Tanaka T, Yamaguchi R, Sabe H, Sekiguchi K, Healy JM. Paxillin association in vitro with integrin cytoplasmic domain peptides. FEBS Lett 1996; 399:53-8. [PMID: 8980118 DOI: 10.1016/s0014-5793(96)01280-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Short cytoplasmic domains of integrin heterodimers are crucial for transduction of signals generated by adhesion of cells to the extracellular matrix. Here, we describe the use of peptides mimicking the intracellular tails of integrin alpha5beta1 to assay in vitro associations with cytoskeletal proteins. Our results suggest that the focal adhesion protein, paxillin, may interact directly with the intracellular region of the integrin beta1 subunit. Paxillin is known to form stable complexes with several signaling molecules, including focal adhesion kinase. Physical interaction between paxillin and the beta1 cytoplasmic domain suggests a model in which paxillin may function as a key intermediary in integrin-mediated signal transduction.
Collapse
Affiliation(s)
- T Tanaka
- Biomolecular Engineering Research Institute, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
1362
|
Salgia R, Avraham S, Pisick E, Li JL, Raja S, Greenfield EA, Sattler M, Avraham H, Griffin JD. The related adhesion focal tyrosine kinase forms a complex with paxillin in hematopoietic cells. J Biol Chem 1996; 271:31222-6. [PMID: 8940124 DOI: 10.1074/jbc.271.49.31222] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Related adhesion focal tyrosine kinase (RAFTK), also known as proline-rich tyrosine kinase 2 and cellular adhesion kinase beta, has been recently cloned and characterized as a member of the focal adhesion kinase (FAK) subfamily. RAFTK has an overall 48% amino acid homology to p125(FAK) and contains a kinase domain but lacks a transmembrane region, myristylation sites, and Src homology region 2 and 3 domains. By Northern blot analysis, RAFTK is expressed in myeloid, lymphoid, and megakaryocytic hematopoietic cells. Like p125(FAK), we found that RAFTK interacts with the focal adhesion protein paxillin. In the lymphoid cell line BaF3 and the myeloid cell line 32Dcl3, RAFTK coprecipitates with paxillin. Using in vitro binding assays, RAFTK and paxillin were shown to bind directly, through a segment of paxillin that required amino acids 100-227 and a domain in the C terminus of RAFTK. In vitro, RAFTK could phosphorylate paxillin on tyrosine residues. These results suggest that RAFTK, as well as p125(FAK), may be important in phosphotyrosine-signaling events within the focal adhesion.
Collapse
Affiliation(s)
- R Salgia
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1363
|
Lim L, Manser E, Leung T, Hall C. Regulation of phosphorylation pathways by p21 GTPases. The p21 Ras-related Rho subfamily and its role in phosphorylation signalling pathways. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:171-85. [PMID: 8973630 DOI: 10.1111/j.1432-1033.1996.0171r.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The oncogenic Ras p21 GTPases regulate phosphorylation pathways that underlie a wealth of activities, including growth and differentiation, in organisms ranging from yeast to human. In metazoa, growth factors trigger conversion of Ras from an inactive GDP-bound form to an active GTP-bound form. This activation of Ras leads to activation of Raf. Raf is one of the initial kinases in the cytoplasmic mitogen-activated protein kinase (MAPK) cascade, involving extracellular-signal-regulated kinases (ERK), which culminates in nuclear transcription. The Ras-related subfamily of Rho p21s, including Rho, Rac and Cdc42 are similarly active in their GTP-bound forms. These p21s mediate growth-factor-induced morphological changes involving actin-based cellular structures. For example, in mammalian fibroblasts, Rho mediates the formation of cytoskeletal stress fibres induced by lysophosphatidic acid, while Rac mediates the formation of membrane ruffles induced by platelet-derived growth factor, and Cdc42 mediates the formation of peripheral filopodia by bradykinin. In some cases, factor-induced Rac activation results in Rho activation, and factor-induced Cdc42 activation leads to Rac activation, as determined by specific morphological changes. Although separate Cdc42/Rac and Rac/Rho hierarchies exist, these might not extend into a linear form (i.e. Cdc42-->Rac-->Rho) since Cdc42 and Rho activities may be competitive or even antagonistic. Thus Cdc42-mediated formation of filopodia is accompanied by loss of stress fibres (whose formation is mediated by Rho). Recently, mammalian kinases that bind to the GTP-bound forms of Rho p21s have been isolated. These kinases include the p21-activated serine/threonine kinase (PAK), which is stimulated by binding to Cdc42 and Rac, and the Rho-binding serine/threonine kinase (ROK), which is not as strongly stimulated by binding. These kinases act as effectors for their p21 partners since they can directly affect the reorganization of the relevant actin-containing structures. ROK promotes the formation of Rho-induced actin-containing stress fibres and focal-adhesion complexes, to which the ends of the stress fibres attach. PAK stimulates the disassembly of stress fibres, which has been shown to accompany formation of Cdc42-induced peripheral-actin-containing structures, including filopodia, which with Rac-induced membrane ruffles play a role in cell movement. PAK also fosters loss of focal-adhesion complexes. Thus, there is cooperation between different Rho p21s as well as antagonism, with their associated kinases having a role in the integration of the reorganization of the actin cytoskeleton. The similarity of PAK to the Saccharomyces cerevisiae kinase Ste20p, which initiates the yeast mating/pheromone MAPK cascade, led to experiments showing that Cdc42 regulates Ste20p in this MAPK pathway. This similarity has also led to the demonstration that mammalian Cdc42 and Rac can signal to the nucleus through MAPK pathways. However, c-Jun N-terminal kinase (JNK, stress-activated protein kinase) rather than ERK, is involved. PAK have been implicated in the JNK pathway, but their exact roles are uncertain. Thus members of the Rho subfamily, and kinases that bind to these p21s are intimately involved in immediate morphological processes as well as long-term transcriptional events.
Collapse
Affiliation(s)
- L Lim
- Institute of Neurology, London, UK
| | | | | | | |
Collapse
|
1364
|
Hungerford JE, Compton MT, Matter ML, Hoffstrom BG, Otey CA. Inhibition of pp125FAK in cultured fibroblasts results in apoptosis. J Biophys Biochem Cytol 1996; 135:1383-90. [PMID: 8947559 PMCID: PMC2121083 DOI: 10.1083/jcb.135.5.1383] [Citation(s) in RCA: 292] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tyrosine kinase called pp125FAK is believed to play an important role in integrin-mediated signal transduction. pp125FAK is associated both functionally and spatially with integrins, which are the cell surface receptors for extracellular matrix components. Although the precise function of pp125FAK is not known, two possibilities have been proposed: pp125FAK may regulate the assembly of focal adhesions in spreading or migrating cells, or pp125FAK may participate in a signal transduction cascade to inform the nucleus that the cell is anchored. To test these models in living cells, a peptide representing the focal adhesion kinase (FAK)-binding site of the beta 1 tail was coupled to carrier protein and injected into cultured cells to competitively inhibit the binding of pp125FAK to endogenous integrin, thus inhibiting activation of pp125FAK on a cell-by-cell basis. In addition, an antibody directed against an epitope adjacent to the focal adhesion targeting sequence on pp125FAK was microinjected, as an alternative means of inhibiting pp125FAK activation. It was observed that when rounded cells were injected with either the integrin peptide or the anti-FAK antibody, the cells rapidly began to apoptose, within 4 h after injection. These results indicate that pp125FAK may play a critical role in suppressing apoptosis in fibroblasts.
Collapse
Affiliation(s)
- J E Hungerford
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
1365
|
Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 1996; 87:733-43. [PMID: 8929541 DOI: 10.1016/s0092-8674(00)81392-6] [Citation(s) in RCA: 569] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We provide evidence that a class of integrins combines with the adaptor Shc and thereby with Grb2. Coimmunoprecipitation and mutagenesis experiments indicate that the recruitment of Shc is specified by the extracellular or transmembrane domain of integrin alpha subunit and suggest that this process is mediated by caveolin. Mutagenesis and dominant-negative inhibition studies reveal that Shc is necessary and sufficient for activation of the MAP kinase pathway in response to integrin ligation. Mitogens and Shc-activating integrins cooperate to promote transcription from the Fos serum response element and transit through G1. In contrast, adhesion mediated by integrins not linked to Shc results in cell cycle arrest and apoptosis even in presence of mitogens. These findings indicate that the association of specific integrins with Shc regulates cell survival and cell cycle progression.
Collapse
Affiliation(s)
- K K Wary
- Department of Pathology and Kaplan Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
1366
|
Brown MC, Perrotta JA, Turner CE. Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J Biophys Biochem Cytol 1996; 135:1109-23. [PMID: 8922390 PMCID: PMC2133378 DOI: 10.1083/jcb.135.4.1109] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Paxillin is a 68-kD focal adhesion phosphoprotein that interacts with several proteins including members of the src family of tyrosine kinases, the transforming protein v-crk, and the cytoskeletal proteins vinculin and the tyrosine kinase, focal adhesion kinase (FAK). This suggests a function for paxillin as a molecular adaptor, responsible for the recruitment of structural and signaling molecules to focal adhesions. The current study defines the vinculin- and FAK-interaction domains on paxillin and identifies the principal paxillin focal adhesion targeting motif. Using truncation and deletion mutagenesis, we have localized the vinculin-binding site on paxillin to a contiguous stretch of 21 amino acids spanning residues 143-164. In contrast, maximal binding of FAK to paxillin requires, in addition to the region of paxillin spanning amino acids 143-164, a carboxyl-terminal domain encompassing residues 265-313. These data demonstrate the presence of a single binding site for vinculin, and at least two binding sites for FAK that are separated by an intervening stretch of 100 amino acids. Vinculin- and FAK-binding activities within amino acids 143-164 were separable since mutation of amino acid 151 from a negatively charged glutamic acid to the uncharged polar residue glutamine (E151Q) reduced binding of vinculin to paxillin by >90%, with no reduction in the binding capacity for FAK. The requirement for focal adhesion targeting of the vinculin- and FAK-binding regions within paxillin was determined by transfection into CHO.K1 fibroblasts. Significantly and surprisingly, paxillin constructs containing both deletion and point mutations that abrogate binding of FAK and/or vinculin were found to target effectively to focal adhesions. Additionally, expression of the amino-terminal 313 amino acids of paxillin containing intact vinculin- and FAK-binding domains failed to target to focal adhesions. This indicated other regions of paxillin were functioning as focal adhesion localization motifs. The carboxyl-terminal half of paxillin (amino acids 313-559) contains four contiguous double zinc finger LIM domains. Transfection analyses of sequential carboxyl-terminal truncations of the four individual LIM motifs and site-directed mutagenesis of LIM domains 1, 2, and 3, as well as deletion mutagenesis, revealed that the principal mechanism of targeting paxillin to focal adhesions is through LIM3. These data demonstrate that paxillin localizes to focal adhesions independent of interactions with vinculin and/or FAK, and represents the first definitive demonstration of LIM domains functioning as a primary determinant of protein subcellular localization to focal adhesions.
Collapse
Affiliation(s)
- M C Brown
- Department of Anatomy and Cell Biology, State University of New York Health Science Center at Syracuse, 13210, USA
| | | | | |
Collapse
|
1367
|
Rodríguez-Fernández JL, Rozengurt E. Bombesin, bradykinin, vasopressin, and phorbol esters rapidly and transiently activate Src family tyrosine kinases in Swiss 3T3 cells. Dissociation from tyrosine phosphorylation of p125 focal adhesion kinase. J Biol Chem 1996; 271:27895-901. [PMID: 8910389 DOI: 10.1074/jbc.271.44.27895] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Treatment of quiescent Swiss 3T3 cells with bombesin induces a rapid (</=40 s) and transient increase in the kinase activity of the Src family of tyrosine kinases, as determined by autophosphorylation in immune complex kinase assays (4.6 +/- 0.2-fold stimulation, n = 44) and phosphorylation of exogenous substrates. Phorbol 12, 13-dibutyrate increased the activity of Src family kinases with similar kinetics but was less effective than bombesin. However, Src family kinase activation by bombesin is not dependent either on protein kinase C or Ca2+. Bombesin stimulation of Src family kinase activity could also be dissociated from p125 focal adhesion kinase tyrosine phosphorylation. Neither treatment with cytochalasin D nor placement of the cells in suspension prevented the stimulation of Src family kinase activity induced by bombesin, but both abolished bombesin-induced tyrosine phosphorylation of p125 focal adhesion kinase. The stimulation of the Src family kinase activity by bombesin was completely prevented by treatment with vanadate, a potent inhibitor of protein-tyrosine phosphatases. Bradykinin and vasopressin also stimulated Src family kinase activity transiently, and this stimulation was also inhibited by vanadate. Our results dissect two separate pathways that lead to protein tyrosine phosphorylation in neuropeptide-stimulated Swiss 3T3 cells.
Collapse
Affiliation(s)
- J L Rodríguez-Fernández
- Imperial Cancer Research Fund, P.O. Box 123, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
1368
|
Juliano R. Cooperation between soluble factors and integrin-mediated cell anchorage in the control of cell growth and differentiation. Bioessays 1996; 18:911-7. [PMID: 8939069 DOI: 10.1002/bies.950181110] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recently it has become clear that integrins and other adhesive receptors play an important role in the control of cell growth and differentiation. In various cell types, anchorage to the extracellular matrix via integrins strongly influences the ability of the cell to respond to soluble mitogens or to differentiation factors. Thus adhesive receptors must generate signals that influence cell behavior. Some of the pathways of adhesion receptor signaling are now beginning to be worked out, but there is still much to learn. In particular, the mechanistic basis for the cooperation between anchorage signals and signals from soluble growth and differentiation factors remains ill-defined. This review will examine some of the current information linking adhesion receptors to control of mitogenesis and differentiation.
Collapse
Affiliation(s)
- R Juliano
- Dept of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill 27599, USA
| |
Collapse
|
1369
|
Abstract
Focal adhesions are sites of tight adhesion to the underlying extracellular matrix developed by cells in culture. They provided a structural link between the actin cytoskeleton and the extracellular matrix and are regions of signal transduction that relate to growth control. The assembly of focal adhesions is regulated by the GTP-binding protein Rho. Rho stimulates contractility which, in cells that are tightly adherent to the substrate, generates isometric tension. In turn, this leads to the bundling of actin filaments and the aggregation of integrins (extracellular matrix receptors) in the plane of the membrane. The aggregation of integrins activates the focal adhesion kinase and leads to the assembly of a multicomponent signaling complex.
Collapse
Affiliation(s)
- K Burridge
- Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill 27599-7090, USA
| | | |
Collapse
|
1370
|
Chen HC, Appeddu PA, Isoda H, Guan JL. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem 1996; 271:26329-34. [PMID: 8824286 DOI: 10.1074/jbc.271.42.26329] [Citation(s) in RCA: 434] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have shown previously that cell adhesion or platelet-derived growth factor (PDGF) promotes the in vivo association of focal adhesion kinase (FAK) with phosphatidylinositol (PI) 3-kinase. In vitro experiments indicated that this interaction was mediated by the p85 subunit of PI 3-kinase and dependent on the tyrosine phosphorylation of FAK. Here we report data suggesting that the major autophosphorylation site of FAK (Tyr-397) is the binding site for the SH2 domains of p85 in vitro and is also required for the association of FAK with PI 3-kinase in vivo. We also show that Tyr-397 is responsible for the increased FAK:PI 3-kinase association upon PDGF stimulation, implying that no additional site of FAK was involved in its binding to PI 3-kinase after PDGF stimulation. Finally, we present evidence that the interaction of PI 3-kinase with Tyr-397 of FAK stimulates its activity. Together, these results suggest that FAK activation and autophosphorylation at Tyr-397 may lead to its association with PI 3-kinase through the SH2 domains of p85, which can subsequently activate PI 3-kinase during cell adhesion.
Collapse
Affiliation(s)
- H C Chen
- Cancer Biology Laboratories, Department of Pathology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
1371
|
Gao AG, Lindberg FP, Dimitry JM, Brown EJ, Frazier WA. Thrombospondin modulates alpha v beta 3 function through integrin-associated protein. J Cell Biol 1996; 135:533-44. [PMID: 8896608 PMCID: PMC2121041 DOI: 10.1083/jcb.135.2.533] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Integrin-associated protein (IAP) is a receptor for the carboxyl-terminal "cell-binding domain" (CBD) of thrombospondin 1 (TS1). IAP associates with alpha v beta 3 integrin and mAbs against IAP inhibit certain integrin functions. Here we examine the effects of the TS1 CBD and 4N1K (KRFYVVMWKK), a cell-binding peptide derived from it, on the adhesion and spreading on vitronectin (VN) of C32 human melanoma cells which express IAP, alpha v beta 3, and alpha v beta 5. Cells adhere to VN at low surface densities via alpha v beta 5 and spread very slowly while adhesion to higher density VN involves both alpha v beta 5 and alpha v beta 3 and results in rapid spreading. Spreading of the cells, but not adhesion, on sparse VN coatings is markedly enhanced by the presence of soluble TS1, the recombinant CBD and 4N1K, but not the "mutant" peptide 4NGG, KRFYGGMWKK, which fails to bind IAP. This enhanced spreading is completely blocked by mAb LM609 against alpha v beta 3 and the anti-IAP mAb B6H12. Correlated with this enhanced spreading is increased tyrosine phosphorylation of focal adhesion kinase (FAK), paxillin, and a protein of ca. 90 kD. The enhanced spreading induced by TS1 and 4N1K and the constitutive spreading on higher density VN are both blocked by calphostin C (100 nM), wortmannin (10 nM), and tyrosine kinase inhibitors. In contrast, pertussis toxin specifically blocks only the TS1 stimulated spreading on low density VN, indicating that IAP exerts its effects on signal transduction via a heterotrimeric Gi protein acting upstream of a common cell spreading pathway which includes PI-3 kinase, PKC, and tyrosine kinases.
Collapse
Affiliation(s)
- A G Gao
- Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
1372
|
Lee K, Nichols J, Smith A. Identification of a developmentally regulated protein tyrosine phosphatase in embryonic stem cells that is a marker of pluripotential epiblast and early mesoderm. Mech Dev 1996; 59:153-64. [PMID: 8951793 DOI: 10.1016/0925-4773(96)00586-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A sensitive RT-PCR display technique was used to examine the expression of protein tyrosine phosphatases (PTPs) during the differentiation of mouse embryonic stem (ES) cells. The majority of PTPs are expressed constitutively but one is present only in undifferentiated ES cells. This PTP was cloned and named ES cell phosphatase (ESP). ESP mRNA is detectable in oocytes and throughout early mouse embryo development. At early egg cylinder stages, transcripts are localised in the pluripotential epiblast. As gastrulation commences, however, epiblast expression is lost. Transcripts are present transiently in newly formed embryonic mesoderm. These data suggest that this transmembrane signaling molecule is associated with developmental lability in early embryogenesis.
Collapse
Affiliation(s)
- K Lee
- Centre for Genome Research, University of Edinburgh, UK
| | | | | |
Collapse
|
1373
|
Schlaepfer DD, Hunter T. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol 1996; 16:5623-33. [PMID: 8816475 PMCID: PMC231562 DOI: 10.1128/mcb.16.10.5623] [Citation(s) in RCA: 362] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase (PTK) that associates with integrin receptors and participates in extracellular matrix-mediated signal transduction events. We showed previously that the c-Src nonreceptor PTK and the Grb2 SH2/SH3 adaptor protein bound directly to FAK after fibronectin stimulation (D. D. Schlaepfer, S.K. Hanks, T. Hunter, and P. van der Geer, Nature [London] 372:786-791, 1994). Here, we present evidence that c-Src association with FAK is required for Grb2 binding to FAK. Using a tryptic phosphopeptide mapping approach, the in vivo phosphorylation of the Grb2 binding site on FAK (Tyr-925) was detected after fibronectin stimulation of NIH 3T3 cells and was constitutively phosphorylated in v-Src-transformed NIH 3T3 cells. In vitro, c-Src phosphorylated FAK Tyr-925 in a glutathione S-transferase-FAK C-terminal domain fusion protein, whereas FAK did not. Using epitope-tagged FAK constructs, transiently expressed in human 293 cells, we determined the effect of site-directed mutations on c-Src and Grb2 binding to FAK. Mutation of FAK Tyr-925 disrupted Grb2 binding, whereas mutation of the c-Src binding site on FAK (Tyr-397) disrupted both c-Src and Grb2 binding to FAK in vivo. These results support a model whereby Src-family PTKs are recruited to FAK and focal adhesions following integrin-induced autophosphorylation and exposure of FAK Tyr-397. Src-family binding and phosphorylation of FAK at Tyr-925 creates a Grb2 SH2-domain binding site and provides a link to the activation of the Ras signal transduction pathway. In Src-transformed cells, this pathway may be constitutively activated as a result of FAK Tyr-925 phosphorylation in the absence of integrin stimulation.
Collapse
Affiliation(s)
- D D Schlaepfer
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
1374
|
Nishimura M, Machida K, Imaizumi M, Abe T, Umeda T, Takeshima E, Watanabe T, Ohnishi Y, Takagi K, Hamaguchi M. Tyrosine phosphorylation of 100-130 kDa proteins in lung cancer correlates with poor prognosis. Br J Cancer 1996; 74:780-7. [PMID: 8795582 PMCID: PMC2074703 DOI: 10.1038/bjc.1996.436] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To search for the signalling pathways in lung cancer relevant to its aggressive behaviour, we studied tyrosine phosphorylated proteins in lung cancer cell lines and surgical specimens. We found that the profiles of protein phosphorylation were closely matched among these cell lines and cancer tissues of different histological origins, and 100-130 kDa proteins were the major components of phosphorylated proteins. In surgical specimens, approximately half of the cases showed tyrosine phosphorylation of these proteins in a tumour-specific manner, and phosphorylation of these proteins showed good correlation with the survival length of patients after operation. By immunoprecipitation with specific antibodies, we found that p125FAK, p120 and beta-catenin were the major components of tyrosine-phosphorylated proteins in the surgical specimens. These results suggest that tyrosine phosphorylation of these proteins may play a role in tumour relapse and is available as a clinical marker.
Collapse
Affiliation(s)
- M Nishimura
- Department of Thoracic Surgery, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1375
|
Cooray P, Yuan Y, Schoenwaelder SM, Mitchell CA, Salem HH, Jackson SP. Focal adhesion kinase (pp125FAK) cleavage and regulation by calpain. Biochem J 1996; 318 ( Pt 1):41-7. [PMID: 8761450 PMCID: PMC1217586 DOI: 10.1042/bj3180041] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Focal adhesion kinase (125 kDa form; pp125FAK) is a widely expressed non-receptor tyrosine kinase that is implicated in integrin-mediated signal transduction. We have identified a novel means of pp 125FAK regulation in human platelets, in which this kinase undergoes sequential proteolytic modification from the native 125 kDa form to 90, 45 and 40 kDa fragments in thrombin-, collagen- and ionophore A23187-stimulated platelets. The proteolysis of pp125FAK was prevented by pretreating platelets with the calpain inhibitors calpeptin or calpain inhibitor-1, and was reproduced in vitro by incubating immunoprecipitated pp125FAK with purified calpain. Proteolysis of pp125FAK resulted in a dramatic reduction in its autokinase activity and led to its dissociation from the cytoskeletal fraction of platelets. These studies define a novel signal-terminating role for calpain, wherein proteolytic modification of pp125FAK attenuates its autokinase activity and induces its subcellular relocation within the cell.
Collapse
Affiliation(s)
- P Cooray
- Department of Medicine, Monash Medical School, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
1376
|
Gilmore AP, Romer LH. Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol Biol Cell 1996; 7:1209-24. [PMID: 8856665 PMCID: PMC275973 DOI: 10.1091/mbc.7.8.1209] [Citation(s) in RCA: 410] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been proposed that the focal adhesion kinase (FAK) mediates focal adhesion formation through tyrosine phosphorylation during cell adhesion. We investigated the role of FAK in focal adhesion structure and function. Loading cells with a glutathione-S-transferase fusion protein (GST-Cterm) containing the FAK focal adhesion targeting sequence, but not the kinase domain, decreased the association of endogenous FAK with focal adhesions. This displacement of endogenous FAK in both BALB/c 3T3 cells and human umbilical vein endothelial cells loaded with GST-Cterm decreased focal adhesion phosphotyrosine content. Neither cell type, however, exhibited a reduction in focal adhesions after GST-Cterm loading. These results indicate that FAK mediates adhesion-associated tyrosine phosphorylation, but not the formation of focal adhesions. We then examined the effect of inhibiting FAK function on other adhesion-dependent cell behavior. Cells microinjected with GST-Cterm exhibited decreased migration. In addition, cells injected with GST-Cterm had decreased DNA synthesis compared with control-injected or noninjected cells. These findings suggest that FAK functions in the regulation of cell migration and cell proliferation.
Collapse
Affiliation(s)
- A P Gilmore
- Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill 27599, USA
| | | |
Collapse
|
1377
|
Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996; 134:793-9. [PMID: 8707856 PMCID: PMC2120934 DOI: 10.1083/jcb.134.3.793] [Citation(s) in RCA: 841] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The interactions of integrins with extracellular matrix proteins can activate focal adhesion kinase (FAK) and suppress apoptosis in normal epithelial and endothelial cells; this subset of apoptosis has been termed "anoikis." Here, we demonstrate that FAK plays a role in the suppression of anoikis. Constitutively activated forms of FAK rescued two established epithelial cell lines from anoikis. Both the major autophosphorylation site (Y397) and a site critical to the kinase activity (K454) of FAK were required for this effect. Activated FAK also transformed MDCK cells, by the criteria of anchorage-independent growth and tumor formation in nude mice. We provide evidence that this transformation resulted primarily from the cells' resistance to anoikis rather than from the activation of growth factor response pathways. These results indicate that FAK can regulate anoikis and that the conferral of anoikis resistance may suffice to transform certain epithelial cells.
Collapse
Affiliation(s)
- S M Frisch
- Burnham Institute, La Jolla Cancer Research Center, California 92037, USA.
| | | | | | | |
Collapse
|
1378
|
Lowell CA, Soriano P. Knockouts of Src-family kinases: stiff bones, wimpy T cells, and bad memories. Genes Dev 1996; 10:1845-57. [PMID: 8756343 DOI: 10.1101/gad.10.15.1845] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C A Lowell
- Department of Laboratory Medicine, University of California, San Francisco 94143, USA
| | | |
Collapse
|
1379
|
Abstract
A number of mouse mutants generated recently by gene targeting are of particular interest for the study of development. For some genes, such as Lim 1 or Otx-2, recent knockouts reveal an essential role in early patterning. In other cases, such as the activins and goosecoid, the mutant phenotypes force a re-evaluation of models that are based on studies in other vertebrates. Of particular interest also are the new compound mutants for genes where some measure of functional redundancy is expected, notably the Hox genes. Finally, recent technical advances allow the creation of conditional knockouts as well as large chromosomal alterations.
Collapse
Affiliation(s)
- B St-Jacques
- Department of Molecular and Cellular Biology, Harvard University, The Biological Laboratories, 16 Divinity Avenue, Cambridge, Massachusetts, 02138 USA.
| | | |
Collapse
|
1380
|
Cary LA, Chang JF, Guan JL. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci 1996; 109 ( Pt 7):1787-94. [PMID: 8832401 DOI: 10.1242/jcs.109.7.1787] [Citation(s) in RCA: 435] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellular interactions with the extracellular matrix proteins play important roles in a variety of biological processes. Recent studies suggest that integrin-mediated cell-matrix interaction can transduce biochemical signals across the plasma membrane to regulate cellular functions such as proliferation, differentiation and migration. These studies have implicated a critical role of focal adhesion kinase (FAK) in integrin-mediated signal transduction pathways. We report here that overexpression of FAK in CHO cells increased their migration on fibronectin. A mutation of the major autophosphorylation site Y397 in FAK abolished its ability to stimulate cell migration, while phosphorylation of Y397 in a kinase-defective FAK by endogenous FAK led to increased migration. We also find that the wild-type and the kinase-defective FAK were associated with Src and Fyn in CHO cells whereas the F397 mutant was not. These results directly demonstrate a functional role for FAK in integrin signaling leading to cell migration. They also provide evidence for the functional significance of FAK/Src complex formation in vivo.
Collapse
Affiliation(s)
- L A Cary
- Department of Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
1381
|
Gilmore AP, Burridge K. Molecular mechanisms for focal adhesion assembly through regulation of protein-protein interactions. Structure 1996; 4:647-51. [PMID: 8805551 DOI: 10.1016/s0969-2126(96)00069-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Focal adhesions provide a useful model for studying cell/extracellular matrix interactions and the subsequent cytoskeletal reorganization. Recent advances have suggested potential mechanisms by which cells may regulate focal adhesion assembly following integrin-mediated cell adhesion.
Collapse
Affiliation(s)
- A P Gilmore
- Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill 27599, USA
| | | |
Collapse
|
1382
|
Malik RK, Parsons JT. Integrin-mediated signaling in normal and malignant cells: a role of protein tyrosine kinases. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1287:73-6. [PMID: 8672530 DOI: 10.1016/0304-419x(96)00008-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- R K Malik
- Department of Pediatrics, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
1383
|
Abstract
Src is the best understood member of a family of 9 tyrosine kinases that regulates cellular responses to extracellular stimuli. Activated mutants of Src are oncogenic. Using Src as an example, and referring to other Src family members where appropriate, this review describes the structure of Src, the functions of the individual domains, the regulation of Src kinase activity in the cell, the selection of substrates, and the biological functions of Src. The review concentrates on developments in the last 6-7 years, and cites data resulting from the isolation and characterization of Src mutants, crystallographic studies of the structures of SH2, SH3 and tyrosine kinase domains, biochemical studies of Src kinase activity and binding properties, and the biology of transgenic and knockout mouse strains.
Collapse
Affiliation(s)
- M T Brown
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | | |
Collapse
|
1384
|
Chrzanowska-Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 1996; 133:1403-15. [PMID: 8682874 PMCID: PMC2120895 DOI: 10.1083/jcb.133.6.1403] [Citation(s) in RCA: 1279] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activated rhoA, a ras-related GTP-binding protein, stimulates the appearance of stress fibers, focal adhesions, and tyrosine phosphorylation in quiescent cells (Ridley, A.J., and A. Hall, 1992. Cell. 70:389-399). The pathway by which rho triggers these events has not been elucidated. Many of the agents that activate rho (e.g., vasopressin, endothelin, lysophosphatidic acid) stimulate the contractility of smooth muscle and other cells. We have investigated whether rho's induction of stress fibers, focal adhesions, and tyrosine phosphorylation is the result of its stimulation of contractility. We demonstrate that stimulation of fibroblasts with lysophosphatidic acid, which activates rho, induces myosin light chain phosphorylation. This precedes the formation of stress fibers and focal adhesions and is accompanied by increased contractility. Inhibition of contractility by several different mechanisms leads to inhibition of rho-induced stress fibers, focal adhesions, and tyrosine phosphorylation. In addition, when contractility is inhibited, integrins disperse from focal adhesions as stress fibers and focal adhesions disassemble. Conversely, upon stimulation of contractility, diffusely distributed integrins are aggregated into focal adhesions. These results suggest that activated rho stimulates contractility, driving the formation of stress fibers and focal adhesions and elevating tyrosine phosphorylation. A model is proposed to account for how contractility could promote these events.
Collapse
Affiliation(s)
- M Chrzanowska-Wodnicka
- Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill 27599, USA
| | | |
Collapse
|
1385
|
Vuori K, Hirai H, Aizawa S, Ruoslahti E. Introduction of p130cas signaling complex formation upon integrin-mediated cell adhesion: a role for Src family kinases. Mol Cell Biol 1996; 16:2606-13. [PMID: 8649368 PMCID: PMC231251 DOI: 10.1128/mcb.16.6.2606] [Citation(s) in RCA: 341] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Integrin-mediated cell adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation of intracellular proteins. Among these are the focal adhesion proteins p130cas (Cas) and focal adhesion kinase (FAK). Here we identify the kinase(s) mediating integrin-induced Cas phosphorylation and characterize protein-protein interactions mediated by phosphorylated Cas. We found that expression of a constitutively active FAK in fibroblasts results in a consecutive tyrosine phosphorylation of Cas. This effect required the autophosphorylation site of FAK, which is a binding site for Src family kinases. Integrin-mediated phosphorylation of Cas was not, however, compromised in fibroblasts lacking FAK. In contrast, adhesion-induced tyrosine phosphorylation of Cas was reduced in cells lacking Src, whereas enhanced phosphorylation of Cas was observed Csk- cells, in which Src kinases are activated. These results suggest that Src kinases are responsible for the integrin-mediated tyrosine phosphorylation of Cas. FAK seems not to be necessary for phosphorylation of Cas, but when autophosphorylated, FAK may recruit Src family kinases to phosphorylate Cas. Cas was found to form complexes with Src homology 2 (SH2) domain-containing signaling molecules, such as the SH2/SH3 adapter protein Crk, following integrin-induced tyrosine phosphorylation. Guanine nucleotide exchange factors C3G and Sos were found in the Cas-Crk complex upon integrin ligand binding. These observations suggest that Cas serves as a docking protein and may transduce signals to downstream signaling pathways following integrin-mediated cell adhesion.
Collapse
Affiliation(s)
- K Vuori
- La Jolla Cancer Research Center, Burnham Institute, California 92037, USA
| | | | | | | |
Collapse
|
1386
|
De Nichilo MO, Yamada KM. Integrin alpha v beta 5-dependent serine phosphorylation of paxillin in cultured human macrophages adherent to vitronectin. J Biol Chem 1996; 271:11016-22. [PMID: 8631923 DOI: 10.1074/jbc.271.18.11016] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The macrophage colony-stimulating factor (M-CSF) is able to induce the expression of the alpha v beta 5 integrin receptor on the surface of cultured human macrophages (De Nichilo, M. O., and Burns, G. F. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 2517-2521). In the present study, we establish that the adhesion of M-CSF-treated macrophages to vitronectin is mediated by the integrin alpha v beta 5, and show by indirect immunofluorescence analysis that alpha v beta 5 and the cytoskeletal protein paxillin localize to focal contacts upon adhesion to vitronectin. Immunoprecipitation and Western blot analysis revealed that M-CSF-treated macrophages do not express focal adhesion kinase (FAK), thereby providing direct evidence for integrin-dependent localization of paxillin to focal contacts in the absence of FAK expression. Investigation of paxillin phosphorylation by two-dimensional phosphoamino acid analysis indicates that paxillin is 99% phosphorylated on serine residue(s) in response to vitronectin adhesion, and only 1% phosphorylated on tyrosine. Stimulation of protein kinase C (PKC) activity with the phorbol ester phorbol 12-myristate 13-acetate enhances paxillin phosphorylation, while two selective inhibitors of PKC, GF109203X and chelerythrine chloride, effectively block the phosphorylation of paxillin induced in response to vitronectin adhesion. Taken together, these data demonstrate that in M-CSF-treated macrophages adherent to vitronectin, paxillin localizes to focal contacts in the absence of FAK expression and is predominantly phosphorylated on serine residue(s) in a PKC-dependent manner.
Collapse
Affiliation(s)
- M O De Nichilo
- Laboratory of Developmental Biology, NIDR, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
1387
|
Flinn HM, Ridley AJ. Rho stimulates tyrosine phosphorylation of focal adhesion kinase, p130 and paxillin. J Cell Sci 1996; 109 ( Pt 5):1133-41. [PMID: 8743960 DOI: 10.1242/jcs.109.5.1133] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small GTP-binding protein Rho rapidly stimulates the formation of focal adhesions and actin stress fibres when microinjected into serum-starved Swiss 3T3 fibroblasts. This response is inhibited by tyrosine kinase inhibitors. Addition of growth factors such as lysophosphatidic acid and bombesin to Swiss 3T3 cells stimulates a similar response, which is dependent on endogenous Rho proteins. To investigate signalling events regulated by Rho, we have scrape loaded Rho into serum-starved cells. Activated Rho stimulates the tyrosine phosphorylation of a number of proteins, including three proteins known to localise to focal adhesions, pp125FAK, p130 and paxillin. Rho-induced phosphorylation of pp125FAK, p130 and paxillin is observed in the absence of stress fibre formation and is, therefore, independent of Rho-induced actin polymerisation. We propose that the tyrosine kinase, pp125FAK, and the putative adapter proteins, paxillin and p130, are components of a Rho-regulated signal transduction pathway, and that these protein tyrosine phosphorylation events are likely to be important for the regulation of focal adhesion formation.
Collapse
Affiliation(s)
- H M Flinn
- Ludwig Institute for Cancer Research, University College London School of Medicine, UK
| | | |
Collapse
|
1388
|
Harden N, Lee J, Loh HY, Ong YM, Tan I, Leung T, Manser E, Lim L. A Drosophila homolog of the Rac- and Cdc42-activated serine/threonine kinase PAK is a potential focal adhesion and focal complex protein that colocalizes with dynamic actin structures. Mol Cell Biol 1996; 16:1896-908. [PMID: 8628256 PMCID: PMC231177 DOI: 10.1128/mcb.16.5.1896] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Changes in cell morphology are essential in the development of a multicellular organism. The regulation of the cytoskeleton by the Rho subfamily of small GTP-binding proteins is an important determinant of cell shape. The Rho subfamily has been shown to participate in a variety of morphogenetic processes during Drosophila melanogaster development. We describe here a Drosophila homolog, DPAK, of the serine/threonine kinase PAK, a protein which is a target of the Rho subfamily proteins Rac and Cdc42. Rac, Cdc42, and PAK have previously been implicated in signaling by c-Jun amino-terminal kinases. DPAK bound to activated (GTP-bound) Drosophila Rac (DRacA) and Drosophila Cdc42. Similarities in the distributions of DPAK, integrin, and phosphotyrosine suggested an association of DPAK with focal adhesions and Cdc42- and Rac-induced focal adhesion-like focal complexes. DPAK was elevated in the leading edge of epidermal cells, whose morphological changes drive dorsal closure of the embryo. We have previously shown that the accumulation of cytoskeletal elements initiating cell shape changes in these cells could be inhibited by expression of a dominant-negative DRacA transgene. We show that leading-edge epidermal cells flanking segment borders, which express particularly large amounts of DPAK, undergo transient losses of cytoskeletal structures during dorsal closure. We propose that DPAK may be regulating the cytoskeleton through its association with focal adhesions and focal complexes and may be participating with DRacA in a c-Jun amino-terminal kinase signaling pathway recently demonstrated to be required for dorsal closure.
Collapse
Affiliation(s)
- N Harden
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, National University of Singapore
| | | | | | | | | | | | | | | |
Collapse
|
1389
|
Sasaki T, Hazeki K, Hazeki O, Ui M, Katada T. Focal adhesion kinase (p125FAK) and paxillin are substrates for sphingomyelinase-induced tyrosine phosphorylation in Swiss 3T3 fibroblasts. Biochem J 1996; 315 ( Pt 3):1035-40. [PMID: 8645141 PMCID: PMC1217258 DOI: 10.1042/bj3151035] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We examined the effect of sphingomyelinase on tyrosine phosphorylation of intracellular proteins in mouse Swiss 3T3 fibroblasts. Incubation of the cells with bacterial sphingomyelinase resulted in the elevation of tyrosine phosphorylation of multiple cellular proteins of 190, 130, 120, 97 and 70 kDa within minutes. The 120 and 70 kDa tyrosine-phosphorylated peptides were identified as p125 focal adhesion kinase (p125FAK) and paxillin respectively by the use of specific antibodies against the proteins. Tyrosine kinase activity associated with anti-p125FAK immunoprecipitate was stimulated by incubation of cells with sphingomyelinase. Cytochalasin D, which selectively disrupts the network of actin filaments, inhibited sphingomyelinase-induced tyrosine phosphorylation of p125FAK and elevation of tyrosine kinase activity in the anti-p125FAK immunoprecipitates. Sphingomyelinase-induced phosphorylation of p125FAK was not inhibited by wortmannin, an inhibitor of phosphatidylinositol 3-kinase. This was in sharp contrast with a wortmannin-sensitive phosphorylation of p125FAK observed in platelet-derived growth factor (PGDF)-stimulated cells. Thus hydrolysis of sphingomyelin is considered to regulate the tyrosine kinase cascade including p125FAK and paxillin by a mechanism distinct from PDGF.
Collapse
Affiliation(s)
- T Sasaki
- Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
1390
|
Richardson A, Parsons T. A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK. Nature 1996; 380:538-40. [PMID: 8606775 DOI: 10.1038/380538a0] [Citation(s) in RCA: 397] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Focal adhesion kinase (pp125FAK) is a member of a growing family of structurally distinct protein tyrosine kinases that includes the recently identified FakB and PYK2/CAKbeta/RAFTK. Activation of pp125FAK has been functionally linked to the formation of focal adhesions, integrin-mediated sites of contact between the cell and the extracellular matrix. The carboxy-terminal domain of pp125FAK is also expressed as a separate protein called pp41/43FRNK (where FRNK represents pp125FAK-related non-kinase). Here we show that pp41/43FRNK acts as an inhibitor of pp125FAK by transiently blocking the formation of focal adhesions on fibronectin and constitutively reducing tyrosine phosphorylation of both pp125FAK and two focal adhesion proteins, tensin and paxillin. These inhibitory effects of pp41/43FRNK are reversed by co-expression of pp125FAK, suggesting that pp125FAK and pp41/43 FRNK compete for a common binding protein(s) whose association with pp125FAK is necessary for signalling by pp125FAK. We propose that pp41/43FRNK functions as an endogenous regulator of pp125FAK, thus providing an unusual means to regulate both tyrosine kinase activity and cellular adhesion to the extracellular matrix.
Collapse
Affiliation(s)
- A Richardson
- Department of Microbiology, Health Science Center, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
1391
|
Parsons JT. Integrin-mediated signalling: regulation by protein tyrosine kinases and small GTP-binding proteins. Curr Opin Cell Biol 1996; 8:146-52. [PMID: 8791417 DOI: 10.1016/s0955-0674(96)80059-7] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Integrin signalling requires the activation of protein tyrosine kinases and members of the Rho family of small GTP-binding proteins. Recent evidence shows that coordinated regulation of these signalling molecules is central to the control of cell adhesion, formation of the actin cytoskeleton and activation of intracellular signalling cascades.
Collapse
Affiliation(s)
- J T Parsons
- Department of Microbiology, Health Sciences Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
1392
|
Rankin S, Hooshmand-Rad R, Claesson-Welsh L, Rozengurt E. Requirement for phosphatidylinositol 3'-kinase activity in platelet-derived growth factor-stimulated tyrosine phosphorylation of p125 focal adhesion kinase and paxillin. J Biol Chem 1996; 271:7829-34. [PMID: 8631827 DOI: 10.1074/jbc.271.13.7829] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The role of phosphatidylinositol 3'-kinase (PI 3'-kinase) activity in platelet-derived growth factor (PDGF)-stimulated tyrosine phosphorylation of focal adhesion kinase (p125FAK) and paxillin has been examined. The tyrosine phosphorylation of p125FAK and paxillin in response to PDGF was markedly inhibited by wortmannin in a dose-dependent manner. PDGF-stimulated PI 3'-kinase activity, membrane ruffle formation, and tyrosine phosphorylation of p125FAK and paxillin were all inhibited by the same low concentrations of wortmannin (>90% inhibition at 40nM). In contrast, tyrosine phosphorylation of p125FAK and paxillin in response to bombesin, endothelin, and phorbol 12,13-dibutyrate was not inhibited by wortmannin in these cells. Furthermore, LY294002, an inhibitor of PI 3'-kinase structurally unrelated to wortmannin, also inhibited PDGF-stimulated p125FAK tyrosine phosphorylation. PDGF was shown to stimulate the tyrosine phosphorylation of p125FAK in porcine aortic endothelial (PAE) cells transfected with the wild type PDGF-beta receptors, but not in PAE cells transfected with PDGF-beta receptors in which the PI 3'-kinase binding sites (Tyr-740/751) were replaced by phenylalanine. PDGF-stimulated, PI 3'-kinase-dependent tyrosine phosphorylation of p125FAK was not inhibited by rapamycin, and thus it was dissociated from the activation of p70 S6 kinase, previously identified as a molecular downstream target of PI 3'-kinase. Thus, we have identified a PI 3'-kinase-dependent signal transduction pathway in the action of PDGF, which leads to the phosphorylation of p125FAK and paxillin.
Collapse
Affiliation(s)
- S Rankin
- Imperial Cancer Research Fund, London, United Kingdom
| | | | | | | |
Collapse
|
1393
|
Abstract
Receptor-mediated assembly of an adhesion plaque occurs through an ordered series of steps, and intermediate assemblies can be identified. The recent demonstration of some of these partial reactions in permeabilized cells predicts that cell-free reconstitution of adhesion plaque assembly is an attainable goal. Newly discovered cryptic actin-binding sites in vinculin and ezrin, two proteins recruited to adhesion sites, suggest that actin-binding proteins are targets for the signals generated by adhesion receptors.
Collapse
Affiliation(s)
- S W Craig
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
1394
|
|
1395
|
Abstract
Integrins are a large superfamily of transmembrane adhesion molecules. In many types of cultured cells, integrins are concentrated in specialized sites called focal adhesions. Integrins are capable of transducing signals to the inside of the cell, which can effect cell migration, differentiation and growth, but the signaling mechanism of integrins has been obscure because their short cytoplasmic domains do not possess endogenous catalytic activity. The recent discovery of a tyrosine kinase called pp125FAK (for focal adhesion kinase) has led to a proposed model in which the binding of integrins to extracellular ligands activates FAK, which then generates a tyrosine phosphorylation cascade within the cell. Data both for and against this model have been obtained, and the precise function of FAK in cultured cells and organized tissues is still not clear. However, many interesting features (its unusual molecular structure, its functional and physical association with integrins, and its potential for participating in multiple signaling pathways) suggest that FAK may play a pivotal role in conveying information from the membrane to the inside of the cell.
Collapse
Affiliation(s)
- C A Otey
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville 22908, USA
| |
Collapse
|
1396
|
Guan JL, Chen HC. Signal Transduction in Cell–Matrix Interactions. INTERNATIONAL REVIEW OF CYTOLOGY 1996. [DOI: 10.1016/s0074-7696(08)60883-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|