101
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
102
|
Willoughby JLS, George K, Roberto MP, Chin HG, Stoiber P, Shin H, Pedamallu CS, Schaus SE, Fitzgerald K, Shah J, Hansen U. Targeting the oncogene LSF with either the small molecule inhibitor FQI1 or siRNA causes mitotic delays with unaligned chromosomes, resulting in cell death or senescence. BMC Cancer 2020; 20:552. [PMID: 32539694 PMCID: PMC7296649 DOI: 10.1186/s12885-020-07039-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The oncogene LSF (encoded by TFCP2) has been proposed as a novel therapeutic target for multiple cancers. LSF overexpression in patient tumors correlates with poor prognosis in particular for both hepatocellular carcinoma and colorectal cancer. The limited treatment outcomes for these diseases and disappointing clinical results, in particular, for hepatocellular carcinoma in molecularly targeted therapies targeting cellular receptors and kinases, underscore the need for molecularly targeting novel mechanisms. LSF small molecule inhibitors, Factor Quinolinone Inhibitors (FQIs), have exhibited robust anti-tumor activity in multiple pre-clinical models, with no observable toxicity. METHODS To understand how the LSF inhibitors impact cancer cell proliferation, we characterized the cellular phenotypes that result from loss of LSF activity. Cell proliferation and cell cycle progression were analyzed, using HeLa cells as a model cancer cell line responsive to FQI1. Cell cycle progression was studied either by time lapse microscopy or by bulk synchronization of cell populations to ensure accuracy in interpretation of the outcomes. In order to test for biological specificity of targeting LSF by FQI1, results were compared after treatment with either FQI1 or siRNA targeting LSF. RESULTS Highly similar cellular phenotypes are observed upon treatments with FQI1 and siRNA targeting LSF. Along with similar effects on two cellular biomarkers, inhibition of LSF activity by either mechanism induced a strong delay or arrest prior to metaphase as cells progressed through mitosis, with condensed, but unaligned, chromosomes. This mitotic disruption in both cases resulted in improper cellular division leading to multiple outcomes: multi-nucleation, apoptosis, and cellular senescence. CONCLUSIONS These data strongly support that cellular phenotypes observed upon FQI1 treatment are due specifically to the loss of LSF activity. Specific inhibition of LSF by either small molecules or siRNA results in severe mitotic defects, leading to cell death or senescence - consequences that are desirable in combating cancer. Taken together, these findings confirm that LSF is a promising target for cancer treatment. Furthermore, this study provides further support for developing FQIs or other LSF inhibitory strategies as treatment for LSF-related cancers with high unmet medical needs.
Collapse
Affiliation(s)
- Jennifer L S Willoughby
- Alnylam Pharmaceuticals, Inc., Cambridge, MA, 02142, USA.,Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Kelly George
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark P Roberto
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Hang Gyeong Chin
- MCBB Graduate Program, Boston University, Boston, MA, 02215, USA.,New England BioLabs, Ipswich, MA, 01938, USA
| | - Patrick Stoiber
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA.,MCBB Graduate Program, Boston University, Boston, MA, 02215, USA
| | - Hyunjin Shin
- Data Science Institute, Takeda Pharmaceuticals International, Inc., Cambridge, MA, 02139, USA
| | - Chandra Sekhar Pedamallu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115, USA
| | - Scott E Schaus
- Center for Molecular Discovery, Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | | | - Jagesh Shah
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ulla Hansen
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA. .,MCBB Graduate Program, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
103
|
Lu J, Liu X, Zheng J, Song J, Liu Y, Ruan X, Shen S, Shao L, Yang C, Wang D, Cai H, Cao S, Xue Y. Lin28A promotes IRF6-regulated aerobic glycolysis in glioma cells by stabilizing SNHG14. Cell Death Dis 2020; 11:447. [PMID: 32527996 PMCID: PMC7289837 DOI: 10.1038/s41419-020-2650-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
Warburg effect is a hallmark of cancer cells, wherein glycolysis is preferred over oxidative phosphorylation even in aerobic conditions. Reprogramming of glycometabolism is especially crucial for malignancy in glioma. RNA-binding proteins and long noncoding RNAs are important for aerobic glycolysis during malignant transformation. Thus, we determined the expression and function of RNA-binding protein Lin28A, long noncoding RNA SNHG14, and transcription factor IRF6 in human glioma cells to elucidate the mechanism(s) underlying their role in glycolysis. Quantitative real-time polymerase chain reaction and western blotting showed that Lin28A and SNHG14 were overexpressed and IRF6 was downregulated in glioma. Depleting Lin28A from cells decreased the stability and expression of SNHG14. Furthermore, depleting SNHG14 reduced IRF6 mRNA degradation by targeting its 3' untranslated region and inhibiting STAU1-mediated degradation, thereby increasing the expression of IRF6. PKM2 is an important enzyme in aerobic glycolysis, and GLUT1 is the primary transporter that facilitates glucose uptake. IRF6 inhibited the transcription of PKM2 and GLUT1, thereby impairing glycolysis and cell proliferation and inducing apoptosis in glioma. Notably, depleting Lin28A and SNHG14 and overexpressing IRF6 reduced the growth of xenograft tumors in vivo and prolonged the survival of nude mice. Taken together, our data revealed that the Lin28A/SNHG14/IRF6 axis is crucial for reprogramming glucose metabolism and stimulating tumorigenesis in glioma cells. Thus, targeting this axis might help in the development of a novel therapeutic strategy for glioma metabolism.
Collapse
Affiliation(s)
- Jinjing Lu
- Department of Neurobiology, School of Life Sciences, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Jian Song
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 110004, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, 110004, Shenyang, China
| | - Shuo Cao
- Department of Neurobiology, School of Life Sciences, China Medical University, 110122, Shenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, 110122, Shenyang, China.
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, 110122, Shenyang, China.
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, 110122, Shenyang, China.
| |
Collapse
|
104
|
Koutlas IG, Olson DR, Rawwas J. FET(EWSR1)-TFCP2 Rhabdomyosarcoma: An Additional Example of this Aggressive Variant with Predilection for the Gnathic Bones. Head Neck Pathol 2020; 15:374-380. [PMID: 32504289 PMCID: PMC8010041 DOI: 10.1007/s12105-020-01189-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
An example of a mandibular rhabdomyosarcoma in a 15-year-old male is described featuring EWSR1-TFCP2 fusion with homolateral lymph node metastasis and apparent metastasis to the thoracic vertebra T7. This type of rhabdomyosarcoma has preference for the craniofacial skeleton. Histologically, the tumor was composed of spindle and epithelioid cells characterized by nuclear pleomorphism, cytologic atypia and brisk mitotic activity. Immunohistochemically, it featured diffuse positive nuclear staining MYOD1, only focal staining for myogenin and patchy cytoplasmic staining for desmin. Tumor cells were positive for keratins and nuclear staining for SATB2 was also observed. Interestingly, tumor cells were diffusely positive for calponin. Currently, the patient is under chemotherapy treatment.
Collapse
Affiliation(s)
- Ioannis G Koutlas
- Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, 515 Delaware Street SE #16-116B, Minneapolis, MN, 55455, USA.
| | - Damon R Olson
- Department of Laboratory Medicine and Pathology, Children's Minnesota, Minneapolis, MN, USA
| | - Jawhar Rawwas
- Pediatric Hematology and Oncology, Children's Minnesota, Minneapolis, MN, USA
| |
Collapse
|
105
|
Yang C, Zheng J, Liu X, Xue Y, He Q, Dong Y, Wang D, Li Z, Liu L, Ma J, Cai H, Liu Y. Role of ANKHD1/LINC00346/ZNF655 Feedback Loop in Regulating the Glioma Angiogenesis via Staufen1-Mediated mRNA Decay. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:866-878. [PMID: 32464549 PMCID: PMC7256448 DOI: 10.1016/j.omtn.2020.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence shows that long noncoding RNA (lncRNA) dysregulation plays a critical role in tumor angiogenesis. Glioma is characterized by abundant angiogenesis. Herein, we investigated the expression and function of LINC00346 in the regulation of glioma angiogenesis. The present study first demonstrated that ANKHD1 (ankyrin repeat and KH domain-containing protein 1) and LINC00346 were significantly increased in glioma-associated endothelial cells (GECs), whereas ZNF655 (zinc finger protein 655) was decreased in GECs. Meanwhile, ANKHD1 inhibition, LINC00346 inhibition, or ZNF655 overexpression impeded angiogenesis of GECs. Moreover, ANKHD1 targeted LINC00346 and enhanced the stability of LINC00346. In addition, LINC00346 bound to ZNF655 mRNA through their Alu elements so that LINC00346 facilitated the degradation of ZNF655 mRNA via a STAU1 (Staufen1)-mediated mRNA decay (SMD) mechanism. Futhermore, ZNF655 targeted the promoter region of ANKHD1 and formed an ANKHD1/LINC00346/ZNF655 feedback loop that regulated glioma angiogenesis. Finally, knockdown of ANKHD1 and LINC00346, combined with overexpression of ZNF655, resulted in a significant decrease in new vessels and hemoglobin content in vivo. The results identified an ANKHD1/LINC00346/ZNF655 feedback loop in the regulation of glioma angiogenesis that may provide new targets and strategies for targeted therapy against glioma.
Collapse
Affiliation(s)
- Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qianru He
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yiming Dong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.
| |
Collapse
|
106
|
Lee YJ, Son SH, Lim CS, Kim MY, Lee SW, Lee S, Jeon J, Ha DH, Jung NR, Han SY, Do BR, Na I, Uversky VN, Kim CG. MMTR/Dmap1 Sets the Stage for Early Lineage Commitment of Embryonic Stem Cells by Crosstalk with PcG Proteins. Cells 2020; 9:1190. [PMID: 32403252 PMCID: PMC7290897 DOI: 10.3390/cells9051190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 01/13/2023] Open
Abstract
Chromatin remodeling, including histone modification, chromatin (un)folding, and nucleosome remodeling, is a significant transcriptional regulation mechanism. By these epigenetic modifications, transcription factors and their regulators are recruited to the promoters of target genes, and thus gene expression is controlled through either transcriptional activation or repression. The Mat1-mediated transcriptional repressor (MMTR)/DNA methyltransferase 1 (DNMT1)-associated protein (Dmap1) is a transcription corepressor involved in chromatin remodeling, cell cycle regulation, DNA double-strand break repair, and tumor suppression. The Tip60-p400 complex proteins, including MMTR/Dmap1, interact with the oncogene Myc in embryonic stem cells (ESCs). These proteins interplay with the stem cell-related proteome networks and regulate gene expressions. However, the detailed mechanisms of their functions are unknown. Here, we show that MMTR/Dmap1, along with other Tip60-p400 complex proteins, bind the promoters of differentiation commitment genes in mouse ESCs. Hence, MMTR/Dmap1 controls gene expression alterations during differentiation. Furthermore, we propose a novel mechanism of MMTR/Dmap1 function in early stage lineage commitment of mouse ESCs by crosstalk with the polycomb group (PcG) proteins. The complex controls histone mark bivalency and transcriptional poising of commitment genes. Taken together, our comprehensive findings will help better understand the MMTR/Dmap1-mediated transcriptional regulation in ESCs and other cell types.
Collapse
Affiliation(s)
- Young Jin Lee
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Chang Su Lim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Si Woo Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Sangwon Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Jinseon Jeon
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Dae Hyun Ha
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Na Rae Jung
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Su Youne Han
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
- Biotechnology Research Institute, Hurim BioCell Inc, Seoul 07531, Korea;
| | - Byung-Rok Do
- Biotechnology Research Institute, Hurim BioCell Inc, Seoul 07531, Korea;
| | - Insung Na
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| |
Collapse
|
107
|
Ruan X, Zheng J, Liu X, Liu Y, Liu L, Ma J, He Q, Yang C, Wang D, Cai H, Li Z, Liu J, Xue Y. lncRNA LINC00665 Stabilized by TAF15 Impeded the Malignant Biological Behaviors of Glioma Cells via STAU1-Mediated mRNA Degradation. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:823-840. [PMID: 32464546 PMCID: PMC7256440 DOI: 10.1016/j.omtn.2020.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Abstract
Glioma is a brain cancer characterized by strong invasiveness with limited treatment options and poor prognosis. Recently, dysregulation of long non-coding RNAs (lncRNAs) has emerged as an important component in cellular processes and tumorigenesis. In this study, we demonstrated that TATA-box binding protein associated factor 15 (TAF15) and long intergenic non-protein coding RNA 665 (LINC00665) were both downregulated in glioma tissues and cells. TAF15 overexpression enhanced the stability of LINC00665, inhibiting malignant biological behaviors of glioma cells. Both metal regulatory transcription factor 1 (MTF1) and YY2 transcription factor (YY2) showed high expression levels in glioma tissues and cells, and their knockdown inhibited malignant progression. Mechanistically, overexpression of LINC00665 was confirmed to destabilize MTF1 and YY2 mRNA by interacting with STAU1, and knockdown of STAU1 could rescue the MTF1 and YY2 mRNA degradation caused by LINC00665 overexpression. G2 and S-phase expressed 1 (GTSE1) was identified as an oncogene in glioma, and knockdown of MTF1 or YY2 decreased the mRNA and protein expression levels of GTSE1 through direct binding to the GTSE1 promoter region. Our study highlights a key role of the TAF15/LINC00665/MTF1(YY2)/GTSE1 axis in modulating the malignant biological behaviors of glioma cells, suggesting novel mechanisms by which lncRNAs affect STAU1-mediated mRNA stability, which can inform new molecular therapies for glioma.
Collapse
Affiliation(s)
- Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qianru He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China.
| |
Collapse
|
108
|
Enrichment of Circulating Tumor Cells from Whole Blood Using a Microfluidic Device for Sequential Physical and Magnetophoretic Separations. MICROMACHINES 2020; 11:mi11050481. [PMID: 32384825 PMCID: PMC7281227 DOI: 10.3390/mi11050481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Based on their high clinical potential, the isolation and enrichment of rare circulating tumor cells (CTCs) from peripheral blood cells has been widely investigated. There have been technical challenges with CTC separation methods using solely cancer-specific surface molecules or just using physical properties of CTCs, as they may suffer from heterogeneity or lack of specificity from overlapping physical characteristics with leukocytes. Here, we integrated an immunomagnetic-based negative enrichment method that utilizes magnetic beads attached to leukocyte-specific surface antigens, with a physical separation method that utilizes the distinct size and deformability of CTCs. By manipulating the pressure distribution throughout the device and balancing the drag and magnetic forces acting on the magnetically labeled white blood cells (WBCs), the sequential physical and magnetophoretic separations were optimized to isolate intact cancer cells, regardless of heterogeneity from whole blood. Using a breast cancer cell line in whole blood, we achieved 100% separation efficiency for cancer cells and an average of 97.2% for WBCs, which resulted in a 93.3% average separation purity. The experimental results demonstrated that our microfluidic device can be a promising candidate for liquid biopsy and can be a vital tool for aiding future cancer research.
Collapse
|
109
|
Whole-Organ Genomic Characterization of Mucosal Field Effects Initiating Bladder Carcinogenesis. Cell Rep 2020; 26:2241-2256.e4. [PMID: 30784602 DOI: 10.1016/j.celrep.2019.01.095] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 12/12/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
We used whole-organ mapping to study the locoregional molecular changes in a human bladder containing multifocal cancer. Widespread DNA methylation changes were identified in the entire mucosa, representing the initial field effect. The field effect was associated with subclonal low-allele frequency mutations and a small number of DNA copy alterations. A founder mutation in the RNA splicing gene, ACIN1, was identified in normal mucosa and expanded clonally with an additional 21 mutations in progression to carcinoma. The patterns of mutations and copy number changes in carcinoma in situ and foci of carcinoma were almost identical, confirming their clonal origins. The pathways affected by the DNA copy alterations and mutations, including the Kras pathway, were preceded by the field changes in DNA methylation, suggesting that they reinforced mechanisms that had already been initiated by methylation. The results demonstrate that DNA methylation can serve as the initiator of bladder carcinogenesis.
Collapse
|
110
|
Rong Z, Wang Z, Wang X, Qin C, Geng W. Molecular interplay between linc01134 and YY1 dictates hepatocellular carcinoma progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:61. [PMID: 32272940 PMCID: PMC7146959 DOI: 10.1186/s13046-020-01551-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Background Revealing the mechanical role of long non-coding RNAs (lncRNAs) in tumorigenesis can contribute to novel therapeutic target for cancers. The regulatory role of linc01134 in hepatocellular carcinoma (HCC) has not been studied yet. Materials and methods qRT-PCR and western blot were conducted to measure relevant RNA and protein expressions. CCK-8, colony formation, EdU, flow cytometry, wound-healing, transwell assays and xenograft experiments were performed to determine the role of linc01134 in HCC. ChIP and luciferase reporter assays were performed to analyze the effects of Yin Yang-1 (YY1) on linc01134 transcription activity. Relevant mechanical experiments were performed to verify interaction between relative genes. Results YY1 enhanced linc01134 transcription by interacting with linc01134 promoter. Knockdown of linc01134 inhibited proliferation, migration and epithelial-mesenchymal transition (EMT), yet promoting apoptosis in HCC cells. Mechanically, linc01134 acted as miR-324-5p sponge and interacted with insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) to increase the stability of YY1 mRNA expression. Up-regulated YY1 continuously stimulated linc01134 expression by enhancing linc01134 promoter activity, forming a positive feedback loop. Conclusion Linc01134/miR-324-5p/IGF2BP1/YY1 feedback loop mediates HCC progression, which possibly provide prognosis and treatment target of HCC.
Collapse
Affiliation(s)
- Zhonghou Rong
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhiyi Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xinxing Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Wenmao Geng
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
111
|
Chin HG, Esteve PO, Ruse C, Lee J, Schaus SE, Pradhan S, Hansen U. The microtubule-associated histone methyltransferase SET8, facilitated by transcription factor LSF, methylates α-tubulin. J Biol Chem 2020; 295:4748-4759. [PMID: 32111740 PMCID: PMC7135998 DOI: 10.1074/jbc.ra119.010951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/21/2020] [Indexed: 01/20/2023] Open
Abstract
Microtubules are cytoskeletal structures critical for mitosis, cell motility, and protein and organelle transport and are a validated target for anticancer drugs. However, how tubulins are regulated and recruited to support these distinct cellular processes is incompletely understood. Posttranslational modifications of tubulins are proposed to regulate microtubule function and dynamics. Although many of these modifications have been investigated, only one prior study reports tubulin methylation and an enzyme responsible for this methylation. Here we used in vitro radiolabeling, MS, and immunoblotting approaches to monitor protein methylation and immunoprecipitation, immunofluorescence, and pulldown approaches to measure protein-protein interactions. We demonstrate that N-lysine methyltransferase 5A (KMT5A or SET8/PR-Set7), which methylates lysine 20 in histone H4, bound α-tubulin and methylated it at a specific lysine residue, Lys311 Furthermore, late SV40 factor (LSF)/CP2, a known transcription factor, bound both α-tubulin and SET8 and enhanced SET8-mediated α-tubulin methylation in vitro In addition, we found that the ability of LSF to facilitate this methylation is countered by factor quinolinone inhibitor 1 (FQI1), a specific small-molecule inhibitor of LSF. These findings suggest the general model that microtubule-associated proteins, including transcription factors, recruit or stimulate protein-modifying enzymes to target tubulins. Moreover, our results point to dual functions for SET8 and LSF not only in chromatin regulation but also in cytoskeletal modification.
Collapse
Affiliation(s)
- Hang Gyeong Chin
- New England Biolabs, Ipswich, Massachusetts 01938
- MCBB Graduate Program, Graduate School of Arts and Sciences, Boston University, Boston, Massachusetts 02215
| | | | | | - Jiyoung Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ipsin-gil, Jeongeup-si, Jeollabuk-do 56212, South Korea
| | - Scott E Schaus
- Center for Molecular Discovery, Boston University, Boston, Massachusetts 02215
| | | | - Ulla Hansen
- MCBB Graduate Program, Graduate School of Arts and Sciences, Boston University, Boston, Massachusetts 02215
- Department of Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
112
|
Song K, Li G, Zu X, Du Z, Liu L, Hu Z. The Fabrication and Application Mechanism of Microfluidic Systems for High Throughput Biomedical Screening: A Review. MICROMACHINES 2020; 11:E297. [PMID: 32168977 PMCID: PMC7143183 DOI: 10.3390/mi11030297] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 01/15/2023]
Abstract
Microfluidic systems have been widely explored based on microfluidic technology, and it has been widely used for biomedical screening. The key parts are the fabrication of the base scaffold, the construction of the matrix environment in the 3D system, and the application mechanism. In recent years, a variety of new materials have emerged, meanwhile, some new technologies have been developed. In this review, we highlight the properties of high throughput and the biomedical application of the microfluidic chip and focus on the recent progress of the fabrication and application mechanism. The emergence of various biocompatible materials has provided more available raw materials for microfluidic chips. The material is not confined to polydimethylsiloxane (PDMS) and the extracellular microenvironment is not limited by a natural matrix. The mechanism is also developed in diverse ways, including its special physical structure and external field effects, such as dielectrophoresis, magnetophoresis, and acoustophoresis. Furthermore, the cell/organ-based microfluidic system provides a new platform for drug screening due to imitating the anatomic and physiologic properties in vivo. Although microfluidic technology is currently mostly in the laboratory stage, it has great potential for commercial applications in the future.
Collapse
Affiliation(s)
- Kena Song
- College of Medical Technology and Engineering, Henan University of Science and Technology, He’nan 471023, China; (K.S.); (X.Z.); (Z.D.)
| | - Guoqiang Li
- College of Physics, Chongqing University, Chongqing 401331, China; (G.L.); (L.L.)
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, He’nan 471023, China; (K.S.); (X.Z.); (Z.D.)
| | - Zhe Du
- College of Medical Technology and Engineering, Henan University of Science and Technology, He’nan 471023, China; (K.S.); (X.Z.); (Z.D.)
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing 401331, China; (G.L.); (L.L.)
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, He’nan 471023, China; (K.S.); (X.Z.); (Z.D.)
| |
Collapse
|
113
|
Meliala ITS, Hosea R, Kasim V, Wu S. The biological implications of Yin Yang 1 in the hallmarks of cancer. Theranostics 2020; 10:4183-4200. [PMID: 32226547 PMCID: PMC7086370 DOI: 10.7150/thno.43481] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Tumorigenesis is a multistep process characterized by the acquisition of genetic and epigenetic alterations. During the course of malignancy development, tumor cells acquire several features that allow them to survive and adapt to the stress-related conditions of the tumor microenvironment. These properties, which are known as hallmarks of cancer, include uncontrolled cell proliferation, metabolic reprogramming, tumor angiogenesis, metastasis, and immune system evasion. Zinc-finger protein Yin Yang 1 (YY1) regulates numerous genes involved in cell death, cell cycle, cellular metabolism, and inflammatory response. YY1 is highly expressed in many cancers, whereby it is associated with cell proliferation, survival, and metabolic reprogramming. Furthermore, recent studies also have demonstrated the important role of YY1-related non-coding RNAs in acquiring cancer-specific characteristics. Therefore, these YY1-related non-coding RNAs are also crucial for YY1-mediated tumorigenesis. Herein, we summarize recent progress with respect to YY1 and its biological implications in the context of hallmarks of cancer.
Collapse
|
114
|
Visentin S, Cannone G, Doutch J, Harris G, Gleghorn ML, Clifton L, Smith BO, Spagnolo L. A multipronged approach to understanding the form and function of hStaufen protein. RNA (NEW YORK, N.Y.) 2020; 26:265-277. [PMID: 31852734 PMCID: PMC7025507 DOI: 10.1261/rna.072595.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/09/2019] [Indexed: 05/09/2023]
Abstract
Staufen is a dsRNA-binding protein involved in many aspects of RNA regulation, such as mRNA transport, Staufen-mediated mRNA decay and the regulation of mRNA translation. It is a modular protein characterized by the presence of conserved consensus amino acid sequences that fold into double-stranded RNA binding domains (RBDs) as well as degenerated RBDs that are instead involved in protein-protein interactions. The variety of biological processes in which Staufen participates in the cell suggests that this protein associates with many diverse RNA targets, some of which have been identified experimentally. Staufen binding mediates the recruitment of effectors via protein-protein and protein-RNA interactions. The structural determinants of a number of these interactions, as well as the structure of full-length Staufen, remain unknown. Here, we present the first solution structure models for full-length hStaufen155, showing that its domains are arranged as beads-on-a-string connected by flexible linkers. In analogy with other nucleic acid-binding proteins, this could underpin Stau1 functional plasticity.
Collapse
Affiliation(s)
- Silvia Visentin
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, United Kingdom
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Giuseppe Cannone
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JQ, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Michael L Gleghorn
- School of Chemistry and Materials Science, College of Science, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Luke Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Didcot OX11 OQX, United Kingdom
| | - Brian O Smith
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Laura Spagnolo
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
115
|
Dincau B, Dressaire E, Sauret A. Pulsatile Flow in Microfluidic Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904032. [PMID: 31657131 DOI: 10.1002/smll.201904032] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/17/2019] [Indexed: 06/10/2023]
Abstract
This review describes the current knowledge and applications of pulsatile flow in microfluidic systems. Elements of fluid dynamics at low Reynolds number are first described in the context of pulsatile flow. Then the practical applications in microfluidic processes are presented: the methods to generate a pulsatile flow, the generation of emulsion droplets through harmonic flow rate perturbation, the applications in mixing and particle separation, and the benefits of pulsatile flow for clog mitigation. The second part of the review is devoted to pulsatile flow in biological applications. Pulsatile flows can be used for mimicking physiological systems, to alter or enhance cell cultures, and for bioassay automation. Pulsatile flows offer unique advantages over a steady flow, especially in microfluidic systems, but also require some new physical insights and more rigorous investigation to fully benefit future applications.
Collapse
Affiliation(s)
- Brian Dincau
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Emilie Dressaire
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Alban Sauret
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
116
|
Karimi S, Mehrdel P, Casals-Terré J, Farré-Llados J. Cost-effective microfabrication of sub-micron-depth channels by femto-laser anti-stiction texturing. Biofabrication 2020; 12:025021. [PMID: 31891916 DOI: 10.1088/1758-5090/ab6665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Micro Electro Mechanical Systems (MEMS) and microfluidic devices have found numerous applications in the industrial sector. However, they require a fast, cost-effective and reliable manufacturing process in order to compete with conventional methods. Particularly, at the sub-micron scale, the manufacturing of devices are limited by the dimensional complexity. A proper bonding and stiction prevention of these sub-micron channels are two of the main challenges faced during the fabrication process of low aspect ratio channels. Especially, in the case of using flexible materials such as polydimethylsiloxane (PDMS). This study presents a direct laser microfabrication method of sub-micron channels using an infrared (IR) ultrashort pulse (femtosecond), capable of manufacturing extremely low aspect ratio channels. These microchannels are manufactured and tested varying their depth from 0.5 μm to 2 μm and width of 15, 20, 25, and 30 μm. The roughness of each pattern was measured by an interferometric microscope. Additionally, the static contact angle of each depth was studied to evaluate the influence of femtosecond laser fabrication method on the wettability of the glass substrate. PDMS, which is a biocompatible polymer, was used to provide a watertight property to the sub-micron channels and also to assist the assembly of external microfluidic hose connections. A 750 nm depth watertight channel was built using this methodology and successfully used as a blood plasma separator (BPS). The device was able to achieve 100% pure plasma without stiction of the PDMS layer to the sub-micron channel within an adequate time. This method provides a novel manufacturing approach useful for various applications such as point-of-care devices.
Collapse
Affiliation(s)
- Shadi Karimi
- Mechanical, Fluids and Aerospace Engineering, Universidad Politécnica de Cataluña, Terrassa, Barcelona, Spain
| | | | | | | |
Collapse
|
117
|
PABPC1-induced stabilization of BDNF-AS inhibits malignant progression of glioblastoma cells through STAU1-mediated decay. Cell Death Dis 2020; 11:81. [PMID: 32015336 PMCID: PMC6997171 DOI: 10.1038/s41419-020-2267-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
Glioblastoma is the most common and malignant form of primary central nervous tumor in adults. Long noncoding RNAs (lncRNAs) have been reported to play a pivotal role in modulating gene expression and regulating human tumor’s malignant behaviors. In this study, we confirmed that lncRNA brain-derived neurotrophic factor antisense (BDNF-AS) was downregulated in glioblastoma tissues and cells, interacted and stabilized by polyadenylate-binding protein cytoplasmic 1 (PABPC1). Overexpression of BDNF-AS inhibited the proliferation, migration, and invasion, as well as induced the apoptosis of glioblastoma cells. In the in vivo study, PABPC1 overexpression combined with BDNF-AS overexpression produced the smallest tumor and the longest survival. Moreover, BDNF-AS could elicit retina and anterior neural fold homeobox 2 (RAX2) mRNA decay through STAU1-mediated decay (SMD), and thereby regulated the malignant behaviors glioblastoma cells. Knockdown of RAX2 produced tumor-suppressive function in glioblastoma cells and increased the expression of discs large homolog 5 (DLG5), leading to the activation of the Hippo pathway. In general, this study elucidated that the PABPC1-BDNF-AS-RAX2-DLG5 mechanism may contribute to the anticancer potential of glioma cells and may provide potential therapeutic targets for human glioma.
Collapse
|
118
|
Fischer JW, Busa VF, Shao Y, Leung AKL. Structure-Mediated RNA Decay by UPF1 and G3BP1. Mol Cell 2020; 78:70-84.e6. [PMID: 32017897 DOI: 10.1016/j.molcel.2020.01.021] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/12/2019] [Accepted: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Post-transcriptional mechanisms regulate the stability and, hence, expression of coding and noncoding RNAs. Sequence-specific features within the 3' untranslated region (3' UTR) often direct mRNAs for decay. Here, we characterize a genome-wide RNA decay pathway that reduces the half-lives of mRNAs based on overall 3' UTR structure formed by base pairing. The decay pathway is independent of specific single-stranded sequences, as regulation is maintained in both the original and reverse complement orientation. Regulation can be compromised by reducing the overall structure by fusing the 3' UTR with an unstructured sequence. Mutating base-paired RNA regions can also compromise this structure-mediated regulation, which can be restored by re-introducing base-paired structures of different sequences. The decay pathway requires the RNA-binding protein UPF1 and its associated protein G3BP1. Depletion of either protein increased steady-state levels of mRNAs with highly structured 3' UTRs as well as highly structured circular RNAs. This structure-dependent mechanism therefore enables cells to selectively regulate coding and noncoding RNAs.
Collapse
Affiliation(s)
- Joseph W Fischer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Veronica F Busa
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yue Shao
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K L Leung
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
119
|
Hong W, Hu Y, Fan Z, Gao R, Yang R, Bi J, Hou J. In silico identification of EP400 and TIA1 as critical transcription factors involved in human hepatocellular carcinoma relapse. Oncol Lett 2019; 19:952-964. [PMID: 31897208 PMCID: PMC6924164 DOI: 10.3892/ol.2019.11171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-associated mortality worldwide. Transcription factors (TFs) are crucial proteins that regulate gene expression during cancer progression; however, the roles of TFs in HCC relapse remain unclear. To identify the TFs that drive HCC relapse, the present study constructed co-expression network and identified the Tan module the most relevant to HCC relapse. Numerous hub TFs (highly connected) were subsequently obtained from the Tan module according to the intra-module connectivity and the protein-protein interaction network connectivity. Next, E1A-binding protein p400 (EP400) and TIA1 cytotoxic granule associated RNA binding protein (TIA1) were identified as hub TFs differentially connected between the relapsed and non-relapsed subnetworks. In addition, zinc finger protein 143 (ZNF143) and Yin Yang 1 (YY1) were also identified by using the plugin iRegulon in Cytoscape as master upstream regulatory elements, which could potentially regulate expression of the genes and TFs of the Tan module, respectively. The Kaplan-Meier (KM) curves obtained from KMplot and Gene Expression Profiling Interactive Analysis tools confirmed that the high expression of EP400 and TIA1 were significantly associated with shorter relapse-free survival and disease-free survival of patients with HCC. Furthermore, the KM curves from the UALCAN database demonstrated that high EP400 expression significantly reduced the overall survival of patients with HCC. EP400 and TIA1 may therefore serve as potential prognostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Weiguo Hong
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Yan Hu
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Zhenping Fan
- Liver Disease Center for Cadre Medical Care, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Rong Gao
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Ruichuang Yang
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Jingfeng Bi
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Jun Hou
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| |
Collapse
|
120
|
Zhou J, Mukherjee P, Gao H, Luan Q, Papautsky I. Label-free microfluidic sorting of microparticles. APL Bioeng 2019; 3:041504. [PMID: 31832577 PMCID: PMC6906121 DOI: 10.1063/1.5120501] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Massive growth of the microfluidics field has triggered numerous advances in focusing, separating, ordering, concentrating, and mixing of microparticles. Microfluidic systems capable of performing these functions are rapidly finding applications in industrial, environmental, and biomedical fields. Passive and label-free methods are one of the major categories of such systems that have received enormous attention owing to device operational simplicity and low costs. With new platforms continuously being proposed, our aim here is to provide an updated overview of the state of the art for passive label-free microparticle separation, with emphasis on performance and operational conditions. In addition to the now common separation approaches using Newtonian flows, such as deterministic lateral displacement, pinched flow fractionation, cross-flow filtration, hydrodynamic filtration, and inertial microfluidics, we also discuss separation approaches using non-Newtonian, viscoelastic flow. We then highlight the newly emerging approach based on shear-induced diffusion, which enables direct processing of complex samples such as untreated whole blood. Finally, we hope that an improved understanding of label-free passive sorting approaches can lead to sophisticated and useful platforms toward automation in industrial, environmental, and biomedical fields.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Prithviraj Mukherjee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Hua Gao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Qiyue Luan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Ian Papautsky
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
121
|
Kim MY, Choi S, Lee SE, Kim JS, Son SH, Lim YS, Kim BJ, Ryu BY, Uversky VN, Lee YJ, Kim CG. Development of a MEL Cell-Derived Allograft Mouse Model for Cancer Research. Cancers (Basel) 2019; 11:1707. [PMID: 31683958 PMCID: PMC6895914 DOI: 10.3390/cancers11111707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 11/22/2022] Open
Abstract
Murine erythroleukemia (MEL) cells are often employed as a model to dissect mechanisms of erythropoiesis and erythroleukemia in vitro. Here, an allograft model using MEL cells resulting in splenomegaly was established to develop a diagnostic model for isolation/quantification of metastatic cells, anti-cancer drug screening, and evaluation of the tumorigenic or metastatic potentials of molecules in vivo. In this animal model, circulating MEL cells from the blood stream were successfully isolated and quantified with an additional in vitro cultivation step. In terms of the molecular-pathological analysis, we were able to successfully evaluate the functional discrimination between methyl-CpG-binding domain 2 (Mbd2) and p66α in erythroid differentiation, and tumorigenic potential in spleen and blood stream of allograft model mice. In addition, we found that the number of circulating MEL cells in anti-cancer drug-treated mice was dose-dependently decreased. Our data demonstrate that the newly established allograft model is useful to dissect erythroleukemia pathologies and non-invasively provides valuable means for isolation of metastatic cells, screening of anti-cancer drugs, and evaluation of the tumorigenic potentials.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Sungwoo Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Seol Eui Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Ji Sook Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Department of Clinical Pathology, Hanyang University Seoul Hospital, Seoul 04763, Korea.
| | - Seung Han Son
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Young Soo Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Bang-Jin Kim
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea.
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia.
| | - Young Jin Lee
- Institute of Pharmaceutical Science and Technology, Department of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.
| | - Chul Geun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
122
|
Kim MY, Kim JS, Son SH, Lim CS, Eum HY, Ha DH, Park MA, Baek EJ, Ryu BY, Kang HC, Uversky VN, Kim CG. Mbd2-CP2c loop drives adult-type globin gene expression and definitive erythropoiesis. Nucleic Acids Res 2019; 46:4933-4949. [PMID: 29547954 PMCID: PMC6007553 DOI: 10.1093/nar/gky193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/12/2018] [Indexed: 01/18/2023] Open
Abstract
During hematopoiesis, red blood cells originate from the hematopoietic stem cell reservoir. Although the regulation of erythropoiesis and globin expression has been intensively investigated, the underlining mechanisms are not fully understood, including the interplay between transcription factors and epigenetic factors. Here, we uncover that the Mbd2-free NuRD chromatin remodeling complex potentiates erythroid differentiation of proerythroblasts via managing functions of the CP2c complexes. We found that both Mbd2 and Mbd3 expression is downregulated during differentiation of MEL cells in vitro and in normal erythropoiesis in mouse bone marrow, and Mbd2 downregulation is crucial for erythropoiesis. In uninduced MEL cells, the Mbd2-NuRD complex is recruited to the promoter via Gata1/Fog1, and, via direct binding through p66α, it acts as a transcriptional inhibitor of the CP2c complexes, preventing their DNA binding and promoting degradation of the CP2c family proteins to suppress globin gene expression. Conversely, during erythropoiesis in vitro and in vivo, the Mbd2-free NuRD does not dissociate from the chromatin and acts as a transcriptional coactivator aiding the recruitment of the CP2c complexes to chromatin, and thereby leading to the induction of the active hemoglobin synthesis and erythroid differentiation. Our study highlights the regulation of erythroid differentiation by the Mbd2-CP2c loop.
Collapse
Affiliation(s)
- Min Young Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ji Sook Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Seung Han Son
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Chang Su Lim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Hea Young Eum
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Dae Hyun Ha
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Mi Ae Park
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Eun Jung Baek
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Ansung, Gyeonggi-do 17546, Korea
| | - Ho Chul Kang
- Department of Physiology and Genomic Instability Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Chul Geun Kim
- Department of Life Science and Research Institute of Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
123
|
Zapata-Tarres M, Juarez-Villegas LE, Maldonado-Valenzuela A, Baay-Guzman GJ, Lopez-Perez TV, Cabrera-Muñoz L, Sadowinski-Pine S, Huerta-Yepez S. Expression of YY1 in Wilms tumors with favorable histology is a risk factor for adverse outcomes. Future Oncol 2019; 15:1231-1241. [DOI: 10.2217/fon-2018-0764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: To investigate the role of the transcription factor YY1 in Wilms tumor (WT). Patients & methods: We measured YY1 expression using tissue microarray from patients with pediatric renal tumors, mainly WT and evaluated correlations with the predicted clinical evolution. YY1 expression was measured using immunohistochemical and protein expression was determined by digital pathology. Results & conclusion: YY1 significantly increased in WT patients. In addition, an increase in YY1 expression had a greater risk of adverse outcomes in WT patients with favorable histology. YY1 expression was higher in the blastemal component of tumors, and high nuclear expression positively correlated with metastasis. YY1 may be considered as a metastasis risk factor in WT.
Collapse
Affiliation(s)
| | - Luis E Juarez-Villegas
- Departamento de Hemato-Oncología, Hospital Infantil de México, Federico Gómez, Mexico City, Mexico
| | | | - Guillermina J Baay-Guzman
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City, Mexico
| | - Tania V Lopez-Perez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City, Mexico
| | - Lourdes Cabrera-Muñoz
- Departamento de Patología, Hospital Infantil de México, Federico Gómez, Mexico City, Mexico
| | | | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City, Mexico
| |
Collapse
|
124
|
Han J, Meng J, Chen S, Wang X, Yin S, Zhang Q, Liu H, Qin R, Li Z, Zhong W, Zhang C, Zhang H, Tang Y, Lin T, Gao W, Zhang X, Yang L, Liu Y, Zhou HG, Sun T, Yang C. YY1 Complex Promotes Quaking Expression via Super-Enhancer Binding during EMT of Hepatocellular Carcinoma. Cancer Res 2019; 79:1451-1464. [PMID: 30760518 DOI: 10.1158/0008-5472.can-18-2238] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/13/2018] [Accepted: 02/06/2019] [Indexed: 11/16/2022]
Abstract
Quaking (QKI) is an alternative splicing factor that can regulate circRNA formation in the progression of epithelial-mesenchymal transition, but the mechanism remains unclear. High expression of QKI is correlated with short survival time, metastasis, and high clinical stage and pathology grade in hepatocellular carcinoma (HCC). Here we report that transcription of the QKI gene was activated by the Yin-Yang 1 (YY1)/p65/p300 complex, in which YY1 bound to the super-enhancer and promoter of QKI, p65 combined with the promoter, and p300 served as a mediator to maintain the stability of the complex. This YY1/p65/p300 complex increased QKI expression to promote the malignancy of HCC as well as an increased circRNA formation in vitro and in vivo. Hyperoside is one of several plant-derived flavonol glycoside compounds. Through virtual screening and antitumor activity analysis, we found that hyperoside inhibited QKI expression by targeting the YY1/p65/p300 complex. Overall, our study suggests that the regulatory mechanism of QKI depends on the YY1/p65/p300 complex and that it may serve as a potential target for treatment of HCC. SIGNIFICANCE: These findings identify the YY1/p65/p300 complex as a regulator of QKI expression, identifying several potential therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jing Meng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaorui Wang
- College of Life Science, Nankai University, Tianjin, China
| | - Shan Yin
- OBiO Technology (Shanghai) Corp., Ltd., China
| | - Qiang Zhang
- Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Huijuan Liu
- Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,College of Life Science, Nankai University, Tianjin, China
| | - Rong Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhongwei Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Weilong Zhong
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Chao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yuanhao Tang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tingting Lin
- Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology, TMU, Tianjin Medical University Eye Institute, Tianjin, China
| | - Wanfeng Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaoyun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Lan Yang
- Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yanrong Liu
- Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hong-Gang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China. .,Tianjin Key Laboratory for Evaluation of Pharmaceutical Property, Tianjin International Joint Academy of Biomedicine, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China. .,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
125
|
Kolora SRR, Weigert A, Saffari A, Kehr S, Walter Costa MB, Spröer C, Indrischek H, Chintalapati M, Lohse K, Doose G, Overmann J, Bunk B, Bleidorn C, Grimm-Seyfarth A, Henle K, Nowick K, Faria R, Stadler PF, Schlegel M. Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation. Gigascience 2019; 8:giy160. [PMID: 30535196 PMCID: PMC6381762 DOI: 10.1093/gigascience/giy160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/19/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes. FINDINGS Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated. CONCLUSION The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids.
Collapse
Affiliation(s)
- Sree Rohit Raj Kolora
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
| | - Anne Weigert
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Amin Saffari
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Human Biology Group, Institute for Zoology, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 1–3, Berlin, D-14195, Germany
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
| | - Maria Beatriz Walter Costa
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Embrapa Agroenergia, Parque Estacaeo Biologica (PqEB), Asa Norte, Brasilia/DF, 70770-901, Brazil
| | - Cathrin Spröer
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Henrike Indrischek
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, 01307, Germany
- Max Planck Institute for Physics of Complex Systems, Noethnitzerstrasse 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01397 Dresden, Germany
| | - Manjusha Chintalapati
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, 04103, Germany
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| | - Gero Doose
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
| | - Jörg Overmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Boyke Bunk
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, Braunschweig, 38124, Germany
| | - Christoph Bleidorn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Department of Animal Evolution and Biodiversity, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
- Museo Nacional de Ciencias Naturales, Spanish National Research Council (CSIC), Madrid, 28006, Spain
| | - Annegret Grimm-Seyfarth
- Department of Conservation Biology, UFZ - Helmholtz Center for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
- Plant Ecology and Nature Conservation, University of Potsdam, Am Mühlenberg 3, Potsdam, 14476, Germany
| | - Klaus Henle
- Department of Conservation Biology, UFZ - Helmholtz Center for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
| | - Katja Nowick
- Human Biology Group, Institute for Zoology, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 1–3, Berlin, D-14195, Germany
| | - Rui Faria
- Department of Animal and Plant Sciences, Alfred Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Peter F Stadler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Härtelstrasse 16-18, Leipzig, 04107, Germany
- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Universität Leipzig, Augustusplatz 12, Leipzig, 04107, Germany
- Max-Planck-Institute for Mathematics in the Sciences, Inselstrasse 22, Leipzig, 04103, Germany
- Fraunhofer Institut Für Zelltherapie Und Immunologie, Perlickstrasse 1, Leipzig, 04103, Germany
- Department of Theoretical Chemistry, University of Vienna, Währinger strasse 17, Wien, 1090, Austria
- Center for non-Coding RNA in Technology and Health, University of Copenhagen, Gronnegardsvej 3, Frederiksberg C, 1870, Denmark
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico, 87501, USA
| | - Martin Schlegel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, 04103, Germany
| |
Collapse
|
126
|
Neglected Functions of TFCP2/TFCP2L1/UBP1 Transcription Factors May Offer Valuable Insights into Their Mechanisms of Action. Int J Mol Sci 2018; 19:ijms19102852. [PMID: 30241344 PMCID: PMC6213935 DOI: 10.3390/ijms19102852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, the TFCP2 (transcription factor cellular promoter 2)/TFCP2L1 (TFCP2-like 1)/UBP1 (upstream binding protein 1) subfamily of transcription factors has been attracting increasing attention in the scientific community. These factors are very important in cancer, Alzheimer’s disease, and other human conditions, and they can be attractive targets for drug development. However, the interpretation of experimental results is complicated, as in principle, any of these factors could substitute for the lack of another. Thus, studying their hitherto little known functions should enhance our understanding of mechanisms of their functioning, and analogous mechanisms might govern their functioning in medically relevant contexts. For example, there are numerous parallels between placental development and cancer growth; therefore, investigating the roles of TFCP2, TFCP2L1, and UBP1 in the placenta may help us better understand their functioning in cancer, as is evidenced by the studies of various other proteins and pathways. Our review article aims to call the attention of the scientific community to these neglected functions, and encourage further research in this field. Here, we present a systematic review of current knowledge of the TFCP2/TFCP2L1/UBP1 subfamily in reproduction, embryonic development, renal function, blood-pressure regulation, brain function, and other processes, where their involvement has not been studied much until now.
Collapse
|
127
|
Ye C, Yu Z, Xiong Y, Wang Y, Ruan Y, Guo Y, Chen M, Luan S, Zhang E, Liu H. STAU1 binds to IBDV genomic double-stranded RNA and promotes viral replication via attenuation of MDA5-dependent β interferon induction. FASEB J 2018; 33:286-300. [PMID: 29979632 DOI: 10.1096/fj.201800062rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infectious bursal disease virus (IBDV) infection triggers the induction of type I IFN, which is mediated by melanoma differentiation-associated protein 5 recognition of the viral genomic double-stranded RNA (dsRNA). However, the mechanism of IBDV overcoming the type I IFN antiviral response remains poorly characterized. Here, we show that IBDV genomic dsRNA selectively binds to the host cellular RNA binding protein Staufen1 (STAU1) in vitro and in vivo. The viral dsRNA binding region was mapped to the N-terminal moiety of STAU1 (residues 1-468). Down-regulation of STAU1 impaired IBDV replication and enhanced IFN-β transcription in response to IBDV infection, while having little effect on the viral attachment to the host cells and cellular entry. Conversely, overexpression of STAU1 but not the IBDV dsRNA-binding deficient STAU1 mutant (469-702) led to a suppression of IBDV dsRNA-induced IFN-β promoter activity. Moreover, we found that the binding of STAU1 to IBDV dsRNA decreased the association of melanoma differentiation-associated protein 5 but not VP3 with the IBDV dsRNA in vitro. Finally, we showed that STAU1 and VP3 suppressed IFN-β gene transcription in response to IBDV infection in an additive manner. Collectively, these findings provide a novel insight into the evasive strategies used by IBDV to escape the host IFN antiviral response.-Ye, C., Yu, Z., Xiong, Y., Wang, Y., Ruan, Y., Guo, Y., Chen, M., Luan, S., Zhang, E., Liu, H. STAU1 binds to IBDV genomic double-stranded RNA and promotes viral replication via attenuation of MDA5-dependent β interferon induction.
Collapse
Affiliation(s)
- Chengjin Ye
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Zhaoli Yu
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yu Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Yina Ruan
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Yueping Guo
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Mianmian Chen
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Shilu Luan
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Enli Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Hebin Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
128
|
Yeung J, Mermet J, Jouffe C, Marquis J, Charpagne A, Gachon F, Naef F. Transcription factor activity rhythms and tissue-specific chromatin interactions explain circadian gene expression across organs. Genome Res 2018; 28:182-191. [PMID: 29254942 PMCID: PMC5793782 DOI: 10.1101/gr.222430.117] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/11/2017] [Indexed: 11/28/2022]
Abstract
Temporal control of physiology requires the interplay between gene networks involved in daily timekeeping and tissue function across different organs. How the circadian clock interweaves with tissue-specific transcriptional programs is poorly understood. Here, we dissected temporal and tissue-specific regulation at multiple gene regulatory layers by examining mouse tissues with an intact or disrupted clock over time. Integrated analysis uncovered two distinct regulatory modes underlying tissue-specific rhythms: tissue-specific oscillations in transcription factor (TF) activity, which were linked to feeding-fasting cycles in liver and sodium homeostasis in kidney; and colocalized binding of clock and tissue-specific transcription factors at distal enhancers. Chromosome conformation capture (4C-seq) in liver and kidney identified liver-specific chromatin loops that recruited clock-bound enhancers to promoters to regulate liver-specific transcriptional rhythms. Furthermore, this looping was remarkably promoter-specific on the scale of less than 10 kilobases (kb). Enhancers can contact a rhythmic promoter while looping out nearby nonrhythmic alternative promoters, confining rhythmic enhancer activity to specific promoters. These findings suggest that chromatin folding enables the clock to regulate rhythmic transcription of specific promoters to output temporal transcriptional programs tailored to different tissues.
Collapse
Affiliation(s)
- Jake Yeung
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Jérôme Mermet
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Céline Jouffe
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Julien Marquis
- Functional Genomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Aline Charpagne
- Functional Genomics, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, CH-1015 Lausanne, Switzerland
- Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
129
|
Sisakhtnezhad S, Heshmati P. Comparative analysis of single-cell RNA sequencing data from mouse spermatogonial and mesenchymal stem cells to identify differentially expressed genes and transcriptional regulators of germline cells. J Cell Physiol 2018; 233:5231-5242. [PMID: 29194616 DOI: 10.1002/jcp.26303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022]
Abstract
Identifying effective internal factors for regulating germline commitment during development and for maintaining spermatogonial stem cells (SSCs) self-renewal is important to understand the molecular basis of spermatogenesis process, and to develop new protocols for the production of the germline cells from other cell sources. Therefore, this study was designed to investigate single-cell RNA-sequencing data for identification of differentially expressed genes (DEGs) in 12 mouse-derived single SSCs (mSSCs) in compare with 16 mouse-derived single mesenchymal stem cells. We also aimed to find transcriptional regulators of DEGs. Collectively, 1,584 up-regulated DEGs were identified that are associated with 32 biological processes. Moreover, investigation of the expression profiles of genes including in spermatogenesis process revealed that Dazl, Ddx4, Sall4, Fkbp6, Tex15, Tex19.1, Rnf17, Piwil2, Taf7l, Zbtb16, and Cadm1 are presented in the first 30 up-regulated DEGs. We also found 12 basal transcription factors (TFs) and three sequence-specific TFs that control the expression of DEGs. Our findings also indicated that MEIS1, SMC3, TAF1, KAT2A, STAT3, GTF3C2, SIN3A, BDP1, PHC1, and EGR1 are the main central regulators of DEGs in mSSCs. In addition, we collectively detected two significant protein complexes in the protein-protein interactions network for DEGs regulators. Finally, this study introduces the major upstream kinases for the main central regulators of DEGs and the components of core protein complexes. In conclusion, this study provides a molecular blueprint to uncover the molecular mechanisms behind the biology of SSCs and offers a list of candidate factors for cell type conversion approaches and production of germ cells.
Collapse
Affiliation(s)
| | - Parvin Heshmati
- Faculty of Dentistry, Department of Endodontics, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
130
|
Oh Y, Park J, Kim JI, Chang MY, Lee SH, Cho YH, Hwang J. Lin28B and miR-142-3p regulate neuronal differentiation by modulating Staufen1 expression. Cell Death Differ 2017; 25:432-443. [PMID: 29099484 DOI: 10.1038/cdd.2017.182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/15/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Staufen1 (STAU1) and Lin28B are RNA-binding proteins that are involved in neuronal differentiation as a function of post-transcriptional regulation. STAU1 triggers post-transcriptional regulation, including mRNA export, mRNA relocation, translation and mRNA decay. Lin28B also has multiple functions in miRNA biogenesis and the regulation of translation. Here, we examined the connection between STAU1 and Lin28B and found that Lin28B regulates the abundance of STAU1 mRNA via miRNA maturation. Decreases in the expression of both STAU1 and Lin28B were observed during neuronal differentiation. Depletion of STAU1 or Lin28B inhibited neuronal differentiation, and overexpression of STAU1 or Lin28B enhanced neuronal differentiation. Interestingly, the stability of STAU1 mRNA was modulated by miR-142-3p, whose maturation was regulated by Lin28B. Thus, miR-142-3p expression increased as Lin28B expression decreased during differentiation, leading to the reduction of STAU1 expression. The transcriptome from Staufen-mediated mRNA decay (SMD) targets during differentiation was analyzed, confirming that STAU1 was a key factor in neuronal differentiation. In support of this finding, regulation of STAU1 expression in mouse neural precursor cells had the same effects on neuronal differentiation as it did in human neuroblastoma cells. These results revealed the collaboration of two RNA-binding proteins, STAU1 and Lin28B, as a regulatory mechanism in neuronal differentiation.
Collapse
Affiliation(s)
- Younseo Oh
- Graduate School for Biomedical Science & Engineering, Seoul, Korea
| | - Jungyun Park
- Graduate School for Biomedical Science & Engineering, Seoul, Korea
| | - Jin-Il Kim
- Graduate School for Biomedical Science & Engineering, Seoul, Korea
| | | | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Seoul, Korea
| | - Youl-Hee Cho
- Department of Medical Genetics, College of Medicine, Hanyang University, Seoul, Korea
| | - Jungwook Hwang
- Graduate School for Biomedical Science & Engineering, Seoul, Korea.,Department of Medical Genetics, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
131
|
Guo Y, Wang J, Zhu M, Zeng R, Xu Z, Li G, Zuo B. Identification of MyoD-Responsive Transcripts Reveals a Novel Long Non-coding RNA (lncRNA-AK143003) that Negatively Regulates Myoblast Differentiation. Sci Rep 2017; 7:2828. [PMID: 28588232 PMCID: PMC5460278 DOI: 10.1038/s41598-017-03071-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/21/2017] [Indexed: 02/04/2023] Open
Abstract
Myogenic differentiation factor (MyoD) is a master transcription factor in muscle development and differentiation. Although several long non-coding RNAs (lncRNAs) linked to MyoD have been found to influence muscle development, the functions of many lncRNAs have not been explored. Here we utilized lncRNA and mRNA microarray analysis to identify potential lncRNAs regulated by MyoD in muscle cells. A total of 997 differentially expressed lncRNAs (335 up-regulated and 662 down-regulated) and 1,817 differentially expressed mRNAs (148 up-regulated and 1,669 down-regulated) were identified after MyoD knockdown in C2C12 cells. Functional predictions suggested that most lncRNAs are involved in the biological pathways related to muscle differentiation and cell cycle with co-expressed genes. To gain further insight into the MyoD-mediated lncRNA expression in muscle differentiation, tissue expression profiles and MyoD overexpression were performed, and we found one of the candidate lncRNAs-AK143003 was significantly regulated by MyoD. Further analyses showed its noncoding ability and cytoplasmic localisation. Silencing of AK143003 stimulated the accumulation of myogenic marker genes, whereas AK143003 overexpression led to their decreased synthesis. This study identified a multitude of MyoD-mediated lncRNAs for further investigation and identified a novel lncRNA, lnc-AK143003, which plays a role in controlling muscle differentiation.
Collapse
Affiliation(s)
- Yiwen Guo
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Jingnan Wang
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Mingfei Zhu
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Rui Zeng
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Zaiyan Xu
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Guoliang Li
- 0000 0004 1790 4137grid.35155.37National Key Laboratory of Crop Genetic Improvement, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China
| | - Bo Zuo
- 0000 0004 1790 4137grid.35155.37Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070 Hubei P.R. China ,grid.35155.370000 0004 1790 4137The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 China
| |
Collapse
|
132
|
Histone-binding of DPF2 mediates its repressive role in myeloid differentiation. Proc Natl Acad Sci U S A 2017; 114:6016-6021. [PMID: 28533407 DOI: 10.1073/pnas.1700328114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Double plant homeodomain finger 2 (DPF2) is a highly evolutionarily conserved member of the d4 protein family that is ubiquitously expressed in human tissues and was recently shown to inhibit the myeloid differentiation of hematopoietic stem/progenitor and acute myelogenous leukemia cells. Here, we present the crystal structure of the tandem plant homeodomain finger domain of human DPF2 at 1.6-Å resolution. We show that DPF2 interacts with the acetylated tails of both histones 3 and 4 via bipartite binding pockets on the DPF2 surface. Blocking these interactions through targeted mutagenesis of DPF2 abolishes its recruitment to target chromatin regions as well as its ability to prevent myeloid differentiation in vivo. Our findings suggest that the histone binding of DPF2 plays an important regulatory role in the transcriptional program that drives myeloid differentiation.
Collapse
|
133
|
Kim JS, Son SH, Kim MY, Choi D, Jang IS, Paik SS, Chae JH, Uversky VN, Kim CG. Diagnostic and prognostic relevance of CP2c and YY1 expression in hepatocellular carcinoma. Oncotarget 2017; 8:24389-24400. [PMID: 28412749 PMCID: PMC5421856 DOI: 10.18632/oncotarget.15462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/02/2017] [Indexed: 12/23/2022] Open
Abstract
Recent studies have demonstrated an oncogenic role of the transcription factor (TF) CP2c in hepatocellular carcinoma (HCC) based on a strong correlation between CP2c expression, tumor grade, and aggressiveness. We recently found that CP2c directly interacts with another TF, YY1, which is also overexpressed in multiple cancers, including HCC. To evaluate if these proteins are co-regulated in carcinogenesis, we analyzed the expression of CP2c and YY1 in HCC (n = 136) tissues and examined the correlation between their expression and clinicopathological characteristics of HCC. Receiver operating characteristic analysis exhibited the validity of CP2c and nuclear YY1 expression as a diagnostic factor in HCC tissues. High expression of CP2c was significantly correlated with patient age, and higher histological grade, American Joint Committee on Cancer (AJCC) stage, and small and large vessel invasion in HCC tissues, whereas high expression of nuclear YY1 was significantly associated with higher AJCC stage and small vessel invasion. In univariate and multivariate analyses, high expression of CP2c was significantly correlated with disease free survival (DFS), indicating that CP2c expression is an independent prognostic factor for DFS in HCC patients. Patients with high expression of both CP2c and nuclear YY1 usually had a shorter median survival time and worse DFS prognosis than other patients, suggesting that combined detection of CP2c and nuclear YY1 is a useful prognostic marker in HCC patients.
Collapse
Affiliation(s)
- Ji Sook Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - DongHo Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Ik-Soon Jang
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon 34133, Korea
| | - Seung Sam Paik
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea
| | - Ji Hyung Chae
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
134
|
Abstract
Alu element is the most successful transposon and it maintains a high level of content in primate genome. However, despite the fact that the expression level of independent Alu element is rather low under common condition, an increasing number of the observations for the Alu transcripts in cells and tissues have been reported recently. Alu transcripts play key roles in the network of gene expression regulation. The main functions of Alu transcript focus on gene regulation both at transcriptional and post-transcriptional levels. This review summarizes major functions of Alu transcripts on gene expression and highlights molecular mechanisms dependent on conserved sequence or secondary structure in order to unravel a relative ubiquitous way that Alu transcript uses to affect the whole genome.
Collapse
Affiliation(s)
- Li Zhang
- Laboratory of Fully Human Antibody Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Ju-Gao Chen
- Department of Oncology, The Second Clinical Medical college (Shenzhen People׳s Hospital), Jinan University, Shenzhen, Guangdong, China
| | - Qi Zhao
- Laboratory of Fully Human Antibody Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|