101
|
Hong G, Chang JE. Enhancing Cancer Treatment Through Combined Approaches: Photodynamic Therapy in Concert with Other Modalities. Pharmaceutics 2024; 16:1420. [PMID: 39598543 PMCID: PMC11597730 DOI: 10.3390/pharmaceutics16111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the role of photodynamic therapy (PDT) as an adjunctive treatment for cancers, with a focus on its potential to enhance the effects of established therapies like chemotherapy, surgery, and radiotherapy. Given the limitations of conventional cancer treatments, PDT's ability to improve therapeutic outcomes through combination strategies is examined. In cancers such as lung, breast, cholangiocarcinoma, and cervical, PDT shows promise in enhancing response rates, reducing recurrence, and minimizing adverse effects when used alongside standard modalities. This study highlights current findings on PDT's mechanisms in complementing chemotherapy, augmenting surgical precision, and enhancing radiotherapeutic effects, thus offering a multi-faceted approach to cancer treatment. Additionally, insights into the clinical application of PDT in these cancers emphasize its potential for reducing tumor resistance and supporting more effective, personalized care. By providing an overview of PDT's synergistic applications across diverse cancer types, this review underscores its emerging significance in oncology as a tool to address traditional treatment limitations. Ultimately, this review aims to inform and inspire researchers and clinicians seeking to refine and innovate cancer therapy strategies through PDT integration, contributing to the advancement of more effective, synergistic cancer treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
102
|
Li H, Qiao L, Kong M, Fang H, Yan Z, Guo R, Guo W. Construction and validation of a prognostic signature based on microvascular invasion and immune-related genes in hepatocellular carcinoma. Sci Rep 2024; 14:26994. [PMID: 39506070 PMCID: PMC11541849 DOI: 10.1038/s41598-024-78467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is an independent risk factor of poor prognosis in hepatocellular carcinoma (HCC) and can be used to guide the diagnosis and treatment of HCC. The immune system serves as an integral role in the incidence and progression of HCC. However, the molecular biology correlation between MVI and tumor immunity and the value of combining the two parameters to predict patient prognosis and HCC response to treatment remain to be evaluated. RESULTS In this study, we used univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) Cox analysis to establish the MVI and immune-related gene index (MIRGPI) including eight genes. We demonstrated that the MIRGPI was an independent risk factor in predicting the prognosis of HCC. Subsequently, our research established a nomogram model combining pathologic characteristics and verified its good clinical application value. In addition, our study found that the TP53 gene had a higher mutation frequency and a lower degree of immune infiltration in the high-risk group. The low-risk group had higher sensitivity to immunotherapy, sorafenib, and TACE treatment, and the high-risk group had higher sensitivity to common chemotherapeutic agents. Finally, SEMA3C was found to facilitate the proliferation, migration and invasive ability of HCC by in vitro and in vivo experiments, and its mechanism may be associated with the activation of the NF-Κb/EMT signaling pathway. CONCLUSIONS In summary, the MIRGPI signature we developed is a reliable marker for the prediction of prognosis and treatment response, and is important for the prognostic assessment and individualized treatment of HCC.
Collapse
Affiliation(s)
- Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Lixue Qiao
- Thyroid Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Minyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Haoran Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Hepatopathy and Transplantation Medicine, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Ran Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China.
- National Organ Transplantation Physician Training Center, Zhengzhou, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, 450052, Henan, China.
- Department of Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
103
|
Draškovič T, Ranković B, Zidar N, Hauptman N. DNA methylation biomarker panels for differentiating various liver adenocarcinomas, including hepatocellular carcinoma, cholangiocarcinoma, colorectal liver metastases and pancreatic adenocarcinoma liver metastases. Clin Epigenetics 2024; 16:153. [PMID: 39497215 PMCID: PMC11536859 DOI: 10.1186/s13148-024-01766-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND DNA methylation biomarkers are one of the most promising tools for the diagnosis and differentiation of adenocarcinomas of the liver, which are among the most common malignancies worldwide. Their differentiation is important because of the different prognoses and treatment options. This study aimed to validate previously identified DNA methylation biomarkers that successfully differentiate between liver adenocarcinomas, including the two most common primary liver cancers, hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), as well as two common metastatic liver cancers, colorectal liver metastases (CRLM) and pancreatic ductal adenocarcinoma liver metastases (PCLM), and translate them to the methylation-sensitive high-resolution melting (MS-HRM) and digital PCR (dPCR) platforms. METHODS Our study included a cohort of 149 formalin-fixed, paraffin-embedded tissue samples, including 19 CRLMs, 10 PCLMs, 15 HCCs, 15 CCAs, 15 colorectal adenocarcinomas (CRCs), 15 pancreatic ductal adenocarcinomas (PDACs) and their paired normal tissue samples. The methylation status of the samples was experimentally determined by MS-HRM and methylation-specific dPCR. Previously determined methylation threshold were adjusted according to dPCR data and applied to the same DNA methylation array datasets (provided by The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)) used to originally identify the biomarkers for the included cancer types and additional CRLM projects. The sensitivities, specificities and diagnostic accuracies of the panels for individual cancer types were calculated. RESULTS In the dPCR experiment, the DNA methylation panels identified HCC, CCA, CRC, PDAC, CRLM and PCLM with sensitivities of 100%, 66.7%, 100%, 86.7%, 94.7% and 80%, respectively. The panels differentiate between HCC, CCA, CRLM, PCLM and healthy liver tissue with specificities of 100%, 100%, 97.1% and 94.9% and with diagnostic accuracies of 100%, 94%, 97% and 93%, respectively. Reevaluation of the same bioinformatic data with new additional CRLM projects demonstrated that the lower dPCR methylation threshold still effectively differentiates between the included cancer types. The bioinformatic data achieved sensitivities for HCC, CCA, CRC, PDAC, CRLM and PCLM of 88%, 64%, 97.4%, 75.5%, 80% and 84.6%, respectively. Specificities between HCC, CCA, CRLM, PCLM and healthy liver tissue were 98%, 93%, 86.6% and 98.2% and the diagnostic accuracies were 94%, 91%, 86% and 98%, respectively. Moreover, we confirmed that the methylation of the investigated promoters is preserved from primary CRC and PDAC to their liver metastases. CONCLUSIONS The cancer-specific methylation biomarker panels exhibit high sensitivities, specificities and diagnostic accuracies and enable differentiation between primary and metastatic adenocarcinomas of the liver using methylation-specific dPCR. High concordance was achieved between MS-HRM, dPCR and bioinformatic data, demonstrating the successful translation of bioinformatically identified methylation biomarkers from the Illumina Infinium HumanMethylation450 BeadChip (HM450) and lllumina MethylationEPIC BeadChip (EPIC) platforms to the simpler MS-HRM and dPCR platforms.
Collapse
Affiliation(s)
- Tina Draškovič
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Branislava Ranković
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Zidar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Hauptman
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
104
|
Smith SR, Jajja MR, Sarmiento JM. Long-term symptom resolution following the surgical management of chronic pancreatitis. Am J Surg 2024; 237:115810. [PMID: 38955621 DOI: 10.1016/j.amjsurg.2024.115810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Pervasive symptoms from chronic pancreatitis despite noninvasive management is an indication for surgical intervention. Frey and Whipple procedures are appropriate options for proximal pancreas disease; however, data are limited on symptomatic outcomes. METHODS We conducted a retrospective analysis of patients who underwent surgical intervention for chronic pancreatitis of the proximal pancreas from 2005 to 2019. Preoperative patient characteristics and postoperative outcomes were evaluated. RESULTS One hundred forty patients underwent surgical intervention for chronic pancreatitis, 91 Whipple and 49 Frey procedures. Mean age was 53 years (SD 12), and mean BMI 24 (SD 5.6). At post-operative follow-up, 74 % were asymptomatic, and 84 % at average follow-up of 2 years. Groove pancreatitis, lack of post-operative delayed gastric emptying, and decreased length of stay were predictive of symptom resolution. CONCLUSIONS Whipple and Frey procedures are appropriate surgical options for chronic pancreatitis affecting the proximal pancreas. Both lead to sustained symptom resolution for most patients.
Collapse
Affiliation(s)
- Savannah R Smith
- Department of Surgery, Emory University, 1364 Clifton Road NE, H100, Atlanta, GA, 30322, USA
| | - Mohammad Raheel Jajja
- Department of Surgery, Emory University, 1364 Clifton Road NE, H100, Atlanta, GA, 30322, USA
| | - Juan M Sarmiento
- Department of Surgery, Emory University, 1364 Clifton Road NE, H100, Atlanta, GA, 30322, USA; Winship Cancer Institute, Emory University, Emory Clinic, Building A, Suite A4205, 1365 Clifton Road NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
105
|
Huang Z, Li M, Gu B, Chen J, Liu S, Tan P, Fu W. Ferroptosis-related LINC02535/has-miR-30c-5p/EIF2S1 axis as a novel prognostic biomarker involved in immune infiltration and progression of PDAC. Cell Signal 2024; 123:111338. [PMID: 39117252 DOI: 10.1016/j.cellsig.2024.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND PDAC, also known as pancreatic ductal adenocarcinoma, is often diagnosed at a late stage due to nonspecific symptoms and a distinct lack of reliable biomarkers for timely diagnosis. Ferroptosis, a novel non-apoptotic cell death mode discovered in recent years, is strongly linked to the progression of PDAC and the evasion of the immune system. The objective of this study is to discover a novel ceRNA biomarker associated with ferroptosis and investigate its possible molecular mechanisms and therapeutic potential in PDAC. METHODS Based on the FerrDb and TCGA databases, the R survival package was used to screen for ferroptosis-related mRNAs associated with PDAC prognosis. The ferroptosis-related ceRNA network was identified by miRTarBase, miRNet, and starBase and visualized using Cytoscape. The LASSO regression analysis was used to build a risk model associated with ceRNA. Additionally, we investigated the correlation between the ceRNA axis and the infiltration of immune cells in PDAC by employing the ssGSEA algorithm. Spearman correlation analysis was used to investigate the association between the ceRNA network and the expression levels of immune checkpoint genes in PDAC. The prediction of potential medications for PAAD patients with high risk scores was conducted using the R package oncoPredict and the Genomics of Drug Sensitivity in Cancer (GDSC) repository. Expression levels of LINC02535 in clinical specimens and PDAC cell lines were determined using qRT-PCR. CCK-8, colony formation, EdU, wound healing, and transwell assays were performed to assess the impact of reducing LINC02535 on the growth, migration, and invasion of PDAC cell lines BxPC3 and PANC1. RESULTS We first discovered a new LINC02535/miR-30c-5p/EIF2S1 axis associated with ferroptosis and created a prognostic nomogram for predicting overall survival. Meanwhile, the risk scores of the LINC02535/miR-30c-5p/EIF2S1 axis associated with ferroptosis were linked to immune subtypes in PDAC. The high immune infiltration subtype exhibited elevated ceRNA risk scores and EIF2S1 expression. The correlation analysis revealed a positive correlation between ceRNA risk scores and four immune cells, namely Activated CD4 T cell, Memory B cell, Neutrophil, and Type 2 T helper cell, as well as four immune checkpoint genes, namely CD274, HAVCR2, PDCD1LG2, and TIGIT. The analysis of drug sensitivity indicated that individuals with a high-risk score may exhibit greater sensitivity to inhibitors targeting MEK1/2 compared to those with a low-risk score. In our validation experiments, it was observed that the expression of LINC02535 was increased in both PDAC tissues and cell lines. Additionally, the inhibition of LINC02535 resulted in decreased proliferation, migration, and invasion of PDAC cells. Rescue experiments demonstrated that LINC02535 promoted PDAC cell growth and metastasis by upregulating EIF2S1 expression. CONCLUSION To summarize, a novel ferroptosis-associated LINC02535/miR-30c-5p/EIF2S1 ceRNA network for PDAC patients was established. The analysis of this network's functionality offers potential insights for clinical decision-making and the advancement of precision medicine.
Collapse
MESH Headings
- Humans
- Ferroptosis/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Prognosis
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/immunology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Gene Expression Regulation, Neoplastic
- Disease Progression
- Cell Line, Tumor
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Mo Li
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Boyuan Gu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jiatong Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shenglu Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Peng Tan
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
106
|
Mii S, Takahara T, Shibasaki S, Ishihara T, Mizumoto T, Uchida Y, Iwama H, Kojima M, Kato Y, Suda K. 99mTc-GSA scintigraphy and modified albumin-bilirubin score can be complementary to ICG for predicting posthepatectomy liver failure. BMC Surg 2024; 24:342. [PMID: 39482649 PMCID: PMC11529431 DOI: 10.1186/s12893-024-02624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Posthepatectomy liver failure (PHLF) remains a severe complication after liver resection. This retrospective study investigated the correlation of three hepatic functional tests and whether 99mTc-galactosyl human serum albumin (99mTc-GSA) scintigraphy and modified albumin-bilirubin (ALBI) score are useful for predicting PHLF. METHODS This retrospective cohort study included 413 consecutive patients undergoing hepatectomies between January 2017 and December 2020. To evaluate preoperative hepatic functional reserve, modified ALBI grade, indocyanine green clearance (ICG-R15), and 99mTc-GSA scintigraphy (LHL15) were examined before scheduled hepatectomy. Based on a retrospective chart review, multivariable logistic regression analysis adjusted for confounding factors was performed to confirm that mALBI, ICG-R15, and LHL15 are independent risk factors for PHLF. RESULTS ICG-R15 and LHL15 were moderately correlated (r = - 0.61) but this correlation weakened when ICG-R15 was about ≥ 20. Weak correlations were observed between LHL15 and ALBI score (r = - 0.269) and ALBI score and ICG-R15 (r = 0.339). Of 413 patients, 66 (19%) developed PHLF (20 grade A, 44 grade B, 2 grade C). Multivariable logistic regression analyses, major hepatectomy (P < 0.001), mALBI grade (P = 0.01), ICG-R15 (P < 0.001), and Esophagogastric varices (P = 0.007) were significant independent risk factors for PHLF. Subgroup analysis showed that ICG-R15 < 19, major hepatectomy, and mALBI grade and ICG-R15 ≥ 19, major hepatectomy, LHL15, and Esophagogastric varices were significant independent risk factors for PHLF (P = 0.033, 0.017, 0.02, 0.02, and 0.001, respectively). CONCLUSION LHL15, the assessment of Esophagogastric varices, and mALBI grade are complementary to ICG-R15 for predicting PHLF risk.
Collapse
Affiliation(s)
- Satoshi Mii
- Department of Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Takeshi Takahara
- Department of Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan.
| | - Susumu Shibasaki
- Department of Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, 501-1194, Japan
| | - Takuya Mizumoto
- Department of Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Yuichiro Uchida
- Department of Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Hideaki Iwama
- Department of Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Masayuki Kojima
- Department of Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Yutaro Kato
- Department of Gastroenterological Surgery, Fujita Health University School of Medicine Bantane Hospital, 3-6-10 Otobashi Nakagawa Ward, Nagoya, Aichi, 454-8509, Japan
| | - Koichi Suda
- Department of Surgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
- Collaborative Laboratory for Research and Development in Advanced Surgical Intelligence, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
107
|
Yang L, Sun Z. Role of APE1 in hepatocellular carcinoma and its prospects as a target in clinical settings (Review). Mol Clin Oncol 2024; 21:82. [PMID: 39301126 PMCID: PMC11411593 DOI: 10.3892/mco.2024.2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
In recent years, the incidence of liver cancer has increased annually. However, current medical treatments for liver cancer are limited, and most patients have a high risk of recurrence after surgery. Therefore, the discovery and development of novel treatment targets for liver cancer is urgently needed. Apurinic/apyrimidinic endonuclease 1 (APE1) is a protein that has a DNA repair function and serves an important role in various physiological processes, including reduction-oxidation, cell proliferation and differentiation. The expression levels of APE1 are abnormally elevated in liver cancer cells, as ectopic expression of the APE1 gene has been reported, in addition to other abnormal signs, such as cell proliferation and migration. Therefore, it could be suggested that APE1 is an important indicator of hepatocellular carcinogenesis. APE1 may be used as a therapeutic target for tumors and proposed targeted therapy against abnormal APE1 expression could potentially inhibit the progression of tumors. The present review aimed to introduce the important role of APE1 in the physiological processes of tumor cells and the feasibility of using APE1 as a potential therapeutic target, providing a novel direction for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Lei Yang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Zhipeng Sun
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| |
Collapse
|
108
|
Aydemir D, Öztürk K, Arslan FB, Çalis S, Ulusu NN. Gemcitabine-loaded chitosan nanoparticles enhanced apoptotic and ferroptotic response of gemcitabine treatment alone in the pancreatic cancer cells in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9051-9066. [PMID: 38884675 PMCID: PMC11522156 DOI: 10.1007/s00210-024-03193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
Gemcitabine (GEM) is a first-line treatment for pancreatic ductal adenocarcinoma (PDAC) patients, causing side effects and poor overall survival. Eighty percent of patients often develop resistance rapidly to GEM. Developing therapeutic approaches and increasing sensitivity to gemcitabine in PDAC has become one of the challenges in cancer research. We synthesized GEM-loaded NPs prepared with a method that combines ultrasonication and ionotropic gelation to overcome GEM-related limitations in PDAC. CFPAC-1 cells were treated with increased concentrations of GEM, empty chitosan, and GEM-loaded NPs (0.66, 1.32, 2.64, 5.32 µg/ml) for up to 48 h. Empty chitosan NPs did not show toxicity on L929 cells. Antioxidant enzyme activities, including glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione s-transferase (GST), and glutathione peroxidase (GPx), significantly reduced in GEM-loaded NPs compared to the GEM associated with increased oxidative stress, PPP, and glycolysis. Bcl-xL, NOXA/mcl-1, and Ca2+ levels significantly increased in GEM-loaded NP-administered cells compared to the GEM and control groups. In contrast, JNK, p38, STAT3, Akt, and CREB levels significantly decreased in the GEM-loaded NP group, addressing enhanced apoptotic response compared to the GEM alone. Increased ferroptosis activity in GEM-loaded NP-administered groups has been validated via decreased antioxidant enzyme activities, increased cytosolic Fe, Zn, Mg, and Mn levels, and reduced GPx activity compared to the GEM and control groups. For the first time in the literature, we showed biocompatible GEM-loaded NPs enhanced apoptotic and ferroptotic response in CFPAC-1 cells via downregulation of antioxidant, glycolysis, and PPP metabolism compared to the GEM alone.
Collapse
Affiliation(s)
- Duygu Aydemir
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
- Biochemistry Department, Koc University School of Medicine, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| | - Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Fatma Betül Arslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Çalis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Nuriye Nuray Ulusu
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
- Biochemistry Department, Koc University School of Medicine, Rumelifeneri Yolu, Sariyer, Istanbul, 34450, Turkey.
| |
Collapse
|
109
|
Nguyen DT, Baek MJ, Lee SM, Kim D, Yoo SY, Lee JY, Kim DD. Photobleaching-mediated charge-convertible cyclodextrin nanoparticles achieve deep tumour penetration for rectal cancer theranostics. NATURE NANOTECHNOLOGY 2024; 19:1723-1734. [PMID: 39169198 DOI: 10.1038/s41565-024-01757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Although charge-converting nanoparticles (NPs) potentially penetrate tumours deeply, conventional charge conversion strategies possess limitations, including low selectivity and slow, inconsistent conversion rate within the tumour microenvironment. In this study, we synthesized a zwitterionic near-infrared cyclodextrin derivative of heptamethine cyanine and complexed it with pheophorbide-conjugated ferrocene to produce multifunctional theranostic nanotherapeutics. Our NPs demonstrated enhanced tumour-targeting ability, enabling the highly specific imaging of rectal tumours, with tumour-to-rectum signal ratios reaching up to 7.8. The zwitterionic surface charge of the NPs was rapidly converted to a cationic charge within the tumours on 880 nm near-infrared laser irradiation, promoting the tumoural penetration of NPs via transcytosis. After penetration, photodynamic/chemodynamic therapy was initiated using a 660 nm laser. Our NPs eradicated clinically relevant-sized heterotopic tumours (~250 mm3) and orthotopic rectal tumours, displaying their potential as theranostic nanoplatforms for targeting rectal cancer.
Collapse
Affiliation(s)
- Duy-Thuc Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Min Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dahan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - So-Yeol Yoo
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
- Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
- Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
110
|
Xiao W, Xu C. Cystine/cysteine metabolism regulates the progression and response to treatment of triple‑negative breast cancer (Review). Oncol Lett 2024; 28:521. [PMID: 39268159 PMCID: PMC11391256 DOI: 10.3892/ol.2024.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/04/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer is the most prevalent neoplasm affecting women globally, of which a notable proportion of cases are triple-negative breast cancer (TNBC). However, there are limited curative treatment options for patients with TNBC, despite advancements in the field. Amino acids and amino acid transporters serve vital roles in the regulation of tumor metabolism. Notably, cystine and cysteine can interconvert via a redox reaction, with cysteine exerting control on cell survival and growth and exogenous cystine serving a crucial role in the proliferation of numerous types of cancers. Breast cancer has been reported to disrupt the cystine/cysteine metabolism pathway, as cystine and cysteine transporters affect the development and growth of tumors. The present review aims to provide a comprehensive overview of the metabolic pathways involving cystine and cysteine in normal and TNBC cells. Furthermore, the roles of cystine and cysteine transporters in TNBC progression and metastasis and their potential as therapeutic targets for treatment of TNBC are evaluated.
Collapse
Affiliation(s)
- Wanting Xiao
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
111
|
Jing J, Yang WX, Pan QQ, Zhang SH, Cao HG, Zhang ZJ, Ling YH. Regulatory role of lncMD1 in goat skeletal muscle satellite cell differentiation via miR-133a-3p and miR-361-3p targeting. Int J Biol Macromol 2024; 280:135807. [PMID: 39306179 DOI: 10.1016/j.ijbiomac.2024.135807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Skeletal muscle satellite cells (SMSCs) are pivotal in skeletal muscle development and are influenced by numerous regulatory factors. This study focuses on the regulatory and functional mechanism roles of lncMD1, a muscle-specific long non-coding RNA, in the proliferation and differentiation of goat SMSCs. Employing in vitro cultured goat SMSCs, this study demonstrated that lncMD1, functions as a decoy for miR-133a-3p and miR-361-3p. This interaction competitively binds these microRNAs to modulate the expression of dynactin subunit 2 (DCTN2) and dynactin subunit 1 (DCTN1), thereby affects SMSCs proliferation and differentiation. These findings enhance the understanding of non-coding RNAs in goat SMSCs growth cycles and offer a theoretical foundation for exploring the molecular processes of goat skeletal muscle myogenic development.
Collapse
Affiliation(s)
- Jing Jing
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Wang-Xin Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qian-Qian Pan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Si-Huan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Hong-Guo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zi-Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ying-Hui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Germplasm Innovation, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
112
|
Yao C, Jiang N, Sun X, Zhang Y, Pan R, He Q, Chang Q, Liu X. Effects of inulin-type oligosaccharides (JSO) from Cichorium intybus L. on behavioral deficits induced by chronic restraint stress in mice and associated molecular alterations. Front Pharmacol 2024; 15:1484337. [PMID: 39555096 PMCID: PMC11563967 DOI: 10.3389/fphar.2024.1484337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Depression and anxiety are serious psychiatric disorders with significant physical and mental health impacts, necessitating the development of safe and effective treatments. This study aimed to evaluate the efficacy of Jiangshi oligosaccharide (JSO), a type of inulin-based oligosaccharide, in alleviating anxiety and depression and to investigate the underlying molecular mechanisms. Using a mouse model of chronic restraint stress (CRS), JSO was administered orally at doses of 50, 100, and 200 mg/kg for 21 days. Behavioral tests, including the novelty-suppressed feeding test (NSFT), open field test (OFT), elevated plus maze test (EPMT), tail suspension test (TST), and forced swimming test (FST), demonstrated that JSO significantly improved anxiety- and depressive-like behaviors (P< 0.05). Notably, JSO reduced feeding latency in the NSFT, increased time spent in the center in the OFT, enhanced time and entries into open arms in the EPMT, and decreased immobility time in the TST and FST (P< 0.01). Histological and molecular analyses revealed that JSO treatment attenuated neuronal loss in the hippocampus (Hip) and medial prefrontal cortex (mPFC) and reduced the expression of inflammatory markers such as Iba-1 and GFAP in these regions. JSO significantly downregulated the mRNA and protein expression of pro-inflammatory factors (IL-1β, TNF-α, IL-6) while increasing anti-inflammatory markers (IL-10, TGF-β) (P< 0.05). Furthermore, JSO inhibited the c-GAS-STING-NLRP3 axis and apoptosis-related proteins (Bax/Bcl-2, Caspase-3/8/9) while promoting the expression of brain-derived neurotrophic factor (BDNF), PSD-95, and synaptophysin (SYP), indicating improved neuronal survival and synaptic plasticity (P< 0.01). These findings suggest that JSO exerts potent anti-anxiety and antidepressant effects by modulating neuroinflammation, synaptic function, and neuronal apoptosis in the Hip and mPFC of CRS mice. This study highlighted JSO as a potential therapeutic agent for stress-induced anxiety and depression.
Collapse
Affiliation(s)
- Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinran Sun
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruile Pan
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghu He
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi Chang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
113
|
He C, Zhou J, Wu X, Zhou Y, Wang S, Liu B, Luo T, Chen Y, Yuan J, Wang D, Zhang C, Shi J. Hyaluronic acid-zein shell-core biopolymer nanoparticles enhance hepatocellular carcinoma therapy of celastrol via CD44-mediated cellular uptake. Int J Biol Macromol 2024; 281:136096. [PMID: 39353524 DOI: 10.1016/j.ijbiomac.2024.136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Low concentrations or limited residence times in tumor tissues, making celastrol (Cel) difficult to exert significant therapeutic effects. Thus, we developed Zein/hyaluronic acid core-shell nanoparticles (Cel/Zein@HA NPs) for active targeted delivery of Cel via CD44 receptor over-expression on cancer cells, which may strengthen the therapeutic efficacy of Cel and improve delivery targeting. Cel-loaded Zein nanoparticles (core), are elegantly enveloped by a hydrophilic HA coating that forms the shell, resulting in significantly improved encapsulation efficiency and ensured good stability. The cellular uptake of Cel/Zein@HA NPs in HepG2 cells was 1.57-fold higher than nontargeting Cel/Zein NPs. Near-infrared fluorescence imaging confirmed the accumulation of Cel/Zein@HA NPs in H22 liver cancer tumors in mice, resulting in effective antitumor effects and good biosafety. Besides, in vitro and in vivo experiments showed that compared with Cel/Zein NPs, Cel/Zein@HA NPs had more efficient inhibitory effect on tumor proliferation and lower systemic toxicity. Further studies revealed that Cel/Zein@HA NPs induced apoptosis in hepatocellular carcinoma cells by modulating Bax and Bcl-2 expression, while also inhibiting tumor angiogenesis by decreasing CD31 and VEGF levels. Overall, this study presents a promising strategy for enhancing targeted liver cancer therapy through the utilization of biopolymer nanoparticle-based nano-pharmaceuticals that facilitate CD44-mediated cellular uptake.
Collapse
Affiliation(s)
- Congjian He
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Jiahui Zhou
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Xixi Wu
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yujin Zhou
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Siya Wang
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Bo Liu
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Ting Luo
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Ying Chen
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Jia Yuan
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Di Wang
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jinfeng Shi
- College of Pharmacy, Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
114
|
Zheng H, Huang L, An G, Guo L, Wang N, Yang W, Zhu Y. A Nanoreactor Based on Metal-Organic Frameworks With Triple Synergistic Therapy for Hepatocellular Carcinoma. Adv Healthc Mater 2024; 13:e2401743. [PMID: 39015058 DOI: 10.1002/adhm.202401743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Indexed: 07/18/2024]
Abstract
The transformation of monotherapy into multimodal combined targeted therapy to fully exploit synergistic efficacy is of increasing interest in tumor treatment. In this work, a novel nanodrug-carrying platform based on iron-based MOFs, which is loaded with doxorubicin hydrochloride (DOX), dihydroartemisinin (DHA), and glucose oxidase (GOx), and concurrently covalently linked to the photosensitizer 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) in polydopamine (PDA)-encapsulated MIL-101(Fe) (denoted as MIL-101(Fe)-DOX-DHA@TCPP/GOx@PDA, MDDTG@P), is successfully developed. Upon entering the tumor microenvironment, MDDTG@P catalyzes the hydrogen peroxide (H2O2) into hydroxyl radicals (·OH) and depletes glutathione (GSH); thus, exerting the role of chemodynamic therapy (CDT). The reduced Fe2+ can also activate DHA, further expanding CDT and promoting tumor cell apoptosis. The introduced GOx will rapidly consume glucose and oxygen (O2) in the tumor; while, replenishing H2O2 for Fenton reaction, starving the cancer cells; and thus, realizing starvation and chemodynamic therapy. In addition, the covalent linkage of TCPP endows MDDTG@P with good photodynamic therapeutic (PDT) properties. Therefore, this study develops a nanocarrier platform for triple synergistic chemodynamic/photodynamic/starvation therapy, which has promising applications in the efficient treatment of tumors.
Collapse
Affiliation(s)
- Heming Zheng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Lei Huang
- School of Stomatology, Minzhu Clinic of Stomatology Hospital Affiliated to Guangxi Medical University, Guangxi, 530007, China
| | - Guanghui An
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Lianshan Guo
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Wenhui Yang
- Department of Medical Laboratory, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
115
|
Pham YTH, Huang DQ, Zhang Z, Ng CH, Tan DJH, Nguyen HC, Nguyen TC, Behari J, Yuan JM, Luu HN. Changing global epidemiology of chronic hepatitis C virus-related outcomes from 2010 to 2019: cirrhosis is the growing burden of hepatitis C virus-related disease. Eur J Cancer Prev 2024; 33:512-524. [PMID: 38568179 PMCID: PMC11416569 DOI: 10.1097/cej.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND Chronic infection with hepatitis C virus (HCV) has a long-term impact on hepatic consequences. A comprehensive evaluation of the global burden of HCV-related health outcomes can help to develop a global HCV prevention and treatment program. METHODS We used the 2019 Global Burden of Disease (GBD) Study to comprehensively investigate burden and temporal trends in incidence, mortality and disability-adjusted life-years (DALYs) of HCV-related diseases, including liver cancer and cirrhosis and other liver diseases across 264 countries and territories from 2010 to 2019. RESULTS Globally, there were 152 225 incident cases, 141 811 deaths and approximately 2.9 million DALYs because of HCV-related liver cancer, and 551 668 incident cases, 395 022 deaths and about 12.2 million DALYs because of HCV-related cirrhosis in 2019. Worldwide, during the 2010-2019 period, liver cancer incidence declined, however, there was a 62% increase in cirrhosis incidence. In 2019, the Eastern Mediterranean was the region with the highest rates of incidence and mortality of both liver cancer and cirrhosis. Africa was the region with the fastest-growing trend of incidence of cirrhosis in the 2010-2019 period [annual percentage change (APC) = 2.09, 95% confidence interval (CI): 1.93-2.25], followed by the Western Pacific region (APC = 1.17, 95% CI: 1.09-1.22). Americas were the only region observing increased trends in liver cancer and cirrhosis mortality (APC = 0.70 and 0.12, respectively). We identified three patterns of temporal trends of mortality rates of liver cancer and cirrhosis in countries that reported HCV treatment rates. CONCLUSION Urgent measures are required for diagnosis, treatment and research on HCV-related cirrhosis at global, regional and country levels, particularly in Africa, the Western Pacific and the Eastern Mediterranean.
Collapse
Affiliation(s)
- Yen Thi-Hai Pham
- University of Pittsburgh Medical Center Hillman Cancer Center
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Q. Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Zhongjie Zhang
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Darren Jun Hao Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Hiep C. Nguyen
- Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tin C. Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, Alabama
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical Center
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jian-Min Yuan
- University of Pittsburgh Medical Center Hillman Cancer Center
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hung N. Luu
- University of Pittsburgh Medical Center Hillman Cancer Center
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
116
|
Banerjee T, Dan K, Ghosh S. pH-Responsive self-assembled polymer-photosensitizer conjugate for activable photodynamic therapy. NANOSCALE 2024; 16:19756-19762. [PMID: 39373067 DOI: 10.1039/d4nr03249g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This paper reports synthesis, aqueous self-assembly and relevance of the pH-triggered activable photodynamic therapy of amphiphilic polyurethane (P1S) functionalized with a heavy-atom free organic photosensitizer. Condensation polymerization between 1,4-diisocyanatobutane and two different dihydroxy monomers (one having a pendant hydrophilic wedge and the other having 1,3-dihydroxypropan-2-one with a reactive carbonyl group) in the presence of a measured amount of (S)-2-methylbutan-1-ol (chain-stopper) and DABCO catalyst produces a reactive pre-polymer P1. Hydrazide-functionalized thionated-naphthalenemonoimide (NMIS), which acts as a photosensitizer, reacted with the carbonyl-functionality of P1 to obtain the desired polymer-photosensitizer conjugate P1S in which the dye was attached to the polymer backbone via an acid-labile hydrazone linker. In water, P1S adopted an intra-chain H-bonding stabilized folded structure, which further assembled to produce a polymersome structure (Dh ≈ 200 nm), in which the hydrophobic membrane consists of aggregated NMIS and trialkoxy-benzene chromophores, as evident from UV/vis, CD and small-angle X-ray diffraction studies. In the aggregated state, NMIS loses its reactive oxygen species (ROS) generation ability and remains in a dormant state. However, under acidic conditions (pH 5.5), the photosensitizer is detached (presumably because of the cleavage of the hydrazone linker) and regains its full ROS-generation activity under photoirradiation, as evidenced from the standard DCFH assay. To test the possibility of such pH-activable intra-cellular ROS generation, P1S was treated with HeLa cells, as it is known that cancer cells are more acidic than normal cells. Indeed, photoirradiation-induced intra-cellular ROS generation was evident by the DCFH assay, resulting in efficient cell killing.
Collapse
Affiliation(s)
- Tanushri Banerjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Krishna Dan
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
117
|
Li B, Tian J, Zhang F, Wu C, Li Z, Wang D, Zhuang J, Chen S, Song W, Tang Y, Ping Y, Liu B. Self-assembled aldehyde dehydrogenase-activatable nano-prodrug for cancer stem cell-enriched tumor detection and treatment. Nat Commun 2024; 15:9417. [PMID: 39482286 PMCID: PMC11528051 DOI: 10.1038/s41467-024-53771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Cancer stem cells, characterized by high tumorigenicity and drug-resistance, are often responsible for tumor progression and metastasis. Aldehyde dehydrogenases, often overexpressed in cancer stem cells enriched tumors, present a potential target for specific anti-cancer stem cells treatment. In this study, we report a self-assembled nano-prodrug composed of aldehyde dehydrogenases activatable photosensitizer and disulfide-linked all-trans retinoic acid for diagnosis and targeted treatment of cancer stem cells enriched tumors. The disulfide-linked all-trans retinoic acid can load with photosensitizer and self-assemble into a stable nano-prodrug, which can be disassembled into all-trans retinoic acid and photosensitizer in cancer stem cells by high level of glutathione. As for the released photosensitizer, overexpressed aldehyde dehydrogenase catalyzes the oxidation of aldehydes to carboxyl under cancer stem cells enriched microenvironment, activating the generation of reactive oxygen species and fluorescence emission. This generation of reactive oxygen species leads to direct killing of cancer stem cells and is accompanied by a noticeable fluorescence enhancement for real-time monitoring of the cancer stem cells enriched microenvironment. Moreover, the released all-trans retinoic acid, as a differentiation agent, reduce the cancer stem cells stemness and improve the cancer stem cells enriched microenvironment, offering a synergistic effect for enhanced anti-cancer stem cells treatment of photosensitizer in inhibition of in vivo tumor growth and metastasis.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jianwu Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Fu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongzhi Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dandan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jiahao Zhuang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Siqin Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yufu Tang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
118
|
Guo R, Lv R, Yu T, Wang X, Shi R, Umar M, Hayat M, Mandal G, Liu J. Effective Identification and Highly Sensitive Quantification of Fructo-oligosaccharide Isomers with Bi 2Se 3 Nanosheet-Assisted Laser Desorption Ionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24082-24092. [PMID: 39405035 DOI: 10.1021/acs.jafc.4c06746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The growing interest in fructo-oligosaccharides (FOSs) necessitates the effective monitoring of product quality. Identifying and quantifying FOS isomers from the same sources are challenging. Here, we report a new method using Bi2Se3 nanosheets as the matrix for matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), achieving effective differentiation of oligosaccharide isomers through MALDI-MS/MS. Notably, four isomers of pentasaccharides and two isomers of heptasaccharides were successfully identified, with a remarkably low limit of detection of 0.06 pmol. Our approach enabled the specific quantification of 1F-fructofuranosylnystose in commercial FOS products, positioning it as a promising tool for oligosaccharide isomer quantification in nutritional food products. Furthermore, this technique facilitates the rapid and sensitive detection of various saccharides and a wide range of other small molecules with enhanced signal intensities and improved reproducibility. Overall, it facilitates the rapid, selective, and sensitive detection of various saccharides and other small molecules, enhancing analytical chemistry and food science applications.
Collapse
Affiliation(s)
- Ruochen Guo
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Rui Lv
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Tianrong Yu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xuze Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Rui Shi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Muhammad Umar
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Minahil Hayat
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
| | - Govinda Mandal
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Jian Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China
| |
Collapse
|
119
|
Liu Y, Shang X, Du W, Shen W, Zhu Y. Helicobacter Pylori Infection as the Predominant High-Risk Factor for Gastric Cancer Recurrence Post-Gastrectomy: An 8-Year Multicenter Retrospective Study. Int J Gen Med 2024; 17:4999-5014. [PMID: 39494357 PMCID: PMC11531290 DOI: 10.2147/ijgm.s485347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose The reappearance of gastric cancer, a frequent postoperative complication following radical gastric cancer surgery, substantially impacts the near-term and far-reaching medical outlook of patients. The objective of this research was to create a machine learning algorithm that could recognize high-risk factors for gastric cancer recurrence and anticipate the correlation between gastric cancer recurrence and Helicobacter pylori (H. pylori) infection. Patients and Methods This investigation comprised 1234 patients diagnosed with gastric cancer, and 37 characteristic variables were obtained. Four machine learning algorithms, namely, extreme gradient boosting (XGBoost), random forest (RF), k-nearest neighbor algorithm (KNN), and multilayer perceptron (MLP), were implemented to develop the models. The k-fold cross-validation technique was utilized to perform internal validation of the four models, while independent datasets were employed for external validation of the models. Results In contrast to the other machine learning models, the XGBoost algorithm demonstrated superior predictive ability regarding high-risk factors for gastric cancer recurrence. The outcomes of Shapley additive explanation (SHAP) analysis revealed that tumor invasion depth, tumor lymph node metastasis, H. pylori infection, postoperative carcinoembryonic antigen (CEA), tumor size, and tumor number were risk elements for gastric cancer recurrence in patients, with H. pylori infection being the primary high-risk factor. Conclusion Out of the four machine learning models, the XGBoost algorithm exhibited superior performance in predicting the recurrence of gastric cancer. In addition, machine learning models can help clinicians identify key prognostic factors that are clinically meaningful for the application of personalized patient monitoring and immunotherapy.
Collapse
Affiliation(s)
- Yuan Liu
- Department of General Surgery, Wuxi Medical Center of Nanjing Medical University, Wuxi, People’s Republic of China
- Department of General Surgery, Tengzhou Central People’s Hospital, Jining Medical College, Shandong, People’s Republic of China
| | - Xingchen Shang
- Department of General Surgery, Wuxi Medical Center of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Wenyi Du
- Department of General Surgery, Wuxi Medical Center of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Wei Shen
- Department of General Surgery, Wuxi Medical Center of Nanjing Medical University, Wuxi, People’s Republic of China
| | - Yanfei Zhu
- Department of General Surgery, Wuxi Medical Center of Nanjing Medical University, Wuxi, People’s Republic of China
| |
Collapse
|
120
|
Tang S, Chen L. The recent advancements of ferroptosis of gynecological cancer. Cancer Cell Int 2024; 24:351. [PMID: 39462352 PMCID: PMC11520064 DOI: 10.1186/s12935-024-03537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Ovarian, endometrial, and cervical cancer are the most common types of gynecologic tumor in women. Surgery, combined with radiotherapy and chemotherapy, is commonly used to treat these tumors. Unfortunately, difficulties in early diagnosis and acquired drug resistance have resulted in poor outcomes for most patients. Ferroptosis is a form of regulated cell death that depends on iron and is characterized by iron accumulation, reactive oxygen species production, and lipid peroxidation. The strong association between ferroptosis and many diseases, especially tumor diseases, has been confirmed by numerous studies. Many studies have demonstrated that ferroptosis is involved in initiating, progressing and metastasizing gynecologic tumors. This review summarizes the pathogenesis of ferroptosis and its association with the development, treatment, and prognosis of gynecologic tumors, and further explore the potential utility of ferroptosis in treating gynecologic tumors.
Collapse
Affiliation(s)
- Shenglan Tang
- Department of the First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People's Republic of China
| | - Li Chen
- Department of Obstetrics and Gynecology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Road, Shangcheng, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
121
|
Zhao YY, Zhang X, Xu Y, Chen Z, Hwang B, Kim H, Liu H, Li X, Yoon J. A Renal Clearable Nano-Assembly with Förster Resonance Energy Transfer Amplified Superoxide Radical and Heat Generation to Overcome Hypoxia Resistance in Phototherapeutics. Angew Chem Int Ed Engl 2024; 63:e202411514. [PMID: 38940633 DOI: 10.1002/anie.202411514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 06/29/2024]
Abstract
Given that type I photosensitizers (PSs) possess a good hypoxic tolerance, developing an innovative tactic to construct type I PSs is crucially important, but remains a challenge. Herein, we present a smart molecular design strategy based on the Förster resonance energy transfer (FRET) mechanism to develop a type I photodynamic therapy (PDT) agent with an encouraging amplification effect for accurate hypoxic tumor therapy. Of note, benefiting from the FRET effect, the obtained nanostructured type I PDT agent (NanoPcSZ) with boosted light-harvesting ability not only amplifies superoxide radical (O2 •-) production but also promotes heat generation upon near-infrared light irradiation. These features facilitate NanoPcSZ to realize excellent phototherapeutic response under both normal and hypoxic environments. As a result, both in vitro and in vivo experiments achieved a remarkable improvement in therapeutic efficacy via the combined effect of photothermal action and type I photoreaction. Notably, NanoPcSZ can be eliminated from organs (including the liver, lung, spleen, and kidney) apart from the tumor site and excreted through urine within 24 h of its systemic administration. In this way, the potential biotoxicity of drug accumulation can be avoided and the biosafety can be further enhanced.
Collapse
Affiliation(s)
- Yuan-Yuan Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| | - Xiaojun Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Yihui Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Zixuan Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Bokyeong Hwang
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| | - Hao Liu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Xingshu Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| |
Collapse
|
122
|
Qi F, Gao N, Li J, Zhou C, Jiang J, Zhou B, Guo L, Feng X, Ji J, Cai Q, Yang L, Zhu R, Que X, Wu J, Xi W, Qin W, Zhang J. A multidimensional recommendation framework for identifying biological targets to aid the diagnosis and treatment of liver metastasis in patients with colorectal cancer. Mol Cancer 2024; 23:239. [PMID: 39449040 PMCID: PMC11515508 DOI: 10.1186/s12943-024-02155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The quest to understand the molecular mechanisms of tumour metastasis and identify pivotal biomarkers for cancer therapy is increasing in importance. Single-omics analyses, constrained by their focus on a single biological layer, cannot fully elucidate the complexities of tumour molecular profiles and can thus overlook crucial molecular targets. In response to this limitation, we developed a multiobjective recommendation system (RJH-Metastasis 1.0) anchored in a multiomics knowledge graph to integrate genome, transcriptome, and proteome data and corroborative literature evidence and then conducted comprehensive analyses of colorectal cancer with liver metastasis (CRCLM). A total of 25 key genes significantly associated with CRCLM were recommended by our system, and GNB1, GATAD2A, GBP2, MACROD1, and EIF5B were further highlighted. Specifically, GNB1 presented fewer mutations but elevated RNA transcription and protein expression in CRCLM patients. The role of GNB1 in promoting the malignant behaviours of colon cancer cells was demonstrated via in vitro and in vivo studies. Aberrant expression of GNB1 could be regulated by METTL1-driven m7G modification. METTL1 knockdown decreased m7G modification in the 3' UTR of GNB1, increasing its mRNA transcription and translation during liver metastasis. Furthermore, GNB1 induced the formation of an immunosuppressive microenvironment by promoting the CLEC2C-KLRB1 interaction between memory B cells and KLRB1+PD-1+CD8+ cells. GNB1 expression and the efficacy of PD-1 antibody-based treatment in CRCLM patients were significantly correlated. In summary, our recommendation system can be used for effective exploration of key molecules in colorectal cancer, among which GNB1 was identified as a critical CRCLM promoter and immunotherapy biomarker in colorectal cancer patients.
Collapse
Affiliation(s)
- Feng Qi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Na Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, P. R. China
| | - Jia Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, P. R. China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Bin Zhou
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China
| | - Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiaohui Feng
- Department of Oncology, Loujiang New City Hospital of Taicang (Taicang Branch of Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine), Suzhou, 215400, P. R. China
| | - Jun Ji
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Liu Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Rongjia Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xinyi Que
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Wenxing Qin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| |
Collapse
|
123
|
Zou Y, Chen J, Luo X, Qu Y, Zhou M, Xia R, Wang W, Zheng X. Porphyrin-engineered nanoscale metal-organic frameworks: enhancing photodynamic therapy and ferroptosis in oncology. Front Pharmacol 2024; 15:1481168. [PMID: 39512824 PMCID: PMC11541831 DOI: 10.3389/fphar.2024.1481168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Photodynamic therapy and ferroptosis induction have risen as vanguard oncological interventions, distinguished by their precision and ability to target vulnerabilities in cancer cells. Photodynamic therapy's non-invasive profile and selective cytotoxicity complement ferroptosis' unique mode of action, which exploits iron-dependent lipid peroxidation, offering a pathway to overcome chemoresistance with lower systemic impact. The synergism between photodynamic therapy and ferroptosis is underscored by the depletion of glutathione and glutathione peroxidase four inhibitions by photodynamic therapy-induced reactive oxygen species, amplifying lipid peroxidation and enhancing ferroptotic cell death. This synergy presents an opportunity to refine cancer treatment by modulating redox homeostasis. Porphyrin-based nanoscale metal-organic frameworks have unique hybrid structures and exceptional properties. These frameworks can serve as a platform for integrating photodynamic therapy and ferroptosis through carefully designed structures and functions. These nanostructures can be engineered to deliver multiple therapeutic modalities simultaneously, marking a pivotal advance in multimodal cancer therapy. This review synthesizes recent progress in porphyrin-modified nanoscale metal-organic frameworks for combined photodynamic therapy and ferroptosis, delineating the mechanisms that underlie their synergistic effects in a multimodal context. It underscores the potential of porphyrin-based nanoscale metal-organic frameworks as advanced nanocarriers in oncology, propelling the field toward more efficacious and tailored cancer treatments.
Collapse
Affiliation(s)
- Yutao Zou
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xuanxuan Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yijie Qu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Rui Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
124
|
Sharma A, Bhatia D. Programmable bionanomaterials for revolutionizing cancer immunotherapy. Biomater Sci 2024; 12:5415-5432. [PMID: 39291418 DOI: 10.1039/d4bm00815d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Cancer immunotherapy involves a cutting-edge method that utilizes the immune system to detect and eliminate cancer cells. It has shown substantial effectiveness in treating different types of cancer. As a result, its growing importance is due to its distinct benefits and potential for sustained recovery. However, the general deployment of this treatment is hindered by ongoing issues in maintaining minimal toxicity, high specificity, and prolonged effectiveness. Nanotechnology offers promising solutions to these challenges due to its notable attributes, including expansive precise surface areas, accurate ability to deliver drugs and controlled surface chemistry. This review explores the current advancements in the application of nanomaterials in cancer immunotherapy, focusing on three primary areas: monoclonal antibodies, therapeutic cancer vaccines, and adoptive cell treatment. In adoptive cell therapy, nanomaterials enhance the expansion and targeting capabilities of immune cells, such as T cells, thereby improving their ability to locate and destroy cancer cells. For therapeutic cancer vaccines, nanoparticles serve as delivery vehicles that protect antigens from degradation and enhance their uptake by antigen-presenting cells, boosting the immune response against cancer. Monoclonal antibodies benefit from nanotechnology through improved delivery mechanisms and reduced off-target effects, which increase their specificity and effectiveness. By highlighting the intersection of nanotechnology and immunotherapy, we aim to underscore the transformative potential of nanomaterials in enhancing the effectiveness and safety of cancer immunotherapies. Nanoparticles' ability to deliver drugs and biomolecules precisely to tumor sites reduces systemic toxicity and enhances therapeutic outcomes.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh-281406, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| |
Collapse
|
125
|
Rompianesi G, Han HS, Fusai G, Lopez-Ben S, Maestri M, Ercolani G, Di Martino M, Diaz-Nieto R, Ielpo B, Perez-Alonso A, Morare N, Casellas M, Gallotti A, de la Hoz Rodriguez A, Burdio F, Ravaioli F, Venetucci P, Lo Bianco E, Ceriello A, Montalti R, Troisi RI. Pre-operative evaluation of spontaneous portosystemic shunts as a predictor of post-hepatectomy liver failure in patients undergoing liver resection for hepatocellular carcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:108778. [PMID: 39490238 DOI: 10.1016/j.ejso.2024.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Post-hepatectomy liver failure (PHLF) can significantly compromise outcomes, especially in cirrhotic patients. The identification of accurate and non-invasive pre-operative predictors is of paramount importance to appropriately stratify patients according to their estimated risk and select the best treatment strategy. MATERIALS AND METHODS Consecutive patients undergoing liver resection for HCC on cirrhosis between 1-2015 and 12-2020 at 10 international Institutions were enrolled and their pre-operative CT scans were evaluated for the presence of spontaneous portosystemic shunts (SPSS) to identify predictors of PHLF and develop a nomogram. RESULTS The analysis of the CT scans identified SPSS in 74 patients (17.4 %). PHLF was developed in 27 out of 425 cases (6.4 %), with grades B/C observed in 17 patients (4 %). At the multivariable analysis, the presence of SPSS resulted an independent risk factor for all-grades PHLF (OR 6.83, 95%CI 2.39-19.51, p < 0.001) and clinically significant PHLF development (OR 7.92, 95%CI 2.03-30.85, p = 0.003) alongside a patient's age ≥74 years, a pre-operative platelets count <106x103/μL, a multiple-segments liver resection, and an intraoperative blood loss ≥1200 mL. The 30- and 90-days mortality in patients with and without SPSS resulted 2.7 % vs 0.3 % (p = 0.024) and 5.4 % vs 1.1 % (p = 0.014). The accuracy of SPSS in predicting PHLF development was 0.847 (95%n CI 0.809-0.880). The internally validated nomogram showed excellent performance in predicting grades B/C PHLF (c-statistic = 0.933 (95%CI 0.888-0.979)). CONCLUSION The pre-operative presence of SPSS assessed on the pre-operative imaging proved to be a valuable radiological biomarker able to predict PHLF development in patients undergoing liver resection for HCC.
Collapse
Affiliation(s)
- Gianluca Rompianesi
- HPB, Minimally Invasive, Robotic and Transplant Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy.
| | - Ho-Seong Han
- HPB Surgery Unit, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Giuseppe Fusai
- HPB and Liver Transplant Unit, Royal Free Hospital, London, UK
| | | | - Marcello Maestri
- Unit of General Surgery I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giorgio Ercolani
- Division of General Surgery, "Giovan Battista Morgagni - Luigi Pierantoni" Hospital, Forlì, Italy
| | - Marcello Di Martino
- HPB Surgery Unit, Department of General and Digestive Surgery, La Princesa University Hospital, Madrid, Spain
| | | | | | | | - Nolitha Morare
- HPB and Liver Transplant Unit, Royal Free Hospital, London, UK
| | | | - Anna Gallotti
- Radiology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Angela de la Hoz Rodriguez
- HPB Surgery Unit, Department of General and Digestive Surgery, La Princesa University Hospital, Madrid, Spain
| | | | - Federico Ravaioli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Emanuela Lo Bianco
- HPB, Minimally Invasive, Robotic and Transplant Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Arianna Ceriello
- HPB, Minimally Invasive, Robotic and Transplant Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Roberto Montalti
- HPB, Minimally Invasive, Robotic and Transplant Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Roberto Ivan Troisi
- HPB, Minimally Invasive, Robotic and Transplant Surgery Unit, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| |
Collapse
|
126
|
Ye W, Shi H, Qian W, Meng L, Wang M, Zhou Y, Wen Z, Han M, Peng Y, Li H, Xu Y. Immunomodulatory Effects of a Prebiotic Formula with 2'-Fucosyllactose and Galacto- and Fructo-Oligosaccharides on Cyclophosphamide (CTX)-Induced Immunosuppressed BALB/c Mice via the Gut-Immune Axis. Nutrients 2024; 16:3552. [PMID: 39458546 PMCID: PMC11510297 DOI: 10.3390/nu16203552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Obejectives: This study explored the immunomodulatory effects of a prebiotic formula consisting of 2'-fucosyllactose (2'-FL), galacto-oligosaccharides (GOSs), and fructo-oligosaccharides (FOSs) (hereinafter referred to as 2FGF) in cyclophosphamide (CTX)-induced immunosuppressed BALB/c mice and its underlying mechanisms. Methods: Sixty healthy female BALB/c mice were randomly divided into the following groups: normal control (NC) group; CTX treatment (CTX) group; 2FGF low-dose (2FGF-L) group; 2FGF medium-dose (2FGF-M) group; and 2FGF high-dose (2FGF-H) group. An immunosuppressed model was established in the 2FGF-H group by intraperitoneal injection of 80 mg/kg CTX. After 30 days of 2FGF intervention, peripheral blood, spleen tissue, thymus tissue, and intestinal tissue from the mice were collected and analyzed. The changes in weight and food intake of the mice were recorded weekly. Hematoxylin-eosin (HE) staining was used to observe the histological change of the spleen tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect cytokine levels in peripheral blood. Flow cytometry was used to analyze T lymphocyte subgroup ratio of splenic lymphocytes. Western blot analysis was conducted on intestinal tissues to assess the expression of proteins involved in the tight junction, toll-like receptor 4 (TLR4), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling pathways. Additionally, molecular techniques were used to analyze the intestinal microbiota. Results: The results showed that 2FGF restored CTX-induced splenic injury, increased the number of splenic T lymphocytes, and elevated serum cytokines such as interleukin-4 (IL-4) and IL-10. In the intestine, 2FGF upregulated the expression of intestinal epithelial tight junction proteins such as Claudin-1 and zonula occludens 1 (ZO-1), thereby enhancing intestinal barrier function and activating the MAPK and NF-κB pathways via TLR4. Furthermore, 2FGF elevated the α-diversity (Shannon and Simpson indices) of the gut microbiota in CTX-induced immunosuppressed mice, enriching bacteria species positively correlated with anti-inflammatory cytokines (e.g., IL-4) such as g_Streptomyces and g_Bacillus and negatively correlated with pro-inflammatory cytokines (e.g., IL-1β) such as g_Saccharomyces. The results suggest that 2FGF may enhance immunity via the gut-immune axis. Conclusions: The 2FGF prebiotic formula showed an immunomodulatory effect in CTX-induced immunosuppressed mice, and the mechanism of which might involve optimizing the gut flora, enhancing intestinal homeostasis, strengthening the intestinal barrier, and promoting the expression of immune factors by regulating the TLR-4/MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Wanyun Ye
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
| | - Hanxu Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
| | - Wentao Qian
- Mengniu Hi-Tech Dairy Products (Beijing) Co., Ltd., Beijing 101100, China; (W.Q.); (L.M.)
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China;
| | - Liping Meng
- Mengniu Hi-Tech Dairy Products (Beijing) Co., Ltd., Beijing 101100, China; (W.Q.); (L.M.)
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China;
| | - Meihua Wang
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China;
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
| | - Zhang Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
| | - Muke Han
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
| | - Yile Peng
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
| | - Hongliang Li
- Mengniu Hi-Tech Dairy Products (Beijing) Co., Ltd., Beijing 101100, China; (W.Q.); (L.M.)
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011500, China;
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China; (W.Y.); (H.S.); (Y.Z.); (Z.W.); (M.H.); (Y.P.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No. 38 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
127
|
Dejanović B, Barak O, Čolović P, Janjić N, Savić Ž, Gvozdanović N, Ružić M. Hospital Mortality in Acute Decompensation of Alcoholic Liver Cirrhosis: Can Novel Survival Markers Outperform Traditional Ones? J Clin Med 2024; 13:6208. [PMID: 39458158 PMCID: PMC11508931 DOI: 10.3390/jcm13206208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: There is a strong correlation between systemic inflammation intensity and clinical presentation, disease progression, and survival during liver cirrhosis decompensation. This study aimed to evaluate the prognostic performance of blood-based biomarkers as meta-inflammation markers, including NLR, PLR, LMR, INPR, MPR, ALBI, FIB4, and APRI, in predicting hospital mortality in patients with acute decompensation of alcohol-related liver cirrhosis. Methods: Data from 411 patients with their first onset of acute decompensation were analyzed, forming two groups: deceased and survived during hospitalization. Generalized partial least squares regression analysis was applied to explore the effects of surrogate indicators on mortality rates, using mortality rate as the dependent variable. Root Mean Square Error, Akaike's, and Bayesian information criteria determined that four components accounted for most of the variance. Results: Variables with significant negative contributions to the outcome prediction (ranked by standardized regression coefficients) were encephalopathy grade, total bilirubin, Child-Turcotte-Pugh score, MELD, NLR, MPV, FIB4, INR, PLR, and ALT. Coefficient sizes ranged from -0.63 to -0.09, with p-values from 0 to 0.018. Conclusions: NLR, PLR, and FIB4 significantly contribute to hospital mortality prediction in patients with acute decompensation of alcohol-related liver cirrhosis. Conversely, some variables used to predict liver disease severity, including INPR, APRI, LMR, and ALBI score, did not significantly contribute to hospital mortality prediction in this patient population.
Collapse
Affiliation(s)
- Božidar Dejanović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (O.B.); (N.J.); (Ž.S.); (N.G.); (M.R.)
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Otto Barak
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (O.B.); (N.J.); (Ž.S.); (N.G.); (M.R.)
| | - Petar Čolović
- Department of Psychology, Faculty of Philosophy, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nebojša Janjić
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (O.B.); (N.J.); (Ž.S.); (N.G.); (M.R.)
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Željka Savić
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (O.B.); (N.J.); (Ž.S.); (N.G.); (M.R.)
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Nikola Gvozdanović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (O.B.); (N.J.); (Ž.S.); (N.G.); (M.R.)
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Maja Ružić
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (O.B.); (N.J.); (Ž.S.); (N.G.); (M.R.)
- Clinic of Infectious Disease, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| |
Collapse
|
128
|
Gao Y, Zandieh K, Zhao K, Khizanishvili N, Fazio PD, Yu X, Schulte L, Aillaud M, Chung HR, Ball Z, Meixner M, Bauer UM, Bartsch DK, Buchholz M, Lauth M, Nimsky C, Cook L, Bartsch JW. The long non-coding RNA NEAT1 contributes to aberrant STAT3 signaling in pancreatic cancer and is regulated by a metalloprotease-disintegrin ADAM8/miR-181a-5p axis. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01001-0. [PMID: 39412616 DOI: 10.1007/s13402-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 12/05/2024] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and several studies demonstrate that STAT3 has critical roles throughout the course of PDAC pathogenesis. METHODS TCGA, microarray, and immunohistochemistry data from a PDAC cohort were used for clinical analyses. Panc89 cells with ADAM8 knockout, re-expression of ADAM8 mutants, and Panc1 cells overexpressing ADAM8 were generated. Gene expression analyses of ADAM8, STAT3, long non-coding (lnc) RNA NEAT1, miR-181a-5p and ICAM1 were performed by quantitative PCR. Subcellular fractionation quantified NEAT1 expression in cytoplasm and nucleus of PDAC cell lines. Cell proliferation, scratch, and invasion assays were performed to detect growth rate, migration and invasion capabilities of cells. Gain and loss of function experiments were carried out to investigate the biological effects of lncRNA NEAT1 and miR-181a-5p on PDAC cells and downstream genes. Dual-luciferase reporter gene assay determined interaction and binding sites of miR-181a-5p in lncRNA NEAT1. Pull down assays, RNA binding protein immunoprecipitation (RIP), and ubiquitination assays explored the molecular interaction between lncRNA NEAT1 and STAT3. RESULTS High ADAM8 expression causes aberrant STAT3 signaling in PDAC cells and is positively correlated with NEAT1 expression. NEAT1 binding to STAT3 was confirmed and prevents STAT3 degradation in the proteasome as increased degradation of STAT3 was observed in ADAM8 knockout cells and cells treated with bortezomib. Furthermore, miRNA-181a-5p regulates NEAT1 expression by direct binding to the NEAT1 promoter. CONCLUSION ADAM8 regulates intracellular STAT3 levels via miR-181a-5p and NEAT1 in pancreatic cancer.
Collapse
Affiliation(s)
- Yutong Gao
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Kimia Zandieh
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Kai Zhao
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Natalia Khizanishvili
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Pietro Di Fazio
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Xiangdi Yu
- Department of Anesthesiology, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University, Guiyang, Guizhou, 550000, China
| | - Leon Schulte
- Institute for Lung Research, Philipps-University Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Michelle Aillaud
- Institute for Lung Research, Philipps-University Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps-University Marburg, 35033, Marburg, Germany
| | - Zachary Ball
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Marion Meixner
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Detlef Klaus Bartsch
- Department of Visceral, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infection, Center for Tumor and Immunology (ZTI), Philipps-University Marburg, Marburg, Germany
| | - Matthias Lauth
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University Marburg, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Lena Cook
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany.
| |
Collapse
|
129
|
Cai J, Xu Y, Liao F. Advances in multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer starvation therapy. Expert Rev Mol Med 2024; 26:e27. [PMID: 39397711 PMCID: PMC11488333 DOI: 10.1017/erm.2024.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Cancer remains a significant threat to human health today. Even though starvation therapy and other treatment methods have recently advanced to a new level of rapid development in tumour treatment, their limited therapeutic effectiveness and unexpected side effects prevent them from becoming the first option in clinical treatment. With rapid advancement in nanotechnology, the utilization of nanomaterials in therapeutics offers the potential to address the shortcomings in cancer treatment. Notably, multifunctional metal-organic framework (MOF) has been widely employed in cancer therapy due to their customizable shape, adjustable diameter, high porosity, diverse compositions, large specific surface area, high degree of functionalization and strong biocompatibility. This paper reviews the current progress and success of MOF-based multifunctional nanoplatforms for cancer starvation therapy, as well as the prospects and potential barriers for the application of MOF nanoplatforms in cancer starvation therapy.
Collapse
Affiliation(s)
- Jinghan Cai
- Renmin Hospital of Wuhan University, Wuhan University, Wuhan, P. R. China
| | - Yan Xu
- University Hospital, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| |
Collapse
|
130
|
Zhou Q. Enhancing Intrapancreatic Fat Deposition and Pancreatitis Research With Additional Considerations. Am J Gastroenterol 2024:00000434-990000000-01384. [PMID: 39466270 DOI: 10.14309/ajg.0000000000003095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Affiliation(s)
- Qing Zhou
- Central Laboratory, The People's Hospital of Baoan Shenzhen, Shenzhen, China
| |
Collapse
|
131
|
Sun T, Liu C, Kong L, Zha J, Ni G. Cold plasma irradiation inhibits skin cancer via ferroptosis. Biomed Phys Eng Express 2024; 10:065036. [PMID: 39390682 DOI: 10.1088/2057-1976/ad8200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Cold atmospheric plasma (CAP) has been extensively utilized in medical treatment, particularly in cancer therapy. However, the underlying mechanism of CAP in skin cancer treatment remains elusive. In this study, we established a skin cancer model using CAP treatmentin vitro. Also, we established the Xenograft experiment modelin vivo. The results demonstrated that treatment with CAP induced ferroptosis, resulting in a significant reduction in the viability, migration, and invasive capacities of A431 squamous cell carcinoma, a type of skin cancer. Mechanistically, the significant production of reactive oxygen species (ROS) by CAP induces DNA damage, which then activates Ataxia-telangiectasia mutated (ATM) and p53 through acetylation, while simultaneously suppressing the expression of Solute Carrier Family 7 Member 11 (SLC7A11). Consequently, this cascade led to the down-regulation of intracellular Glutathione peroxidase 4 (GPX4), ultimately resulting in ferroptosis. CAP exhibits a favorable impact on skin cancer treatment, suggesting its potential medical application in skin cancer therapy.
Collapse
Affiliation(s)
- Tao Sun
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Changqing Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ling Kong
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jingjing Zha
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, People's Republic of China
| | - Guohua Ni
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei 230031, People's Republic of China
| |
Collapse
|
132
|
Yang L, Tian Y, Cao X, Wang J, Luo B. Identification of novel diagnostic biomarkers associated with liver metastasis in colon adenocarcinoma by machine learning. Discov Oncol 2024; 15:542. [PMID: 39390264 PMCID: PMC11467158 DOI: 10.1007/s12672-024-01398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Liver metastasis is one of the primary causes of poor prognosis in colon adenocarcinoma (COAD) patients, but there are few studies on its biomarkers. METHODS The Cancer Genome Atlas (TCGA)-COAD, GSE41258, and GSE49355 datasets were acquired from the public database. Differentially expressed genes (DEGs) between liver metastasis and primary tumor samples in COAD were identified by limma, and functional enrichment analysis were performed. MuTect2 and maftools were used to measure somatic mutation rates, while ADTEx was used to measure copy number variations (CNVs). The intersection of three machine learning methods, support vector machine (SVM), Random Forest, and least absolute shrinkage and selection operator (LASSO), is utilized to screen biomarkers, and their diagnostic performance is subsequently validated. The correlation between biomarkers and immune cells infiltration was analyzed by Spearman method. RESULTS 47 DEGs between liver metastasis and primary tumor samples in COAD were obtained, which were mainly enriched in the complement and coagulation, extracellular matrix (ECM), and peptidase regulator activity, etc. 38 out of 47 DEGs had mutations and exhibited a high frequency of CNV amplification or deletion. Furthermore, 3 biomarkers (MMP3, MAB21L2, and COLEC11) were screened, which showed good diagnostic performance. The proportion of multiple immune cells, such as B cells naive, T cells CD4 naive, Monocytes, and Dendritic cells resting, was higher in liver metastasis samples than that in primary tumor samples. Meanwhile, MMP3, MAB21L2, and COLEC11 exhibited an outstanding correlation with immune cells infiltration. CONCLUSION In short, 3 biomarkers with good diagnostic efficacy were identified, providing a new perspective of therapeutic targets for liver metastasis in COAD.
Collapse
Affiliation(s)
- Long Yang
- Department of Gastrointestinal Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
- Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
| | - Ye Tian
- Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Xiaofei Cao
- Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Jiawei Wang
- Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Baoyang Luo
- Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
133
|
Yu Z, Lepoitevin M, Serre C. Iron-MOFs for Biomedical Applications. Adv Healthc Mater 2024:e2402630. [PMID: 39388416 DOI: 10.1002/adhm.202402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Over the past two decades, iron-based metal-organic frameworks (Fe-MOFs) have attracted significant research interest in biomedicine due to their low toxicity, tunable degradability, substantial drug loading capacity, versatile structures, and multimodal functionalities. Despite their great potential, the transition of Fe-MOFs-based composites from laboratory research to clinical products remains challenging. This review evaluates the key properties that distinguish Fe-MOFs from other MOFs and highlights recent advances in synthesis routes, surface engineering, and shaping technologies. In particular, it focuses on their applications in biosensing, antimicrobial, and anticancer therapies. In addition, the review emphasizes the need to develop scalable, environmentally friendly, and cost-effective production methods for additional Fe-MOFs to meet the specific requirements of various biomedical applications. Despite the ability of Fe-MOFs-based composites to combine therapies, significant hurdles still remain, including the need for a deeper understanding of their therapeutic mechanisms and potential risks of resistance and overdose. Systematically addressing these challenges could significantly enhance the prospects of Fe-MOFs in biomedicine and potentially facilitate their integration into mainstream clinical practice.
Collapse
Affiliation(s)
- Zhihao Yu
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| |
Collapse
|
134
|
Li X, Li Y, Zhang L, Long H. Single-cell sequencing analysis revealed that NEAT1 was a potential biomarker and therapeutic target of prostate cancer. BMC Cancer 2024; 24:1242. [PMID: 39379919 PMCID: PMC11462789 DOI: 10.1186/s12885-024-12926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) usually manifests atypical symptoms in the early stage, and once symptoms appear, most PCa patients have developed to the advanced stage, failing to undergo radical surgery. In this study, PCa occurrence-related biomarkers were explored based on single-cell RNA sequencing (scRNA-seq) data. METHODS scRNA-seq data of prostate normal (Normal), benign prostatic hyperplasia (BPH), and PCa (Tumor) samples were acquired from the Gene Expression Omnibus (GEO). Cellular subsets associated with PCa occurrence were obtained using cell annotation. Additionally, the mRNA expression of nuclear enriched abundant transcript 1 (NEAT1) was detected by quantitative real-time PCR (qRT-PCR). The effects of NEAT1 on cell proliferation and apoptosis were analyzed by 5-ethynyl-2-deoxyuridine (EdU) and flow cytometry. Subsequently, cell-derived xenograft (CDX) models were constructed and divided into the LV-NC and LV-shNEAT1 groups. After the tumor tissues of CDX model mice in each group were extracted, the cell growth and Ki67 expression were observed separately using hematoxylin-eosin (H&E) staining and immunohistochemistry (IHC). RESULTS Ten cellular subsets were obtained via cell annotation, and significantly differential changes were observed between Basal intermediate and Luminal during the course of BPH to PCa. NEAT1-Luminal was highly recruited in the Tumor group with low stemness and high malignancy scores. Matrix metallopeptidase 7 (MMP7)- keratin 17 (KRT17)-Basal intermediate had high ratios in the Tumor group with low stemness and high malignancy scores. The results of pseudotime analysis revealed that NEAT1-Luminal in the Tumor group were consistently distributed with tumor stage cells. In vitro assays showed that NEAT1 expression was elevated in PCa cells, and NEAT1 knockdown could inhibit cell proliferation and induce apoptosis. CDX assays indicated that silencing NEAT1 could reduce the growth rate of PCa tumor volume in CDX model mice. H&E staining results showed that nuclei of tumor cells were reduced and exhibited lighter color in the LV-shNEAT1 group compared with the LV-NC group. IHC results showed that Ki67 positivity was significantly lower in the LV-shNEAT1 group than in the LV-NC group. CONCLUSION NEAT1 expression is increased in PCa, and NEAT1 can be a potential biomarker and therapeutic target for PCa.
Collapse
Affiliation(s)
- Xing Li
- Department of Urology, Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang Province, 315100, China
| | - Yanjun Li
- Department of Urology, Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang Province, 315100, China
| | - Lei Zhang
- Department of Urology, Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang Province, 315100, China
| | - Huimin Long
- Department of Urology, Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang Province, 315100, China.
| |
Collapse
|
135
|
Miao W, Liu F, Guo Y, Zhang R, Wang Y, Xu J. Research progress on prognostic factors of gallbladder carcinoma. J Cancer Res Clin Oncol 2024; 150:447. [PMID: 39369366 PMCID: PMC11456552 DOI: 10.1007/s00432-024-05975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Gallbladder carcinoma is the most common malignant tumor of the biliary system, and has a poor overall prognosis. Poor prognosis in patients with gallbladder carcinoma is associated with the aggressive nature of the tumor, subtle clinical symptoms, ineffective adjuvant treatment, and lack of reliable biomarkers. PURPOSE Therefore, evaluating the prognostic factors of patients with gallbladder carcinoma can help improve diagnostic and treatment methods, allowing for tailored therapies that could benefit patient survival. METHODS This article systematically reviews the factors affecting the prognosis of gallbladder carcinoma, with the aim of evaluating prognostic risk in patients. CONCLUSION A comprehensive and in-depth understanding of prognostic indicators affecting patient survival is helpful for assessing patient survival risk and formulating personalized treatment plans.
Collapse
Affiliation(s)
- Wentao Miao
- First Clinical Medical School, Shanxi Medical University, Taiyuan, 030001, China
| | - Feng Liu
- Department of Head and Neck Surgery, Shanxi Provincial Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 031000, Shanxi Province, China
| | - Yarong Guo
- Department of Digestive System Oncology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Rui Zhang
- Department of Hepatobiliary Surgery, Liver Transplantation Center, The First Hospital of Shanxi Medical University, 56 Xinjian South Road, Taiyuan City, 030001, Shanxi Province, China
| | - Yan Wang
- First Clinical Medical School, Shanxi Medical University, Taiyuan, 030001, China
| | - Jun Xu
- Department of Hepatobiliary Surgery, Liver Transplantation Center, The First Hospital of Shanxi Medical University, 56 Xinjian South Road, Taiyuan City, 030001, Shanxi Province, China.
| |
Collapse
|
136
|
Sanz-Villafruela J, Bermejo-Casadesus C, Zafon E, Martínez-Alonso M, Durá G, Heras A, Soriano-Díaz I, Giussani A, Ortí E, Tebar F, Espino G, Massaguer A. Insights into the anticancer photodynamic activity of Ir(III) and Ru(II) polypyridyl complexes bearing β-carboline ligands. Eur J Med Chem 2024; 276:116618. [PMID: 38972079 DOI: 10.1016/j.ejmech.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
Ir(III) and Ru(II) polypyridyl complexes are promising photosensitizers (PSs) for photodynamic therapy (PDT) due to their outstanding photophysical properties. Herein, one series of cyclometallated Ir(III) complexes and two series of Ru(II) polypyridyl derivatives bearing three different thiazolyl-β-carboline N^N' ligands have been synthesized, aiming to evaluate the impact of the different metal fragments ([Ir(C^N)2]+ or [Ru(N^N)2]2+) and N^N' ligands on the photophysical and biological properties. All the compounds exhibit remarkable photostability under blue-light irradiation and are emissive (605 < λem < 720 nm), with the Ru(II) derivatives displaying higher photoluminescence quantum yields and longer excited state lifetimes. The Ir PSs display pKa values between 5.9 and 7.9, whereas their Ru counterparts are less acidic (pKa > 9.3). The presence of the deprotonated form in the Ir-PSs favours the generation of reactive oxygen species (ROS) since, according to theoretical calculations, it features a low-lying ligand-centered triplet excited state (T1 = 3LC) with a long lifetime. All compounds have demonstrated anticancer activity. Ir(III) complexes 1-3 exhibit the highest cytotoxicity in dark conditions, comparable to cisplatin. Their activity is notably enhanced by blue-light irradiation, resulting in nanomolar IC50 values and phototoxicity indexes (PIs) between 70 and 201 in different cancer cell lines. The Ir(III) PSs are also activated by green (with PI between 16 and 19.2) and red light in the case of complex 3 (PI = 8.5). Their antitumor efficacy is confirmed by clonogenic assays and using spheroid models. The Ir(III) complexes rapidly enter cells, accumulating in mitochondria and lysosomes. Upon photoactivation, they generate ROS, leading to mitochondrial dysfunction and lysosomal damage and ultimately cell apoptosis. Additionally, they inhibit cancer cell migration, a crucial step in metastasis. In contrast, Ru(II) complex 6 exhibits moderate mitochondrial activity. Overall, Ir(III) complexes 1-3 show potential for selective light-controlled cancer treatment, providing an alternative mechanism to chemotherapy and the ability to inhibit lethal cancer cell dissemination.
Collapse
Affiliation(s)
- Juan Sanz-Villafruela
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - Cristina Bermejo-Casadesus
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003, Girona, Spain
| | - Elisenda Zafon
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003, Girona, Spain
| | - Marta Martínez-Alonso
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - Gema Durá
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica. Facultad de Químicas, Avda. Camilo J. Cela 10, 13071, Ciudad Real, Spain
| | - Aranzazu Heras
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain
| | - Iván Soriano-Díaz
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Angelo Giussani
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain.
| | - Gustavo Espino
- Universidad de Burgos, Departamento de Química, Facultad de Ciencias, Plaza Misael Bañuelos S/n, 09001, Burgos, Spain.
| | - Anna Massaguer
- Universitat de Girona, Departament de Biologia, Facultat de Ciències, Maria Aurelia Capmany 40, 17003, Girona, Spain.
| |
Collapse
|
137
|
Pei DN, Shao YC, Dai WD, Wang JL, Li FZ, Chen ZR, Hu JX, Zhong DW. Robotic anatomical resection for hepatocellular carcinoma located within segment 7 using the Glissonean approach. Updates Surg 2024; 76:2229-2235. [PMID: 39235694 DOI: 10.1007/s13304-024-01976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Worldwide use of robotic-assisted hepatectomy has increased dramatically over the past two decades. The role of robotic liver surgery is still controversial, especially with respect to its long-term oncological outcomes in treating early-stage hepatocellular carcinoma (HCC). The Glissonean approach is a fundamental technique for anatomical resection using open and laparoscopic liver surgery. To our knowledge, there have been few reports on purely robotic anatomical segmentectomy 7 for HCC using the Glissonean approach have been described. The present study describes the technical details and surgical outcomes of totally robotic segmentectomy 7 using the Glissonean approach. Fourteen patients with HCC limited to segment 7 underwent segmentectomy 7 from January 2019 through April 2023 in our hospital. The surgical techniques, peri-operative, and oncological outcomes were analyzed. Purely robotic anatomical segmentectomy 7 using the Glissonean approach was safe and feasible with the technology described herein in all of the 14 patients. The peri-operative and oncological outcomes were better and/or comparable with those of other similar hepatic resections using open approach and/or laparoscopic approach. The median follow-up time was 18 months. Intrahepatic recurrence occurred in 2 (14.3%) patient within one year following surgery. The 3-year overall survival rate was 81%. Although technically challenging, the purely robotic segmentectomy 7 could be performed safely and simultaneously with oncological radicality using the Glissonean approach.
Collapse
Affiliation(s)
- Dong-Ni Pei
- Department of Liver Surgery, the Second XiangYa Hospital of Central South University, Renmin Road 139, Changsha, 410011, Hunan Province, People's Republic of China
| | - Yu-Cen Shao
- Department of Liver Surgery, the Second XiangYa Hospital of Central South University, Renmin Road 139, Changsha, 410011, Hunan Province, People's Republic of China
| | - Wei-Dong Dai
- Department of Liver Surgery, the Second XiangYa Hospital of Central South University, Renmin Road 139, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Ji-Long Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, Guangxi Province, People's Republic of China
| | - Fa-Zhao Li
- Department of Liver Surgery, the Second XiangYa Hospital of Central South University, Renmin Road 139, Changsha, 410011, Hunan Province, People's Republic of China
| | - Zi-Ran Chen
- Department of Liver Surgery, the Second XiangYa Hospital of Central South University, Renmin Road 139, Changsha, 410011, Hunan Province, People's Republic of China
| | - Ji-Xiong Hu
- Department of Liver Surgery, the Second XiangYa Hospital of Central South University, Renmin Road 139, Changsha, 410011, Hunan Province, People's Republic of China
| | - De-Wu Zhong
- Department of Liver Surgery, the Second XiangYa Hospital of Central South University, Renmin Road 139, Changsha, 410011, Hunan Province, People's Republic of China
| |
Collapse
|
138
|
Meng Z, Ouyang H, Hu Y, Chen B, Dong X, Wang T, Wu M, Yu N, Lou X, Wang S, Xia F, Dai J. Surface-engineered erythrocyte membrane-camouflage fluorescent bioprobe for precision ovarian cancer surgery. Eur J Nucl Med Mol Imaging 2024; 51:3532-3544. [PMID: 38867107 DOI: 10.1007/s00259-024-06793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Fluorescence imaging-guided surgery has been used in oncology. However, for tiny tumors, the current imaging probes are still difficult to achieve high-contrast imaging, leading to incomplete resection. In this study, we achieved precise surgical resection of tiny metastatic cancers by constructing an engineering erythrocyte membrane-camouflaged bioprobe (AR-M@HMSN@P). METHODS AR-M@HMSN@P combined the properties of aggregation-induced emission luminogens (AIEgens) named PF3-PPh3 (P), with functional erythrocyte membrane modified by a modular peptide (AR). Interestingly, AR was composed of an asymmetric tripodal pentapeptide scaffold (GGKGG) with three appended modulars: KPSSPPEE (A6) peptide, RRRR (R4) peptide and cholesterol. To verify the specificity of the probe in vitro, SKOV3 cells with overexpression of CD44 were used as the positive group, and HLF cells with low expression of CD44 were devoted as the control group. The AR-M@HMSN@P fluorescence imaging was utilized to provide surgical guidance for the removal of micro-metastatic lesions. RESULTS In vivo, the clearance of AR-M@HMSN@P by the immune system was reduced due to the natural properties inherited from erythrocytes. Meanwhile, the A6 peptide on AR-M@HMSN@P was able to specifically target CD44 on ovarian cancer cells, and the electrostatic attraction between the R4 peptide and the cell membrane enhanced the firmness of this targeting. Benefiting from these multiple effects, AR-M@HMSN@P achieved ultra-precise tumor imaging with a signal-to-noise ratio (SNR) of 15.2, making it possible to surgical resection of tumors < 1 mm by imaging guidance. CONCLUSION We have successfully designed an engineered fluorescent imaging bioprobe (AR-M@HMSN@P), which can target CD44-overexpressing ovarian cancers for precise imaging and guide the resection of minor tumors. Notably, this work holds significant promise for developing biomimetic probes for clinical imaging-guided precision cancer surgery by exploiting their externally specified functional modifications.
Collapse
Affiliation(s)
- Zijuan Meng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hanzhi Ouyang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuxin Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Tingting Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Nan Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| |
Collapse
|
139
|
Almujri SS, Almalki WH. The paradox of autophagy in cancer: NEAT1's role in tumorigenesis and therapeutic resistance. Pathol Res Pract 2024; 262:155523. [PMID: 39173466 DOI: 10.1016/j.prp.2024.155523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Cancer remains a current active problem of modern medicine, a process during which cell growth and proliferation become uncontrolled. However, the role of autophagy in the oncological processes is counterintuitive and, at the same time, increasingly influential on the formation, development, and response to therapy of oncological diseases. Autophagy is a vital cellular process that removes defective proteins and organelles and supports cellular homeostasis. Autophagy can enhance the ability to form new tumors and suppress this formation in cancer. The dual potential of apoptosis may be the reason for this duality in either promoting or impeding the survival of cancer cells, depending on the situation, including starvation or treatment stress. Furthermore, long non-coding RNA NEAT1, which has been linked to several stages of carcinogenesis and in all forms of the illness, has drawn attention as a major player in cancer biology. NEAT1 is a structural portion of nuclear paraspeckles and has roles in deactivating expression in both transcriptional and post-transcriptional levels. NEAT1 acts in carcinogenesis in numerous ways, comprising interactions with microRNAs, the influence of gene articulation, regulation of epigenetics, and engagement in signalling cascades. In addition, the complexity of NEAT1's role in cancer occurrence is amplified by its place in regulating cancer stem cells and the tumor microenvironment. NEAT1's interaction with autophagy further complicates the already complicated function of this RNA in cancer biology. NEAT1 has been linked to autophagy in several types of cancer, influencing autophagy pathways and altering its stress response and tumor cell viability. Understanding the interrelation between NEAT1, autophagy, and cancer will enable practitioners to identify novel treatment targets and approaches to disrupt oncogenic processes, reduce the occurrence of treatment resistance, and increase patient survival rates. Specialized treatment strategies and regimens are thus achievable. In the present review, the authors analyze sophisticated relationship schemes in cancer: The NEAT1 pathway and the process of autophagy.
Collapse
Affiliation(s)
- Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
140
|
Xu Z, Xu C, Lu J, He C, Wang X, Zhu D, Wang A, Zhang Z, Jiang C. Cytochrome P450 F3 promotes colorectal cancer via inhibiting NRF2-mediated ferroptosis. Transl Oncol 2024; 48:102077. [PMID: 39106550 PMCID: PMC11357859 DOI: 10.1016/j.tranon.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024] Open
Abstract
Cytochrome P450 F3 (CYP4F3) is recognized as a disease-associated immune response initiator that is involved in the synthesis of cholesterol, steroids, and lipids. This study identified the upregulation of CYP4F3 expression in colorectal cancer (CRC) and its association with poor patient prognosis through a comparative analysis between CRC tumor tissues with normal tissues from public databases. The overexpression of CYP4F3 in CT26.wt and SW620, promoted cell proliferation and migration, a reduction of cellular oxidative stress, an up-regulation of the oxidative stress-related pathway NRF2, and an inhibition of cellular ferroptosis. Additionally, inhibition of NRF2 activity stimulated cellular ferroptosis when CYP4F3 was overexpressed. Ferroptosis, characterized by iron-dependent lipid peroxidation, is a non-apoptotic way of cell death with a critical role in cancer development. When given a ferroptosis agonist to CYP4F3-overexpression CRC cells, NRF2 was activated, and cell proliferation and migration were reduced. Furthermore, the mice subcutaneously injected with CYP4F3-overexpression CT26.wt cells formed significantly larger tumors compared to the CYP4F3-vector CT26.wt cell group. This study systematically identified an important role of CYP4F3 in CRC development as a regulator of CRC cells to escape ferroptosis via NRF2, highlighting the significance of CYP4F3 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Ziyang Xu
- The Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China
| | - Cheng Xu
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China
| | - Jie Lu
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China
| | - Chenfeng He
- The Department of Integrative Bioanalytics, Aging and Cancer (IDAC), Institute of Development, Tohoku University, Sendai, Japan
| | - Xinyue Wang
- The Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dongfei Zhu
- The Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aizhong Wang
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China.
| | - Zhengyun Zhang
- The Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China.
| | - Can Jiang
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China.
| |
Collapse
|
141
|
Shimolina LE, Khlynova AE, Gulin AA, Elagin VV, Gubina MV, Bureev PA, Sherin PS, Kuimova MK, Shirmanova MV. Photodynamic therapy with Photoditazine increases microviscosity of cancer cells membrane in cellulo and in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113007. [PMID: 39137702 DOI: 10.1016/j.jphotobiol.2024.113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Photodynamic therapy (PDT) is a minimally invasive method for cancer treatment, one of the effects of which is the oxidation of membrane lipids. However, changes in biophysical properties of lipid membranes during PDT have been poorly explored. In this work, we investigated the effects of PDT on membrane microviscosity in cancer cells in the culture and tumor xenografts. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive rotor BODIPY2. It was found that PDT using chlorine e6-based photosensitizer Photoditazine caused a quick, steady elevation of membrane microviscosity both in cellulo and in vivo. The proposed mechanisms responsible for the increase in microviscosity was lipid peroxidation by reactive oxygen species that resulted in a decrease of phosphatidylcholine and the fraction of unsaturated fatty acids in the membranes. Our results suggest that the increased microviscosity is an important factor that contributes to tumor cell damage during PDT.
Collapse
Affiliation(s)
- Liubov E Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russian Federation
| | - Aleksandra E Khlynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russian Federation
| | - Aleksander A Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Vadim V Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russian Federation
| | - Margarita V Gubina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Pavel A Bureev
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russian Federation
| | - Petr S Sherin
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, United Kingdom
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, United Kingdom
| | - Marina V Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russian Federation.
| |
Collapse
|
142
|
Zhang M, Lu M, Gong Y, Yang Y, Song J, Li J, Chen Z, Ling Y, Zhou Y. Tadpole-Like Carbon Nanotube with Fe Nanoparticle Encapsulated at the Head and Zn Single-Atom Anchored on the Body: One-Pot Carbonization for Tetramodal Synergistic Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400587. [PMID: 38837673 DOI: 10.1002/smll.202400587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Precise integration of diverse therapeutic approaches into nanomaterials is the key to the development of multimodal synergistic cancer therapy. In this work, tadpole-like carbon nanotubes with Fe nanoparticle encapsulated at the head and Zn single-atom anchored on the body (Fe@CNT-Zn) is precisely designed and facilely prepared via one-pot carbonization. In vitro studies revealed the integration of chemotherapy (CT), chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT) in Fe@CNT-Zn as well as the near-infrared light (NIR)-responsive cascade therapeutic efficacy. Furthermore, in vivo studies demonstrated the NIR-triggered cascade-amplifying synergistic cancer therapy in a B16 tumor-bearing mouse model. The results not only showcased the Fe@CNT-Zn as a potential tetramodal therapeutic platform, but also demonstrated a proof-of-concept on metal-organic framework-based "one stone for multiple birds" strategy for in situ functionalization of carbon materials.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yimin Gong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
- South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junfei Song
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jianing Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zhenxia Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
143
|
Zhang P, Wu X, Wang D, Zhang M, Zhang B, Zhang Z. Unraveling the role of low-density lipoprotein-related genes in lung adenocarcinoma: Insights into tumor microenvironment and clinical prognosis. ENVIRONMENTAL TOXICOLOGY 2024; 39:4479-4495. [PMID: 38488684 DOI: 10.1002/tox.24230] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 10/24/2024]
Abstract
BACKGROUND The hypothesized link between low-density lipoprotein (LDL) and oncogenesis has garnered significant interest, yet its explicit impact on lung adenocarcinoma (LUAD) remains to be elucidated. This investigation aims to demystify the function of LDL-related genes (LRGs) within LUAD, endeavoring to shed light on the complex interplay between LDL and carcinogenesis. METHODS Leveraging single-cell transcriptomics, we examined the role of LRGs within the tumor microenvironment (TME). The expression patterns of LRGs across diverse cellular phenotypes were delineated using an array of computational methodologies, including AUCell, UCell, singscore, ssGSEA, and AddModuleScore. CellChat facilitated the exploration of distinct cellular interactions within LDL_low and LDL_high groups. The findmarker utility, coupled with Pearson correlation analysis, facilitated the identification of pivotal genes correlated with LDL indices. An integrative approach to transcriptomic data analysis was adopted, utilizing a machine learning framework to devise an LDL-associated signature (LAS). This enabled the delineation of genomic disparities, pathway enrichments, immune cell dynamics, and pharmacological sensitivities between LAS stratifications. RESULTS Enhanced cellular crosstalk was observed in the LDL_high group, with the CoxBoost+Ridge algorithm achieving the apex c-index for LAS formulation. Benchmarking against 144 extant LUAD models underscored the superior prognostic acuity of LAS. Elevated LAS indices were synonymous with adverse outcomes, diminished immune surveillance, and an upsurge in pathways conducive to neoplastic proliferation. Notably, a pronounced susceptibility to paclitaxel and gemcitabine was discerned within the high-LAS cohort, delineating prospective therapeutic corridors. CONCLUSION This study elucidates the significance of LRGs within the TME and introduces an LAS for prognostication in LUAD patients. Our findings accentuate putative therapeutic targets and elucidate the clinical ramifications of LAS deployment.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xinyi Wu
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dingli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Mengzhe Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
144
|
Peng X, Wang J, Deng Z, Wei J, Xie C, Wang Y, Han J, Chen Z, Du J, Zhang Z. NIR laser-activated phthalocyanine loaded lipid nanoparticles targeting M2 macrophage for improved photoacoustic imaging-guided photothermal therapy. Mater Today Bio 2024; 28:101209. [PMID: 39221205 PMCID: PMC11364919 DOI: 10.1016/j.mtbio.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The development of novel phototheranostic agents with significant potential in bioimaging-guided therapy is highly desirable for precise tumor therapy. Herein, NIR laser-activated ruthenium phthalocyanine (PcRu) loaded sub-30 nm targeting lipid nanoparticles (α-PcRu-NPs) were fabricated for photoacoustic imaging (PAI)-guided photothermal therapy (PTT). Due to the formation of J-type aggregation of PcRu in the core of the nanostructure, the α-PcRu-NPs exhibited high stability, efficient NIR absorption, reduced singlet oxygen generation, high photothermal activity, and intense photoacoustic signal. With the M2 macrophage target peptide (M2pep) modification and small size of α-PcRu-NPs, in vivo evaluations reveal that α-PcRu-NPs can specifically target and deeply penetrate the tumor foci. Under a high contrast PAI guidance with α-PcRu-NPs (744 nm, 0.35 μW), it also realizes superior photothermal therapy (PTT) for breast cancer under 670 nm laser irradiation (0.5 W/cm2). The prominent therapeutic efficacy of α-PcRu-NP-based PTT not only directly kills tumor cells, but also enhances the immune response by promoting dendritic cell maturation and increasing cytotoxic T cell infiltration. Thus, this work broadens the applications of phthalocyanine derivatives as phototheranostics in the PAI-guided PTT field.
Collapse
Affiliation(s)
- Xingzhou Peng
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Hainan Medical University, Haikou, 571199, China
| | - Zihan Deng
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, 430074, China
| | - Jianshuang Wei
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Changqiang Xie
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Yan Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Beijing, 100190, China
| | - Zhengyu Chen
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Jianghai Du
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Zhihong Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
145
|
Bischoff P, Bou-Gharios J, Noël G, Burckel H. Role of autophagy in modulating tumor cell radiosensitivity: Exploring pharmacological interventions for glioblastoma multiforme treatment. Cancer Radiother 2024; 28:416-423. [PMID: 39327199 DOI: 10.1016/j.canrad.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 09/28/2024]
Abstract
Autophagy is an innate cellular process characterized by self-digestion, wherein cells degrade or recycle aged proteins, misfolded proteins, and damaged organelles via lysosomal pathways. Its crucial role in maintaining cellular homeostasis, ensuring development and survival is well established. In the context of cancer therapy, autophagy's importance is firmly recognized, given its critical impact on treatment efficacy. Following radiotherapy, several factors can modulate autophagy including parameters related to radiation type and delivery methods. The concomitant use of chemotherapy with radiotherapy further influences autophagy, potentially either enhancing radiosensitivity or promoting radioresistance. This review article discusses some pharmacological agents and drugs capable of modulating autophagy levels in conjunction with radiation in tumor cells, with a focus on those identified as potential radiosensitizers in glioblastoma multiforme treatment.
Collapse
Affiliation(s)
- Pierre Bischoff
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France
| | - Jolie Bou-Gharios
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France
| | - Georges Noël
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Department of Radiation Oncology, Institut de cancérologie Strasbourg Europe (ICANS), Unicancer, 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - Hélène Burckel
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France.
| |
Collapse
|
146
|
Chkair R, Couvez J, Brégier F, Diab-Assaf M, Sol V, Blanchard-Desce M, Liagre B, Chemin G. Activity of Hydrophilic, Biocompatible, Fluorescent, Organic Nanoparticles Functionalized with Purpurin-18 in Photodynamic Therapy for Colorectal Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1557. [PMID: 39404284 PMCID: PMC11478336 DOI: 10.3390/nano14191557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Photodynamic therapy (PDT) is a clinically approved, non-invasive therapy currently used for several solid tumors, triggering cell death through the generation of reactive oxygen species (ROS). However, the hydrophobic nature of most of the photosensitizers used, such as chlorins, limits the overall effectiveness of PDT. To address this limitation, the use of nanocarriers seems to be a powerful approach. From this perspective, we have recently developed water-soluble and biocompatible, fluorescent, organic nanoparticles (FONPs) functionalized with purpurin-18 and its derivative, chlorin p6 (Cp6), as new PDT agents. In this study, we aimed to investigate the induced cell death mechanism mediated by these functionalized nanoparticles after PDT photoactivation. Our results show strong phototoxic effects of the FONPs[Cp6], mediated by intracellular ROS generation, and subcellular localization in HCT116 and HT-29 human colorectal cancer (CRC) cells. Additionally, we proved that, post-PDT, the FONPs[Cp6] induce apoptosis via the intrinsic mitochondrial pathway, as shown by the significant upregulation of the Bax/Bcl-2 ratio, the activation of caspases 9, 3, and 7, leading poly-ADP-ribose polymerase (PARP-1) cleavage, and DNA fragmentation. Our work demonstrates the photodynamic activity of these nanoparticles, making them promising candidates for the PDT treatment of CRC.
Collapse
Affiliation(s)
- Rayan Chkair
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| | - Justine Couvez
- University Bordeaux, CNRS, Bordeaux INP, ISM (UMR5255), Bat A12, 351 Cours de la Libération, 33405 Talence, France;
| | - Frédérique Brégier
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| | - Mona Diab-Assaf
- Doctoral School of Sciences and Technology, Lebanese University, Hadath, Beirut 21219, Lebanon;
| | - Vincent Sol
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| | - Mireille Blanchard-Desce
- University Bordeaux, CNRS, Bordeaux INP, ISM (UMR5255), Bat A12, 351 Cours de la Libération, 33405 Talence, France;
| | - Bertrand Liagre
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| | - Guillaume Chemin
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| |
Collapse
|
147
|
Zhang J, Deng M, Xu C, Li D, Yan X, Gu Y, Zhong M, Gao H, Liu Y, Zhang J, Qu X, Zhang J. Dual-Prodrug-Based Hyaluronic Acid Nanoplatform Provides Cascade-Boosted Drug Delivery for Oxidative Stress-Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50459-50473. [PMID: 39258403 DOI: 10.1021/acsami.4c11662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Insufficient drug accumulation in tumors severely limits the antitumor efficiency of hyaluronic acid (HA) nanomedicine in solid tumors due to superficial penetration depth, low cell uptake, and nonspecific drug release. Hence, we constructed a dual NO prodrug (alkynyl-JSK) and doxorubicin prodrug (cis-DOX)-conjugated HA nanoparticle (HA-DOX-JSK NPs), which achieved cascade-boosted drug delivery efficiency based on a relay strategy of NO-mediated deep tumor penetration─HA target CD44 tumor cell uptake─tumor microenvironment (TME)-responsive drug release. The nanoparticle demonstrated sustained and locoregionally GSH/GST-triggered NO release and GSH/pH-responsive DOX release in the tumor. The released NO first mediated collagen degradation, causing deep tumor penetration of nanoparticles in the dense extracellular matrix. Immediately, HA was relayed to enhance CD44-targeted tumor cell uptake, and then, the nanoparticles were finally triggered by specific TME to release DOX and NO in the deep tumor. Relying on the relayed delivery strategy, a significant improvement of DOX accumulation in tumors was realized. Moreover, NO depleted GSH-induced intracellular reactive oxygen species, enhancing DOX chemotherapy. Based on this strategy, the tumor inhibition rate in breast cancer was up to 87.8% in vivo. The relay drug-delivery HA system would greatly cascade-boost drug accumulation in deep tumors for efficient solid tumor therapy.
Collapse
Affiliation(s)
- Junxian Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Meigui Deng
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Chang Xu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Danting Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaozhe Yan
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yuxuan Gu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Meihui Zhong
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hui Gao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yingchun Liu
- Jinghua Plastics Industry Company Limited, Langfang 065800, P. R. China
| | - Jiqing Zhang
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250000, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
148
|
Han J, Xu X, Jin F, Xu X, Fang T, Du Y. Tumor oxygenation nanoliposomes promote deep photodynamic therapy for triple-negative breast cancer. Biomater Sci 2024; 12:4967-4979. [PMID: 39158634 DOI: 10.1039/d4bm00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer and has many characteristics including high metastatic rates, poor overall survival, and low response to traditional chemotherapy. Photodynamic therapy (PDT), emerging as a precise treatment modality, has shown promise in improving the antitumor response. However, it still faces challenges such as limited light penetration depth, rapid oxygen consumption, and inadequate targeting ability. In this study, we developed Rose Bengal (RB, photosensitizer) and oxygen co-loaded CREKA-modified UCNP-based nanoliposomes (CLIP-RB-PFOB@UCNP) for tumor targeting and near-infrared (NIR)-triggered deep and long-lasting PDT. Our results demonstrated that CLIP-RB-PFOB@UCNP effectively targeted and accumulated in tumor tissue through the interaction between CREKA and fibronectin, which is overexpressed in tumor cells. Under NIR irradiation, CLIP-RB-PFOB@UCNP exhibited significant destruction of orthotopic tumors, reduced the level of HIF-1α, and efficiently suppressed lung metastasis in a metastatic TNBC model. In conclusion, this study offers new avenues for improving the therapeutic outcomes of PDT for clinical TNBC treatment.
Collapse
Affiliation(s)
- Jianhua Han
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.
| | - Xinyi Xu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.
| | - Feiyang Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, P. R. China.
| | - Tao Fang
- Department of Anesthesiology, The Affiliated Jinhua Hospital of Wenzhou Medical University, Jinhua, Zhejiang 321000, P. R. China.
| | - Yongzhong Du
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China.
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321299, P. R. China
| |
Collapse
|
149
|
Terlau F, Martin HM, Galstyan A. Visualizing Active Sites in Electrospun Photoactive Membranes via Fluorescence Lifetime Imaging. Angew Chem Int Ed Engl 2024:e202414412. [PMID: 39316425 DOI: 10.1002/anie.202414412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Interest in antibacterial nanomaterials has surged in recent years, driven by the rise in antibiotic resistance among microbes. However, their practical application remains limited because many crucial properties have yet to be thoroughly investigated. In this study, we have developed novel nanofibrous membranes based on hydrophilic polyacrylonitrile (PAN) or hydrophobic polycaprolactone (PCL) with embedded hydrophilic or hydrophobic zinc(II)phthalocyanines (ZnPcs) as photosensitizers and investigated their water disinfection properties. Several key characteristics were evaluated to link the activity of the material and composition/structure. As demonstrated by reflectance UV/Vis spectroscopy, the aggregation states of dyes within the polymer support vary significantly. We have proposed and validated the use of fluorescence lifetime imaging (FLIM) for visualizing "active sites" in the membranes. The results of this study provide useful insights for the engineering of photoactive nanomaterials with tailor-made properties and highlight the crucial role of the nature of polymeric support in modulating the material's activity.
Collapse
Affiliation(s)
- Fabian Terlau
- Faculty of chemistry, University of Duisburg-Essen, Universitätstr. 5, 45141, Essen, Germany
| | - Hanna M Martin
- Faculty of chemistry, University of Duisburg-Essen, Universitätstr. 5, 45141, Essen, Germany
| | - Anzhela Galstyan
- Faculty of chemistry, University of Duisburg-Essen, Universitätstr. 5, 45141, Essen, Germany
- Faculty of Chemistry, University of Duisburg-Essen, Center for Nanointegration Duisburg-Essen (CENIDE), Center for Water and Environmental Research (ZWU), Center of Medical Biotechnology (ZMB), Universitätstr. 5, 45 141, Essen, Germany
| |
Collapse
|
150
|
Andryszkiewicz W, Misiąg P, Karwowska A, Resler Z, Wojno A, Kulbacka J, Szewczyk A, Rembiałkowska N. Cancer Metastases to the Liver: Mechanisms of Tumor Cell Colonization. Pharmaceuticals (Basel) 2024; 17:1251. [PMID: 39338413 PMCID: PMC11434846 DOI: 10.3390/ph17091251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The liver is one of the most common sites for metastasis, which involves the spread from primary tumors to surrounding organs and tissues in the human body. There are a few steps in cancer expansion: invasion, inflammatory processes allowing the hepatic niche to be created, adhesions to ECM, neovascularization, and secretion of enzymes. The spread of tumor cells depends on the microenvironment created by the contribution of many biomolecules, including proteolytic enzymes, cytokines, growth factors, and cell adhesion molecules that enable tumor cells to interact with the microenvironment. Moreover, the microenvironment plays a significant role in tumor growth and expansion. The secreted enzymes help cancer cells facilitate newly formed hepatic niches and promote migration and invasion. Our study discusses pharmacological methods used to prevent liver metastasis by targeting the tumor microenvironment and cancer cell colonization in the liver. We examine randomized studies focusing on median survival duration and median overall survival in patients administered placebo compared with those treated with bevacizumab, ramucirumab, regorafenib, and ziv-aflibercept in addition to current chemotherapy. We also include research on mice and their responses to these medications, which may suppress metastasis progression. Finally, we discuss the significance of non-pharmacological methods, including surgical procedures, radiotherapy, cryotherapy, radiofrequency ablation (RFA), and transarterial embolization (TAE). In conclusion, the given methods can successfully prevent metastases to the liver and prolong the median survival duration and median overall survival in patients suffering from cancer.
Collapse
Affiliation(s)
- Wiktoria Andryszkiewicz
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Piotr Misiąg
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Anna Karwowska
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Zofia Resler
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Aleksandra Wojno
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|