101
|
Yang C, Zhao L, Lin Y, Wang S, Ye Y, Shen Z. Biomarkers for immune checkpoint inhibitors in colorectal cancer: recent advances and future perspectives. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0201. [PMID: 37712582 PMCID: PMC10546092 DOI: 10.20892/j.issn.2095-3941.2023.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/19/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Changjiang Yang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing 100044, China
| | - Long Zhao
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing 100044, China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing 100044, China
| | - Shan Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing 100044, China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing 100044, China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
102
|
Wu Q, Wang Z, Luo Y, Xie X. Efficacy and safety of immune checkpoint inhibitors in Proficient Mismatch Repair (pMMR)/ Non-Microsatellite Instability-High (non-MSI-H) metastatic colorectal cancer: a study based on 39 cohorts incorporating 1723 patients. BMC Immunol 2023; 24:27. [PMID: 37658314 PMCID: PMC10472580 DOI: 10.1186/s12865-023-00564-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
PURPOSE This study was designed to investigate the efficacy and safety of immune checkpoint inhibitors (ICIs)-based therapy in proficient mismatch repair (pMMR)/non-microsatellite instability-high (non-MSI-H) metastatic colorectal cancer (mCRC). METHODS Electronic databases were screened to identify relevant trials. The primary endpoints were pooled objective response rate (ORR) and disease control rate (DCR). Stratified analysis was accomplished on ICIs-based regimens, treatment lines and RAS status. RESULTS Totally, 1723 mCRC patients from 39 cohorts were included. The pooled ORR, DCR, 12-month overall survival (OS) rate and 6-month progression-free survival (PFS) rate of ICIs-based therapy in pMMR/non-MSI-H mCRC were 8.5% (95% CI: 4.4%-13.5%), 48.2% (95% CI: 37.8%-58.6%), 52.3% (95% CI: 46.4%-58.1%) and 32.8% (95% CI: 23.5%-42.7%) respectively. As a whole, no significantly differences were shown between ICIs-based and non-ICIs-based therapy for pMMR/non-MSI-H mCRC in terms of both PFS (HR = 1.0, 95% CI: 0.9-1.1, P = 0.91) and OS (HR = 1.0, 95% CI: 0.9-1.2, P = 0.51). It was worth noting that the addition of ICIs to anti-vascular endothelial growth factor (VEGF) agent plus chemotherapy displayed excellent efficacy in pMMR/non-MSI-H mCRC (ORR = 42.4%, 95% CI: 10.0%-78.6%; DCR = 92.0%, 95% CI: 68.3%-100.0%; 12-month OS rate = 71.4%, 95% CI: 50.0%-89.1%; 6-month PFS rate = 55.2%, 95% CI: 24.8%-83.8%; and PFS (compared with non-ICIs-based therapy): HR = 0.9, 95% CI: 0.8-1.0, P = 0.02), especially served as first-line therapy (ORR = 74.2%, 95% CI: 61.4%-85.4%; DCR = 98.7%, 95% CI: 92.0%-100.0%); and without additional treatment related adverse events (TRAEs) were observed. CONCLUSIONS ICIs-based combination therapy, especially the addition of ICIs to first-line anti-VEGF agent plus chemotherapy, is promising in pMMR/non-MSI-H mCRC with good efficacy and controllable toxicity.
Collapse
Affiliation(s)
- Qing Wu
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ziming Wang
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yang Luo
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
- Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
103
|
Loft M, To YH, Gibbs P, Tie J. Clinical application of circulating tumour DNA in colorectal cancer. Lancet Gastroenterol Hepatol 2023; 8:837-852. [PMID: 37499673 DOI: 10.1016/s2468-1253(23)00146-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 07/29/2023]
Abstract
Liquid biopsies that detect circulating tumour DNA (ctDNA) have the potential to revolutionise the personalised management of colorectal cancer. For patients with early-stage disease, emerging clinical applications include the assessment of molecular residual disease after surgery, the monitoring of adjuvant chemotherapy efficacy, and early detection of recurrence during surveillance. In the advanced disease setting, data highlight the potential of ctDNA levels as a prognostic marker and as an early indicator of treatment response. ctDNA assessment can complement standard tissue-based testing for molecular characterisation, with the added ability to monitor emerging mutations under the selective pressure of targeted therapy. Here we provide an overview of the evidence supporting the use of ctDNA in colorectal cancer, the studies underway to address some of the outstanding questions, and the barriers to widespread clinical uptake.
Collapse
Affiliation(s)
- Matthew Loft
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Western Health, Footscray, VIC, Australia
| | - Yat Hang To
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Peter Gibbs
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Western Health, Footscray, VIC, Australia
| | - Jeanne Tie
- Division of Personalised Oncology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
104
|
Lin Y, Luo S, Luo M, Lu X, Li Q, Xie M, Huang Y, Liao X, Zhang Y, Li Y, Liang R. Homologous recombination repair gene mutations in colorectal cancer favors treatment of immune checkpoint inhibitors. Mol Carcinog 2023; 62:1271-1283. [PMID: 37232365 DOI: 10.1002/mc.23562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy is insensitive for Colorectal cancer (CRC) patients with microsatellite stable (MSS). Genomic data of three CRC cohort, n = 35), and the Cancer Genome Atlas (TCGA CRC cohort, n = 377), were analyzed. A cohort treated with ICIs from Memorial Sloan Kettering Cancer Center (MSKCC CRC cohort, n = 110) and two cases from the local hospital were characterized the impact of the HRR mutation on prognosis of CRC. Homologous recombination repair (HRR) gene mutations were more common in CN and HL cohorts (27.85%; 48.57%) than in TCGA CRC cohort (15.92%), especially in the MSS populations, the frequencies of HRR mutation were higher in CN and HL cohort (27.45%, 51.72%) than in TCGA cohort (6.85%). HRR mutations were associated with high tumor mutational burden (TMB-H). Although HRR mutation uncorrelated with an improved overall survival in the MSKCC CRC cohort (p = 0.97), HRR mutated patients had a significantly improved OS compared to the HRR wildtype population particularly in MSS subgroups (p = 0.0407) under ICI treatment. It probably contributed by a higher neoantigen and increased CD4+ T cell infiltration which found in the TCGA MSS HRR mutated CRC cohort. The similar phenomenon on cases was observed that MSS metastatic CRC patient with HRR mutation seemed more sensitive to ICI after multi-line chemotherapy in clinical practice than HRR wildtype. This finding suggests the feasibility of HRR mutation as an immunotherapy response predictor in MSS CRC, which highlights a potential therapeutic approach for these patients.
Collapse
Affiliation(s)
- Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Shanshan Luo
- Department of Gastrointestinal Gland Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Min Luo
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Xuerou Lu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Qian Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Mingzhi Xie
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Yu Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Xiaoli Liao
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Yumei Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
105
|
Ros J, Baraibar I, Saoudi N, Rodriguez M, Salvà F, Tabernero J, Élez E. Immunotherapy for Colorectal Cancer with High Microsatellite Instability: The Ongoing Search for Biomarkers. Cancers (Basel) 2023; 15:4245. [PMID: 37686520 PMCID: PMC10486610 DOI: 10.3390/cancers15174245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Microsatellite instability (MSI) is a biological condition associated with inflamed tumors, high tumor mutational burden (TMB), and responses to immune checkpoint inhibitors. In colorectal cancer (CRC), MSI tumors are found in 5% of patients in the metastatic setting and 15% in early-stage disease. Following the impressive clinical activity of immune checkpoint inhibitors in the metastatic setting, associated with deep and long-lasting responses, the development of immune checkpoint inhibitors has expanded to early-stage disease. Several phase II trials have demonstrated a high rate of pathological complete responses, with some patients even spared from surgery. However, in both settings, not all patients respond and some responses are short, emphasizing the importance of the ongoing search for accurate biomarkers. While various biomarkers of response have been evaluated in the context of MSI CRC, including B2M and JAK1/2 mutations, TMB, WNT pathway mutations, and Lynch syndrome, with mixed results, liver metastases have been associated with a lack of activity in such strategies. To improve patient selection and treatment outcomes, further research is required to identify additional biomarkers and refine existing ones. This will allow for the development of personalized treatment approaches and the integration of novel therapeutic strategies for MSI CRC patients with liver metastases.
Collapse
Affiliation(s)
- Javier Ros
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Nadia Saoudi
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Marta Rodriguez
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Francesc Salvà
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| | - Elena Élez
- Medical Oncology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (J.R.); (I.B.); (N.S.); (M.R.); (F.S.); (J.T.)
- Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain
| |
Collapse
|
106
|
Lutfi A, Afghan MK, Kasi PM. Circulating Tumor DNA Response and Minimal Residual Disease Assessment in DNA Polymerase Epsilon-Mutated Colorectal Cancer Undergoing Immunotherapy. Cureus 2023; 15:e43391. [PMID: 37593074 PMCID: PMC10428188 DOI: 10.7759/cureus.43391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2023] [Indexed: 08/19/2023] Open
Abstract
Exonuclease domain mutation (EDM) in polymerase epsilon (POLE)-mutated colorectal cancer patients is characterized by specific clinical features and a very high tumor mutation burden (TMB). The therapeutic effectiveness of immune checkpoint inhibitors (ICIs) for the treatment of colorectal cancer in patients with POLE mutations is poorly defined. Our case represents a young-onset colon cancer patient who has had a continued response to programmed cell death protein 1 (PD1) blockade alongside clearance of circulating tumor DNA (ctDNA) using a tumor-informed approach. Utilizing ctDNA kinetics to assess minimal residual disease (MRD) in the context of colorectal cancer is a very important topic. Furthermore, utilizing ctDNA kinetics in response to immunotherapy is something that is relevant to all tumor types undergoing immunotherapy. Recently, several landmark articles have proposed this as a promising approach. There is, however, limited information in the literature showing the feasibility of such an approach. Our case report is going to be of value, both from a scientific as well as a clinical standpoint. This is particularly relevant given the rise of colorectal cancers in young individuals.
Collapse
Affiliation(s)
- Areeb Lutfi
- Oncology, Weill Cornell Medicine, New York, USA
| | | | | |
Collapse
|
107
|
Thibaudin M, Fumet JD, Chibaudel B, Bennouna J, Borg C, Martin-Babau J, Cohen R, Fonck M, Taieb J, Limagne E, Blanc J, Ballot E, Hampe L, Bon M, Daumoine S, Peroz M, Mananet H, Derangère V, Boidot R, Michaud HA, Laheurte C, Adotevi O, Bertaut A, Truntzer C, Ghiringhelli F. First-line durvalumab and tremelimumab with chemotherapy in RAS-mutated metastatic colorectal cancer: a phase 1b/2 trial. Nat Med 2023; 29:2087-2098. [PMID: 37563240 PMCID: PMC10427431 DOI: 10.1038/s41591-023-02497-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/11/2023] [Indexed: 08/12/2023]
Abstract
Although patients with microsatellite instable metastatic colorectal cancer (CRC) benefit from immune checkpoint blockade, chemotherapy with targeted therapies remains the only therapeutic option for microsatellite stable (MSS) tumors. The single-arm, phase 1b/2 MEDITREME trial evaluated the safety and efficacy of durvalumab plus tremelimumab combined with mFOLFOX6 chemotherapy in first line, in 57 patients with RAS-mutant unresectable metastatic CRC. Safety was the primary objective of phase Ib; no safety issue was observed. The phase 2 primary objective of efficacy in terms of 3-month progression-free survival (PFS) in patients with MSS tumors was met, with 3-month PFS of 90.7% (95% confidence interval (CI): 79.2-96%). For secondary objectives, response rate was 64.5%; median PFS was 8.2 months (95% CI: 5.9-8.6); and overall survival was not reached in patients with MSS tumors. We observed higher tumor mutational burden and lower genomic instability in responders. Integrated transcriptomic analysis underlined that high immune signature and low epithelial-mesenchymal transition were associated with better outcome. Immunomonitoring showed induction of neoantigen and NY-ESO1 and TERT blood tumor-specific T cell response associated with better PFS. The combination of durvalumab-tremelimumab with mFOLFOX6 was tolerable with promising clinical activity in MSS mCRC. Clinicaltrials.gov identifier: NCT03202758 .
Collapse
Affiliation(s)
- Marion Thibaudin
- Université Bourgogne Franche-Comté, Dijon, France.
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
| | - Jean-David Fumet
- Université Bourgogne Franche-Comté, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
| | - Benoist Chibaudel
- Department of Medical Oncology, Hôpital Franco-Britannique - Fondation Cognacq-Jay, Levallois-Perret, France
| | | | | | | | - Romain Cohen
- Department of Medical Oncology, Saint Antoine, Hospital, Paris, France
| | - Marianne Fonck
- Department of Medical Oncology, Institut Bergonie, Bordeaux, France
| | - Julien Taieb
- Department of Gastroenterology, Pompidou Hospital, Paris, France
| | - Emeric Limagne
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Julie Blanc
- Department of Statistics, Centre Georges-François Leclerc, Dijon, France
| | - Elise Ballot
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Léa Hampe
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Marjorie Bon
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Susy Daumoine
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Morgane Peroz
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Hugo Mananet
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Valentin Derangère
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
| | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
| | - Henri-Alexandre Michaud
- Plateforme de Cytométrie et d'Imagerie de Masse, IRCM, University of Montpellier, ICM, Inserm Montpellier, Montpellier, France
| | - Caroline Laheurte
- INSERM EFS UMR1098 RIGHT Interactions Hôte-Greffon-Tumeur - Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Olivier Adotevi
- Department of Medical Oncology, CHU, Besançon, France
- INSERM EFS UMR1098 RIGHT Interactions Hôte-Greffon-Tumeur - Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Aurélie Bertaut
- Department of Statistics, Centre Georges-François Leclerc, Dijon, France
| | - Caroline Truntzer
- Université Bourgogne Franche-Comté, Dijon, France
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France
- Genetic and Immunology Medical Institute, Dijon, France
| | - François Ghiringhelli
- Université Bourgogne Franche-Comté, Dijon, France.
- Cancer Biology Transfer Platform, Department of Biology and Pathology of Tumors, Georges-François Leclerc Anticancer Center, UNICANCER, Dijon, France.
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France.
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France.
- Genetic and Immunology Medical Institute, Dijon, France.
| |
Collapse
|
108
|
Fang X, Zhong C, Weng S, Hu H, Wang J, Xiao Q, Wang J, Sun L, Xu D, Liao X, Dong C, Zhang S, Li J, Ding K, Yuan Y. Sintilimab plus bevacizumab and CapeOx (BBCAPX) on first-line treatment in patients with RAS mutant, microsatellite stable, metastatic colorectal cancer: study protocol of a randomized, open-label, multicentric study. BMC Cancer 2023; 23:676. [PMID: 37464378 DOI: 10.1186/s12885-023-11139-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Rat sarcoma viral oncogene homolog (RAS) gene mutation is a common molecular event in colorectal cancer (CRC). The prognosis of mCRC (metastatic colorectal cancer) patients with RAS mutation is poor and capecitabine and oxaliplatin (CapeOx) plus bevacizumab has shown to be one of the standard therapeutic regimens as first line for these patients with objective response rate (ORR) of ~ 50% and median progression-free survival (mPFS) of 8-9 months. Immunotherapy, especially anti-programmed death 1 (PD-1) monoclonal antibody has demonstrated ground-breaking results in deficient mismatch repair (dMMR) / microsatellite instability-high (MSI-H) mCRC patients. However, the response rate of in microsatellite stable (MSS) patients is extremely low. In addition, preclinical studies have demonstrated that anti-Vascular endothelial growth factor (VEGF) agents, such as bevacizumab, can induce tumor vascular normalization and enhance antitumor immunity. Previous study indicated the combination of chemotherapy, anti-VEGF agents (bevacizumab) with immune checkpoint inhibitors may have promising clinical activity in RAS mutant, MSS refractory mCRC patients. Based on these evidences, we will explore the combination of CapeOx with bevacizumab and sintilimab (anti-PD-1 monoclonal antibody) in RAS mutant, MSS mCRC patients as first-line therapy. METHODS This is a randomized, open-label, multicentric clinical trial. In the sintilimab arm, patients will receive sintilimab in combination with CapeOx and bevacizumab. In the control arm, patients will receive CapeOx and bevacizumab. This trial will recruit 494 patients from 20 centers and randomly (1:1) disseminated into two groups. The primary endpoint is the PFS. The secondary endpoints include overall survival, safety, ORR, and disease control rate. DISCUSSION This study may provide new ideas for optimizing oncology treatment planning for RAS mutant, MSS mCRC patients in the first-line set. TRIAL REGISTRATION This study is short for BBCAPX and has been registered at clinicaltrials.gov registry with identifier NCT05171660.
Collapse
Affiliation(s)
- Xuefeng Fang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Chenhan Zhong
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Shanshan Weng
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Hanguang Hu
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jian Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jianwei Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lifeng Sun
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Dong Xu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xiujun Liao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Caixia Dong
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Suzhan Zhang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jun Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
109
|
Song Y, Long J, Su X, Chen Z, He Y, Shao W, Wang B, Chen C. Case Report: Genetic and immune microenvironmental characteristics of a rectal cancer patient with MSS/PD-L1-negative recurrent hepatopulmonary metastasis who achieved complete remission after treatment with PD-1 inhibitor. Front Immunol 2023; 14:1197543. [PMID: 37520536 PMCID: PMC10373867 DOI: 10.3389/fimmu.2023.1197543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Currently, microsatellite high instability (MSI-H)/mismatch repair protein deletion (dMMR) has become a crucial biomarker for utilizing immune checkpoint inhibitors in patients with advanced colorectal cancer (mCRC). However, the proportion of MSI-H/dMMR in advanced patients is only about 5% and mCRC patients with microsatellite stability (MSS)/proficient mismatch repair (pMMR) exhibit poor responses to immunotherapy. Although diverse immune combination therapy regimens have been examined in patients with advanced colorectal cancer who demonstrate MSS/pMMR, these approaches have not yielded favorable efficacy and only a limited proportion of patients have benefited, especially for advanced colorectal cancer patients with liver metastases. Therefore, the mechanism of benefit and potential biomarkers of immunotherapy in patients with MSS/pMMR mCRC deserve more in-depth exploration. Here, we present a case study of a rectal cancer patient with MSS and PD-L1-negative recurrent hepatopulmonary metastases who attained complete remission (CR) and sustained benefits with immunotherapy after systemic therapy had failed. The analysis of the patient's genetic and immune microenvironmental characteristics revealed that mutations in DNA damage repair (DDR) pathway genes and the existence of abundant tumor-infiltrating lymphocytes could contribute to his potential benefit.
Collapse
Affiliation(s)
- Yang Song
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Juan Long
- Chongqing Clinical Research Center for Dermatology, Chongqing Key Laboratory of Integrative Dermatology Research, Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiaona Su
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhuo Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue He
- Genecast Biotechnology Co., Ltd, Wuxi, China
| | | | - Bin Wang
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
- Department of Oncology, the Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Chuan Chen
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
110
|
Liu Y, Zhang X, Xu HF, Shi JH, Zhao YQ, Du LB, Liu YY, Wang WJ, Cao HL, Ma L, Huang JX, Cao J, Li L, Fan YP, Gu XF, Feng CY, Zhu Q, Wang XH, Du JC, Zhang JG, Zhang SK, Qiao YL. Real-World Utilization, Barriers, and Factors Associated With the Targeted Treatment of Metastatic Colorectal Cancer Patients in China: A Multi-Center, Hospital-Based Survey Study. Int J Public Health 2023; 68:1606091. [PMID: 37465051 PMCID: PMC10351535 DOI: 10.3389/ijph.2023.1606091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
Objectives: To explore the utilization, barriers, and factors associated with the targeted treatment of Chinese metastatic colorectal cancer (mCRC) patients. Methods: A total of 1,688 mCRC patients from 19 hospitals in 14 cities were enrolled from March 2020 to March 2021 using stratified, multistage cluster sampling. The use of targeted therapy and any barriers patients experienced were collected. Logistic regression analyses were conducted to identify the factors associated with initiating targeted treatment. Results: About 51.6% of the patients initiated targeted therapy, of whom 44.5%, 20.2%, and 35.2% started first-, second-, and third-line treatment, respectively. The most reported barriers were high medical costs and a lack of belief in the efficacy of targeted therapy. Patients treated in the general hospital, diagnosed at an older age, less educated, and who had a lower family income, no medical insurance, poor health-related quality of life, metastasis outside the liver/lung or systemic metastasis, a shorter duration of mCRC were less likely to initiate targeted therapy. Conclusion: Reduced medical costs and interventional education to improve public awareness could facilitate the use of targeted treatment for mCRC.
Collapse
Affiliation(s)
- Yin Liu
- Department of Cancer Epidemiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, China
| | - Xi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing Office for Cancer Prevention and Control, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hui-Fang Xu
- Department of Cancer Epidemiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, China
| | - Ji-Hai Shi
- The Clinical Epidemiology of Research Center, Department of Dermatological, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Yu-Qian Zhao
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling-Bin Du
- Department of Cancer Prevention, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yun-Yong Liu
- Liaoning Office for Cancer Control and Research, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Wen-Jun Wang
- School of Nursing, Jining Medical University, Jining, China
| | - He-Lu Cao
- Department of Preventive Health, Xinxiang Central Hospital, Xinxiang, China
| | - Li Ma
- Public Health School, Dalian Medical University, Dalian, China
| | - Juan-Xiu Huang
- Department of Gastroenterology, Wuzhou Red Cross Hospital, Wuzhou, China
| | - Ji Cao
- Department of Cancer Prevention and Control Office, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Li Li
- Department of Clinical Research, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yan-Ping Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Fen Gu
- Department of Student Affairs, Affiliated Tumor Hospital, Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Chang-Yan Feng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qian Zhu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xiao-Hui Wang
- Department of Public Health, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Jing-Chang Du
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Jian-Gong Zhang
- Department of Cancer Epidemiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, China
| | - Shao-Kai Zhang
- Department of Cancer Epidemiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, China
| | - You-Lin Qiao
- Department of Cancer Epidemiology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, China
- Center for Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
111
|
Yang Y, Li J, Jing C, Zhai Y, Bai Z, Yang Y, Deng W. Inhibition of neuroactive ligand-receptor interaction pathway can enhance immunotherapy response in colon cancer: an in silico study. Expert Rev Anticancer Ther 2023; 23:1205-1215. [PMID: 37555253 DOI: 10.1080/14737140.2023.2245567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND The potential mechanism underlying the association between Homologous recombination deficiency (HRD) and immunotherapy in colon cancer has not been investigated. METHODS The exon sequencing data and transcriptome data of 456 colon adenocarcinoma (COAD) patients were obtained from the TCGA database. Pathway activity score was calculated by GSVA methods and engaged in further survival analysis. The prognostic value of the candidate pathways was validated in an external GEO cohort and an immunotherapy cohort. RESULTS Patients with high HRD were associated with poor prognosis, lower tumor mutation burden and microsatellite instability, higher fraction genome alteration, and less sensitivity to immunotherapy in COAD. And then, the neuroactive ligand-receptor interaction pathway was over-activated in high-HRD tumors and associated with immunosuppression in colon cancer with high HRD. Besides, the pathway was associated with prognosis and immunotherapy response in COAD. Moreover, genes in this pathway such as LTB4R2 can be used as a novel target for therapy development in colon cancer. CONCLUSION Our study not only revealed the potential mechanism of HRD and the function of the neuroactive ligand-receptor interaction pathway in colon cancer but also provided new clues for the improvement of immunotherapy response in colon cancer.
Collapse
Affiliation(s)
- Yun Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jun Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chao Jing
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuhao Zhai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yingchi Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
112
|
Raei N, Safaralizadeh R, Latifi-Navid S. Clinical application of circulating tumor DNA in metastatic cancers. Expert Rev Mol Diagn 2023; 23:1209-1220. [PMID: 37797209 DOI: 10.1080/14737159.2023.2268008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Advances in genomics have facilitated the application of cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) in phase II and phase III clinical trials. The various mutations of cfDNA/ctDNA have been correlated with clinical features. Advances in next-generation sequencing (NGS) and digital droplet PCR have paved the way for identifying cfDNA/ctDNA mutations. AREAS COVERED Herein, the biology of ctDNA and its function in clinical application in metastasis, which may lead to improved clinical management of metastatic cancer patients, are comprehensively reviewed. EXPERT OPINION Metastatic cancer ctDNA shows the greatest frequency of mutations in TP53, HER-2, KRAS, and EGFR genes (alteration frequency of > 50%). Therefore, identifying key mutations frequently present in metastatic cancers can help identify patients with pre-malignant tumors before cancer progression. Studying ctDNA can help determine the prognosis and select appropriate treatments for affected patients. Nevertheless, the obstacles to detecting and analyzing ctDNA should be addressed before translation into routine practice. Also, more clinical trials should be conducted to study the significance of ctDNA in commonly diagnosed malignancies. Given the recent advances in personalized anti-neoplastic treatments, further studies are needed to detect a panel of ctDNA and patient-specific ctDNA for various cancers.
Collapse
Affiliation(s)
- Negin Raei
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
113
|
Kelly RJ, Bever K, Chao J, Ciombor KK, Eng C, Fakih M, Goyal L, Hubbard J, Iyer R, Kemberling HT, Krishnamurthi S, Ku G, Mordecai MM, Morris VK, Paulson AS, Peterson V, Shah MA, Le DT. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gastrointestinal cancer. J Immunother Cancer 2023; 11:e006658. [PMID: 37286304 PMCID: PMC10254964 DOI: 10.1136/jitc-2022-006658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 06/09/2023] Open
Abstract
Gastrointestinal (GI) cancers, including esophageal, gastroesophageal junction, gastric, duodenal and distal small bowel, biliary tract, pancreatic, colon, rectal, and anal cancer, comprise a heterogeneous group of malignancies that impose a significant global burden. Immunotherapy has transformed the treatment landscape for several GI cancers, offering some patients durable responses and prolonged survival. Specifically, immune checkpoint inhibitors (ICIs) directed against programmed cell death protein 1 (PD-1), either as monotherapies or in combination regimens, have gained tissue site-specific regulatory approvals for the treatment of metastatic disease and in the resectable setting. Indications for ICIs in GI cancer, however, have differing biomarker and histology requirements depending on the anatomic site of origin. Furthermore, ICIs are associated with unique toxicity profiles compared with other systemic treatments that have long been the mainstay for GI cancer, such as chemotherapy. With the goal of improving patient care by providing guidance to the oncology community, the Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop this clinical practice guideline on immunotherapy for the treatment of GI cancer. Drawing from published data and clinical experience, the expert panel developed evidence- and consensus-based recommendations for healthcare professionals using ICIs to treat GI cancers, with topics including biomarker testing, therapy selection, and patient education and quality of life considerations, among others.
Collapse
Affiliation(s)
- Ronan J Kelly
- Charles A. Sammons Cancer Center, Baylor University Medical Center at Dallas, Dallas, Texas, USA
| | - Katherine Bever
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Chao
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Kristen K Ciombor
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Cathy Eng
- Department of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Marwan Fakih
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center Duarte, Duarte, California, USA
| | - Lipika Goyal
- Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Joleen Hubbard
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Renuka Iyer
- Department of GI Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Holly T Kemberling
- Department of GI Immunology Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | | | - Geoffrey Ku
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Andrew Scott Paulson
- Department of Medical Oncology, Texas Oncology-Baylor Charles A Sammons Cancer Center, Dallas, Texas, USA
| | - Valerie Peterson
- Department of Thoracic Medical Oncology, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Manish A Shah
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Dung T Le
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
114
|
Zhang W, Kong D, Li G, Yang Z, Cheng S, Li H, Feng L, Zhang K. Construction and validation of a chemokine family-based signature for the prediction of prognosis and therapeutic response in colon cancer. Heliyon 2023; 9:e16478. [PMID: 37484298 PMCID: PMC10360577 DOI: 10.1016/j.heliyon.2023.e16478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 07/25/2023] Open
Abstract
The role of chemokines in predicting the prognosis of colon cancer has not been mentioned. Chemokines have been shown to be associated with immune cell chemotaxis and activation, so the expression of chemokine genes in tumor tissue may be related to prognosis. We used a least absolute shrinkage and selection operator (LASSO) model based on chemokine gene families to construct a model that can predict the prognosis of colon cancer patients. We divided patients into high-risk groups and low-risk groups to study the prognosis. Then, we evaluated the relationship between the different risk groups in infiltration of immune cells. It was found that there was less immune cell infiltration in the high-risk group. We conducted a functional enrichment analysis based on model stratification, and explored the biological signal pathways enriched in the high and low-risk groups, which provided ideas for studying the mechanism behind its impact on prognosis. In addition, the chemokine-related gene signature could predict the response of patients to immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan 430068, China
| | - Defeng Kong
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Guoliang Li
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hong Li
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road Beijing 100853, PR China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
115
|
Dasanu CA, Alani M, Habibi S, Codreanu I. Immune checkpoint inhibition in advanced colorectal cancer with inherited and acquired microsatellite instability: Current state and future directions. J Oncol Pharm Pract 2023:10781552231178293. [PMID: 37246506 DOI: 10.1177/10781552231178293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
OBJECTIVE This paper reviews comprehensively the most relevant data on single-agent and combination therapies for advanced colorectal cancer with inherited and acquired microsatellite instability (MSI). DATA SOURCES We performed a systematic search on PubMed and MEDLINE articles published from inception to December 2022. We have also searched independent websites including U.S. Food and Drug Administration and ClinicalTrials.gov. DATA SUMMARY Performing microsatellite stability testing, tumor mutational burden (TMB), and germline mutation analysis could identify patients with metastatic colorectal cancer that benefit from immune checkpoint inhibitor (ICI) therapy. Single-agent pembrolizumab has proven superiority over traditional chemotherapy in these patients. The nivolumab-ipilimumab is the only combination ICI therapy approved in this space. Recently, the anti-PD-1 antibody dostarlimab was granted Food and Drug Administration approval in refractory tissue-agnostic advanced solid cancers with deficient mismatch repair (dMMR). ICIs are also being studied in the adjuvant/neoadjuvant setting in colon cancer patients with dMMR. Newer agents are being scrutinized in this space as well. More solid data on biomarkers predicting responses in patients with MSI-high or TMB-H to various therapies are needed. Given its both clinical and financial toxicity, it is imperative to determine the optimal duration of ICI therapy in individual patients. CONCLUSIONS Overall, the outlook in advanced colorectal cancer patients with MSI appears optimistic as new and efficacious ICI drugs and combinations are being added to the existing therapeutic armamentarium.
Collapse
Affiliation(s)
- Constantin A Dasanu
- Lucy Curci Cancer Center, Eisenhower Health, Rancho Mirage, CA, USA
- Department of Medical Oncology and Hematology, UC San Diego Health System, San Diego, CA, USA
| | - Mohammed Alani
- Department of Medicine, Eisenhower Health, Rancho Mirage, CA, USA
| | | | - Ion Codreanu
- Translational Imaging Center, Houston Methodist Research Institute, Houston, TX, USA
- Department of Radiology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
| |
Collapse
|
116
|
Luo H, Zhang Q, Liu X, Luo Y, Jiang X, Wang C, Chen B, He Q, Zhang Y, Shu O, Dai P, He C. Molecular subtypes and tumor microenvironment infiltration signatures based on cuproptosis-related genes in colon cancer. Front Oncol 2023; 13:999193. [PMID: 37274263 PMCID: PMC10234596 DOI: 10.3389/fonc.2023.999193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Background Colon cancer is one of the common cancers, and its prognosis remains to be improved. The role of cuproptosis as a newly discovered form of cell death in the development of colon cancer has not been determined. Methods Based on 983 colon cancer samples in the TCGA database and the GEO database, we performed a comprehensive genomic analysis to explore the molecular subtypes mediated by cuproptosis-related genes. Single-sample gene set enrichment analysis (ssGSEA) was utilized to quantify the relative abundance of each cell infiltrate in the TME. A risk score was established using least absolute shrinkage and selection operator regression (LASSO), and its predictive ability for colon cancer patients was verified to explore its guiding value for treatment. Results We identified two distinct cuproptosis-related molecular subtypes in colon cancer. These two distinct molecular subtypes can predict clinicopathological features, prognosis, TME activity, and immune-infiltrating cells. A risk model was developed and its predictive ability was verified. Compared with patients in the high-risk score group, patients in the low-risk score group were characterized by lower tumor microenvironment score, higher stem cell activity, lower tumor mutational burden, lower microsatellite instability, higher sensitivity to chemotherapeutics, and better immunotherapy efficacy. Conclusion This study contributes to understanding the molecular characteristics of cuproptosis-related subtypes. We demonstrate a critical role for cuproptosis genes in colon cancer s in the TME. Our study contributes to the development of individualized treatment regimens for colon cancer.
Collapse
Affiliation(s)
- Hongwei Luo
- People’s Hospital of Mianzhu, Deyang, Sichuan, China
| | - Que Zhang
- People’s Hospital of Mianzhu, Deyang, Sichuan, China
| | - Xiangchu Liu
- People’s Hospital of Mianzhu, Deyang, Sichuan, China
| | - Yue Luo
- People’s Hospital of Mianzhu, Deyang, Sichuan, China
| | - Xing Jiang
- People’s Hospital of Mianzhu, Deyang, Sichuan, China
| | - Chao Wang
- People’s Hospital of Mianzhu, Deyang, Sichuan, China
| | - Bin Chen
- People’s Hospital of Mianzhu, Deyang, Sichuan, China
| | - Qiming He
- People’s Hospital of Mianzhu, Deyang, Sichuan, China
| | | | - Ou Shu
- People’s Hospital of Zhongjiang, Deyang, Sichuan, China
| | - Penggao Dai
- Fujian Medical University, Fuzhou, Fujian, China
| | - Chengcheng He
- People’s Hospital of Zhongjiang, Deyang, Sichuan, China
| |
Collapse
|
117
|
Karna R, S Deliwala S, Ramgopal B, Asawa P, Mishra R, P Mohan B, Jayakrishnan T, Grover D, Kalra T, Bhalla J, Saraswati U, K Gangwani M, Dhawan M, G Adler D. Gastrointestinal treatment-related adverse events of combined immune checkpoint inhibitors: a meta-analysis. Immunotherapy 2023. [PMID: 37190949 DOI: 10.2217/imt-2023-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Introduction: Combined immune checkpoint inhibitors can cause gastrointestinal adverse events. Methods: We performed a meta-analysis of pooled colonic, hepatic and pancreatic treatment-related adverse events of combined ICI. Results: 53 trials reporting treatment-related adverse events in 6581 patients. All grade diarrhea was the most common adverse event seen in 25.4% patients, followed by all grade hepatitis in nearly 13% patients and pancreatitis in nearly 7.5% patients. Conclusion: Our study provides pooled data of treatment-related adverse events from different combination immune checkpoint inhibitors use in solid tumors and demonstrates a high incidence of all grades and ≥3 grade gastrointestinal adverse events. Further studies are required to characterize these adverse events and assess their overall impact on treatment course and outcomes.
Collapse
Affiliation(s)
- Rahul Karna
- Internal Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Smit S Deliwala
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Balasubramanian Ramgopal
- Foundation Fellowship Doctor, University Hospital, Southampton NHS Foundation Trust, Southampton, Hampshire, UK
| | - Palash Asawa
- Internal Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Rahul Mishra
- Postdoctoral research fellow, Cleveland Clinic, OH, USA
| | - Babu P Mohan
- Gastroenterology & Hepatology, University of Utah Health School of Medicine, Salt Lake City, UT, USA
| | | | - Dheera Grover
- Internal Medicine, University of Connecticut, Hartford, CT, USA
| | - Tanisha Kalra
- Internal Medicine, SUNY Downstate Health Science University, NY, USA
| | | | | | - Manesh K Gangwani
- Internal Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Manish Dhawan
- Gastroenterology & Hepatology, Allegheny Health Network, Pittsburgh, PA, USA
| | - Douglas G Adler
- Center for Advanced Therapeutic Endoscopy, Centura Health, Denver, CO, USA
| |
Collapse
|
118
|
Fakih M, Sandhu J, Lim D, Li X, Li S, Wang C. Regorafenib, Ipilimumab, and Nivolumab for Patients With Microsatellite Stable Colorectal Cancer and Disease Progression With Prior Chemotherapy: A Phase 1 Nonrandomized Clinical Trial. JAMA Oncol 2023; 9:627-634. [PMID: 36892833 PMCID: PMC9999273 DOI: 10.1001/jamaoncol.2022.7845] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/30/2022] [Indexed: 03/10/2023]
Abstract
Importance Immunotherapy combinations with activity in patients with microsatellite stable (MSS) metastatic colorectal cancer need to be identified. Objective To determine the recommended phase 2 dose (RP2D) of regorafenib, ipilimumab, and nivolumab (RIN) and evaluate its activity in an expansion cohort of patients with MSS metastatic colorectal cancer. Design, Setting, and Participants This nonrandomized clinical trial was a single-center 3 + 3 dose de-escalation study with an effectiveness expansion cohort at the RP2D. After the identification of the RP2D, a study amendment was executed to explore a regorafenib dose optimization strategy to mitigate skin-related toxic effects. Study enrollment occurred between May 12, 2020, and January 21, 2022. The trial was conducted at a single academic center. A total of 39 patients with MSS metastatic colorectal cancer whose disease progressed after standard chemotherapy and who had not received prior regorafenib or anti-programmed cell death protein 1 therapy were included. Interventions Patients received regorafenib daily for 21 days every 4 weeks; fixed-dose ipilimumab, 1 mg/kg, intravenously every 6 weeks; and fixed-dose nivolumab, 240 mg intravenously every 2 weeks. Patients were treated until progression, unacceptable toxic effects, or completion of 2 years of therapy. Main Outcomes and Measures The primary end point was RP2D selection. Secondary end points were safety and overall response rate (ORR) according to the Response Evaluation Criteria in Solid Tumours at the RP2D level. Results A total of 39 patients were enrolled, 23 (59.0%) were female, median age was 54 years (range, 25-75 years), 3 were Black (7.7%), and 26 were White (66.7%). No dose-limiting toxic effects were noted in the first 9 patients at the starting dose of RIN, with regorafenib dosed at 80 mg daily. No dose de-escalation was needed. This dose was declared the RP2D. Twenty more patients were enrolled at this level. The ORR, median progression-free survival (PFS), and overall survival (OS) in the RP2D cohort were 27.6%, 4 months (IQR, 2-9 months), and 20 months (IQR, 7 months to not estimable), respectively. For the 22 patients without liver metastases, the ORR, PFS, and OS were 36.4%, 5 months (IQR, 2-11), and greater than 22 months, respectively. A dose optimization cohort with regorafenib at 40 mg/d on cycle 1 and 80 mg/d on cycle 2 and beyond was associated with lower skin and immune toxic effects but had limited activity with stable disease for 5 of 10 patients as the best response. Conclusions and Relevance Results of this nonrandomized clinical trial suggest that RIN at the RP2D demonstrated interesting clinical activity in patients with advanced MSS colorectal cancer without liver metastases. These findings should be confirmed in randomized clinical trials. Trial Registration ClinicalTrials.gov Identifier: NCT04362839.
Collapse
Affiliation(s)
- Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Jaideep Sandhu
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Dean Lim
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Xiaochen Li
- Division of Biostatistics, Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Sierra Li
- Division of Biostatistics, Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Chongkai Wang
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
119
|
Kaur K, Chen PC, Ko MW, Mei A, Senjor E, Malarkannan S, Kos J, Jewett A. Sequential therapy with supercharged NK cells with either chemotherapy drug cisplatin or anti-PD-1 antibody decreases the tumor size and significantly enhances the NK function in Hu-BLT mice. Front Immunol 2023; 14:1132807. [PMID: 37197660 PMCID: PMC10183580 DOI: 10.3389/fimmu.2023.1132807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/31/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction and methods In this study we report that sequential treatment of supercharged NK (sNK) cells with either chemotherapeutic drugs or check-point inhibitors eliminate both poorly differentiated and well differentiated tumors in-vivo in humanized-BLT mice. Background and results sNK cells were found to be a unique population of activated NK cells with genetic, proteomic, and functional attributes that are very different from primary untreated or IL-2 treated NK cells. Furthermore, NK-supernatant differentiated or well-differentiated oral or pancreatic tumor cell lines are not susceptible to IL-2 activated primary NK cell-mediated cytotoxicity; however, they are greatly killed by the CDDP and paclitaxel in in-vitro assays. Injection of one dose of sNK cells at 1 million cells per mouse to aggressive CSC-like/poorly differentiated oral tumor bearing mice, followed by an injection of CDDP, inhibited tumor weight and growth, and increased IFN-γ secretion as well as NK cell-mediated cytotoxicity substantially in bone marrow, spleen and peripheral blood derived immune cells. Similarly, the use of check point inhibitor anti-PD-1 antibody increased IFN-γ secretion and NK cell-mediated cytotoxicity, and decreased the tumor burden in-vivo, and tumor growth of resected minimal residual tumors from hu-BLT mice when used sequentially with sNK cells. The addition of anti-PDL1 antibody to poorly differentiated MP2, NK-differentiated MP2 or well-differentiated PL-12 pancreatic tumors had different effects on tumor cells depending on the differentiation status of the tumor cells, since differentiated tumors expressed PD-L1 and were susceptible to NK cell mediated ADCC, whereas poorly differentiated OSCSCs or MP2 did not express PD-L1 and were killed directly by the NK cells. Conclusions Therefore, the ability to target combinatorially clones of tumors with NK cells and chemotherapeutic drugs or NK cells with checkpoint inhibitors at different stages of tumor differentiation may be crucial for successful eradication and cure of cancer. Furthermore, the success of check point inhibitor PD-L1 may relate to the levels of expression on tumor cells.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Los Angeles, CA, United States
| | - Po-Chun Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Los Angeles, CA, United States
| | - Meng-Wei Ko
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Los Angeles, CA, United States
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, United States
| | - Emanuela Senjor
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Los Angeles, CA, United States
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Los Angeles, CA, United States
- The Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA) School of Dentistry and Medicine, Los Angeles, CA, United States
| |
Collapse
|
120
|
Ding JT, Yang KP, Zhou HN, Huang YF, Li H, Zong Z. Landscapes and mechanisms of CD8 + T cell exhaustion in gastrointestinal cancer. Front Immunol 2023; 14:1149622. [PMID: 37180158 PMCID: PMC10166832 DOI: 10.3389/fimmu.2023.1149622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
CD8+ T cells, a cytotoxic T lymphocyte, are a key component of the tumor immune system, but they enter a hyporeactive T cell state in long-term chronic inflammation, and how to rescue this depleted state is a key direction of research. Current studies on CD8+ T cell exhaustion have found that the mechanisms responsible for their heterogeneity and differential kinetics may be closely related to transcription factors and epigenetic regulation, which may serve as biomarkers and potential immunotherapeutic targets to guide treatment. Although the importance of T cell exhaustion in tumor immunotherapy cannot be overstated, studies have pointed out that gastric cancer tissues have a better anti-tumor T cell composition compared to other cancer tissues, which may indicate that gastrointestinal cancers have more promising prospects for the development of precision-targeted immunotherapy. Therefore, the present study will focus on the mechanisms involved in the development of CD8+ T cell exhaustion, and then review the landscapes and mechanisms of T cell exhaustion in gastrointestinal cancer as well as clinical applications, which will provide a clear vision for the development of future immunotherapies.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kang-Ping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hao-Nan Zhou
- Queen Mary School, Nanchang University, Nanchang, China
| | - Ying-Feng Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
121
|
Su D, Liu C, Cui J, Tang J, Ruan Y, Zhang Y. Advances and prospects of drug clinical research in colorectal cancer in 2022. CANCER INNOVATION 2023; 2:99-113. [PMID: 38090057 PMCID: PMC10686183 DOI: 10.1002/cai2.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer death worldwide. Clinical research results have provided more treatment opportunities for CRC patients, showing that an optimal combination of existing drugs and new drugs is needed to mitigate the burden of this disease. In this review, we have summarized recent advances in drug clinical research for CRC in 2022, including chemotherapy, targeted therapy, and immunotherapy, to find opportunities for substantial improvements in drug discovery and clinical development methods.
Collapse
Affiliation(s)
- Dan Su
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang ProvinceChina
- Clinical Research Center for Colorectal Cancer in HeilongjiangHarbin Medical University Cancer HospitalHarbinHeilongjiang ProvinceChina
| | - Chao Liu
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang ProvinceChina
- Clinical Research Center for Colorectal Cancer in HeilongjiangHarbin Medical University Cancer HospitalHarbinHeilongjiang ProvinceChina
| | - Jie Cui
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang ProvinceChina
| | - Jiebing Tang
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang ProvinceChina
- Clinical Research Center for Colorectal Cancer in HeilongjiangHarbin Medical University Cancer HospitalHarbinHeilongjiang ProvinceChina
| | - Yuli Ruan
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang ProvinceChina
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiang ProvinceChina
- Clinical Research Center for Colorectal Cancer in HeilongjiangHarbin Medical University Cancer HospitalHarbinHeilongjiang ProvinceChina
| |
Collapse
|
122
|
Sillo TO, Beggs AD, Middleton G, Akingboye A. The Gut Microbiome, Microsatellite Status and the Response to Immunotherapy in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065767. [PMID: 36982838 PMCID: PMC10054450 DOI: 10.3390/ijms24065767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
There is increasing evidence in a range of cancer types that the microbiome plays a direct role in modulating the anti-cancer immune response both at the gut level and systemically. Differences in the gut microbiota have been shown to correlate with differences in immunotherapy responses in a range of non-gastrointestinal tract cancers. DNA mismatch repair-deficient (dMMR) colorectal cancer (CRC) is radically different to DNA mismatch repair-proficient (pMMR) CRC in clinical phenotype and in its very good responses to immunotherapy. While this has usually been thought to be due to the high mutational burden in dMMR CRC, the gut microbiome is radically different in dMMR and pMMR CRC in terms of both composition and diversity. It is probable that differences in the gut microbiota contribute to the varied responses to immunotherapy in dMMR versus pMMR CRC. Targeting the microbiome offers a way to boost the response and increase the selection of patients who might benefit from this therapy. This paper reviews the available literature on the role of the microbiome in the response to immunotherapy in dMMR and pMMR CRC, explores the potential causal relationship and discusses future directions for study in this exciting and rapidly changing field.
Collapse
Affiliation(s)
- Toritseju O Sillo
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
123
|
Nie C, Xu W, Chen B, Lv H, Wang J, Liu Y, He Y, Wang S, Zhao J, Chen X. An Exploration of Trifluridine/Tipiracil Monotherapy and in Combination With Bevacizumab or Immune Checkpoint Inhibitors for Patients With Metastatic Colorectal Cancer: A Real-World Study. Clin Colorectal Cancer 2023; 22:76-84. [PMID: 36564281 DOI: 10.1016/j.clcc.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Trifluridine/tipiracil (TAS-102) has achieved modest efficacy in the late-line treatment of metastatic colorectal cancer. The present study aimed to explore the clinical efficacy and drug toxicities of TAS-102 for patients with metastatic colorectal cancer in real-world clinical setting. METHODS From October 2020 to February 2022, patients with metastatic colorectal cancer who failed from 2 or more lines of prior therapy and treated with TAS-102 monotherapy, in combination with bevacizumab or immune checkpoint inhibitors (ICIs) were analyzed. The evaluation indicators were progression free survival (PFS), objective response rate , disease control rate (DCR), overall survival (OS) and drug toxicities. RESULTS A total of 70 patients were enrolled. The objective response rate and DCR were 1.4% and 68.6%. The median PFS and OS were 6.0 (95% CI: 4.1-7.9) and 10.0 (95% CI: 8.3-11.7) months. Compared with TAS-102 monotherapy and TAS-102 plus ICIs, TAS-102 plus bevacizumab obtained superior DCR (75.9% vs. 50% vs. 40%, P = .047), PFS (6.3m vs. 3.0 m vs. 3.0 m, P = .041) and OS (12.0 m vs. 6.5 m vs. 6.0m, P = .013). Patients without prior regorafenib or fruquintinib therapy obtained better median PFS (6.3 vs. 4.3 m, P = .031) and OS (NR vs. 9.0 m, P = .036). Other indicators, including age, tumor site, KRAS status and use of fluoropyrimidine as last regimen before TAS-102, did not affect the clinical efficacy of TAS-102. The most frequent adverse events were leukopenia, neutropenia, anemia, fatigue, nausea, and vomiting. CONCLUSION In real-world clinical setting, TAS-102 showed consistent clinical efficacy and manageable safety with previous prospective clinical studies. Compared with monotherapy and TAS-102 plus ICIs, TAS-102 plus bevacizumab demonstrated better clinical efficacy for metastatic colorectal cancer.
Collapse
Affiliation(s)
- Caiyun Nie
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Huifang Lv
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Jianzheng Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Yingjun Liu
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Yunduan He
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Saiqi Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Jing Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan Province, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China; Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China; Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan Province, China.
| |
Collapse
|
124
|
Olguin JE, Mendoza-Rodriguez MG, Sanchez-Barrera CA, Terrazas LI. Is the combination of immunotherapy with conventional chemotherapy the key to increase the efficacy of colorectal cancer treatment? World J Gastrointest Oncol 2023; 15:251-267. [PMID: 36908325 PMCID: PMC9994043 DOI: 10.4251/wjgo.v15.i2.251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/14/2023] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent and deadly neoplasms worldwide. According to GLOBOCAN predictions, its incidence will increase from 1.15 million CRC cases in 2020 to 1.92 million cases in 2040. Therefore, a better understanding of the mechanisms involved in CRC development is necessary to improve strategies focused on reducing the incidence, prevalence, and mortality of this oncological pathology. Surgery, chemotherapy, and radiotherapy are the main strategies for treating CRC. The conventional chemotherapeutic agent utilized throughout the last four decades is 5-fluorouracil, notwithstanding its low efficiency as a single therapy. In contrast, combining 5-fluorouracil therapy with leucovorin and oxaliplatin or irinotecan increases its efficiency. However, these treatments have limited and temporary solutions and aggressive side effects. Additionally, most patients treated with these regimens develop drug resistance, which leads to disease progression. The immune response is considered a hallmark of cancer; thus, the use of new strategies and methodologies involving immune molecules, cells, and transcription factors has been suggested for CRC patients diagnosed in stages III and IV. Despite the critical advances in immunotherapy, the development and impact of immune checkpoint inhibitors on CRC is still under investigation because less than 25% of CRC patients display an increased 5-year survival. The causes of CRC are diverse and include modifiable environmental factors (smoking, diet, obesity, and alcoholism), individual genetic mutations, and inflammation-associated bowel diseases. Due to these diverse causes, the solutions likely cannot be generalized. Interestingly, new strategies, such as single-cell multiomics, proteomics, genomics, flow cytometry, and massive sequencing for tumor microenvironment analysis, are beginning to clarify the way forward. Thus, the individual mechanisms involved in developing the CRC microenvironment, their causes, and their consequences need to be understood from a genetic and immunological perspective. This review highlighted the importance of altering the immune response in CRC. It focused on drugs that may modulate the immune response and show specific efficacy and contrasted with evidence that immunosuppression or the promotion of the immune response is the answer to generating effective treatments with combined chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jonadab E Olguin
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Monica G Mendoza-Rodriguez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - C Angel Sanchez-Barrera
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Luis I Terrazas
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| |
Collapse
|
125
|
Wang Q, Shen X, Chen G, Du J. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: From mechanisms to translation. Int J Cancer 2023. [PMID: 36752642 DOI: 10.1002/ijc.34464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Immunotherapy, especially with immune checkpoint inhibitors (ICIs), has shown advantages in cancer treatment and is a new hope for patients who have failed multiline therapy. However, in colorectal cancer (CRC), the benefit is limited to a small subset of patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) metastatic CRC (mCRC). In addition, 45% to 60% of dMMR/MSI-H mCRC patients showed primary or acquired resistance to ICIs. This means that these patients may have potential unknown pathways mediating immune escape. Almost all mismatch repair-proficient (pMMR) or microsatellite-stable (MSS) mCRC patients do not benefit from ICIs. In this review, we discuss the mechanisms of action of ICIs and their current status in CRC. We then discuss the mechanisms of primary and acquired resistance to ICIs in CRC. Finally, we discuss promising therapeutic strategies to overcome resistance to ICIs in the clinic.
Collapse
Affiliation(s)
- Qianyu Wang
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Gang Chen
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
126
|
Challenges and Therapeutic Opportunities in the dMMR/MSI-H Colorectal Cancer Landscape. Cancers (Basel) 2023; 15:cancers15041022. [PMID: 36831367 PMCID: PMC9954007 DOI: 10.3390/cancers15041022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
About 5 to 15% of all colorectal cancers harbor mismatch repair deficient/microsatellite instability-high status (dMMR/MSI-H) that associates with high tumor mutation burden and increased immunogenicity. As a result, and in contrast to other colorectal cancer phenotypes, a significant subset of dMMR/MSI-H cancer patients strongly benefit from immunotherapy. Yet, a large proportion of these tumors remain unresponsive to any immuno-modulating treatment. For this reason, current efforts are focused on the characterization of resistance mechanisms and the identification of predictive biomarkers to guide therapeutic decision-making. Here, we provide an overview on the new advances related to the diagnosis and definition of dMMR/MSI-H status and focus on the distinct clinical, functional, and molecular cues that associate with dMMR/MSI-H colorectal cancer. We review the development of novel predictive factors of response or resistance to immunotherapy and their potential application in the clinical setting. Finally, we discuss current and emerging strategies applied to the treatment of localized and metastatic dMMR/MSI-H colorectal tumors in the neoadjuvant and adjuvant setting.
Collapse
|
127
|
Ros J, Balconi F, Baraibar I, Saoudi Gonzalez N, Salva F, Tabernero J, Elez E. Advances in immune checkpoint inhibitor combination strategies for microsatellite stable colorectal cancer. Front Oncol 2023; 13:1112276. [PMID: 36816981 PMCID: PMC9932591 DOI: 10.3389/fonc.2023.1112276] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors have reshaped the prognostic of several tumor types, including metastatic colorectal tumors with microsatellite instability (MSI). However, 90-95% of metastatic colorectal tumors are microsatellite stable (MSS) in which immunotherapy has failed to demonstrate meaningful clinical results. MSS colorectal tumors are considered immune-cold tumors. Several factors have been proposed to account for this lack of response to immune checkpoint blockade including low levels of tumor infiltrating lymphocytes, low tumor mutational burden, a high rate of WNT/β-catenin pathway mutations, and liver metastases which have been associated with immunosuppression. However, studies with novel combinations based on immune checkpoint inhibitors are showing promising activity in MSS colorectal cancer. Here, we review the underlying biological facts that preclude immunotherapy activity, and detail the different immune checkpoint inhibitor combinations evaluated, along with novel immune-based therapies, to overcome innate mechanisms of resistance in MSS colorectal cancer.
Collapse
Affiliation(s)
- Javier Ros
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain,Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Francesca Balconi
- Medical Oncology, University Hospital and University of Cagliari, Cagliari, Italy
| | - Iosune Baraibar
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Francesc Salva
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Elez
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain,*Correspondence: Elena Elez,
| |
Collapse
|
128
|
Huo G, Liu W, Zhang S, Chen P. Efficacy of PD-1/PD-L1 plus CTLA-4 inhibitors in solid tumors based on clinical characteristics: a meta-analysis. Immunotherapy 2023; 15:189-207. [PMID: 36683533 DOI: 10.2217/imt-2022-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aims: To clarify the relationship between the potency of dual blockade of PD-1 or its ligand (PD-L1) plus CTLA-4 and patients with different clinical characteristics with solid tumors, the authors performed this meta-analysis. Patients & methods: 12 randomized clinical trials containing 7056 patients were included after the literature was filtered. Results: Dual blockade substantially enhanced overall survival and progression-free survival compared with standard of care, especially in patients aged <65 years old, those 65-74 years old, those with a smoking history, members of the White population and those with a high tumor mutation burden. Conclusion: Dual blockade therapy significantly improved patient survival outcomes. Age, smoking history, race and tumor mutation burden might be used to predict the potency of dual blockade therapy in solid tumors.
Collapse
Affiliation(s)
- Gengwei Huo
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of Oncology, Jining No.1 People's Hospital, Jining, Shandong, 272000, China
| | - Wenjie Liu
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Sipei Zhang
- Department of Pharmacy, Tianjin Chest Hospital, Tianjin, 300222, China
| | - Peng Chen
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention & Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| |
Collapse
|
129
|
San-Román-Gil M, Torres-Jiménez J, Pozas J, Esteban-Villarrubia J, Albarrán-Fernández V, Álvarez-Ballesteros P, Chamorro-Pérez J, Rosero-Rodríguez D, Orejana-Martín I, Martínez-Delfrade Í, Reguera-Puertas P, Fuentes-Mateos R, Ferreiro-Monteagudo R. Current Landscape and Potential Challenges of Immune Checkpoint Inhibitors in Microsatellite Stable Metastatic Colorectal Carcinoma. Cancers (Basel) 2023; 15:863. [PMID: 36765821 PMCID: PMC9913409 DOI: 10.3390/cancers15030863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second most common cause of cancer-related death in Europe. High microsatellite instability (MSI-H) due to a deficient DNA mismatch repair (dMMR) system can be found in 5% of metastatic CRC (mCRC) and has been established as a biomarker of response to immunotherapy in these tumors. Therefore, immune checkpoint inhibitors (ICIs) in mCRC with these characteristics were evaluated with results showing remarkable response rates and durations of response. The majority of mCRC cases have high levels of DNA mismatch repair proteins (pMMR) with consequent microsatellite stability or low instability (MSS or MSI-low), associated with an inherent resistance to ICIs. This review aims to provide a comprehensive analysis of the possible approaches to overcome the mechanisms of resistance and evaluates potential biomarkers to establish the role of ICIs in pMMR/MSS/MSI-L (MSS) mCRC.
Collapse
Affiliation(s)
- María San-Román-Gil
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Javier Torres-Jiménez
- Medical Oncology Department, Clínico San Carlos University Hospital, 28040 Madrid, Spain
| | - Javier Pozas
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | - Jesús Chamorro-Pérez
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
130
|
Wu C, Shao Y, Gu W. Immunotherapy combined with radiotherapy to reverse immunosuppression in microsatellite stable colorectal cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03091-y. [PMID: 36717514 DOI: 10.1007/s12094-023-03091-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
In recent years, the exploration of immune checkpoint inhibitors (ICIs) has resulted in substantial progress and has changed the pattern of cancer treatment. ICIs have revolutionized the treatment landscape of microsatellite instable colorectal cancer while the efficacy is very limited in patients with microsatellite stable colorectal cancer. Therefore, sensitizing MSS CRC to immunotherapy is a major challenge in the field of CRC immunotherapy. Immunotherapy-based combination therapy is an effective strategy. This review of radiotherapy (RT) as a local treatment has dramatically changed in recent years, and it is now widely accepted that RT can deeply reshape the tumor environment by modulating the immune response. Such evidence gives a strong rationale for the synergism of radiotherapy and immunotherapy, introducing the era of 'immunoradiotherapy'. How to give full play to the synergistic effect of radiotherapy and immunotherapy to improve the therapeutic effect of MSS CRC and bring good prognosis is a hot problem to be solved in the field of cancer treatment.This article reviews the development of CRC immunotherapy, the immune resistance mechanism of MSS CRC, and the impact and potential value of immunotherapy combined with radiotherapy on the immune environment of CRC.
Collapse
Affiliation(s)
- Chenxi Wu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
131
|
Topham JT, O'Callaghan CJ, Feilotter H, Kennecke HF, Lee YS, Li W, Banks KC, Quinn K, Renouf DJ, Jonker DJ, Tu D, Chen EX, Loree JM. Circulating Tumor DNA Identifies Diverse Landscape of Acquired Resistance to Anti-Epidermal Growth Factor Receptor Therapy in Metastatic Colorectal Cancer. J Clin Oncol 2023; 41:485-496. [PMID: 36007218 PMCID: PMC9870216 DOI: 10.1200/jco.22.00364] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Anti-epidermal growth factor receptor (EGFR) antibodies are effective treatments for metastatic colorectal cancer. Improved understanding of acquired resistance mechanisms may facilitate circulating tumor DNA (ctDNA) monitoring, anti-EGFR rechallenge, and combinatorial strategies to delay resistance. METHODS Patients with treatment-refractory metastatic colorectal cancer (n = 169) enrolled on the CO.26 trial had pre-anti-EGFR tissue whole-exome sequencing (WES) compared with baseline and week 8 ctDNA assessments with the GuardantOMNI assay. Acquired alterations were compared between patients with prior anti-EGFR therapy (n = 66) and those without. Anti-EGFR therapy occurred a median of 111 days before ctDNA assessment. RESULTS ctDNA identified 12 genes with increased mutation frequency after anti-EGFR therapy, including EGFR (P = .0007), KRAS (P = .0017), LRP1B (P = .0046), ZNF217 (P = .0086), MAP2K1 (P = .018), PIK3CG (P = .018), BRAF (P = .048), and NRAS (P = .048). Acquired mutations appeared as multiple concurrent subclonal alterations, with most showing decay over time. Significant increases in copy-gain frequency were noted in 29 genes after anti-EGFR exposure, with notable alterations including EGFR (P < .0001), SMO (P < .0001), BRAF (P < .0001), MET (P = .0002), FLT3 (P = .0002), NOTCH4 (P = .0006), ERBB2 (P = .004), and FGFR1 (P = .006). Copy gains appeared stable without decay 8 weeks later. There were 13 gene fusions noted among 11 patients, all but one of which was associated with prior anti-EGFR therapy. Polyclonal resistance was common with acquisition of ≥ 10 resistance related alterations noted in 21% of patients with previous anti-EGFR therapy compared with 5% in those without (P = .010). Although tumor mutation burden (TMB) did not differ pretreatment (P = .63), anti-EGFR exposure increased TMB (P = .028), whereas lack of anti-EGFR exposure resulted in declining TMB (P = .014). CONCLUSION Paired tissue and ctDNA sequencing identified multiple novel mutations, copy gains, and fusions associated with anti-EGFR therapy that frequently co-occur as subclonal alterations in the same patient.
Collapse
Affiliation(s)
- James T. Topham
- BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | | | - Harriet Feilotter
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | | - Daniel J. Renouf
- BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | - Derek J. Jonker
- The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Dongsheng Tu
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Eric X. Chen
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Jonathan M. Loree
- BC Cancer, University of British Columbia, Vancouver, BC, Canada,Jonathan M. Loree, MD, MS, University of British Columbia, BC Cancer, University of British Columbia, 600 West 10th Ave, Vancouver, BC V5Z 4E6, Canada; Twitter: @jonathanloree; e-mail:
| |
Collapse
|
132
|
Bando H, Ohtsu A, Yoshino T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2023; 20:306-322. [PMID: 36670267 DOI: 10.1038/s41575-022-00736-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/22/2023]
Abstract
In the era of targeted therapy based on genomic alterations, the treatment strategy for metastatic colorectal cancer (mCRC) has been changing. Before systemic treatment initiation, determination of tumour genomic status for KRAS and NRAS, BRAFV600E mutations, ERBB2, and microsatellite instability and/or mismatch repair (MMR) status is recommended. In patients with deficient MMR and BRAFV600E mCRC, randomized phase III trials have established the efficacy of pembrolizumab as first-line therapy and the combination of encorafenib and cetuximab as second-line or third-line therapy. In addition, new agents have been actively developed in other rare molecular fractions such as ERBB2 alterations and KRASG12C mutations. In March 2022, the combination of pertuzumab and trastuzumab for ERBB2-positive mCRC was approved in Japan, thereby combining real-world evidence from the SCRUM-Japan Registry. As the populations are highly fragmented owing to rare genomic alterations, various strategies in clinical development are expected. Clinical development of a tumour-agnostic approach, such as NTRK fusion and tumour mutational burden, has successfully introduced corresponding drugs to clinical practice. Considering the difficulty of randomized trials owing to cost-benefit and rarity, a promising solution could be real-world evidence utilized as an external control from the molecular-based disease registry.
Collapse
Affiliation(s)
- Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Atsushi Ohtsu
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
133
|
Li DD, Tang YL, Wang X. Challenges and exploration for immunotherapies targeting cold colorectal cancer. World J Gastrointest Oncol 2023; 15:55-68. [PMID: 36684057 PMCID: PMC9850757 DOI: 10.4251/wjgo.v15.i1.55] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
In recent years, immune checkpoint inhibitors (ICIs) have made significant breakthroughs in the treatment of various tumors, greatly improving clinical efficacy. As the fifth most common antitumor treatment strategy for patients with solid tumors after surgery, chemotherapy, radiotherapy and targeted therapy, the therapeutic response to ICIs largely depends on the number and spatial distribution of effector T cells that can effectively identify and kill tumor cells, features that are also important when distinguishing malignant tumors from “cold tumors” or “hot tumors”. At present, only a small proportion of colorectal cancer (CRC) patients with deficient mismatch repair (dMMR) or who are microsatellite instability-high (MSI-H) can benefit from ICI treatments because these patients have the characteristics of a “hot tumor”, with a high tumor mutational burden (TMB) and massive immune cell infiltration, making the tumor more easily recognized by the immune system. In contrast, a majority of CRC patients with proficient MMR (pMMR) or who are microsatellite stable (MSS) have a low TMB, lack immune cell infiltration, and have almost no response to immune monotherapy; thus, these tumors are “cold”. The greatest challenge today is how to improve the immunotherapy response of “cold tumor” patients. With the development of clinical research, immunotherapies combined with other treatment strategies (such as targeted therapy, chemotherapy, and radiotherapy) have now become potentially effective clinical strategies and research hotspots. Therefore, the question of how to promote the transformation of “cold tumors” to “hot tumors” and break through the bottleneck of immunotherapy for cold tumors in CRC patients urgently requires consideration. Only by developing an in-depth understanding of the immunotherapy mechanisms of cold CRCs can we screen out the immunotherapy-dominant groups and explore the most suitable treatment options for individuals to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Dan-Dan Li
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yuan-Ling Tang
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wang
- Department of Abdominal Oncology/Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
134
|
PD-L1: expression regulation. BLOOD SCIENCE 2023; 5:77-91. [DOI: 10.1097/bs9.0000000000000149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023] Open
|
135
|
The Immunosuppressive Effect of TNFR2 Expression in the Colorectal Cancer Microenvironment. Biomedicines 2023; 11:biomedicines11010173. [PMID: 36672682 PMCID: PMC9856189 DOI: 10.3390/biomedicines11010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common causes of death among cancers worldwide. Its incidence has been increasing among the young population. Many risk factors contribute to the development and progression of CRC and about 70% of them are sporadic. The CRC microenvironment is highly heterogeneous and represents a very complex immunosuppressive platform. Many cytokines and their receptors are vital participants in this immunosuppressive microenvironment. Tumor necrosis factors (TNFs) and TNF receptor 2 (TNFR2) are critical players in the development of CRC. TNFR2 was observed to have increased the immunosuppressive activity of CRC cells via regulatory T cells (T regs) and myeloid-derived suppressor cells (MDSC) in the CRC microenvironment. However, the exact mechanism of TNFR2 in regulating the CRC prognosis remains elusive. Here, we discuss the role of TNFR2 in immune escape mechanism of CRC in the immunosuppressive cells, including Tregs and MDSCs, and the complex signaling pathways that facilitate the development of CRC. It is suggested that extensive studies on TNFR2 downstream signaling must be done, since TNFR2 has a high potential to be developed into a therapeutic agent and cancer biomarker in the future.
Collapse
|
136
|
He R, Zhang H, Zhao H, Yin X, Lu J, Gu C, Gao J, Xu Q. Multiomics Analysis Reveals Cuproptosis-Related Signature for Evaluating Prognosis and Immunotherapy Efficacy in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15020387. [PMID: 36672336 PMCID: PMC9856392 DOI: 10.3390/cancers15020387] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cuproptosis is a copper-induced form of mitochondrial cell death which is engaged in the proliferation and migration of a variety of tumors. Nevertheless, the role of cuproptosis in tumor microenvironment (TME) remodeling and antitumor therapy is still poorly understood. We characterized two diverse cuproptosis-associated molecular isoforms in CRC which exhibit distinct prognostic and TME characteristics. Subsequently, we constructed a cuproptosis-associated prognostic model containing five genes and divided the patients into a high CPS-score group and a low CPS-score group. Univariate and multivariate Cox analyses showed that the CPS score could be used as an independent prognostic factor. The nomogram, and its consequent calibration curves, indicated that this prognostic signature had good predictive power for CRC. The analysis of single-cell sequencing data showed the significant expression of HES4 and SPHK1 in various immune and stromal (including fibroblasts) cells. Further studies showed that tumor mutational burden (TMB), high microsatellite instability (MSI-H) ratio, immune checkpoint blockade (ICB), and human leukocyte antigen (HLA) gene expression all positively correlated with the CPS score, predicting a better reaction to immunotherapy in high CPS-core patients. The CPS score constructed from cuproptosis subtypes can be used as a predictive tool to evaluate the prognosis of CRC patients and their response to immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qing Xu
- Correspondence: ; Tel.: +86-13661778856
| |
Collapse
|
137
|
Gandini A, Puglisi S, Pirrone C, Martelli V, Catalano F, Nardin S, Seeber A, Puccini A, Sciallero S. The role of immunotherapy in microsatellites stable metastatic colorectal cancer: state of the art and future perspectives. Front Oncol 2023; 13:1161048. [PMID: 37207140 PMCID: PMC10189007 DOI: 10.3389/fonc.2023.1161048] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide, despite several advances has been achieved in last decades. Few prognostic and predictive biomarkers guide therapeutic choice in metastatic CRC (mCRC), among which DNA mismatch repair deficiency and/or microsatellite instability (dMMR/MSI) holds a crucial role. Tumors characterized by dMMR/MSI benefit from immune checkpoint inhibitors. However, most of the mCRC patients (around 95%) are microsatellite stable (MSS), thereby intrinsically resistant to immunotherapy. This represents a clear unmet need for more effective treatments in this population of patients. In this review, we aim to analyze immune-resistance mechanisms and therapeutic strategies to overcome them, such as combinations of immunotherapy and chemotherapy, radiotherapy or target therapies specifically in MSS mCRC. We also explored both available and potential biomarkers that may better select MSS mCRC patients for immunotherapy. Lastly, we provide a brief overview on future perspectives in this field, such as the gut microbiome and its potential role as immunomodulator.
Collapse
Affiliation(s)
- Annalice Gandini
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Puglisi
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Pirrone
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Valentino Martelli
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Catalano
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Simone Nardin
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Andreas Seeber
- Department of Haematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alberto Puccini
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Medical Oncology and Haematology Unit, Rozzano, Milan, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
- *Correspondence: Stefania Sciallero,
| |
Collapse
|
138
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
139
|
Chen P, Xu J, Cui Z, Wu S, Xie T, Zhang X. Multi-omics analysis of N6-methyladenosine reader IGF2BP3 as a promising biomarker in pan-cancer. Front Immunol 2023; 14:1071675. [PMID: 36761737 PMCID: PMC9905439 DOI: 10.3389/fimmu.2023.1071675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Background Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) has been reported to exhibit an oncogenic effect as an RNA-binding protein (RBP) by promoting tumor cell proliferation, migration and invasion in several tumor types. However, a pan-cancer analysis of IGF2BP3 is not currently available, and the exact roles of IGF2BP3 in prognosis and immunology in cancer patients remain enigmatic. The main aim of this study was to provide visualization of the systemic prognostic landscape of IGF2BP3 in pan-cancer and to uncover the potential relationship between IGF2BP3 expression in the tumor microenvironment and immune infiltration profile. Methods Raw data on IGF2BP3 expression were obtained from GTEx, CCLE, TCGA, and HPA data portals. We have investigated the expression patterns, diagnostic and prognostic significance, mutation landscapes, functional analysis, and functional states of IGF2BP3 utilizing multiple databases, including HPA, TISIDB, cBioPortal, GeneMANIA, GESA, and CancerSEA. Moreover, the relationship of IGF2BP3 expression with immune infiltrates, TMB, MSI and immune-related genes was evaluated in pan-cancer. IGF2BP3 with drug sensitivity analysis was performed from the CellMiner database. Furthermore, the expression of IGF2BP3 in different grades of glioma was detected by immunohistochemical staining and western blot. Results We found that IGF2BP3 was ubiquitously highly expressed in pan-cancer and significantly correlated with diagnosis, prognosis, TMB, MSI, and drug sensitivity in various types of cancer. Besides, IGF2BP3 was involved in many cancer pathways and varied in different immune and molecular subtypes of cancers. Additionally, IGF2BP3 is critically associated with genetic markers of immunomodulators in various cancers. Finally, we validated that IGF2BP3 protein expression was significantly higher in glioma than in normal tissue, especially in GBM. Conclusions IGF2BP3 may be a potential molecular biomarker for diagnosis and prognosis in pan-cancer, especially for glioma. It could become a novel therapeutic target for various cancers.
Collapse
Affiliation(s)
- Pin Chen
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Xu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zihan Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Silin Wu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobiao Zhang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China.,Digital Medical Research Center, Fudan University, Shanghai, China
| |
Collapse
|
140
|
Ou SL, Luo J, Wei H, Qin XL, Jiang Q. Value assessment of PD-1/PD-L1 inhibitors in the treatment of oesophageal and gastrointestinal cancers. Front Pharmacol 2023; 14:1106961. [PMID: 37153768 PMCID: PMC10160363 DOI: 10.3389/fphar.2023.1106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Evidence of efficacy and safety of programmed cell death 1 (PD-1) and programmed death ligand-1 (PD-L1) checkpoint inhibitors in oesophageal cancer (EC), gastric cancer (GC) and colorectal cancer (CRC) was inconsistent, obscuring their clinical application and decision-making. The aim of this study was to comprehensively evaluate the value of PD-1/PD-L1 inhibitors in EC, GC and CRC to select valuable PD-1/PD-L1 inhibitors, and to assess the association between the value and cost of PD-1/PD-L1 inhibitors. Methods: A comprehensive search of trials of PD-1/PD-L1 inhibitors in EC, GC and CRC was performed in Chinese and English medical databases with a cut-off date of 1 July 2022. Two authors independently applied the ASCO-VF and ESMO-MCBS to assess the value of PD-1/PD-L1 inhibitors. A receiver operating characteristic (ROC) curve was generated to establish the predictive value of the ASCO-VF score to meet the threshold of the ESMO-MCBS grade. Spearman's correlation was used to calculate the relationship between the cost and value of drugs. Results: Twenty-three randomized controlled trials were identified: ten (43.48%) in EC, five (21.74%) in CRC, and eight (34.78%) in GC or gastroesophageal junction cancer (GEJC). For advanced diseases, ASCO-VF scores ranged from -12.5 to 69, with a mean score of 26.5 (95% CI 18.4-34.6). Six (42.9%) therapeutic regimens met the ESMO-MCBS benefit threshold grade. The area under the ROC curve was 1.0 (p = 0.002). ASCO-VF scores and incremental monthly cost were negatively correlated (Spearman's ρ = -0.465, p = 0.034). ESMO-MCBS grades and incremental monthly cost were negatively correlated (Spearman's ρ = -0.211, p = 0.489). Conclusion: PD-1/PD-L1 inhibitors did not meet valuable threshold in GC/GEJC. Pembrolizumab met valuable threshold in advanced microsatellite instability-high CRC. The value of camrelizumab and toripalimab may be more worth paying in EC.
Collapse
Affiliation(s)
- Shun-Long Ou
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Luo
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Wei
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiao-Li Qin
- Department of Pharmacy, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Qian Jiang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qian Jiang,
| |
Collapse
|
141
|
Long J, Cong F, Wei Y, Liu J, Tang W. Increased Kremen2 predicts worse prognosis in colon cancer. Pathol Oncol Res 2023; 29:1611082. [PMID: 37123533 PMCID: PMC10130194 DOI: 10.3389/pore.2023.1611082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023]
Abstract
Background: Colon cancer (CC) is the fifth most prevalent cancer around the globe and poses a major risk to human health. Even though Kremen2 serves as a prognostic indicator in individuals with malignant tumours, its role in evaluating the prognosis of individuals with colon cancer has not been confirmed. Methods: Here, we examined the protein expression of Kremen2 in CC tissues and paired adjacent normal tissues by immunohistochemistry (IHC), then analyzed the clinical and RNA-seq data presented in The Cancer Genome Atlas (TCGA) database to confirm the relationship between Kremen2 levels and CC. In addition, the associations between Kremen2 mRNA expression and infiltrating immune cells were examined. Results: The study showed that the mRNA expression and protein level of Kremen2 were increased in CC tissues compared with adjacent normal tissues. According to Kaplan-Meier analysis, high Kremen2 expression in CC was linked to poor overall survival and progression-free survival. Clinical correlation analysis highlighted that a high level of Kremen2 expression was strongly linked with tumour progression, particularly lymph node metastasis. Cox regression analysis highlighted that Kremen2 was an independent prognostic indicator for CC. Bioinformatic studies highlighted that Kremen2 might be associated with the immune status in CC. Conclusion: Increased Kremen2 could serve as a potential prognostic CC biomarker.
Collapse
Affiliation(s)
- Junxian Long
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of Breast and Thyroid Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fengyun Cong
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of Gastroenteroanal Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yousheng Wei
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jungang Liu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi, China
| | - Weizhong Tang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi, China
- *Correspondence: Weizhong Tang,
| |
Collapse
|
142
|
Miao K, Zhang L. Incidence rate and treatment strategy of immune checkpoint inhibitor mediated hepatotoxicity: A systematic review. CANCER PATHOGENESIS AND THERAPY 2023; 1:46-55. [PMID: 38328612 PMCID: PMC10846339 DOI: 10.1016/j.cpt.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 02/09/2024]
Abstract
Background A hepatic adverse event (HAE) is defined as a liver injury that occurs following immune checkpoint inhibitor (ICI) administration in oncology Patients. Immune-mediated hepatotoxicity (IMH) is a type of HAE directly caused by ICI and is associated with immune system hyperactivation. HAE incidence varies across different clinical studies. This study aimed to explore the risk factors of HAE and establish a personalized IMH treatment strategy. Methods Randomized controlled trials (RCTs) on ICIs and case reports related to IMH were collected and summarized separately. Meta-analysis was performed using Review Manager (version 5.0), whereas correlation analysis and linear regression were performed using SPSS (version 24.0) to evaluate any correlations between the two variables. Results Overall, 36 RCTs containing 18,515 patients and 39 case reports met our inclusion criteria. The ICI administration increased the HAE risk (risk ratio [RR] = 1.40) as well as severe HAE (RR = 2.55). The overall HAE incidence and severe incidence were about 15.3% and 4.3%, respectively. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors have a higher incidence of HAE than programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) inhibitors. Finally, we found a positive correlation between the onset time of IMH and the recovery time of liver injury. Conclusions ICI administration increased the incidence risk of HAE, especially in patients treated with CTLA-4 inhibitors. Regarding IMH treatment, the glucocorticoid dosage must be individually reduced according to the severity and onset time of HAE.
Collapse
Affiliation(s)
- Kang Miao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Collage Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Collage Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
143
|
Wang Z, Dan W, Zhang N, Fang J, Yang Y. Colorectal cancer and gut microbiota studies in China. Gut Microbes 2023; 15:2236364. [PMID: 37482657 PMCID: PMC10364665 DOI: 10.1080/19490976.2023.2236364] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor worldwide. The incidence and mortality rates of CRC have been increasing in China, possibly due to economic development, lifestyle, and dietary changes. Evidence suggests that gut microbiota plays an essential role in the tumorigenesis of CRC. Gut dysbiosis, specific pathogenic microbes, metabolites, virulence factors, and microbial carcinogenic mechanisms contribute to the initiation and progression of CRC. Gut microbiota biomarkers have potential translational applications in CRC screening and early diagnosis. Gut microbiota-related interventions could improve anti-tumor therapy's efficacy and severe intestinal toxic effects. Chinese researchers have made many achievements in the relationship between gut microbiota and CRC, although some challenges remain. This review summarizes the current evidence from China on the role of gut microbiota in CRC, mainly including the gut microbiota characteristics, especially Fusobacterium nucleatum and Parvimonas micra, which have been identified to be enriched in CRC patients; microbial pathogens such as F. nucleatum and enterotoxigenic Bacteroides fragilis, and P. micra, which Chinese scientists have extensively studied; diagnostic biomarkers especially F. nucleatum; therapeutic effects, including microecological agents represented by certain Lactobacillus strains, fecal microbiota transplantation, and traditional Chinese medicines such as Berberine and Curcumin. More efforts should be focused on exploring the underlying mechanisms of microbial pathogenesis of CRC and providing novel gut microbiota-related therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Zikai Wang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wanyue Dan
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School, Nankai University, Tianjin, China
| | - Nana Zhang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
144
|
Yang W, Lu S, Peng L, Zhang Z, Zhang Y, Guo D, Ma F, Hua Y, Chen X. Integrated analysis of necroptosis-related genes for evaluating immune infiltration and colon cancer prognosis. Front Immunol 2022; 13:1085038. [PMID: 36618366 PMCID: PMC9814966 DOI: 10.3389/fimmu.2022.1085038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colon cancer (CC) is the second most common gastrointestinal malignancy. About one in five patients have already developed distant metastases at the time of initial diagnosis, and up to half of patients develop distant metastases from initial local disease, which leads to a poor prognosis for CC patients. Necroptosis plays a key role in promoting tumor growth in different tumors. The purpose of this study was to construct a prognostic model composed of necroptosis-related genes (NRGs) in CC. Methods The Cancer Genome Atlas was used to obtain information on clinical features and gene expression. Gene expression differential analysis, weighted gene co-expression network analysis, univariate Cox regression analysis and the least absolute shrinkage and selection operator regression algorithm were utilized to identify prognostic NRGs. Thereafter, a risk scoring model was established based on the NRGs. Biological processes and pathways were identified by gene ontology and gene set enrichment analysis (GSEA). Further, protein-protein interaction and ceRNA networks were constructed based on mRNA-miRNA-lncRNA. Finally, the effect of necroptosis related risk score on different degrees of immune cell infiltration was evaluated. Results CALB1, CHST13, and SLC4A4 were identified as NRGs of prognostic significance and were used to establish a risk scoring model. The time-dependent receiver operating characteristic curve analysis revealed that the model could well predict the 1-, 3-, and 5-year overall survival (OS). Further, GSEA suggested that the NRGs may participate in biological processes, such as the WNT pathway and JAK-Stat pathway. Eight key hub genes were identified, and a ceRNA regulatory network, which comprised 1 lncRNA, 5 miRNAs and 3 mRNAs, was constructed. Immune infiltration analysis revealed that the low-risk group had significantly higher immune-related scores than the high-risk group. A nomogram of the model was constructed based on the risk score, necroptosis, and the clinicopathological features (age and TNM stage). The calibration curves implied that the model was effective at predicting the 1-, 3-, and 5-year OS of CC. Conclusion Our NRG-based prognostic model can assist in the evaluation of CC prognosis and the identification of therapeutic targets for CC.
Collapse
Affiliation(s)
- Wei Yang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shuaibing Lu
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Liangqun Peng
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhandong Zhang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yonglei Zhang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Dandan Guo
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Ma
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yawei Hua
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China,*Correspondence: Xiaobing Chen,
| |
Collapse
|
145
|
Tintelnot J, Ristow I, Sauer M, Simnica D, Schultheiß C, Scholz R, Goekkurt E, von Wenserski L, Willscher E, Paschold L, Lorenzen S, Riera-Knorrenschild J, Depenbusch R, Ettrich TJ, Dörfel S, Al-Batran SE, Karthaus M, Pelzer U, Hinke A, Bauer M, Massa C, Seliger B, Wickenhauser C, Bokemeyer C, Hegewisch-Becker S, Binder M, Stein A. Translational analysis and final efficacy of the AVETUX trial - Avelumab, cetuximab and FOLFOX in metastatic colorectal cancer. Front Oncol 2022; 12:993611. [PMID: 36605436 PMCID: PMC9808039 DOI: 10.3389/fonc.2022.993611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/02/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction In metastatic colorectal cancer (mCRC), the efficacy of immune checkpoint blockade (ICB) has so far been limited to patients with microsatellite instability high tumors (MSI-H). Unfortunately, most mCRC patients suffer from non-immunogenic microsatellite stable (MSS) tumors. Therefore, new combinatorial strategies are urgently needed to enhance the immunogenicity of MSS tumors to finally increase the number of patients benefiting from ICB. Methods The AVETUX trial aimed to combine the PD-L1 antibody avelumab with the standard of care chemotherapy combination FOLFOX and the anti-EGFR antibody cetuximab. Furthermore, we performed a central radiological review of the pre- and on-treatment computed tomography scans to better define the individual response to treatment. Results and Discussion In total, 43 patients were treated of which 39 patients were confirmed as RAS/BRAF wildtype in central tissue review and finally response evaluated. A final progression-free survival (PFS) of 11.1 (range: 0.8 to 22.3 months) and a herein updated final overall survival (OS) of 32.9 months (range: 0.8 to 47.1 months) was reached. We observed a strong median depth of response of 67.5% tumor shrinkage and deepness of response correlated significantly with survival. On the other hand, early tumor shrinkage was not an indicator of better outcome at a cut-off of 20% (median values). In a next step, we correlated the individual best radiological response with potential ICB response biomarkers and found that the clonality and diversity, but not frequency of tumor infiltrating lymphocytes (TiLs) and peripheral blood mononuclear cells (PBMCs), strongly correlated with response. In summary, we report the final overall survival of the AVETUX trial and propose T cell clonality and diversity as a potential marker to predict response to chemo-immunotherapy combinations in MSS mCRC by performing a central radiological review. Clinical Trial Registration ClinicalTrials.gov, identifier (NCT03174405).
Collapse
Affiliation(s)
- Joseph Tintelnot
- Department of Oncology and Hematology, Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Joseph Tintelnot, ; Alexander Stein,
| | - Inka Ristow
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Sauer
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Donjete Simnica
- Department of Internal Medicine IV – Oncology/Hematology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Christoph Schultheiß
- Department of Internal Medicine IV – Oncology/Hematology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Rebekka Scholz
- Department of Internal Medicine IV – Oncology/Hematology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Eray Goekkurt
- Department of Oncology and Hematology, Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Hämatologisch-Onkologische Praxis Eppendorf, Hamburg, Germany
| | - Lisa von Wenserski
- Department of Internal Medicine IV – Oncology/Hematology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Edith Willscher
- Department of Internal Medicine IV – Oncology/Hematology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Lisa Paschold
- Department of Internal Medicine IV – Oncology/Hematology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Sylvie Lorenzen
- Department of Internal Medicine III (Haematology/Medical Oncology), Technical University of Munich Hospital Rechts der Isar, Munchen, Bayern, Germany
| | | | - Reinhard Depenbusch
- Private Practice Onkodoc GmbH Götersloh, Götersloh, Nordrhein-Westfalen, Germany
| | - Thomas J. Ettrich
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Baden-Wörttemberg, Germany
| | - Steffen Dörfel
- Private Practice Onkozentrum Dresden, Dresden, Sachsen, Germany
| | - Salah-Eddin Al-Batran
- Institute of Clinical Cancer Research Institut für Klinisch-Onkologische Forschung (IKF) at Northwest Hospital, Frankfurt, Hessen, Germany
| | - Meinolf Karthaus
- Department of Hematology and Oncology, Munich Hospital Neuperlach, Munchen, Bayern, Germany
| | - Uwe Pelzer
- Department of Hematology, Oncology and Tumorimmunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Axel Hinke
- Clinical Cancer Research Consulting (CCRC), Dösseldorf, Germany
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | | - Carsten Bokemeyer
- Department of Oncology and Hematology, Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Mascha Binder
- Department of Internal Medicine IV – Oncology/Hematology, Martin-Luther-Universitat Halle-Wittenberg, Halle, Sachsen-Anhalt, Germany
| | - Alexander Stein
- Department of Oncology and Hematology, Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Hämatologisch-Onkologische Praxis Eppendorf, Hamburg, Germany,*Correspondence: Joseph Tintelnot, ; Alexander Stein,
| |
Collapse
|
146
|
Peng ZY, Wang QS, Li K, Chen SS, Li X, Xiao GD, Tang SC, Ren H, Wang Z, Sun X. Stem signatures associating SOX2 antibody helps to define diagnosis and prognosis prediction with esophageal cancer. Ann Med 2022; 54:921-932. [PMID: 35382656 PMCID: PMC9004505 DOI: 10.1080/07853890.2022.2056239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND esophageal cancer is one of the deadliest diseases worldwide. Due to the ineffectual screening methods referring to early diagnosis, most people have lost their chance of radical resection when diagnosed with esophageal cancer. This aim of this study was designed to evaluate the latent values of the stem signatures-associated autoantibodies (AABS) in predicting the early diagnosis, and particularly seeking the precise predictive outcomes with sensitive SOX2. We also studied the potential immunotherapeutic targets and prospective long-term prognosis predicators of esophageal cancer. METHODS The serum concentrations of selective antibodies were quantitated by enzyme-linked immunosorbent assay (ELISA), and a total of 203 local cases were enrolled. The TCGA databases were used to analyse distinct expression patterns and prognostic values of related genes. The TIMER database was used to explore the signatures of immune cell infiltration in related genes. The TISIDB database was used to analyse the association between related genes and immune regulators. RESULTS The stem signatures-associated with antibodies of TP53, PGP9.5, SOX2, and CAGE were highly expressed in esophageal cancer and were negatively correlated with the test group, the diagnostic sensitivity of P53, SOX2, PGP9.5 and CAGE reached to 54.3%, 56.5%, 80.4% and 47.8%, respectively, and the specificity reached 77.7%, 93.6%, 76.4% and 86.6%. Especially in stage I esophageal cancer, the diagnostic sensitivity of SOX2 reached 82.4% with a specificity of 85.4%, which demonstrated good value in early diagnosis. CONCLUSIONS The stem signatures-associated antibodies could be used as an effective indicator in early esophageal cancer diagnosis and could help to precisely predicate survival and prognosis.Key MessagesThe stem signatures-associated immune-antibodies could be used as effective indicators in early diagnosis of esophageal cancer and help to precisely predicate the survival and prognosis.The potential immunotherapeutic targets referring to esophageal cancer are screened and analysed, and the high sensitivity of SOX2 in detecting early esophageal cancer will yield early and effective treatments.
Collapse
Affiliation(s)
- Zi-Yang Peng
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Qing-Shi Wang
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Kai Li
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Si-Si Chen
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Xiang Li
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China.,Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Guo-Dong Xiao
- Oncology Department, the First Affiliated Hospital of Zhengzhou University, Zheng Zhou City, China
| | - Shou-Ching Tang
- University of Mississippi Medical Center, Cancer Center and Research Institute, Jackson, MS, USA
| | - Hong Ren
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Zhe Wang
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Xin Sun
- Department of Thoracic Surgery, the Second Department of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Cancer Center, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| |
Collapse
|
147
|
Mi Z, Zhang Y, Feng Z, Liu J, Wu J, Tan H, Ma X, Liu Z, Rong P. Treatment-related adverse events of PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors in clinical trials: a meta-analysis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:301-309. [PMID: 36217590 DOI: 10.1080/21691401.2022.2131354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AIM PD-1/PD-L1 inhibitors in combination with CTLA-4 inhibitors are being tested in a number of ongoing clinical trials. As a result, it is critical to fully comprehend the toxicity characteristics of adverse events in combination therapy. This study aims to extensively compare the incidences and ORs of treatment-related adverse events between two combination strategies. METHODS The eligible articles were searched from PubMed, EMBASE and Cochrane databases for studies published between 1 January 2010 and 1 May 2021, investigating PD-1/PD-L1 inhibitors plus CTLA-4 inhibitor-based combined clinical therapies. The mean incidences and pooled ORs of all-grade and grade 3 or higher adverse events were calculated by random-effects model using Stata 12.1. Heterogeneity between studies was assessed with I2 statistics and Chi square-based Q statistic. The overall risk of bias was assessed by Review Manager 5.3. RESULTS A total of 26 eligible studies of 3607 patients were selected; 2852 patients developed at least one all-grade adverse event. PD-L1 inhibitors plus CTLA-4 inhibitors regimen (incidence 0.67, 95% CI: 0.57-0.77) had marked advantage over PD-1 inhibitors plus CTLA-4 inhibitors regimen (incidence 0.89, 95% CI: 0.86-0.93). CONCLUSION PD-L1 inhibitors plus CTLA-4 inhibitors shows better safety in treatment-related adverse events than PD-1 inhibitors plus CTLA-4 inhibitors.
Collapse
Affiliation(s)
- Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yunshu Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhichao Feng
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianmin Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongpei Tan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, China
| |
Collapse
|
148
|
Hou W, Yi C, Zhu H. Predictive biomarkers of colon cancer immunotherapy: Present and future. Front Immunol 2022; 13:1032314. [PMID: 36483562 PMCID: PMC9722772 DOI: 10.3389/fimmu.2022.1032314] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy has revolutionized colon cancer treatment. Immune checkpoint inhibitors (ICIs) have shown clinical benefits for colon cancer patients, especially those with high microsatellite instability (MSI-H). In 2020, the US Food and Drug Administration (FDA)-approved ICI pembrolizumab as the first-line treatment for metastatic MSI-H colon cancer patients. Additionally, neoadjuvant immunotherapy has presented efficacy in treating early-stage colon cancer patients. Although MSI has been thought of as an effective predictive biomarker for colon cancer immunotherapy, only a small proportion of colon cancer patients were MSI-H, and certain colon cancer patients with MSI-H presented intrinsic or acquired resistance to immunotherapy. Thus, further search for predictive biomarkers to stratify patients is meaningful in colon cancer immunotherapy. Except for MSI, other biomarkers, such as PD-L1 expression level, tumor mutation burden (TMB), tumor-infiltrating lymphocytes (TILs), certain gut microbiota, ctDNA, and circulating immune cells were also proposed to be correlated with patient survival and ICI efficacy in some colon cancer clinical studies. Moreover, developing new diagnostic techniques helps identify accurate predictive biomarkers for colon cancer immunotherapy. In this review, we outline the reported predictive biomarkers in colon cancer immunotherapy and further discuss the prospects of technological changes for biomarker development in colon cancer immunotherapy.
Collapse
Affiliation(s)
- Wanting Hou
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Cheng Yi
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Hong Zhu
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
149
|
Akin Telli T, Bregni G, Vanhooren M, Saude Conde R, Hendlisz A, Sclafani F. Regorafenib in combination with immune checkpoint inhibitors for mismatch repair proficient (pMMR)/microsatellite stable (MSS) colorectal cancer. Cancer Treat Rev 2022; 110:102460. [DOI: 10.1016/j.ctrv.2022.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022]
|
150
|
Kou L, Wen Q, Xie X, Chen X, Li J, Li Y. Adverse events of immune checkpoint inhibitors for patients with digestive system cancers: A systematic review and meta-analysis. Front Immunol 2022; 13:1013186. [PMID: 36341450 PMCID: PMC9634077 DOI: 10.3389/fimmu.2022.1013186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To study the incidence and distribution of adverse events in immune checkpoint inhibitors (ICI) for digestive system cancers and to provide a reference for the safe, rational, and effective use of immune detection site inhibitors. Methods We searched for articles published in English between January 1, 2010, and May 18, 2022. All clinical trials of ICI-based therapies for digestive system cancers were investigated, including only randomized controlled trials that reported data on the overall incidence of treatment-related adverse events (trAEs) or immune-related adverse reactions (irAEs) or tables. Results We searched 2048 records, of which 21 studies (7108 patients) were eligible for inclusion. The incidence of ICI trAEs of any grade was 82.7% (95% CI 73.9-90.0), and the incidence of grade 3 or higher trAEs was 27.5% (95% CI 21.3-34.1). The pooled rate of ICI irAEs of any grade was 26.3% (95% CI 11.8-44.0), and the incidence of grade 3 or higher irAEs was 9.4% (95% CI 1.1-24.6). In multivariate analysis, the incidence, characteristics, and distribution of AEs varied by cancer type, combination therapy modality (single/two-drug), and different agent types. Conclusion Our meta-analysis summarizes AEs associated with ICI in digestive system cancers. The incidence, characteristics, and distribution of AEs vary by cancer type, combination therapy modality, and different agent types. These findings can be considered for the early identification of AEs and provide effective interventions to reduce the severity of these patients. It can provide a clinical reference and may contribute to clinical practice.
Collapse
Affiliation(s)
- Liqiu Kou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaolu Xie
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiu Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jun Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jun Li, ; Yaling Li,
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jun Li, ; Yaling Li,
| |
Collapse
|