101
|
Reversal learning reveals cognitive deficits and altered prediction error encoding in the ventral striatum in Huntington's disease. Brain Imaging Behav 2018; 11:1862-1872. [PMID: 27917451 DOI: 10.1007/s11682-016-9660-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative condition characterized by a triad of movement disorder, neuropsychiatric symptoms and cognitive deficits. The striatum is particularly vulnerable to the effects of mutant huntingtin, and cell loss can already be found in presymptomatic stages. Since the striatum is well known for its role in reinforcement learning, we hypothesized to find altered behavioral and neural responses in HD patients in a probabilistic reinforcement learning task performed during functional magnetic resonance imaging. We studied 24 HD patients without central nervous system (CNS)-active medication and 25 healthy controls. Twenty HD patients and 24 healthy controls were able to complete the task. Computational modeling was used to calculate prediction error values and estimate individual parameters. We observed that gray matter density and prediction error signals during the learning task were related to disease stage. HD patients in advanced disease stages appear to use a less complex strategy in the reversal learning task. In contrast, HD patients in early disease stages show intact encoding of learning signals in the degenerating left ventral striatum. This effect appears to be lost with disease progression.
Collapse
|
102
|
Bayram E, Caldwell JZK, Banks SJ. Current understanding of magnetic resonance imaging biomarkers and memory in Alzheimer's disease. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:395-413. [PMID: 30229130 PMCID: PMC6140335 DOI: 10.1016/j.trci.2018.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) is caused by a cascade of changes to brain integrity. Neuroimaging biomarkers are important in diagnosis and monitoring the effects of interventions. As memory impairments are among the first symptoms of AD, the relationship between imaging findings and memory deficits is important in biomarker research. The most established magnetic resonance imaging (MRI) finding is hippocampal atrophy, which is related to memory decline and currently used as a diagnostic criterion for AD. While the medial temporal lobes are impacted early by the spread of neurofibrillary tangles, other networks and regional changes can be found quite early in the progression. Atrophy in several frontal and parietal regions, cortical thinning, and white matter alterations correlate with memory deficits in early AD. Changes in activation and connectivity have been detected by functional MRI (fMRI). Task-based fMRI studies have revealed medial temporal lobe hypoactivation, parietal hyperactivation, and frontal hyperactivation in AD during memory tasks, and activation patterns of these regions are also altered in preclinical and prodromal AD. Resting state fMRI has revealed alterations in default mode network activity related to memory in early AD. These studies are limited in part due to the historic inclusion of patients who had suspected AD but likely did not have the disorder. Modern biomarkers allow for more diagnostic certainty, allowing better understanding of neuroimaging markers in true AD, even in the preclinical stage. Larger patient cohorts, comparison of candidate imaging biomarkers to more established biomarkers, and inclusion of more detailed neuropsychological batteries to assess multiple aspects of memory are needed to better understand the memory deficit in AD and help develop new biomarkers. This article reviews MRI findings related to episodic memory impairments in AD and introduces a new study with multimodal imaging and comprehensive neuropsychiatric evaluation to overcome current limitations.
Collapse
Affiliation(s)
- Ece Bayram
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Jessica Z K Caldwell
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Sarah J Banks
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
103
|
Novel interaction between Alzheimer's disease-related protein presenilin 1 and glutamate transporter 1. Sci Rep 2018; 8:8718. [PMID: 29880815 PMCID: PMC5992168 DOI: 10.1038/s41598-018-26888-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neuronal hyperactivity is one of the earliest events observed in Alzheimer’s disease (AD). Moreover, alterations in the expression of glutamate transporters have been reported to exacerbate amyloid pathology and cognitive deficits in transgenic AD mouse models. However, the molecular links between these pathophysiological changes remain largely unknown. Here, we report novel interaction between presenilin 1 (PS1), the catalytic component of the amyloid precursor protein-processing enzyme, γ-secretase, and a major glutamate transporter-1 (GLT-1). Our data demonstrate that the interaction occurs between PS1 and GLT-1 expressed at their endogenous levels in vivo and in vitro, takes place in both neurons and astrocytes, and is independent of the PS1 autoproteolysis and γ-secretase activity. This intriguing discovery may shed light on the molecular crosstalk between the proteins linked to the maintenance of glutamate homeostasis and Aβ pathology.
Collapse
|
104
|
Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer's Disease. eNeuro 2018; 5:eN-CFN-0426-17. [PMID: 29780880 PMCID: PMC5956746 DOI: 10.1523/eneuro.0426-17.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/08/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023] Open
Abstract
Network hyperexcitability is a feature of Alzheimer' disease (AD) as well as numerous transgenic mouse models of AD. While hyperexcitability in AD patients and AD animal models share certain features, the mechanistic overlap remains to be established. We aimed to identify features of network hyperexcitability in AD models that can be related to epileptiform activity signatures in AD patients. We studied network hyperexcitability in mice expressing amyloid precursor protein (APP) with mutations that cause familial AD, and compared a transgenic model that overexpresses human APP (hAPP) (J20), to a knock-in model expressing APP at physiological levels (APPNL/F). We recorded continuous long-term electrocorticogram (ECoG) activity from mice, and studied modulation by circadian cycle, behavioral, and brain state. We report that while J20s exhibit frequent interictal spikes (IISs), APPNL/F mice do not. In J20 mice, IISs were most prevalent during daylight hours and the circadian modulation was associated with sleep. Further analysis of brain state revealed that IIS in J20s are associated with features of rapid eye movement (REM) sleep. We found no evidence of cholinergic changes that may contribute to IIS-circadian coupling in J20s. In contrast to J20s, intracranial recordings capturing IIS in AD patients demonstrated frequent IIS in non-REM (NREM) sleep. The salient differences in sleep-stage coupling of IIS in APP overexpressing mice and AD patients suggests that different mechanisms may underlie network hyperexcitability in mice and humans. We posit that sleep-stage coupling of IIS should be an important consideration in identifying mouse AD models that most closely recapitulate network hyperexcitability in human AD.
Collapse
|
105
|
Petok JR, Myers CE, Pa J, Hobel Z, Wharton DM, Medina LD, Casado M, Coppola G, Gluck MA, Ringman JM. Impairment of memory generalization in preclinical autosomal dominant Alzheimer's disease mutation carriers. Neurobiol Aging 2018; 65:149-157. [PMID: 29494861 PMCID: PMC5871602 DOI: 10.1016/j.neurobiolaging.2018.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/06/2018] [Accepted: 01/26/2018] [Indexed: 11/30/2022]
Abstract
Fast, inexpensive, and noninvasive identification of Alzheimer's disease (AD) before clinical symptoms emerge would augment our ability to intervene early in the disease. Individuals with fully penetrant genetic mutations causing autosomal dominant Alzheimer's disease (ADAD) are essentially certain to develop the disease, providing a unique opportunity to examine biomarkers during the preclinical stage. Using a generalization task that has previously shown to be sensitive to medial temporal lobe pathology, we compared preclinical individuals carrying ADAD mutations to noncarrying kin to determine whether generalization (the ability to transfer previous learning to novel but familiar recombinations) is vulnerable early, before overt cognitive decline. As predicted, results revealed that preclinical ADAD mutation carriers made significantly more errors during generalization than noncarrying kin, despite no differences between groups during learning or retention. This impairment correlated with the left hippocampal volume, particularly in mutation carriers. Such identification of generalization deficits in early ADAD may provide an easily implementable and potentially linguistically and culturally neutral way to identify and track cognition in ADAD.
Collapse
Affiliation(s)
- Jessica R Petok
- Department of Psychology, Saint Olaf College, Northfield, MN, USA; Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.
| | - Catherine E Myers
- Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ, USA; Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Judy Pa
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Zachary Hobel
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - David M Wharton
- Department of Neurology, UCLA, Los Angeles, CA, USA; Easton Center for Alzheimer's Disease Research, Los Angeles, CA, USA; Vanderbilt University, Nashville, TN, USA
| | - Luis D Medina
- Department of Neurology, UCLA, Los Angeles, CA, USA; Easton Center for Alzheimer's Disease Research, Los Angeles, CA, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maria Casado
- Department of Neurology, UCLA, Los Angeles, CA, USA; Easton Center for Alzheimer's Disease Research, Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Neurology, UCLA, Los Angeles, CA, USA; Semel Institute of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - John M Ringman
- Department of Neurology, UCLA, Los Angeles, CA, USA; Easton Center for Alzheimer's Disease Research, Los Angeles, CA, USA; Memory and Aging Center, Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
106
|
Tang X, Wu D, Gu LH, Nie BB, Qi XY, Wang YJ, Wu FF, Li XL, Bai F, Chen XC, Xu L, Ren QG, Zhang ZJ. Spatial learning and memory impairments are associated with increased neuronal activity in 5XFAD mouse as measured by manganese-enhanced magnetic resonance imaging. Oncotarget 2018; 7:57556-57570. [PMID: 27542275 PMCID: PMC5295372 DOI: 10.18632/oncotarget.11353] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/19/2016] [Indexed: 01/13/2023] Open
Abstract
Dysfunction of neuronal activity is a major and early contributor to cognitive impairment in Alzheimer's disease (AD). To investigate neuronal activity alterations at early stage of AD, we encompassed behavioral testing and in vivo manganese-enhanced magnetic resonance imaging (MEMRI) in 5XFAD mice at early ages (1-, 2-, 3- and 5-month). The 5XFAD model over-express human amyloid precursor protein (APP) and presenilin 1 (PS1) harboring five familial AD mutations, which have a high APP expression correlating with a high burden and an accelerated accumulation of the 42 amino acid species of amyloid-β. In the Morris water maze, 5XFAD mice showed longer escape latency and poorer memory retention. In the MEMRI, 5XFAD mice showed increased signal intensity in the brain regions involved in spatial cognition, including the entorhinal cortex, the hippocampus, the retrosplenial cortex and the caudate putamen. Of note, the observed alterations in spatial cognition were associated with increased MEMRI signal intensity. These findings indicate that aberrant increased basal neuronal activity may contribute to the spatial cognitive function impairment at early stage of AD, and may further suggest the potential use of MEMRI to predict cognitive impairments. Early intervention that targets aberrant neuronal activity may be crucial to prevent cognitive impairment.
Collapse
Affiliation(s)
- Xiang Tang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Di Wu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Li-Hua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Bin-Bin Nie
- Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xin-Yang Qi
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yan-Juan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Fang-Fang Wu
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiao-Li Li
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiao-Chun Chen
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.,Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Qing-Guo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
107
|
Ochoa JF, Alonso JF, Duque JE, Tobón CA, Mañanas MA, Lopera F, Hernández AM. Successful Object Encoding Induces Increased Directed Connectivity in Presymptomatic Early-Onset Alzheimer's Disease. J Alzheimers Dis 2018; 55:1195-1205. [PMID: 27792014 PMCID: PMC5147495 DOI: 10.3233/jad-160803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent studies report increases in neural activity in brain regions critical to episodic memory at preclinical stages of Alzheimer's disease (AD). Although electroencephalography (EEG) is widely used in AD studies, given its non-invasiveness and low cost, there is a need to translate the findings in other neuroimaging methods to EEG. OBJECTIVE To examine how the previous findings using functional magnetic resonance imaging (fMRI) at preclinical stage in presenilin-1 E280A mutation carriers could be assessed and extended, using EEG and a connectivity approach. METHODS EEG signals were acquired during resting and encoding in 30 normal cognitive young subjects, from an autosomal dominant early-onset AD kindred from Antioquia, Colombia. Regions of the brain previously reported as hyperactive were used for connectivity analysis. RESULTS Mutation carriers exhibited increasing connectivity at analyzed regions. Among them, the right precuneus exhibited the highest changes in connectivity. CONCLUSION Increased connectivity in hyperactive cerebral regions is seen in individuals, genetically-determined to develop AD, at preclinical stage. The use of a connectivity approach and a widely available neuroimaging technique opens the possibility to increase the use of EEG in early detection of preclinical AD.
Collapse
Affiliation(s)
- John Fredy Ochoa
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Joan Francesc Alonso
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politènica de Catalunya (UPC), Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Jon Edinson Duque
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Carlos Andrés Tobón
- Neuroscience Group of Antioquia, Medical School, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Neuropsychology and Behavior group, Medical School, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Miguel Angel Mañanas
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politènica de Catalunya (UPC), Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Medical School, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Alher Mauricio Hernández
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
108
|
A Role for Phosphodiesterase 11A (PDE11A) in the Formation of Social Memories and the Stabilization of Mood. ADVANCES IN NEUROBIOLOGY 2018; 17:201-230. [PMID: 28956334 DOI: 10.1007/978-3-319-58811-7_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The most recently discovered 3',5'-cyclic nucleotide phosphodiesterase family is the Phosphodiesterase 11 (PDE11) family, which is encoded by a single gene PDE11A. PDE11A is a dual-specific PDE, breaking down both cAMP and cGMP. There are four PDE11A splice variants (PDE11A1-4) with distinct tissue expression profiles and unique N-terminal regulatory regions, suggesting that each isoform could be individually targeted with a small molecule or biologic. PDE11A4 is the PDE11A isoform expressed in brain and is found in the hippocampal formation of humans and rodents. Studies in rodents show that PDE11A4 mRNA expression in brain is, in fact, restricted to the hippocampal formation (CA1, possibly CA2, subiculum, and the adjacently connected amygdalohippocampal area). Within the hippocampal formation of rodents, PDE11A4 protein is expressed in neurons but not astrocytes, with a distribution across nuclear, cytoplasmic, and membrane compartments. This subcellular localization of PDE11A4 is altered in response to social experience in mouse, and in vitro studies show the compartmentalization of PDE11A4 is controlled, at least in part, by homodimerization and N-terminal phosphorylation. PDE11A4 expression dramatically increases in the hippocampus with age in the rodent hippocampus, from early postnatal life to late aging, suggesting PDE11A4 function may evolve across the lifespan. Interestingly, PDE11A4 protein shows a three to tenfold enrichment in the rodent ventral hippocampal formation (VHIPP; a.k.a. anterior in primates) versus dorsal hippocampal formation (DHIPP). Consistent with this enrichment in VHIPP, studies in knockout mice show that PDE11A regulates the formation of social memories and the stabilization of mood and is a critical mechanism by which social experience feeds back to modify the brain and subsequent social behaviors. PDE11A4 likely controls behavior by regulating hippocampal glutamatergic, oxytocin, and cytokine signaling, as well as protein translation. Given its unique tissue distribution and relatively selective effects on behavior, PDE11A may represent a novel therapeutic target for neuropsychiatric, neurodevelopmental, or age-related disorders. Therapeutically targeting PDE11A4 may be a way to selectively restore aberrant cyclic nucleotide signaling in the hippocampal formation while leaving the rest of the brain and periphery untouched, thus, relieving deficits while avoiding unwanted side effects.
Collapse
|
109
|
Abstract
The use of in vivo two-photon microscopy in mouse models of Alzheimer's disease (AD) has propelled studies of disease mechanisms and treatments. For instance, this approach allowed for the first time to study in the intact brain the dynamics of individual amyloid plaques, and the effects of anti-amyloid therapies on plaque formation and growth. Moreover, by combining two-photon microscopy with fluorescent calcium indicators, an amyloid-dependent abnormal hyperactivity of cortical and hippocampal neurons was revealed as a primary neuronal impairment, which was not predicted from previous in vitro analyses. Here, a method for in vivo two-photon calcium imaging with single-cell and single-action potential accuracy in the hippocampus of Alzheimer mouse models is presented.
Collapse
Affiliation(s)
- Marc Aurel Busche
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA.
- Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| |
Collapse
|
110
|
Penny W, Iglesias-Fuster J, Quiroz YT, Lopera FJ, Bobes MA. Dynamic Causal Modeling of Preclinical Autosomal-Dominant Alzheimer's Disease. J Alzheimers Dis 2018; 65:697-711. [PMID: 29562504 PMCID: PMC6923812 DOI: 10.3233/jad-170405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2017] [Indexed: 01/13/2023]
Abstract
Dynamic causal modeling (DCM) is a framework for making inferences about changes in brain connectivity using neuroimaging data. We fitted DCMs to high-density EEG data from subjects performing a semantic picture matching task. The subjects are carriers of the PSEN1 mutation, which leads to early onset Alzheimer's disease, but at the time of EEG acquisition in 1999, these subjects were cognitively unimpaired. We asked 1) what is the optimal model architecture for explaining the event-related potentials in this population, 2) which connections are different between this Presymptomatic Carrier (PreC) group and a Non-Carrier (NonC) group performing the same task, and 3) which network connections are predictive of subsequent Mini-Mental State Exam (MMSE) trajectories. We found 1) a model with hierarchical rather than lateral connections between hemispheres to be optimal, 2) that a pathway from right inferotemporal cortex (IT) to left medial temporal lobe (MTL) was preferentially activated by incongruent items for subjects in the PreC group but not the NonC group, and 3) that increased effective connectivity among left MTL, right IT, and right MTL was predictive of subsequent MMSE scores.
Collapse
Affiliation(s)
- Will Penny
- School of Psychology, University of East Anglia, Norwich, UK
- Wellcome Trust Centre for Neuroimaging, University College, London, UK
| | | | - Yakeel T. Quiroz
- Massachusetts General Hospital, Boston, MA, USA
- Group of Neurosciences, Medical School, Universidad de Antioquia, Medellin, Colombia
| | | | - Maria A. Bobes
- Department of Cognitive Neuroscience Cuban Neuroscience Center, Havana, Cuba
- Key Laboratory for Neuroinformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China
| |
Collapse
|
111
|
Oh H, Razlighi QR, Stern Y. Multiple pathways of reserve simultaneously present in cognitively normal older adults. Neurology 2017; 90:e197-e205. [PMID: 29273689 DOI: 10.1212/wnl.0000000000004829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/27/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine neural correlates of intellectual activity underlying multiple pathways imparting reserve by testing that higher intellectual activity is associated with lower brain amyloid pathology, greater gray matter (GM) volume, and differential task-evoked brain activation levels as a function of amyloid positivity status among clinically intact older adults. METHODS Eighty-two cognitively normal older adults and 46 healthy young participants underwent fMRI during task switching. All older participants completed 18F-florbetaben-PET and an individual's amyloid positivity status was determined. To assess GM volume, T1-weighted high-resolution structural images were processed using voxel-based morphometry. As lifestyle factors, intellectual activity was estimated by a composite score of vocabulary, reading ability, and years of education. RESULTS Across all older participants, intellectual activity was associated with lower amyloid deposition in lateral and medial frontoparietal and temporal lobes but higher amyloid deposition in superior frontal and parietal cortices, larger GM volume across widespread brain regions, and reduced brain activation during task switching. These patterns of associations, however, differed by amyloid positivity status. While the patterns of associations remained similar among amyloid-negative older adults, among amyloid-positive older adults, intellectual activity was associated with increased amyloid deposition in frontoparietal cortices and increased activation during task. CONCLUSIONS Intellectual activity simultaneously exerts both neuroprotective and compensatory effects via multiple neural pathways that promote optimal brain aging and help maintain normal cognition during amyloid accumulation.
Collapse
Affiliation(s)
- Hwamee Oh
- From the Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY.
| | - Qolamreza R Razlighi
- From the Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY
| | - Yaakov Stern
- From the Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY
| |
Collapse
|
112
|
Dannenberg H, Young K, Hasselmo M. Modulation of Hippocampal Circuits by Muscarinic and Nicotinic Receptors. Front Neural Circuits 2017; 11:102. [PMID: 29321728 PMCID: PMC5733553 DOI: 10.3389/fncir.2017.00102] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/27/2017] [Indexed: 01/02/2023] Open
Abstract
This article provides a review of the effects of activation of muscarinic and nicotinic receptors on the physiological properties of circuits in the hippocampal formation. Previous articles have described detailed computational hypotheses about the role of cholinergic neuromodulation in enhancing the dynamics for encoding in cortical structures and the role of reduced cholinergic modulation in allowing consolidation of previously encoded information. This article will focus on addressing the broad scope of different modulatory effects observed within hippocampal circuits, highlighting the heterogeneity of cholinergic modulation in terms of the physiological effects of activation of muscarinic and nicotinic receptors and the heterogeneity of effects on different subclasses of neurons.
Collapse
Affiliation(s)
- Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Kimberly Young
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Michael Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
113
|
Setti SE, Hunsberger HC, Reed MN. Alterations in Hippocampal Activity and Alzheimer's Disease. TRANSLATIONAL ISSUES IN PSYCHOLOGICAL SCIENCE 2017; 3:348-356. [PMID: 29862310 DOI: 10.1037/tps0000124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aging population and those with amnestic mild cognitive impairment (aMCI) are at increased risk for developing Alzheimer's disease (AD). Individuals with aMCI in particular may display pathological changes in brain function that may ultimately result in a diagnosis of AD. This review focuses specifically on hippocampal hyperexcitability, a pathology that is sometimes detectable years before diagnosis, which has been observed in individuals with aMCI. We describe how changes in hippocampal activity are associated with, or in some cases may be permissive for, the development of AD. Finally, we describe how lifestyle changes, including exercise and dietary changes can attenuate cognitive decline and hippocampal hyperexcitability, potentially reducing the risk of developing AD.
Collapse
Affiliation(s)
- Sharay E Setti
- Department of Drug Discovery & Development, Auburn University
| | - Holly C Hunsberger
- Department of Psychiatry, Columbia University.,Department of Psychology, West Virginia University
| | - Miranda N Reed
- Department of Drug Discovery & Development, Auburn University
| |
Collapse
|
114
|
Bai Y, Li M, Zhou Y, Ma L, Qiao Q, Hu W, Li W, Wills ZP, Gan WB. Abnormal dendritic calcium activity and synaptic depotentiation occur early in a mouse model of Alzheimer's disease. Mol Neurodegener 2017; 12:86. [PMID: 29137651 PMCID: PMC5686812 DOI: 10.1186/s13024-017-0228-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022] Open
Abstract
Background Alzheimer’s disease (AD) is characterized by amyloid deposition, tangle formation as well as synapse loss. Synaptic abnormalities occur early in the pathogenesis of AD. Identifying early synaptic abnormalities and their underlying mechanisms is likely important for the prevention and treatment of AD. Methods We performed in vivo two-photon calcium imaging to examine the activities of somas, dendrites and dendritic spines of layer 2/3 pyramidal neurons in the primary motor cortex in the APPswe/PS1dE9 mouse model of AD and age-matched wild type control mice. We also performed calcium imaging to determine the effect of Aβ oligomers on dendritic calcium activity. In addition, structural and functional two-photon imaging were used to examine the link between abnormal dendritic calcium activity and changes in dendritic spine size in the AD mouse model. Results We found that somatic calcium activities of layer 2/3 neurons were significantly lower in the primary motor cortex of 3-month-old APPswe/PS1dE9 mice than in wild type mice during quiet resting, but not during running on a treadmill. Notably, a significantly larger fraction of apical dendrites of layer 2/3 pyramidal neurons showed calcium transients with abnormally long duration and high peak amplitudes during treadmill running in AD mice. Administration of Aβ oligomers into the brain of wild type mice also induced abnormal dendritic calcium transients during running. Furthermore, we found that the activity and size of dendritic spines were significantly reduced on dendritic branches with abnormally prolonged dendritic calcium transients in AD mice. Conclusion Our findings show that abnormal dendritic calcium transients and synaptic depotentiation occur before amyloid plaque formation in the motor cortex of the APPswe/PS1dE9 mouse model of AD. Dendritic calcium transients with abnormally long durations and high amplitudes could be induced by soluble Aβ oligomers and contribute to synaptic deficits in the early pathogenesis of AD. Electronic supplementary material The online version of this article (10.1186/s13024-017-0228-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Bai
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Miao Li
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yanmei Zhou
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Lei Ma
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qian Qiao
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wanling Hu
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wei Li
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | | | - Wen-Biao Gan
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China. .,Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
115
|
Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer's disease-like pathology. Nat Commun 2017; 8:1464. [PMID: 29133888 PMCID: PMC5684208 DOI: 10.1038/s41467-017-01444-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 09/19/2017] [Indexed: 01/21/2023] Open
Abstract
The ε4 allele of apolipoprotein E (APOE) is the dominant genetic risk factor for late-onset Alzheimer’s disease (AD). However, the reason APOE4 is associated with increased AD risk remains a source of debate. Neuronal hyperactivity is an early phenotype in both AD mouse models and in human AD, which may play a direct role in the pathogenesis of the disease. Here, we have identified an APOE4-associated hyperactivity phenotype in the brains of aged APOE mice using four complimentary techniques—fMRI, in vitro electrophysiology, in vivo electrophysiology, and metabolomics—with the most prominent hyperactivity occurring in the entorhinal cortex. Further analysis revealed that this neuronal hyperactivity is driven by decreased background inhibition caused by reduced responsiveness of excitatory neurons to GABAergic inhibitory inputs. Given the observations of neuronal hyperactivity in prodromal AD, we propose that this APOE4-driven hyperactivity may be a causative factor driving increased risk of AD among APOE4 carriers. The APOE4 allele is the leading risk factor for late-onset Alzheimer’s disease, but how it might contribute to the disease is not clear. Here the authors show that a mouse expressing the human APOE4 allele displays hyperactivity in the entorhinal cortex due to a decreased inhibitory tone, which may in part explain accelerated Alzheimer’s pathology in APOE4 carriers.
Collapse
|
116
|
Busche MA, Konnerth A. Impairments of neural circuit function in Alzheimer's disease. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0429. [PMID: 27377723 DOI: 10.1098/rstb.2015.0429] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 11/12/2022] Open
Abstract
An essential feature of Alzheimer's disease (AD) is the accumulation of amyloid-β (Aβ) peptides in the brain, many years to decades before the onset of overt cognitive symptoms. We suggest that during this very extended early phase of the disease, soluble Aβ oligomers and amyloid plaques alter the function of local neuronal circuits and large-scale networks by disrupting the balance of synaptic excitation and inhibition (E/I balance) in the brain. The analysis of mouse models of AD revealed that an Aβ-induced change of the E/I balance caused hyperactivity in cortical and hippocampal neurons, a breakdown of slow-wave oscillations, as well as network hypersynchrony. Remarkably, hyperactivity of hippocampal neurons precedes amyloid plaque formation, suggesting that hyperactivity is one of the earliest dysfunctions in the pathophysiological cascade initiated by abnormal Aβ accumulation. Therapeutics that correct the E/I balance in early AD may prevent neuronal dysfunction, widespread cell loss and cognitive impairments associated with later stages of the disease.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Marc Aurel Busche
- Institute of Neuroscience, Technical University of Munich, Munich, Germany Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany Center of Integrated Protein Science Munich (CIPSM), Munich, Germany
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany Center of Integrated Protein Science Munich (CIPSM), Munich, Germany
| |
Collapse
|
117
|
Verdurand M, Zimmer L. Hippocampal 5-HT1A receptor expression changes in prodromal stages of Alzheimer's disease: Beneficial or deleterious? Neuropharmacology 2017. [DOI: 10.1016/j.neuropharm.2017.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
118
|
Functional neuroimaging findings in healthy middle-aged adults at risk of Alzheimer's disease. Ageing Res Rev 2017; 36:88-104. [PMID: 28342882 DOI: 10.1016/j.arr.2017.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/27/2017] [Accepted: 03/17/2017] [Indexed: 12/28/2022]
Abstract
It is well established that the neurodegenerative process of Alzheimer's disease (AD) begins many years before symptom onset. This preclinical phase provides a crucial time-window for therapeutic intervention, though this requires biomarkers that could evaluate the efficacy of future disease-modification treatments in asymptomatic individuals. The last decade has witnessed a proliferation of studies characterizing the temporal sequence of the earliest functional and structural brain imaging changes in AD. These efforts have focused on studying individuals who are highly vulnerable to develop AD, such as those with familial genetic mutations, susceptibility genes (i.e. apolipoprotein epsilon-4 allele), and/or a positive family history of AD. In this paper, we review the rapidly growing literature of functional imaging changes in cognitively intact individuals who are middle-aged: positron emission tomography (PET) studies of amyloid deposition, glucose metabolism, as well as arterial spin labeling (ASL), task-dependent, resting-state functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (MRS) studies. The prevailing evidence points to early brain functional changes in the relative absence of cognitive impairment and structural atrophy, although there is marked variability in the directionality of the changes, which could, in turn, be related to antagonistic pleiotropy early in life. A common theme across studies relates to the spatial extent of these changes, most of which overlap with brain regions that are implicated in established AD. Notwithstanding several methodological caveats, functional imaging techniques could be preferentially sensitive to the earliest events of AD pathology prior to macroscopic grey matter loss and clinical manifestations of AD. We conclude that while these techniques have great potential to serve as biomarkers to identify at-risk individuals, more longitudinal studies with greater sample size and robust correction for multiple comparisons are still warranted to establish their utility.
Collapse
|
119
|
Ochoa JF, Alonso JF, Duque JE, Tobón CA, Baena A, Lopera F, Mañanas MA, Hernández AM. Precuneus Failures in Subjects of the PSEN1 E280A Family at Risk of Developing Alzheimer's Disease Detected Using Quantitative Electroencephalography. J Alzheimers Dis 2017; 58:1229-1244. [PMID: 28550254 DOI: 10.3233/jad-161291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Presenilin-1 (PSEN1) mutations are the most common cause of familial early onset Alzheimer's disease (AD). The PSEN1 E280A (E280A) mutation has an autosomal dominant inheritance and is involved in the production of amyloid-β. The largest family group of carriers with E280A mutation is found in Antioquia, Colombia. The study of mutation carriers provides a unique opportunity to identify brain changes in stages previous to AD. Electroencephalography (EEG) is a low cost and minimally invasiveness technique that enables the following of brain changes in AD. OBJECTIVE To examine how previous reported differences in EEG for Theta and Alpha-2 rhythms in E280A subjects are related to specific regions in cortex and could be tracked across different ages. METHODS EEG signals were acquired during resting state from non-carriers and carriers, asymptomatic and symptomatic subjects from E280A kindred from Antioquia, Colombia. Independent component analysis (ICA) and inverse solution methods were used to locate brain regions related to differences in Theta and Alpha-2 bands. RESULTS ICA identified two components, mainly related to the Precuneus, where the differences in Theta and Alpha-2 exist simultaneously at asymptomatic and symptomatic stages. When the ratio between Theta and Alpha-2 is used, significant correlations exist with age and a composite cognitive scale. CONCLUSION Theta and Alpha-2 rhythms are altered in E280A subjects. The alterations are possible to track at Precuneus regions using EEG, ICA, and inverse solution methods.
Collapse
Affiliation(s)
- John Fredy Ochoa
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia, Medellín, Colombia
| | - Joan Francesc Alonso
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politènica de Catalunya (UPC), Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Jon Edinson Duque
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia, Medellín, Colombia
| | - Carlos Andrés Tobón
- Neuroscience Group of Antioquia, Medical School, Universidad de Antioquia, Medellín, Colombia.,Neuropsychology and Behavior Group, Medical School, Universidad de Antioquia, Medellín, Colombia
| | - Ana Baena
- Neuroscience Group of Antioquia, Medical School, Universidad de Antioquia, Medellín, Colombia
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Medical School, Universidad de Antioquia, Medellín, Colombia
| | - Miguel Angel Mañanas
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politènica de Catalunya (UPC), Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Alher Mauricio Hernández
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
120
|
Bartholome O, Van den Ackerveken P, Sánchez Gil J, de la Brassinne Bonardeaux O, Leprince P, Franzen R, Rogister B. Puzzling Out Synaptic Vesicle 2 Family Members Functions. Front Mol Neurosci 2017; 10:148. [PMID: 28588450 PMCID: PMC5438990 DOI: 10.3389/fnmol.2017.00148] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 01/18/2023] Open
Abstract
Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or neurotransmitters transport or priming of SVs. Moreover, several recent studies highlighted the link between SV2 and different neuronal disorders such as epilepsy, Schizophrenia (SCZ), Alzheimer's or Parkinson's disease. In this review article, we will summarize our present knowledge on SV2A function(s) and its potential role(s) in the pathophysiology of various brain disorders.
Collapse
Affiliation(s)
- Odile Bartholome
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Judit Sánchez Gil
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Pierre Leprince
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium.,Department of Neurology, Centre Hospitalier Universitaire de Liège (CHU), University of LiègeLiège, Belgium
| |
Collapse
|
121
|
Different Hippocampus Functional Connectivity Patterns in Healthy Young Adults with Mutations of APP/Presenilin-1/2 and APOEε4. Mol Neurobiol 2017; 55:3439-3450. [PMID: 28502043 DOI: 10.1007/s12035-017-0540-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
This study aims to explore the hippocampus-based functional connectivity patterns in young, healthy APP and/or presenilin-1/2 mutation carriers and APOE ε4 subjects. Seventy-eight healthy young adults (33 male, mean age 24.0 ± 2.2 years; 18 APP and/or presenilin1/2 mutation carriers [APP/presenilin-1/2 group], 30 APOE ε4 subjects [APOE ε4 group], and 30 subjects without the above-mentioned genes [control group]) underwent resting-state functional MR imaging and neuropsychological assessments. Bilateral hippocampus functional connectivity patterns were compared among three groups. The brain regions with statistical differences were then extracted, and correlation analyses were performed between Z values of the brain regions and neuropsychological results. Compared with control group, both APOE ε4 group and APP/presenilin-1/2 group showed increased functional connectivity in medial prefrontal cortex and precuneus for the seeds of bilateral hippocampi. The APOE ε4 group displayed increased functional connectivity from bilateral hippocampi to the left middle temporal gyrus compared with the control group. Moreover, compared with the APP/presenilin-1/2 group, the APOE ε4 group also had markedly increased functional connectivity in right hippocampus-left middle temporal gyrus. The Z values of right hippocampus-left middle temporal gyrus correlated with various neuropsychological results across all the subjects, as well as in APOE ε4 group. Young healthy adults carrying APOE ε4 and APP/presenilin-1/2 displayed different hippocampus functional connectivity patterns, which may underlie the discrepant mechanisms of gene-modulated cognitive dysfunction in Alzheimer's disease.
Collapse
|
122
|
Meier TB, Lancaster MA, Mayer AR, Teague TK, Savitz J. Abnormalities in Functional Connectivity in Collegiate Football Athletes with and without a Concussion History: Implications and Role of Neuroactive Kynurenine Pathway Metabolites. J Neurotrauma 2017; 34:824-837. [DOI: 10.1089/neu.2016.4599] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Melissa A. Lancaster
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
- Neurology and Psychiatry Departments, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - T. Kent Teague
- Departments of Surgery and Psychiatry, University of Oklahoma College of Medicine, Tulsa, Oklahoma
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, Oklahoma
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, Oklahoma
- Faculty of Community Medicine, The University of Tulsa, Tulsa, Oklahoma
| |
Collapse
|
123
|
Petrov AM, Kasimov MR, Zefirov AL. Cholesterol in the Pathogenesis of Alzheimer's, Parkinson's Diseases and Autism: Link to Synaptic Dysfunction. Acta Naturae 2017; 9:26-37. [PMID: 28461971 PMCID: PMC5406657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 11/30/2022] Open
Abstract
In our previous review, we described brain cholesterol metabolism in control conditions and in the case of some rare neurological pathologies linked to defects in the genes which are directly involved in the synthesis and/or traffic of cholesterol. Here, we have analyzed disruptions in cholesterol homeostasis in widespread neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and autism spectrum disorders. We particularly focused on the synaptic dysfunctions that could arise from changes in both membrane cholesterol availability and oxysterol production. Notably, alterations in the brain cholesterol metabolism and neurotransmission occur in the early stages of these pathologies and the polymorphism of the genes associated with cholesterol homeostasis and synaptic communication affects the risk of onset and severity of these diseases. In addition, pharmacological and genetic manipulations of brain cholesterol homeostasis in animal models frequently have marked effects on the progression of neurodegenerative diseases. Thus, the development of Alzheimer's, Parkinson's and autism spectrum disorders may be partially associated with an imbalance of cholesterol homeostasis that leads to changes in the membrane cholesterol and oxysterol levels that, in turn, modulates key steps in the synaptic transmission.
Collapse
Affiliation(s)
- A. M. Petrov
- Kazan State Medical University, Normal Physiology department, Butlerova str. 49, Kazan, 420012, Russia
| | - M. R. Kasimov
- Kazan State Medical University, Normal Physiology department, Butlerova str. 49, Kazan, 420012, Russia
| | - A. L. Zefirov
- Kazan State Medical University, Normal Physiology department, Butlerova str. 49, Kazan, 420012, Russia
| |
Collapse
|
124
|
Ruthirakuhan M, Herrmann N, Suridjan I, Abraham EH, Farber I, Lanctôt KL. Beyond immunotherapy: new approaches for disease modifying treatments for early Alzheimer’s disease. Expert Opin Pharmacother 2016; 17:2417-2429. [DOI: 10.1080/14656566.2016.1258060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
125
|
Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 2016; 17:777-792. [PMID: 27829687 DOI: 10.1038/nrn.2016.141] [Citation(s) in RCA: 629] [Impact Index Per Article: 78.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of neural circuits and networks can be controlled, in part, by modulating the synchrony of their components' activities. Network hypersynchrony and altered oscillatory rhythmic activity may contribute to cognitive abnormalities in Alzheimer disease (AD). In this condition, network activities that support cognition are altered decades before clinical disease onset, and these alterations predict future pathology and brain atrophy. Although the precise causes and pathophysiological consequences of these network alterations remain to be defined, interneuron dysfunction and network abnormalities have emerged as potential mechanisms of cognitive dysfunction in AD and related disorders. Here, we explore the concept that modulating these mechanisms may help to improve brain function in these conditions.
Collapse
Affiliation(s)
- Jorge J Palop
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| |
Collapse
|
126
|
|
127
|
Unger MS, Marschallinger J, Kaindl J, Höfling C, Rossner S, Heneka MT, Van der Linden A, Aigner L. Early Changes in Hippocampal Neurogenesis in Transgenic Mouse Models for Alzheimer's Disease. Mol Neurobiol 2016; 53:5796-806. [PMID: 27544234 PMCID: PMC5012146 DOI: 10.1007/s12035-016-0018-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/01/2016] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the Western world and is characterized by a progressive loss of cognitive functions leading to dementia. One major histopathological hallmark of AD is the formation of amyloid-beta plaques, which is reproduced in numerous transgenic animal models overexpressing pathogenic forms of amyloid precursor protein (APP). In human AD and in transgenic amyloid plaque mouse models, several studies report altered rates of adult neurogenesis, i.e. the formation of new neurons from neural stem and progenitor cells, and impaired neurogenesis has also been attributed to contribute to the cognitive decline in AD. So far, changes in neurogenesis have largely been considered to be a consequence of the plaque pathology. Therefore, possible alterations in neurogenesis before plaque formation or in prodromal AD have been largely ignored. Here, we analysed adult hippocampal neurogenesis in amyloidogenic mouse models of AD at different points before and during plaque progression. We found prominent alterations of hippocampal neurogenesis before plaque formation. Survival of newly generated cells and the production of new neurons were already compromised at this stage. Moreover and surprisingly, proliferation of doublecortin (DCX) expressing neuroblasts was significantly and specifically elevated during the pre-plaque stage in the APP-PS1 model, while the Nestin-expressing stem cell population was unaffected. In summary, changes in neurogenesis are evident already before plaque deposition and might contribute to well-known early hippocampal dysfunctions in prodromal AD such as hippocampal overactivity.
Collapse
Affiliation(s)
- M S Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - J Marschallinger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - J Kaindl
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - C Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - S Rossner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Michael T Heneka
- Clinical Neuroscience, Department of Neurology, University of Bonn, Bonn, Germany
| | - A Van der Linden
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria.
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
128
|
Proudfoot M, Rohenkohl G, Quinn A, Colclough GL, Wuu J, Talbot K, Woolrich MW, Benatar M, Nobre AC, Turner MR. Altered cortical beta-band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis. Hum Brain Mapp 2016; 38:237-254. [PMID: 27623516 PMCID: PMC5215611 DOI: 10.1002/hbm.23357] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/07/2016] [Accepted: 08/11/2016] [Indexed: 12/28/2022] Open
Abstract
Continuous rhythmic neuronal oscillations underpin local and regional cortical communication. The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity. Movement preparation and execution are consistently associated with modulations to neuronal oscillation beta (15–30 Hz) power. Cortical beta‐band oscillations were measured using magnetoencephalography (MEG) during preparation for, execution, and completion of a visually cued, lateralized motor task that included movement inhibition trials. Eleven “classical” ALS patients, 9 with the primary lateral sclerosis (PLS) phenotype, and 12 asymptomatic carriers of ALS‐associated gene mutations were compared with age‐similar healthy control groups. Augmented beta desynchronization was observed in both contra‐ and ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with excess beta desynchronization in asymptomatic mutation carriers. Movement completion was followed by a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric lateralization for beta rebound in the PLS group. This may correspond to the particular involvement of interhemispheric fibers of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We conclude that the ALS spectrum is characterized by intensified cortical beta desynchronization followed by delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the development of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strategies. Hum Brain Mapp 38:237–254, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.,Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Gustavo Rohenkohl
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Andrew Quinn
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Giles L Colclough
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Joanne Wuu
- Department of Neurology, Miller School of Medicine, University of Miami, Florida
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Michael Benatar
- Department of Neurology, Miller School of Medicine, University of Miami, Florida
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
129
|
Aguirre-Acevedo DC, Lopera F, Henao E, Tirado V, Muñoz C, Giraldo M, Bangdiwala SI, Reiman EM, Tariot PN, Langbaum JB, Quiroz YT, Jaimes F. Cognitive Decline in a Colombian Kindred With Autosomal Dominant Alzheimer Disease: A Retrospective Cohort Study. JAMA Neurol 2016; 73:431-8. [PMID: 26902171 DOI: 10.1001/jamaneurol.2015.4851] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Data from an autosomal dominant Alzheimer disease (ADAD) kindred were used to track the longitudinal trajectory of cognitive decline associated with preclinical ADAD and explore factors that may modify the rate of cognitive decline. OBJECTIVES To evaluate the onset and rate of cognitive decline during preclinical ADAD and the effect of socioeconomic, vascular, and genetic factors on the cognitive decline. DESIGN, SETTING, AND PARTICIPANTS We performed a retrospective cohort study from January 1, 1995, through June 31, 2012, of individuals from Antioquia, Colombia, who tested positive for the ADAD-associated PSEN1 E280A mutation. Data analysis was performed from August 20, 2014, through November 30, 2015. A mixed-effects model was used to estimate annual rates of change in cognitive test scores and to mark the onset of cognitive decline. MAIN OUTCOMES AND MEASURES Memory, language, praxis, and total scores from the Consortium to Establish a Registry for Alzheimer Disease test battery. Chronologic age was used as a time scale in the models. We explore the effects of sex; educational level; socioeconomic status; residence area; occupation type; marital status; history of hypertension, diabetes mellitus, and dyslipidemia; tobacco and alcohol use; and APOE ε4 on the rates of cognitive decline. RESULTS A total of 493 carriers met the inclusion criteria and were analyzed. A total of 256 carriers had 2 or more assessments. At the time of the initial assessment, participants had a mean (SD) age of 33.4 (11.7) years and a mean (SD) educational level of 7.2 (4.2) years. They were predominantly female (270 [54.8%]), married (293 [59.4%]), and of low socioeconomic status (322 [65.3%]). Word list recall scores provided the earliest indicator of preclinical cognitive decline at 32 years of age, 12 and 17 years before the kindred's respective median ages at mild cognitive impairment and dementia onset. After the change point, carriers had a statistically significant cognitive decline with a loss of 0.24 (95% CI, -0.26 to -0.22) points per year for the word list recall test and 2.13 (95% CI, -2.29 to -1.96) points per year for total scores. Carriers with high educational levels had an increase of approximately 36% in the rate of cognitive decline after the change point when compared with those with low educational levels (-2.89 vs -2.13 points per year, respectively). Onset of cognitive decline was delayed by 3 years in individuals with higher educational levels compared with those with lower educational levels. Those with higher educational level, middle/high socioeconomic status, history of diabetes and hypertension, and tobacco and alcohol use had a steeper cognitive decline after onset. CONCLUSIONS AND RELEVANCE Preclinical cognitive decline was evident in PSEN1 E280A mutation carriers 12 years before the onset of clinical impairment. Educational level may be a protective factor against the onset of cognitive impairment.
Collapse
Affiliation(s)
- Daniel C Aguirre-Acevedo
- Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia2Academic Group of Clinical Epidemiology, University of Antioquia, Medellín, Colombia
| | - Francisco Lopera
- Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
| | - Eliana Henao
- Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
| | - Victoria Tirado
- Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
| | - Claudia Muñoz
- Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
| | - Margarita Giraldo
- Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia
| | | | | | | | | | - Yakeel T Quiroz
- Neuroscience Group of Antioquia, University of Antioquia, Medellín, Colombia5Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston
| | - Fabian Jaimes
- Academic Group of Clinical Epidemiology, University of Antioquia, Medellín, Colombia6Research Unit, Hospital Pablo Tobón Uribe, Medellín, Colombia
| |
Collapse
|
130
|
Quiroz YT, Willment KC, Castrillon G, Muniz M, Lopera F, Budson A, Stern CE. Successful Scene Encoding in Presymptomatic Early-Onset Alzheimer's Disease. J Alzheimers Dis 2016; 47:955-64. [PMID: 26401774 DOI: 10.3233/jad-150214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brain regions critical to episodic memory are altered during the preclinical stages of Alzheimer's disease (AD). However, reliable means of identifying cognitively-normal individuals at higher risk to develop AD have not been established. OBJECTIVE To examine whether functional MRI can detect early functional changes associated with scene encoding in a group of presymptomatic presenilin-1 (PSEN1) E280A mutation carriers. METHODS Participants were 39 young, cognitively-normal individuals from an autosomal dominant early-onset AD kindred, located in Antioquia, Colombia. Participants performed a functional MRI scene encoding task and a post-scan subsequent memory test. RESULTS PSEN1 mutation carriers exhibited hyperactivation within medial temporal lobe regions (hippocampus,parahippocampal formation) during successful scene encoding compared to age-matched non-carriers. CONCLUSION Hyperactivation in medial temporal lobe regions during scene encoding is seen in individuals genetically-determined to develop AD years before their clinical onset. Our findings will guide future research with the ultimate goal of using functional neuroimaging in the early detection of preclinical AD.
Collapse
Affiliation(s)
- Yakeel T Quiroz
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia.,Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Martha Muniz
- Center for Memory and Brain, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - Andrew Budson
- VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| | - Chantal E Stern
- Center for Memory and Brain, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
131
|
β-Amyloid Deposition Is Associated with Decreased Right Prefrontal Activation during Task Switching among Cognitively Normal Elderly. J Neurosci 2016; 36:1962-70. [PMID: 26865619 DOI: 10.1523/jneurosci.3266-15.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The accumulation of β-amyloid (Aβ) peptides, a pathological hallmark of Alzheimer's disease (AD), has been associated with functional alterations, often in an episodic memory system with a particular emphasis on medial temporal lobe function. The topography of Aβ deposition, however, largely overlaps with frontoparietal control (FPC) regions implicated in cognitive control that has been shown to be impaired in early mild AD. To understand the neural mechanism underlying early changes in cognitive control with AD, we examined the impact of Aβ deposition on task-evoked FPC activation using functional magnetic resonance imaging (fMRI) in humans. Forty-three young and 62 cognitively normal older adults underwent an fMRI session during an executive contextual task in which task difficulty varied: single (either letter case or vowel/consonant judgment task) vs dual (switching between letter case and vowel/consonant decisions) task. Older subjects additionally completed (18)F-florbetaben positron emission tomography scans and were classified as either amyloid positive (Aβ+) or negative (Aβ-). Consistent with previous reports, age-related increases in brain activity were found in FPC regions commonly identified across groups. For both task conditions, Aβ-related increases in brain activity were found compared with baseline activity. For higher cognitive control load, however, Aβ+ elderly showed reduced task-switching activation in the right inferior frontal cortex. Our findings suggest that with Aβ deposition, brain activation in the cognitive control region reaches a maximum with lower control demand and decreases with higher control demand, which may underlie early impairment in cognitive control with AD progression. SIGNIFICANCE STATEMENT The accumulation of β-amyloid (Aβ) peptides, a pathological hallmark of Alzheimer's disease, spatially overlaps with frontoparietal control (FPC) regions implicated in cognitive control, but the impact of Aβ deposition on FPC regions is largely unknown. Using functional magnetic resonance imaging with a task-switching task, we found Aβ-related increases in FPC regions compared with baseline activity. For higher cognitive control load, however, Aβ-related hypoactivity was found in the right inferior frontal cortex, a region highly implicated in cognitive control. The findings suggest that with Aβ deposition, task-related brain activity may reach a plateau early and undergo downstream pathways of neural dysfunction, which may relate to the early impairment of cognitive control seen in the progression of Aβ pathology.
Collapse
|
132
|
Roher AE, Maarouf CL, Kokjohn TA. Familial Presenilin Mutations and Sporadic Alzheimer’s Disease Pathology: Is the Assumption of Biochemical Equivalence Justified? J Alzheimers Dis 2016; 50:645-58. [DOI: 10.3233/jad-150757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alex E. Roher
- Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Chera L. Maarouf
- Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Tyler A. Kokjohn
- Department of Microbiology, Midwestern University School of Medicine, Glendale, AZ, USA
| |
Collapse
|
133
|
Awasthi M, Singh S, Pandey VP, Dwivedi UN. Alzheimer's disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J Neurol Sci 2016; 361:256-71. [DOI: 10.1016/j.jns.2016.01.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 01/09/2023]
|
134
|
|
135
|
Masdeu JC, Pascual B. Genetic and degenerative disorders primarily causing dementia. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:525-564. [PMID: 27432682 DOI: 10.1016/b978-0-444-53485-9.00026-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuroimaging comprises a powerful set of instruments to diagnose the different causes of dementia, clarify their neurobiology, and monitor their treatment. Magnetic resonance imaging (MRI) depicts volume changes with neurodegeneration and inflammation, as well as abnormalities in functional and structural connectivity. MRI arterial spin labeling allows for the quantification of regional cerebral blood flow, characteristically altered in Alzheimer's disease, diffuse Lewy-body disease, and the frontotemporal dementias. Positron emission tomography allows for the determination of regional metabolism, with similar abnormalities as flow, and for the measurement of β-amyloid and abnormal tau deposition in the brain, as well as regional inflammation. These instruments allow for the quantification in vivo of most of the pathologic features observed in disorders causing dementia. Importantly, they allow for the longitudinal study of these abnormalities, having revealed, for instance, that the deposition of β-amyloid in the brain can antecede by decades the onset of dementia. Thus, a therapeutic window has been opened and the efficacy of immunotherapies directed at removing β-amyloid from the brain of asymptomatic individuals is currently being tested. Tau and inflammation imaging, still in their infancy, combined with genomics, should provide powerful insights into these disorders and facilitate their treatment.
Collapse
Affiliation(s)
- Joseph C Masdeu
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA.
| | - Belen Pascual
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
136
|
fMRI in Neurodegenerative Diseases: From Scientific Insights to Clinical Applications. NEUROMETHODS 2016. [DOI: 10.1007/978-1-4939-5611-1_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
137
|
Antiepileptic drugs as a new therapeutic concept for the prevention of cognitive impairment and Alzheimer’s disease. Recent advances. JOURNAL OF EPILEPTOLOGY 2015. [DOI: 10.1515/joepi-2015-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SummaryIntroduction.Excessive accumulation of amyloid-beta (Aβ) peptides in the brain results initially in mild cognitive impairment (MCI) and finally in Alzheimer’s disease (AD). Evidences from experimental and clinical studies show that pathological hyperexcitability of hippocampal neurons is a very early functional impairment observed in progressive memory dysfunctions. Therefore, antiepileptic drugs (AEDs) whose mechanism of action is aimed at inhibition of such neuronal hyperexcitability, seems to be an rationale choice for MCI and AD treatment.Aim.To provide data from experimental and clinical studies on: 1. The unfavorable impact of neuronal hyperexcitability, mainly within the hippocampus, on cognitive processes. 2. Efficacy of AEDs against such abnormally elevated neuronal activity for the prevention of progressive cognitive impairment.Methods.A literature review of publications published within the last fifteen years, was conducted using the PubMed database.Review.The authors describe Aβ-induced hyperexcitability of hippocampal nerve cells as the cause of cognitive deficits, the connection of such activity with an increased risk of seizures and epilepsy in patients with MCI/AD, and finally the efficacy of AEDs: valproic acid (VPA), phenytoin (PHT), topiramate (TPM), lamotrigine (LTG), ethosuximide (ESM) and levetiracetam (LEV) in the prevention of cognitive impairment in experimental models and patients with MCI/AD.Conclusions.The majority of the studied AEDs improve cognitive dysfunction in various experimental models of Aβ-induced brain pathology with accompanied neuronal hyperexcitability. The promising results achieved for LEV in animal models of cognitive impairment were also confirmed in patients with MCI/AD. LEV was well-tolerated and it’s beneficial antidementive effect was confirmed by memory tests and fMRI examination. In conclusion, the use of AEDs could be a novel therapeutic concept for preventing cognitive impairment in patients with Aβ-associated brain pathology.
Collapse
|
138
|
Oh H, Steffener J, Razlighi QR, Habeck C, Liu D, Gazes Y, Janicki S, Stern Y. Aβ-related hyperactivation in frontoparietal control regions in cognitively normal elderly. Neurobiol Aging 2015; 36:3247-3254. [PMID: 26382734 PMCID: PMC4788982 DOI: 10.1016/j.neurobiolaging.2015.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 01/18/2023]
Abstract
The accumulation of amyloid-beta (Aβ) peptides, a pathologic hallmark of Alzheimer's disease, has been associated with functional alterations in cognitively normal elderly, most often in the context of episodic memory with a particular emphasis on the medial temporal lobes. The topography of Aβ deposition, however, highly overlaps with frontoparietal control (FPC) regions implicated in cognitive control/working memory. To examine Aβ-related functional alternations in the FPC regions during a working memory task, we imaged 42 young and 57 cognitively normal elderly using functional magnetic resonance imaging during a letter Sternberg task with varying load. Based on (18)F-florbetaben-positron emission tomography scan, we determined older subjects' amyloid positivity (Aβ+) status. Within brain regions commonly recruited by all subject groups during the delay period, age and Aβ deposition were independently associated with load-dependent frontoparietal hyperactivation, whereas additional compensatory Aβ-related hyperactivity was found beyond the FPC regions. The present results suggest that Aβ-related hyperactivation is not specific to the episodic memory system but occurs in the PFC regions as well.
Collapse
Affiliation(s)
- Hwamee Oh
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | - Jason Steffener
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Qolamreza R Razlighi
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Christian Habeck
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Dan Liu
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Yunglin Gazes
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Sarah Janicki
- Division of Aging and Dementia, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
139
|
Quiroz YT, Schultz AP, Chen K, Protas HD, Brickhouse M, Fleisher AS, Langbaum JB, Thiyyagura P, Fagan AM, Shah AR, Muniz M, Arboleda-Velasquez JF, Munoz C, Garcia G, Acosta-Baena N, Giraldo M, Tirado V, Ramírez DL, Tariot PN, Dickerson BC, Sperling RA, Lopera F, Reiman EM. Brain Imaging and Blood Biomarker Abnormalities in Children With Autosomal Dominant Alzheimer Disease: A Cross-Sectional Study. JAMA Neurol 2015; 72:912-9. [PMID: 26121081 DOI: 10.1001/jamaneurol.2015.1099] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
IMPORTANCE Brain imaging and fluid biomarkers are characterized in children at risk for autosomal dominant Alzheimer disease (ADAD). OBJECTIVE To characterize and compare structural magnetic resonance imaging (MRI), resting-state and task-dependent functional MRI, and plasma amyloid-β (Aβ) measurements in presenilin 1 (PSEN1) E280A mutation-carrying and noncarrying children with ADAD. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional measures of structural and functional MRI and plasma Aβ assays were assessed in 18 PSEN1 E280A carriers and 19 noncarriers aged 9 to 17 years from a Colombian kindred with ADAD. Recruitment and data collection for this study were conducted at the University of Antioquia and the Hospital Pablo Tobon Uribe in Medellín, Colombia, between August 2011 and June 2012. MAIN OUTCOMES AND MEASURES All participants had blood sampling, structural MRI, and functional MRI during associative memory encoding and resting-state and cognitive assessments. Outcome measures included plasma Aβ1-42 concentrations and Aβ1-42:Aβ1-40 ratios, memory encoding-dependent activation changes, resting-state connectivity, and regional gray matter volumes. Structural and functional MRI data were compared using automated brain mapping algorithms and search regions related to AD. RESULTS Similar to findings in adult mutation carriers, in the later preclinical and clinical stages of ADAD, mutation-carrying children were distinguished from control individuals by significantly higher plasma Aβ1-42 levels (mean [SD]: carriers, 18.8 [5.1] pg/mL and noncarriers, 13.1 [3.2] pg/mL; P < .001) and Aβ1-42:Aβ1-40 ratios (mean [SD]: carriers, 0.32 [0.06] and noncarriers, 0.21 [0.03]; P < .001), as well as less memory encoding task-related deactivation in parietal regions (eg, mean [SD] parameter estimates for the right precuneus were -0.590 [0.50] for noncarriers and -0.087 [0.38] for carriers; P < .005 uncorrected). Unlike carriers in the later stages, mutation-carrying children demonstrated increased functional connectivity of the posterior cingulate cortex with medial temporal lobe regions (mean [SD] parameter estimates were 0.038 [0.070] for noncarriers and 0.190 [0.057] for carriers), as well as greater gray matter volumes in temporal regions (eg, left parahippocampus; P < . 049, corrected for multiple comparisons). CONCLUSIONS AND RELEVANCE Children at genetic risk for ADAD have functional and structural brain changes and abnormal levels of plasma Aβ1-42. The extent to which the underlying brain changes are either neurodegenerative or developmental remains to be determined. This study provides additional information about the earliest known biomarker changes associated with ADAD.
Collapse
Affiliation(s)
- Yakeel T Quiroz
- Department of Neurology, Massachusetts General Hospital, Boston2Department of Psychiatry, Massachusetts General Hospital, Boston3Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston4Harvard Medical School, Boston, Ma
| | - Aaron P Schultz
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston4Harvard Medical School, Boston, Massachusetts
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, Arizona7Arizona Alzheimer's Consortium, Phoenix8Department of Mathematics and Statistics, Arizona State University, Tempe
| | - Hillary D Protas
- Banner Alzheimer's Institute, Phoenix, Arizona7Arizona Alzheimer's Consortium, Phoenix
| | - Michael Brickhouse
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston4Harvard Medical School, Boston, Massachusetts9Frontotemporal Dementia Unit, Department of Neurology, Massachusetts General Hospital, Boston
| | - Adam S Fleisher
- Banner Alzheimer's Institute, Phoenix, Arizona10Eli Lilly and Company, Indianapolis, Indiana11Department of Neurosciences, University of California, San Diego
| | - Jessica B Langbaum
- Banner Alzheimer's Institute, Phoenix, Arizona7Arizona Alzheimer's Consortium, Phoenix
| | - Pradeep Thiyyagura
- Banner Alzheimer's Institute, Phoenix, Arizona7Arizona Alzheimer's Consortium, Phoenix
| | - Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Aarti R Shah
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Martha Muniz
- Psychology Department, Boston University, Boston, Massachusetts
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Boston15Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Claudia Munoz
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - Gloria Garcia
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | | | - Margarita Giraldo
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - Victoria Tirado
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - Dora L Ramírez
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - Pierre N Tariot
- Banner Alzheimer's Institute, Phoenix, Arizona7Arizona Alzheimer's Consortium, Phoenix16Department of Psychiatry, University of Arizona, Phoenix
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston4Harvard Medical School, Boston, Massachusetts9Frontotemporal Dementia Unit, Department of Neurology, Massachusetts General Hospital, Boston
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Boston3Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston4Harvard Medical School, Boston, Massachusetts17Center for Alzheimer Research and Treatment, Departm
| | - Francisco Lopera
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, Arizona7Arizona Alzheimer's Consortium, Phoenix16Department of Psychiatry, University of Arizona, Phoenix18Division of Neurogenomics, Translational Genomics Research Institute, Phoenix, Arizona
| |
Collapse
|
140
|
Kunz L, Schroder TN, Lee H, Montag C, Lachmann B, Sariyska R, Reuter M, Stirnberg R, Stocker T, Messing-Floeter PC, Fell J, Doeller CF, Axmacher N. Reduced grid-cell-like representations in adults at genetic risk for Alzheimer's disease. Science 2015; 350:430-3. [DOI: 10.1126/science.aac8128] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
141
|
Schiefer J. Compensation in the course of Huntington's disease — More than just a hypothesis? EBioMedicine 2015; 2:1286-7. [PMID: 26629511 PMCID: PMC4634843 DOI: 10.1016/j.ebiom.2015.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 11/23/2022] Open
|
142
|
Hunsberger HC, Weitzner DS, Rudy CC, Hickman JE, Libell EM, Speer RR, Gerhardt GA, Reed MN. Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression. J Neurochem 2015; 135:381-94. [PMID: 26146790 DOI: 10.1111/jnc.13230] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
Abstract
Hyperexcitability of the hippocampus is a commonly observed phenomenon in the years preceding a diagnosis of Alzheimer's disease (AD). Our previous work suggests a dysregulation in glutamate neurotransmission may mediate this hyperexcitability, and glutamate dysregulation correlates with cognitive deficits in the rTg(TauP301L)4510 mouse model of AD. To determine whether improving glutamate regulation would attenuate cognitive deficits and AD-related pathology, TauP301L mice were treated with riluzole (~ 12.5 mg/kg/day p.o.), an FDA-approved drug for amyotrophic lateral sclerosis that lowers extracellular glutamate levels. Riluzole-treated TauP301L mice exhibited improved performance in the water radial arm maze and the Morris water maze, associated with a decrease in glutamate release and an increase in glutamate uptake in the dentate gyrus, cornu ammonis 3 (CA3), and cornu ammonis 1 (CA1) regions of the hippocampus. Riluzole also attenuated the TauP301L-mediated increase in hippocampal vesicular glutamate transporter 1, which packages glutamate into vesicles and influences glutamate release; and the TauP301L-mediated decrease in hippocampal glutamate transporter 1, the major transporter responsible for removing glutamate from the extracellular space. The TauP301L-mediated reduction in PSD-95 expression, a marker of excitatory synapses in the hippocampus, was also rescued by riluzole. Riluzole treatment reduced total levels of tau, as well as the pathological phosphorylation and conformational changes in tau associated with the P301L mutation. These findings open new opportunities for the development of clinically applicable therapeutic approaches to regulate glutamate in vulnerable circuits for those at risk for the development of AD.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Daniel S Weitzner
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Carolyn C Rudy
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - James E Hickman
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA
| | - Eric M Libell
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Rebecca R Speer
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Greg A Gerhardt
- Center for Microelectrode Technology (CenMeT), Department of Anatomy and Neurobiology, University of Kentucky Health Sciences Center, Lexington, Kentucky, USA
| | - Miranda N Reed
- Behavioral Neuroscience, Department of Psychology, West Virginia University, Morgantown, West Virginia, USA.,Center for Neuroscience, West Virginia University, Morgantown, West Virginia, USA.,Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia, USA.,Drug Discovery & Development Department, School of Pharmacy, Auburn University, Auburn, Alabama
| |
Collapse
|
143
|
Vandenberghe R. The relationship between amyloid deposition, neurodegeneration, and cognitive decline in dementia. Curr Neurol Neurosci Rep 2015; 14:498. [PMID: 25224538 DOI: 10.1007/s11910-014-0498-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyloid imaging has been clinically approved for measuring β amyloid plaque load in patients being evaluated for Alzheimer's disease or other causes of cognitive decline. Here we explore a multidimensional approach to cognitive decline, where we situate amyloid plaque burden among a number of other relevant dimensions, such as aging, volume loss, other proteinopathies such as TDP43 and Lewy bodies, and functional reorganisation of cognitive brain systems. The multidimensional model incorporates a 'pure AD' trajectory, corresponding to e.g. monogenic Alzheimer's disease, but leaves room for other combinations of biomarker abnormalities (e.g. volume loss without amyloid positivity) and other trajectories. More tools will become available in the future that allow one to carve out a causal-mechanistic space for explaing cognitive decline in a personalized manner, enhancing progress towards more efficacious interventions.
Collapse
Affiliation(s)
- Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of Leuven, Leuven, Belgium,
| |
Collapse
|
144
|
Brain amyloid-β burden is associated with disruption of intrinsic functional connectivity within the medial temporal lobe in cognitively normal elderly. J Neurosci 2015; 35:3240-7. [PMID: 25698758 DOI: 10.1523/jneurosci.2092-14.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The medial temporal lobe is implicated as a key brain region involved in the pathogenesis of Alzheimer's disease (AD) and consequent memory loss. Tau tangle aggregation in this region may develop concurrently with cortical Aβ deposition in preclinical AD, but the pathological relationship between tau and Aβ remains unclear. We used task-free fMRI with a focus on the medical temporal lobe, together with Aβ PET imaging, in cognitively normal elderly human participants. We found that cortical Aβ load was related to disrupted intrinsic functional connectivity of the perirhinal cortex, which is typically the first brain region affected by tauopathies in AD. There was no concurrent association of cortical Aβ load with cognitive performance or brain atrophy. These findings suggest that dysfunction in the medial temporal lobe may represent a very early sign of preclinical AD and may predict future memory loss.
Collapse
|
145
|
Busche MA, Konnerth A. Neuronal hyperactivity - A key defect in Alzheimer's disease? Bioessays 2015; 37:624-32. [DOI: 10.1002/bies.201500004] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Marc Aurel Busche
- Institute of Neuroscience; Technische Universität München; München Germany
- Department of Psychiatry and Psychotherapy; Technische Universität München; München Germany
- Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM); Technische Universität München; Munich Germany
| | - Arthur Konnerth
- Institute of Neuroscience; Technische Universität München; München Germany
- Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM); Technische Universität München; Munich Germany
| |
Collapse
|
146
|
Parra MA, Saarimäki H, Bastin ME, Londoño AC, Pettit L, Lopera F, Della Sala S, Abrahams S. Memory binding and white matter integrity in familial Alzheimer's disease. Brain 2015; 138:1355-69. [PMID: 25762465 DOI: 10.1093/brain/awv048] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 12/30/2014] [Indexed: 11/13/2022] Open
Abstract
Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to be markers for Alzheimer's disease.
Collapse
Affiliation(s)
- Mario A Parra
- 1 Human Cognitive Neuroscience, Psychology, University of Edinburgh, Edinburgh, UK 2 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK 3 UDP-INECO Foundation Core on Neuroscience (UIFCoN), Diego Portales University, Santiago, Chile 4 Alzheimer Scotland Dementia Research Centre and Scottish Dementia Clinical Research Network, NHS Scotland 5 Neuroscience Group, University of Antioquia, Antioquia, Colombia
| | - Heini Saarimäki
- 1 Human Cognitive Neuroscience, Psychology, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- 2 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ana C Londoño
- 5 Neuroscience Group, University of Antioquia, Antioquia, Colombia
| | - Lewis Pettit
- 1 Human Cognitive Neuroscience, Psychology, University of Edinburgh, Edinburgh, UK
| | - Francisco Lopera
- 5 Neuroscience Group, University of Antioquia, Antioquia, Colombia
| | - Sergio Della Sala
- 1 Human Cognitive Neuroscience, Psychology, University of Edinburgh, Edinburgh, UK 2 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Sharon Abrahams
- 1 Human Cognitive Neuroscience, Psychology, University of Edinburgh, Edinburgh, UK 2 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK 6 Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
147
|
Valenzuela MJ, Turner AJF, Kochan NA, Wen W, Suo C, Hallock H, McIntosh RA, Sachdev P, Breakspear M. Posterior compensatory network in cognitively intact elders with hippocampal atrophy. Hippocampus 2015; 25:581-93. [PMID: 25475988 DOI: 10.1002/hipo.22395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 11/05/2022]
Abstract
Functional compensation in late life is poorly understood but may be vital to understanding long-term cognitive trajectories. To study this we first established an empirically derived threshold to distinguish hippocampal atrophy in those with Mild Cognitive Impairment (MCI n = 34) from those with proficient cognition (PRO n = 22), using data from a population-based cohort. Next, to identify compensatory networks we compared cortical activity patterns during a graded spatial working memory (SWM) task in only cognitively proficient individuals, either with (PROATR ) or without hippocampal atrophy (PRONIL ). Multivariate Partial Least Squares analyses revealed that these groups engaged spatially distinct SWM-related networks. In those with hippocampal atrophy and under conditions of basic-SWM demand, expression of a posterior compensatory network (PCN) comprised calcarine and posterior parietal cortex strongly correlated with superior SWM performance (r = -0.96). In these individuals, basic level SWM response times were faster and no less accurate than in those with no hippocampal atrophy. Cognitively proficient older individuals with hippocampal atrophy may, therefore, uniquely engage posterior brain areas when performing simple spatial working memory tasks.
Collapse
Affiliation(s)
- Michael J Valenzuela
- Regenerative Neuroscience Group, Brain & Mind Research Institute, University of Sydney, Sydney, Australia; School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Huijbers W, Mormino EC, Schultz AP, Wigman S, Ward AM, Larvie M, Amariglio RE, Marshall GA, Rentz DM, Johnson KA, Sperling RA. Amyloid-β deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression. ACTA ACUST UNITED AC 2015; 138:1023-35. [PMID: 25678559 DOI: 10.1093/brain/awv007] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cross-sectional functional magnetic resonance imaging studies using a memory task in patients with mild cognitive impairment have produced discordant results, with some studies reporting increased hippocampal activity--consistent with findings in genetic at-risk populations--and other studies reporting decreased hippocampal activity, relative to normal controls. However, previous studies in mild cognitive impairment have not included markers of amyloid-β, which may be particularly important in prediction of progression along the Alzheimer's disease continuum. Here, we examine the contribution of amyloid-β deposition to cross-sectional and longitudinal measures of hippocampal functional magnetic resonance imaging activity, hippocampal volume, global cognition and clinical progression over 36 months in 33 patients with mild cognitive impairment. Amyloid-β status was examined with positron emission tomography imaging using Pittsburg compound-B, hippocampal functional magnetic resonance imaging activity was assessed using an associative face-name memory encoding task, and hippocampal volume was quantified with structural magnetic resonance imaging. Finally global cognition was assessed using the Mini-Mental State Examination and clinical progression was assessed using the Clinical Dementia Rating (Sum of Boxes). At baseline, amyloid-β positive patients with mild cognitive impairment showed increased hippocampal activation, smaller hippocampal volumes, and a trend towards lower Mini-Mental State Examination scores and higher Clinical Dementia Ratings compared to amyloid-β negative patients with mild cognitive impairment. Longitudinally, amyloid-β positive patients with mild cognitive impairment continued to show high levels of hippocampal activity, despite increasing rates of hippocampal atrophy, decline on the Mini-Mental State Examination and faster progression on the Clinical Dementia Ratings. When entered simultaneously into the same linear mixed model, amyloid-β status, hippocampal activation, and hippocampal volume independently predicted clinical progression. These results indicate that amyloid-β positive patients with mild cognitive impairment are more likely on a path towards Alzheimer's disease dementia than amyloid-β negative patients. Increased hippocampal activity is discussed in relation to neuronal compensation and/or amyloid-β induced excitoxicity.
Collapse
Affiliation(s)
- Willem Huijbers
- 1 Centre for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA 2 Athinoula A. Martinos Centre for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Elizabeth C Mormino
- 1 Centre for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA 3 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron P Schultz
- 3 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Wigman
- 1 Centre for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA 2 Athinoula A. Martinos Centre for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Andrew M Ward
- 1 Centre for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA 2 Athinoula A. Martinos Centre for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA 4 Helen Willis Neuroscience Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Mykol Larvie
- 2 Athinoula A. Martinos Centre for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA 3 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca E Amariglio
- 1 Centre for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA 2 Athinoula A. Martinos Centre for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gad A Marshall
- 1 Centre for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA 2 Athinoula A. Martinos Centre for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Dorene M Rentz
- 1 Centre for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA 2 Athinoula A. Martinos Centre for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Keith A Johnson
- 2 Athinoula A. Martinos Centre for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA 3 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa A Sperling
- 1 Centre for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA 2 Athinoula A. Martinos Centre for Biomedical Imaging, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA 3 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
149
|
Stargardt A, Swaab DF, Bossers K. The storm before the quiet: neuronal hyperactivity and Aβ in the presymptomatic stages of Alzheimer's disease. Neurobiol Aging 2015; 36:1-11. [DOI: 10.1016/j.neurobiolaging.2014.08.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/29/2014] [Accepted: 08/12/2014] [Indexed: 12/27/2022]
|
150
|
Hunsberger HC, Rudy CC, Batten SR, Gerhardt GA, Reed MN. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway. J Neurochem 2015; 132:169-82. [PMID: 25319522 PMCID: PMC4302046 DOI: 10.1111/jnc.12967] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/25/2014] [Accepted: 10/02/2014] [Indexed: 12/31/2022]
Abstract
Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability. Pre-synaptic vesicular glutamate transporters (vGLUTs) package glutamate into vesicles before exocytosis into the synaptic cleft. Once in the extracellular space, glutamate acts on glutamate receptors. Glutamate is removed from the extracellular space by excitatory amino acid transporters, including GLT-1, predominantly localized to glia. P301L tau expression increases vGLUT expression and glutamate release, while also decreasing GLT-1 expression and glutamate clearance.
Collapse
Affiliation(s)
- Holly C. Hunsberger
- Behavioral Neuroscience, Department of Psychology, University of Kentucky Health Sciences Center, Lexington, KY 40536-0298
| | - Carolyn C. Rudy
- Behavioral Neuroscience, Department of Psychology, University of Kentucky Health Sciences Center, Lexington, KY 40536-0298
| | - Seth R. Batten
- Center for Microelectrode Technology (CenMeT), Department of Anatomy and Neurobiology, University of Kentucky Health Sciences Center, Lexington, KY 40536-0298
| | - Greg A. Gerhardt
- Center for Microelectrode Technology (CenMeT), Department of Anatomy and Neurobiology, University of Kentucky Health Sciences Center, Lexington, KY 40536-0298
| | - Miranda N. Reed
- Behavioral Neuroscience, Department of Psychology, University of Kentucky Health Sciences Center, Lexington, KY 40536-0298
- Center for Neuroscience, West Virginia University, Morgantown, 26506 WV, USA
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, 26506 WV, USA
| |
Collapse
|