101
|
Yu J, Cheng Y, Chen B, Tung C, Wu L. Cobaloxime Photocatalysis for the Synthesis of Phosphorylated Heteroaromatics. Angew Chem Int Ed Engl 2022; 61:e202209293. [DOI: 10.1002/anie.202209293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ji‐Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuan‐Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
102
|
Phosphine oxide directing-group-enabled atroposelective C–H bond acyloxylation via an eight-membered palladacycle intermediate. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
103
|
Mondal K, Ghosh S, Hajra A. Transition-metal-catalyzed ortho C-H functionalization of 2-arylquinoxalines. Org Biomol Chem 2022; 20:7361-7376. [PMID: 36107011 DOI: 10.1039/d2ob01119k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, direct C-H bond activation and functionalization has become a prodigious and hot topic among synthetic organic chemists due to its step-economic nature and substantial synthetic versatility. On the other hand, quinoxaline, a fused bicycle of benzene and pyrazine, has omnipresent applications in medicinal-, industrial- and materials chemistry. The presence of the N-1 atom in 2-arylquinoxaline enables chelation formation with a metal catalyst leading to the formation of ortho-substituted products. In this review, all articles related to the ortho C-H bond functionalization of 2-arylquinoxalines published up to May 2022 are highlighted.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
104
|
Gómez-Prado RA, Silva AL, Miranda LD. Synthesis of nuevamine and a cyano-chilenine analog via divergent C(sp 3)-H bond functionalization of isoindolinone derivatives. Org Biomol Chem 2022; 20:7325-7331. [PMID: 36069857 DOI: 10.1039/d2ob01304e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Divergent C(sp3)-H bond functionalizations of isoindolinone derivatives were developed to synthesize nuevamine, a cyano-chilenine derivative, and two related analogs. A copper-catalyzed C-H cross-dehydrogenative coupling (via cation formation) allowed the formation of a new C-C bond leading to the direct assembly of the isoindolo[1,2-a]isoquinolinone tetracyclic system of the nuevamine. The syntheses of the cyano-chilenine derivatives were carried out by installing two nitrile groups under basic conditions (via anion formation). Then, the isoindolobenzazepinic system of the chilenine skeleton was constructed by a Houben-Hoesch cyclization process. The present methodology has the advantage of not requiring the use of pre-functionalized substrates.
Collapse
Affiliation(s)
- Raúl A Gómez-Prado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México D.F. 04510, Mexico.
| | - Ana L Silva
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México D.F. 04510, Mexico.
| | - Luis D Miranda
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México D.F. 04510, Mexico.
| |
Collapse
|
105
|
Yu F, Valles DA, Chen W, Daniel SD, Ghiviriga I, Seidel D. Regioselective α-Cyanation of Unprotected Alicyclic Amines. Org Lett 2022; 24:6364-6368. [PMID: 36036764 PMCID: PMC9548390 DOI: 10.1021/acs.orglett.2c02148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secondary alicyclic amines are converted to α-aminonitriles via addition of TMSCN to their corresponding imines, intermediates that are produced in situ via the oxidation of amine-derived lithium amides with simple ketone oxidants. Amines with an existing α-substituent undergo regioselective α'-cyanation even if the C-H bonds at that site are less activated. Amine α-arylation can be combined with α'-cyanation to generate difunctionalized products in a single operation.
Collapse
Affiliation(s)
- Fuchao Yu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Daniel A. Valles
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Weijie Chen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Scott D. Daniel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
106
|
Babu MH, Sim J. Radical‐Mediated C‐H Alkylation of Glycine Derivatives: A Straightforward Strategy for Diverse α‐Unnatural Amino Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Madala Hari Babu
- Chungnam National University College of Pharmacy KOREA, REPUBLIC OF
| | - Jaehoon Sim
- Chungnam National University College of Pharmacy College of Pharmacy 99 Daehak-ro, Yuseong-guW6 College of Pharmacy 34134 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
107
|
Yu M, Zhen L, Jiang L. Cobalt‐Catalyzed Hydrolysis/C‐H Thiolation Cascade Reaction of N‐Aryl Thiocarbamoyl Fluorides with Water: Access to 3‐Alkyl‐2(3H)‐Benzothiazolones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Miao Yu
- East China Normal University CHINA
| | | | | |
Collapse
|
108
|
Yang H, Sun Z, Chen H, Mao F, Li X, Xu X. CuBr2 catalyzed alkynylation of tertiary methylamine with terminal alkyne using aqueous TBHP under mild conditions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
109
|
San Segundo M, Correa A. Radical C–H Alkylation with Ethers and Unactivated Cycloalkanes toward the Assembly of Tetrasubstituted Amino Acid Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
110
|
Yuan C, Chen D, Pan C, Yu JT. Benzylic C-H Heteroarylation of 4-Methylphenols with 2H-Indazoles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
111
|
Hemin-catalyzed controlled oxidative cyanation of secondary amine for the synthesis of α-aminonitriles and α-iminonitriles. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
112
|
Liu K, Studer A. Formal β-C-H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206533. [PMID: 35656716 PMCID: PMC9400853 DOI: 10.1002/anie.202206533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 01/19/2023]
Abstract
α-C-H-functionalization of ketones and aldehydes has been intensively explored in organic synthesis. The functionalization of unactivated β-C-H bonds in such carbonyl compounds is less well investigated and developing a general method for their β-C-H arylation remains challenging. Herein we report a method that uses cooperative nickel and photoredox catalysis for the formal β-C-H arylation of aldehydes and ketones with (hetero)aryl bromides. The method features mild conditions, remarkable scope and wide functional group tolerance. Importantly, the introduced synthetic strategy also allows the β-alkenylation, β-alkynylation and β-acylation of aldehydes under similar conditions. Mechanistic studies revealed that this transformation proceeds through a single electron oxidation/Ni-mediated coupling/reductive elimination cascade.
Collapse
Affiliation(s)
- Kun Liu
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
113
|
Yu JX, Cheng YY, Chen B, Tung CH, Wu LZ. Cobaloxime Photocatalysis for Phosphorylated Heteroaromatics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ji-Xin Yu
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Yuan-Yuan Cheng
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Bin Chen
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Chen-Ho Tung
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry Chinese Academy of Science Zhongguancun east road 29#, haidian district, Beijing 100190, China 100190 Beijing CHINA
| |
Collapse
|
114
|
Deore J, De M. Photoredox C(sp3)‐C(sp2) Cross‐Dehydrogenative Coupling of Xanthene with β‐keto moiety using MoS2 Quantum Dot (QD) Catalyst. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
115
|
Wang H, Fu L, Zhou C, Li G. Pd(ii)-catalyzed meta-C-H bromination and chlorination of aniline and benzoic acid derivatives. Chem Sci 2022; 13:8686-8692. [PMID: 35974770 PMCID: PMC9337732 DOI: 10.1039/d2sc01834a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
The classic electrophilic bromination leads to ortho- and para-bromination of anilines due to their electron-rich properties. Herein we report the development of an unprecedented Pd-catalyzed meta-C-H bromination of aniline derivatives using commercially available N-bromophthalimide (NBP), which overcomes the competing ortho/para-selectivity of electrophilic bromination of anilines. The addition of acid additives is crucial for the success of this reaction. A broad range of substrates with various substitution patterns can be tolerated in this reaction. Moreover, benzoic acid derivatives bearing complex substitution patterns are also viable with this mild bromination reaction, and meta-C-H chlorination is also feasible under similar reaction conditions. The ease of the directing group removal and subsequent diverse transformations of the brominated products demonstrate the application potential of this method and promise new opportunities for drug discovery.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
| | - Lei Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
| | - Chunlin Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
| | - Gang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS) 155 West Yang-Qiao Road Fuzhou Fujian 350002 China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
116
|
Li R, Wang Z, Zhang Y, Tan Z, Xu D. Iodine‐Catalyzed Oxidative Coupling of Indolin‐2‐ones with Indoles: Synthesis of 3,3‐Disubstituted Oxindole Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruo‐Pu Li
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| | - Zheng‐Lin Wang
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| | - Yun‐Hao Zhang
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| | - Zhi‐Yu Tan
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| | - Da‐Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
117
|
Lyu H, Xie Z. Transition metal catalyzed selective B(3)-H or B(4)-H amination of o-carboranes via dehydrogenative BH/NH cross-coupling. Chem Commun (Camb) 2022; 58:8392-8395. [PMID: 35792563 DOI: 10.1039/d2cc02852b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A unique approach to vertex-selective catalytic B-H amination at either the B(3)- or B(4)-position in o-carboranes has been developed. Using different transition metal catalysts, dehydrogenative BH/NH cross-coupling of o-carboranes and free amines has been achieved, leading to a wide variety of cage B(3)- or B(4)-aminated o-carboranes in moderate to high yields with excellent regioselectivity, where carboranyl carboxylic acids and amines can serve as competent coupling partners without any pre-functionalization. The isolation and structural identification of a key intermediate provide an insight into the reaction mechanism in the catalytic B(4)-H amination.
Collapse
Affiliation(s)
- Hairong Lyu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, China.
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, China.
| |
Collapse
|
118
|
Shi Z, Li Y, Li N, Wang WZ, Lu HK, Yan H, Yuan Y, Zhu J, Ye KY. Electrochemical Migratory Cyclization of N-Acylsulfonamides. Angew Chem Int Ed Engl 2022; 61:e202206058. [PMID: 35606293 DOI: 10.1002/anie.202206058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Benzoxathiazine dioxide, as a bioisostere of the clinically widely used diazoxide, exhibits interesting biological activity. However, limited success has been achieved in terms of its concise and direct synthesis. We report herein a facile electrochemical migratory cyclization of N-acylsulfonamides to access a diverse array of benzoxathiazine dioxides. The inclusion of electrochemistry is crucial for realizing such a novel transformation, which is substantiated both by the experiments and density-functional-theory calculations.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuanyuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Nan Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Wei-Zhen Wang
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hao-Kuan Lu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hong Yan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
119
|
Xu B, Su W. A Tandem Dehydrogenation-Driven Cross-Coupling between Cyclohexanones and Primary Amines for Construction of Benzoxazoles. Angew Chem Int Ed Engl 2022; 61:e202203365. [PMID: 35546303 DOI: 10.1002/anie.202203365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 01/27/2023]
Abstract
Herein, we report a transition metal-free, operationally simple, general method for straightforward syntheses of 2-substituted benzoxazoles from readily available cyclohexanones and aliphatic primary amines by an imine α-oxygenation-initiated cascade reaction sequence. The key to achieving high selectivity and excellent functional-group tolerance is the use of TEMPO as a mild oxidant that selectively oxidizes the reaction intermediates through its multiple reactivity modes, thus facilitating the individual steps to proceed in succession. More than 70 substrate combinations are disclosed, demonstrating the reliability of this protocol to synthesize structurally diverse products, including marketed drugs, drug candidate, and natural products that are unattainable by the existing methods.
Collapse
Affiliation(s)
- Biping Xu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, China
| |
Collapse
|
120
|
Ghosh S, Pyne P, Ghosh A, Hajra A. Ortho C-H Functionalizations of 2-Aryl-2H-Indazoles. CHEM REC 2022; 22:e202200158. [PMID: 35866505 DOI: 10.1002/tcr.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
C-H Functionalization is ubiquitously considered as a powerful, efficient and handy tool for installing various functional groups in complex organic heterocycles in an easier and step-economic way. Similarly, indazole is endowed as a potent heterocycle and is eminent for its profound impact in biological, medicinal and industrial chemistry. In this scenario, C-H functionalization at the selective ortho position of 2-arylindazole in assistance of a metal catalyst is also becoming an appealing approach in synthetic organic chemistry. This review addressed the recent findings and developments on ortho C-H functionalization of 2-aryl-2H-indazazoles with literature coverage extending from 2018 to May 2022.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
121
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
122
|
Dong MY, Han CY, Li DS, Hong Y, Liu F, Deng HP. Hydrogen-Evolution Allylic C(sp 3)–H Alkylation with Protic C(sp 3)–H Bonds via Triplet Synergistic Brønsted Base/Cobalt/Photoredox Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meng-Yuan Dong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Chun-Yu Han
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Dong-Sheng Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yang Hong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Fang Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
123
|
Nguyen OT, Nguyen TD, Quang TH, Huy TH, Trang PQ, Sy DT. A bimetallic‐catalyzed oxidative esterification reaction forming α‐acyloxy ether. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oanh T.K. Nguyen
- Institute of Applied Technology and Sustainable Development Nguyen Tat Thanh University 298A-300A Nguyen Tat Thanh Street, Ward 13, District 4 Ho Chi Minh City 700000 Vietnam
| | - Trinh Duy Nguyen
- Institute of Applied Technology and Sustainable Development Nguyen Tat Thanh University 298A-300A Nguyen Tat Thanh Street, Ward 13, District 4 Ho Chi Minh City 700000 Vietnam
| | - Tran Huu Quang
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay District Ha Noi City 10072 Vietnam
| | - Tran Huu Huy
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay District Ha Noi City 10072 Vietnam
| | - Pham Quynh Trang
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay District Ha Noi City 10072 Vietnam
| | - Do Trung Sy
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay District Ha Noi City 10072 Vietnam
| |
Collapse
|
124
|
Hickey A, Merz J, Al Mamari HH, Friedrich A, Marder TB, McGlacken GP. Iridium-Catalyzed Borylation of 6-Fluoroquinolines: Access to 6-Fluoroquinolones. J Org Chem 2022; 87:9977-9987. [PMID: 35839386 PMCID: PMC9368603 DOI: 10.1021/acs.joc.2c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The Ir-catalyzed C–H borylation of fluoroquinolines
has
been realized. The quinoline boronic ester formed undergoes a range
of
important transformations of relevance to medicinal chemistry. Judicious
choice of the substituent at C4 on the quinoline facilitated the unmasking
of a fluoroquinolone—the core structure of many antibiotics.
Collapse
Affiliation(s)
- Aobha Hickey
- School of Chemistry & Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 YN60, Ireland
| | - Julia Merz
- Institute for Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hamad H Al Mamari
- Institute for Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box 36, Al Khoudh 123 Muscat, Sultanate of Oman
| | - Alexandra Friedrich
- Institute for Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gerard P McGlacken
- School of Chemistry & Analytical and Biological Chemistry Research Facility, University College Cork, Cork T12 YN60, Ireland.,Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
125
|
Xiang J, Patureau FW. Cross Dehydrogenative Coupling of Chloro‐ and Fluoroalkanes with Methylarenes. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jia‐Xiang Xiang
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
126
|
Dinesh V, Nagarajan R. (NH 4) 2S 2O 8-Mediated Metal-Free Decarboxylative Formylation/Acylation of α-Oxo/Ketoacids and Its Application to the Synthesis of Indole Alkaloids. J Org Chem 2022; 87:10359-10365. [PMID: 35820161 DOI: 10.1021/acs.joc.2c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A metal-free method for the formylation/acylation of indoles and β-carbolines with (NH4)2S2O8 via direct decarboxylative cross-coupling of α-oxo/ketoacids in moderate to good yields is described. The reaction occurs between ambient temperature and 40 °C under mild reaction conditions with commercially available starting materials. This methodology can be expanded to some biologically active indole alkaloids like pityriacitrins, eudistomins Y1 and Y3, and marinacarbolines A-D.
Collapse
Affiliation(s)
- Votarikari Dinesh
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Rajagopal Nagarajan
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
127
|
Yang DY, Wang H, Chang CR. Recent Advances for Alkylation of Ketones and Secondary Alcohols using Alcohols in Homogeneous Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
128
|
Jiang C, Sha X, Ni C, Qin W, Zhu X, Wang S, Li X, Lu H. Visible-Light-Promoted Cross Dehydrogenative/Decarboxylative Coupling Cascades of Glycine Ester Derivatives and β-Keto Acids. J Org Chem 2022; 87:8744-8751. [PMID: 35708260 DOI: 10.1021/acs.joc.2c00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-induced dehydrogenative/decarboxylative coupling reaction of arylglycine derivatives and β-keto acids is described. This photocatalyst- and additive-free protocol can be applied in the efficient synthesis of γ-keto glycine derivatives under ambient conditions. Further uses of this methodology and a plausible mechanism are also demonstrated.
Collapse
Affiliation(s)
- Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xuefei Sha
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Cheng Ni
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Wei Qin
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xuejie Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Shan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Xuan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| |
Collapse
|
129
|
Jiang HM, Sun Q, Jiang JP, Qin JH, Ouyang XH, Song RJ. Copper‐Catalyzed Oxidative 1,2‐Alkylarylation of Styrenes with Unactivated C(sp3)‐H Alkanes and Electron‐Rich Aromatics via C(sp3)‐H/C(sp2)‐H Functionalization. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
130
|
Cremer C, Patureau FW. O 2-Mediated Te(II)-Redox Catalysis for the Cross-Dehydrogenative Coupling of Indoles. JACS AU 2022; 2:1318-1323. [PMID: 35783164 PMCID: PMC9241012 DOI: 10.1021/jacsau.2c00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 05/09/2023]
Abstract
Very few elements in the periodic system can catalytically activate O2, such as in the context of cross-dehydrogenative couplings. The development of O2-activating catalysts is essential to enable new and sustainable reactivity concepts to emerge, because these catalysts also often feature specific activating interactions with the target substrates. In this context, the unprecedented Te(II)/Te(III) catalyzed dehydrogenative C3-C2 dimerization of indoles is described herein. The fact that O2 can be directly utilized as a terminal oxidant in this reaction, as well as the absence of any background reactivity without the redox-active Te catalyst, constitute very important milestones for the fields of cross-dehydrogenative couplings and tellurium catalysis.
Collapse
|
131
|
Xu XJ, Amuti A, Hu WJ, Adelibieke Q, Wusiman A. TEMPO-Promoted Mono- and Bisimidation of Tertiary Anilines: Synthesis of Symmetric and Unsymmetric N-Mannich Bases. J Org Chem 2022; 87:9011-9022. [PMID: 35749377 DOI: 10.1021/acs.joc.2c00700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A TEMPO-promoted method was developed for the synthesis of symmetric bis-N-Mannich bases via sequential activation of two α,α'-amino C(sp3)-H bonds of N,N-dimethylanilines under mild conditions. This methodology was further extended for monoimidation of α-amino-functionalized methylanilines to give unsymmetric N-Mannich bases in good to high yields. Several control experiments were performed, and the coupling reaction outcomes indicated that the oxoammonium (TEMPO+) species is involved in the reaction.
Collapse
Affiliation(s)
- Xiu Juan Xu
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. of China
| | - Adila Amuti
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. of China
| | - Wen Jing Hu
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. of China
| | - Qiaerbati Adelibieke
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. of China
| | - Abudureheman Wusiman
- School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, P. R. of China.,Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054, People's Republic of China
| |
Collapse
|
132
|
Li Q, Zhao CQ, Chen T, Han LB. Direct phosphorylation of benzylic C-H bonds under transition metal-free conditions forming sp 3C-P bonds. RSC Adv 2022; 12:18441-18444. [PMID: 35799919 PMCID: PMC9227801 DOI: 10.1039/d2ra02812c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 12/16/2022] Open
Abstract
Direct phosphorylation of benzylic C-H bonds was achieved in a biphasic system under transition metal-free conditions. A selective radical/radical sp3C-H/P(O)-H cross coupling was proposed, and various substituted toluenes were applicable. The transformation provided a promising method for constructing sp3C-P bonds.
Collapse
Affiliation(s)
- Qiang Li
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Chang-Qiu Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Li-Biao Han
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
- Zhejiang Yanfan New Materials Co., Ltd. Shangyu Zhejiang Province 312369 China
| |
Collapse
|
133
|
Miller JL, Lawrence JMIA, Rodriguez Del Rey FO, Floreancig PE. Synthetic applications of hydride abstraction reactions by organic oxidants. Chem Soc Rev 2022; 51:5660-5690. [PMID: 35712818 DOI: 10.1039/d1cs01169c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbon-hydrogen bond functionalizations provide an attractive method for streamlining organic synthesis, and many strategies have been developed for conducting these transformations. Hydride-abstracting reactions have emerged as extremely effective methods for oxidative bond-forming processes due to their mild reaction conditions and high chemoselectivity. This review will predominantly focus on the mechanism, reaction development, natural product synthesis applications, approaches to catalysis, and use in enantioselective processes for hydride abstractions by quinone, oxoammonium ion, and carbocation oxidants. These are the most commonly employed hydride-abstracting agents, but recent efforts illustrate the potential for weaker ketone and triaryl borane oxidants, which will be covered at the end of the review.
Collapse
Affiliation(s)
- Jenna L Miller
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | - Jean-Marc I A Lawrence
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | | | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| |
Collapse
|
134
|
Shi Z, Li Y, Li N, Wang W, Lu H, Yan H, Yuan Y, Zhu J, Ye K. Electrochemical Migratory Cyclization of
N
‐Acylsulfonamides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuanyuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Nan Li
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Wei‐Zhen Wang
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Hao‐Kuan Lu
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Hong Yan
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ke‐Yin Ye
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
135
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
136
|
Liu K, Studer A. Formal β‐C‐H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kun Liu
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry and pharmacy GERMANY
| | - Armido Studer
- Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut Corrensstrasse 40 48149 Münster GERMANY
| |
Collapse
|
137
|
Logeswaran R, Jeganmohan M. Transition‐Metal‐Catalyzed, Chelation‐Assisted C−H Alkenylation and Allylation of Organic Molecules with Unactivated Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
138
|
Shang X, Liu ZQ. Advances in free-radical alkylation and arylation with organoboronic acids. Org Biomol Chem 2022; 20:4074-4080. [PMID: 35535704 DOI: 10.1039/d2ob00532h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organoboronic acids act as carbon-centered radical precursors that are widely utilized to construct diverse C-C bonds. This review summarizes the advances in this field. The content is divided into four parts according to the different categories of coupling partners with organoboronic acids. The reaction conditions as well as the mechanisms are demonstrated in each part.
Collapse
Affiliation(s)
- Xiaojie Shang
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, Gansu 730070, P. R. China.
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
139
|
Huang CY, Li J, Li CJ. Photocatalytic C(sp 3) radical generation via C-H, C-C, and C-X bond cleavage. Chem Sci 2022; 13:5465-5504. [PMID: 35694342 PMCID: PMC9116372 DOI: 10.1039/d2sc00202g] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Abstract
C(sp3) radicals (R˙) are of broad research interest and synthetic utility. This review collects some of the most recent advancements in photocatalytic R˙ generation and highlights representative examples in this field. Based on the key bond cleavages that generate R˙, these contributions are divided into C–H, C–C, and C–X bond cleavages. A general mechanistic scenario and key R˙-forming steps are presented and discussed in each section. C(sp3) radicals (R˙) are of broad research interest and synthetic utility.![]()
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Jianbin Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
140
|
Wang N, Chi Z, Wang X, Gao Z, Li S, Li G. Formal C-H/C-I Metathesis: Site-Selective C-H Iodination of Anilines Using Aryl Iodides. Org Lett 2022; 24:3657-3662. [PMID: 35576322 DOI: 10.1021/acs.orglett.2c01283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functional group metathesis has the potential to render mild reaction conditions for C-H functionalization. Protocols for the meta- and ortho-C-H iodination of aniline derivatives via formal C(sp2)-H/C(sp2)-I metathesis using 2-nitrophenyl iodides as mild iodinating reagents are reported herein. These protocols led to the production of a range of valuable iodinated aniline derivatives. These results demonstrate the potential of developing novel site-selective C-H activation reactions with electron-rich compounds, since mild reagents can often been utilized in functional group metathesis reactions.
Collapse
Affiliation(s)
- Ning Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhuomin Chi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xinchao Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zezhong Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
141
|
Bromo‐Substituted Diazenyl‐pyrazolo[1,5‐a]pyrimidin‐2‐amines: Sonogashira Cross‐Coupling Reaction, Photophysical Properties, Bio‐Interaction and HSA light‐up sensor. Chembiochem 2022; 23:e202200248. [DOI: 10.1002/cbic.202200248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/13/2022] [Indexed: 11/07/2022]
|
142
|
Xu B, Su W. A Tandem Dehydrogenation‐Driven Cross‐Coupling between Cyclohexanones and Primary Amines for Construction of Benzoxazoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Biping Xu
- FIRSM: Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Chemistry CHINA
| | - Weiping Su
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences State Key Laboratory of Structural Chemistry Yangqiao West Road 155# 350002 Fuzhou CHINA
| |
Collapse
|
143
|
Xu X, Zheng W, Ren L, Jiao P. Thermodynamic and Kinetic Studies on Copper-Catalyzed Cross-Dehydrogenative Couplings of N-aryl Glycine Esters with Phenols. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaofei Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Wenrui Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lufei Ren
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | | |
Collapse
|
144
|
Zhang L, Pfund B, Wenger OS, Hu X. Oxidase‐Type C−H/C−H Coupling Using an Isoquinoline‐Derived Organic Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202202649. [PMID: 35253971 PMCID: PMC9310868 DOI: 10.1002/anie.202202649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 12/21/2022]
Abstract
Oxidase‐type oxidation is an attractive strategy in organic synthesis due to the use of O2 as the terminal oxidant. Organic photocatalysis can effect metal‐free oxidase chemistry. Nevertheless, current methods are limited in reaction scope, possibly due to the lack of suitable photocatalysts. Here we report an isoquinoline‐derived diaryl ketone‐type photocatalyst, which has much enhanced absorption of blue and visible light compared to conventional diaryl ketones. This photocatalyst enables dehydrogenative cross‐coupling of heteroarenes with unactivated and activated alkanes as well as aldehydes using air as the oxidant. A wide range of heterocycles with various functional groups are suitable substrates. Transient absorption and excited‐state quenching experiments point to an unconventional mechanism that involves an excited state “self‐quenching” process to generate the N‐radical cation form of the sensitizer, which subsequently abstracts a hydrogen atom from the alkane substrate to yield a reactive alkyl radical.
Collapse
Affiliation(s)
- Lei Zhang
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
- School of Chemistry and Material Sciences Hangzhou Institute of Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan, Hangzhou 310024 China
| | - Björn Pfund
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI Lausanne Switzerland
| |
Collapse
|
145
|
Yu C, Huang R, Patureau FW. Direct Dehydrogenative Access to Unsymmetrical Phenones. Angew Chem Int Ed Engl 2022; 61:e202201142. [PMID: 35128810 PMCID: PMC9314079 DOI: 10.1002/anie.202201142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/09/2022]
Abstract
The first non-directed dehydrogenative phenone coupling method of methylarenes with aromatic C-H bonds, displaying a large substrate scope, is herein reported. This reaction represents a far more direct atom- and step-efficient alternative to the classical Friedel-Crafts or Suzuki-Miyaura derived acylation reactions. The method can be carried out on a gram scale and was successfully applied to the synthesis of several Ketoprofen drug analogues.
Collapse
Affiliation(s)
- Congjun Yu
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Raolin Huang
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Frederic W. Patureau
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
146
|
Das KM, Pal A, Adarsh NN, Thakur A. A novel quinoline-based NNN-pincer Cu(II) complex as a superior catalyst for oxidative esterification of allylic C(sp 3)-H bonds. Org Biomol Chem 2022; 20:3540-3549. [PMID: 35393991 DOI: 10.1039/d2ob00220e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report for the first time that the quinoline-based NNN-pincer Cu(II) complex acts as an air stable superior catalyst for the oxidative cross-coupling of the allyl sp3 C-H bond with an acid for the synthesis of allyl esters in a homogeneous system at ambient temperature. The synthesized catalyst, 1, has been well characterized by various analytical techniques (HRMS, single crystal X-ray diffraction, CV, EPR, UV-vis spectroscopy) and showed excellent catalytic activity for the oxidative esterification of allylic C(sp3)-H bonds at 40 °C within a very short period of time (1 h) using only 1 mol% of the catalyst. A wide variety of aromatic allylic esters were synthesized in moderate to good yields, which could be extended to aliphatic allyl esters as well.
Collapse
Affiliation(s)
- Krishna Mohan Das
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Nayarassery N Adarsh
- Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, New York, 13699, USA
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| |
Collapse
|
147
|
Zeng CL, Wang H, Gao D, Zhang Z, Ji D, He W, Liu CK, Yang Z, Fang Z, Guo K. CF 3SO 2Na-Mediated Visible-Light-Induced Cross-Dehydrogenative Coupling of Heteroarenes with Aliphatic C(sp 3)-H Bonds. Org Lett 2022; 24:3244-3248. [PMID: 35446591 DOI: 10.1021/acs.orglett.2c01032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Minisci-type reaction is one of the important means to construct C(sp3)-H functionalization of heteroarenes. According to traditional methods, stoichiometric amounts of precious transition metal catalysts and chemical oxidants were required at high temperatures. Here, a green and gentle novel Minisci-type method was developed via visible-light-induced cross-dehydrogenative coupling of heteroarenes with aliphatic C(sp3)-H bonds under oxidant-free and transition-metal-catalyst-free conditions. Only the catalytic equivalent of CF3SO2Na and room temperature were required to maintain an efficient reaction.
Collapse
Affiliation(s)
- Cui-Lian Zeng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Hao Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Di Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Zhen Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Dong Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Cheng-Kou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Zhao Yang
- College of Engineering, China Pharmaceutical University, Nanjing 210003, P.R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P.R. China
| |
Collapse
|
148
|
Zheng L, Cai L, Mei W, Liu G, Deng L, Zou X, Zhuo X, Zhong Y, Guo W. Copper-Catalyzed Phosphorylation of N, N-Disubstituted Hydrazines: Synthesis of Multisubstituted Phosphorylhydrazides as Potential Anticancer Agents. J Org Chem 2022; 87:6224-6236. [PMID: 35442041 DOI: 10.1021/acs.joc.2c00452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An efficient copper-catalyzed aerobic oxidative cross-dehydrogenative coupling reaction for the synthesis of multisubstituted phosphorylhydrazides from N,N-disubstituted hydrazines and hydrogen phosphoryl compounds is accomplished. The reaction proceeds under mild conditions without the addition of any external oxidants and bases. This work reported here represents a direct P(═O)-N-N bond formation with the advantages of being operationally simple, good functional group tolerance, and high atom and step economy. Furthermore, the selected compounds exhibit potential inhibitory activity against tumor cells, which can be used in the field of screening of anticancer agents as new chemical entities.
Collapse
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Weijie Mei
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Gongping Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Ling Deng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yumei Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
149
|
Wang X, Wang H, Zhou C, Yang L, Fu L, Li G. Native carboxyl group-assisted C-H acetoxylation of hydrocinnamic and phenylacetic acids. Chem Commun (Camb) 2022; 58:4993-4996. [PMID: 35357385 DOI: 10.1039/d2cc00459c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The use of a native directing group to promote C-H activation is highly desirable. Herein, we report a method of native carboxyl-assisted, Pd(II)-catalyzed ortho-C-H acetoxylation of both hydrocinnamic and phenylacetic acids that can be found in many biologically active molecules as the key moieties. Based on the broad scope and the application potential showcased with drug molecules, it is anticipated that this C-H acetoxylation reaction will find attractive applicability in future synthetic endeavors.
Collapse
Affiliation(s)
- Xinchao Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China.
| | - Hang Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China.
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China.
| | - Lei Yang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China.
| | - Lei Fu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China.
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, China. .,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
150
|
Wang B, Zhou MJ, Zhou QL. Visible-Light-Induced α,γ-C(sp 3)-H Difunctionalization of Piperidines. Org Lett 2022; 24:2894-2898. [PMID: 35416677 DOI: 10.1021/acs.orglett.2c00831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we describe a novel protocol for visible-light-induced α,γ-C(sp3)-H difunctionalization of piperidines. This redox-neutral, atom-economical protocol, which exhibits a broad substrate scope and good functional group compatibility, constitutes a concise, practical method for constructing piperidine-containing bridged-ring molecules. Preliminary mechanistic studies indicated that highly regioselective activation of the inert γ-C(sp3)-H bond of piperidines was achieved through a 1,5-hydrogen atom transfer reaction of a nitrogen radical generated in situ.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Min-Jie Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|