101
|
Lin J, Xia L, Liang J, Han Y, Wang H, Oyang L, Tan S, Tian Y, Rao S, Chen X, Tang Y, Su M, Luo X, Wang Y, Wang H, Zhou Y, Liao Q. The roles of glucose metabolic reprogramming in chemo- and radio-resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:218. [PMID: 31122265 PMCID: PMC6533757 DOI: 10.1186/s13046-019-1214-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Reprogramming of cancer metabolism is a newly recognized hallmark of malignancy. The aberrant glucose metabolism is associated with dramatically increased bioenergetics, biosynthetic, and redox demands, which is vital to maintain rapid cell proliferation, tumor progression, and resistance to chemotherapy and radiation. When the glucose metabolism of cancer is rewiring, the characters of cancer will also occur corresponding changes to regulate the chemo- and radio-resistance of cancer. The procedure is involved in the alteration of many activities, such as the aberrant DNA repairing, enhanced autophagy, oxygen-deficient environment, and increasing exosomes secretions, etc. Targeting altered metabolic pathways related with the glucose metabolism has become a promising anti-cancer strategy. This review summarizes recent progress in our understanding of glucose metabolism in chemo- and radio-resistance malignancy, and highlights potential molecular targets and their inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiaxin Liang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Heran Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yutong Tian
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shan Rao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiaoyan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Min Su
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xia Luo
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ying Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Key Laboratory of Translational Radiation Oncology, Hunan Province, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
102
|
Ranaweera R, Ghafari C, Luo L. Bubble-Nucleation-Based Method for the Selective and Sensitive Electrochemical Detection of Surfactants. Anal Chem 2019; 91:7744-7748. [DOI: 10.1021/acs.analchem.9b01060] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ruchiranga Ranaweera
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Carina Ghafari
- Chemistry Department, Kalamazoo College, Kalamazoo, Michigan 49006, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
103
|
Hu Y, Lv T, Ma Y, Xu J, Zhang Y, Hou Y, Huang Z, Ding Y. Nanoscale Coordination Polymers for Synergistic NO and Chemodynamic Therapy of Liver Cancer. NANO LETTERS 2019; 19:2731-2738. [PMID: 30919635 DOI: 10.1021/acs.nanolett.9b01093] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nitric oxide (NO) induces a multitude of antitumor activities, encompassing the induction of apoptosis, sensitization to chemo-, radio-, or immune-therapy, and inhibition of metastasis, drug resistance, angiogenesis, and hypoxia, thus attracting much attention in the area of cancer intervention. To improve the precise targeting and treatment efficacy of NO, a glutathione (GSH)-sensitive NO donor (1,5-bis[(l-proline-1-yl)diazen-1-ium-1,2-diol- O2-yl]-2,4-dinitrobenzene, BPDB) coordinates with iron ions to form the nanoscale coordination polymer (NCP) via a simple precipitation and then partial ion exchange process. The obtained Fe(II)-BNCP shows desirable solubility, biocompatibility, and circulation stability. Quick NO release triggered by high concentrations of GSH in tumor cells improves the specificity of NO release in situ, thus avoiding side effects in other tissues. Meanwhile, under high concentrations of H2O2 in tumors, Fe2+ ions in BPDB-based NCP, named Fe(II)-BNCP, exert Fenton activity to generate hydroxyl radicals (·OH), which is the main contribution for chemodynamic therapy (CDT). In addition, ·O2- generated by the Haber-Weiss reaction of Fe2+ ions with H2O2 can quickly react with NO to produce peroxynitrite anion (ONOO-) that is more cytotoxic than ·O2- or NO only. This synergistic NO-CDT effect has been proved to retard the tumor growth in Heps xenograft ICR mouse models. This work not only implements a synergistic effect of NO-CDT therapy but also offers a simple and efficient strategy to construct a coordination polymer nanomedicine via rationally designed prodrug molecules such as NO donors.
Collapse
Affiliation(s)
- Yihui Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , China
| | - Tian Lv
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , China
| | - Yu Ma
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , China
| | - Junjie Xu
- Beijing Key Laboratory for Magnetoeletric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoeletric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Department of Materials Science and Engineering, College of Engineering , Peking University , Beijing 100871 , China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , China
| | - Ya Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
104
|
Chen X, Liu Y, Wen Y, Yu Q, Liu J, Zhao Y, Liu J, Ye G. A photothermal-triggered nitric oxide nanogenerator combined with siRNA for precise therapy of osteoarthritis by suppressing macrophage inflammation. NANOSCALE 2019; 11:6693-6709. [PMID: 30900717 DOI: 10.1039/c8nr10013f] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although nitric oxide (NO) can be used to treat osteoarthritis (OA) by inhibiting inflammation, a method for the accurately controlled release of NO in inflammatory cells is still elusive. Herein, photothermal-triggered NO nanogenerators NO-Hb@siRNA@PLGA-PEG (NHsPP) were constructed by assembling photothermal-agents and NO molecules within nanoparticles. In the NHsPP nanoparticles the hemoglobin (Hb) nanoparticles can act as a NO carrier which can absorb near-infrared light at 650 nm (0.5 W cm-2) and convert it into heat to trigger the release of NO. Moreover, after loading Notch1-siRNA, precise treatment can be achieved. Furthermore, using the synergistic effect of photothermal therapy, the NHsPP nanoparticles achieved simultaneous treatment with NO, siRNA and PTT. Through this combination therapy, the therapeutic effect of the NHsPP nanoparticles was significantly enhanced compared to the treatment groups using only NO, siRNA or PTT. This combination therapy inhibits the inflammatory response effectively by reducing the level of pro-inflammatory cytokines and the macrophage response. Subsequently, guided by dual-modal imaging, the NHsPP nanoparticles can not only accumulate effectively in OA mice, but can also reduce the inflammatory response and efficiently prevent cartilage erosion, without causing toxic side effects in the major organs. Therefore, this novel photothermal nanoparticle-based NO-releasing system is expected to be a potential alternative for clinical inflammatory disease therapy and may provide image guidance when combined with other nanotherapy systems.
Collapse
Affiliation(s)
- Xu Chen
- Department of Chemistry, Jinan University. Guangzhou, 510632, China.
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Chen M, Song F, Liu Y, Tian J, Liu C, Li R, Zhang Q. A dual pH-sensitive liposomal system with charge-reversal and NO generation for overcoming multidrug resistance in cancer. NANOSCALE 2019; 11:3814-3826. [PMID: 30600823 DOI: 10.1039/c8nr06218h] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In cancer therapy, chemotherapeutic drugs frequently encounter multidrug resistance (MDR) induced by the overexpression of drug transporters such as P-glycoprotein (P-gp). Herein, in order to overcome MDR and improve the effectiveness of chemotherapy, we developed a novel pH-sensitive charge-reversal and NO generation liposomal system by modifying a pH-sensitive polymer (PEG-PLL-DMA) on the surface of cationic liposomes for delivering a NO donor (DETA NONOate) and a chemotherapy drug (paclitaxel, PTX) into MDR cells. The proposed liposomal system (PTX/NO/DMA-L) exhibited a distinctive charge-reversal capacity, which was negatively charged under physiological conditions (pH 7.4) but could reverse to positive charge in a tumor microenvironment (pH 6.5) due to the cleavable amide linkages formed between PEG-PLL and DMA, leading to the improvement of cell uptake. Once arrived in the endosomes and lysosomes (pH 5.0), DETA NONOate was triggered to decompose and release NO, which further promoted the quick release of PTX and inhibited the P-gp mediated efflux. The charge-reversal, NO generation and NO-triggered rapid release of drugs could significantly increase the accumulation of PTX in tumors and eventually improve the antitumor efficacy. These results indicate that this dual pH-sensitive liposomal system is a highly promising approach for chemotherapy and may pave a new avenue for overcoming MDR in cancer.
Collapse
MESH Headings
- A549 Cells
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Cell Survival/drug effects
- Drug Resistance, Neoplasm/drug effects
- Humans
- Hydrogen-Ion Concentration
- Liposomes/chemistry
- Mice
- Mice, Nude
- Microscopy, Confocal
- Neoplasms/drug therapy
- Neoplasms/pathology
- Nitric Oxide/metabolism
- Paclitaxel/chemistry
- Paclitaxel/metabolism
- Paclitaxel/pharmacology
- Paclitaxel/therapeutic use
- Polymers/chemistry
- Tissue Distribution
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Mingmao Chen
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Feifei Song
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Yan Liu
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jia Tian
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Chun Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Ruyue Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China. and Key Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
106
|
Zhang Z, Ji Y. Mesoporous Manganese Dioxide Coated Gold Nanorods as a Multiresponsive Nanoplatform for Drug Delivery. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People’s Republic of China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People’s Republic of China
| |
Collapse
|
107
|
Park D, Im S, Saravanakumar G, Lee YM, Kim J, Kim K, Lee J, Kim J, Kim WJ. A cyotosol-selective nitric oxide bomb as a new paradigm of an anticancer drug. Chem Commun (Camb) 2019; 55:14789-14792. [DOI: 10.1039/c9cc08028g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual pH and redox-sensitive polymeric NO delivery micelles act as a cytosol-selective NO bomb for efficient anticancer therapy.
Collapse
Affiliation(s)
- Dongsik Park
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Sooseok Im
- School of Interdisciplinary Bioscience and Bioengineering
- POSTECH
- Pohang 37666
- Republic of Korea
| | - Gurusamy Saravanakumar
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Yeong Mi Lee
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Jinhwan Kim
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Kunho Kim
- School of Interdisciplinary Bioscience and Bioengineering
- POSTECH
- Pohang 37666
- Republic of Korea
| | - Junseok Lee
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Jihoon Kim
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
| | - Won Jong Kim
- Department of Chemistry
- Pohang University of Science and Technology (POSTECH)
- Pohang 37673
- Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering
| |
Collapse
|
108
|
Fan Y, Guan S, Fang W, Li P, Hu B, Shan C, Wu W, Cao J, Cheng B, Liu W, Tang Y. A smart tumor-microenvironment responsive nanoprobe for highly selective and efficient combination therapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi01076a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a smart nanoprobe was designed not only to strengthen cells uptake capacity and modulate tumor hypoxic, but also to achieve efficient combination therapy.
Collapse
|
109
|
Zhang MK, Li CX, Wang SB, Liu T, Song XL, Yang XQ, Feng J, Zhang XZ. Tumor Starvation Induced Spatiotemporal Control over Chemotherapy for Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803602. [PMID: 30370690 DOI: 10.1002/smll.201803602] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2018] [Indexed: 06/08/2023]
Abstract
By integrating the characteristics of each therapy modality and material chemistry, a multitherapy modality is put forward: tumor starvation triggered synergism with sensitized chemotherapy. Following starvation-induced amplification of pathological abnormalities in tumors, chemotherapy is arranged to be locally activated and accurately reinforced to perfect multitherapy synergism from spatial and temporal perspectives. To this end, glucose oxidase (GOD) and a hypoxic prodrug of tirapazamine (TPZ) are loaded in acidity-decomposable calcium carbonate (CaCO3 ) nanoparticles concurrently tethered by hyaluronic acid. This hybrid nanotherapeutic shows a strong tendency to accumulate in tumors postinjection due to the cooperation between passive and active targeting mechanisms. The GOD-driven oxidation reaction deprives tumors of glucose for starvation therapy and concomitantly induces tumorous abnormality amplifications including elevated acidity and exacerbated hypoxia. Programmatically, the acidity amplification causes CaCO3 decomposition, offering not only spatial control over the liberation of embedded TPZ just within tumors but also the temporal control over timely chemotherapy initiation to match the occurrence of hypoxia amplification and thus benefiting perfect synergism between starvation therapy and chemotherapy.
Collapse
Affiliation(s)
- Ming-Kang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Shi-Bo Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Tao Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Lin Song
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, 430074, China
| | - Xiao-Quan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, 430074, China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
110
|
Yu L, Hu P, Chen Y. Gas-Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801964. [PMID: 30066474 DOI: 10.1002/adma.201801964] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Indexed: 05/16/2023]
Abstract
The fast advances of theranostic nanomedicine enable the rational design and construction of diverse functional nanoplatforms for versatile biomedical applications, among which gas-generating nanoplatforms (GGNs) have emerged very recently as unique theranostic nanoplatforms for broad gas therapies. Here, the recent developments of the rational design and chemical construction of versatile GGNs for efficient gas therapies by either exogenous physical triggers or endogenous disease-environment responsiveness are reviewed. These gases involve some therapeutic gases that can directly change disease status, such as oxygen (O2 ), nitric oxide (NO), carbon monoxide (CO), hydrogen (H2 ), hydrogen sulfide (H2 S) and sulfur dioxide (SO2 ), and other gases such as carbon dioxide (CO2 ), dl-menthol (DLM), and gaseous perfluorocarbon (PFC) for supplementary assistance of the theranostic process. Abundant nanocarriers have been adopted for gas delivery into lesions, including poly(d,l-lactic-co-glycolic acid), micelles, silica/mesoporous silica, organosilica, MnO2 , graphene, Bi2 Se3 , upconversion nanoparticles, CaCO3 , etc. Especially, these GGNs have been successfully developed for versatile biomedical applications, including diagnostic imaging and therapeutic use. The biosafety issue, challenges faced, and future developments on the rational construction of GGNs are also discussed for further promotion of their clinical translation to benefit patients.
Collapse
Affiliation(s)
- Luodan Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
111
|
Jin Q, Deng Y, Jia F, Tang Z, Ji J. Gas Therapy: An Emerging “Green” Strategy for Anticancer Therapeutics. ADVANCED THERAPEUTICS 2018; 1. [DOI: 10.1002/adtp.201800084] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 09/09/2024]
Abstract
AbstractAs an emerging area, gas therapy has attracted more and more attention in treating many diseases including cancer. The fabrication of stimuli‐responsive delivery systems with on‐demand release behavior is very promising for precision gas therapy, which can obtain optimal therapeutic performance without gas poisoning risks. In this review, the authors introduce the recent progress in the preparation of different kinds of gas carriers for efficient delivery of gaseous molecules (NO, H2S, CO, O2). Particularly, in order to achieve targeted accumulation of gaseous molecules in tumor tissues, gaseous molecules–integrated nanoparticles were constructed. Most importantly, by combination of gas therapy with other therapeutic modalities such as chemotherapy, photodynamic therapy (PDT), and radiotherapy, various multifunctional nanocarriers have been designed for synergistic cancer therapy. Especially, the recent developments of multifunctional gas‐carrying nanocarriers for synergistic cancer therapy are discussed in detail.
Collapse
Affiliation(s)
- Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Zhe Tang
- Department of Surgery Second Affiliated Hospital, School of Medicine Zhejiang University Hangzhou 310009 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
112
|
Wang M, Wu J, Li Y, Li F, Hu X, Wang G, Han M, Ling D, Gao J. A tumor targeted near-infrared light-controlled nanocomposite to combat with multidrug resistance of cancer. J Control Release 2018; 288:34-44. [DOI: 10.1016/j.jconrel.2018.08.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022]
|
113
|
Zhang X, Li Y, Hu C, Wu Y, Zhong D, Xu X, Gu Z. Engineering Anticancer Amphipathic Peptide-Dendronized Compounds for Highly-Efficient Plasma/Organelle Membrane Perturbation and Multidrug Resistance Reversal. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30952-30962. [PMID: 30088909 DOI: 10.1021/acsami.8b07917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Discovering new strategies for combating drug-resistant tumors becomes a worldwide challenge. Thereinto, stubborn drug-resistant tumor membrane is a leading obstacle on chemotherapy. Herein, we report a novel tumor-activatable amphipathic peptide-dendronized compound, which could form nanoaggregates in aqueous solutions, for perturbing tumor plasma/organelle membrane and reversing multidrug resistance. Distinguished from classical linear amphipathic peptide drugs for membrane disturbance, dendritic lysine-based architecture is designed as a multivalent scaffold to amplify the supramolecular interactions of cationic compound with drug-resistant tumor membrane. Moreover, arginine-rich residues as terminal groups are hopeful to generate multiple hydrogen bonding and electrostatic interactions with tumor membrane. On the other hand, antitumor molecule (doxorubicin) is devised as a hydrophobic moiety to intensify the membrane-inserting ability owing to the prominent interactions with hydrophobic domains of drug-resistant tumor membrane. As expected, these amphipathic peptide-dendronized compounds within the nanoaggregates could severely disturb both the structures and functions of tumor plasma/organelle membrane system, thereby resulting in the rapid leakage of many critical biomolecules, highly efficient apoptotic activation and antiapoptotic inhibition. This strategy on tumor membrane perturbation demonstrates a bran-new antitumor activity with high contributions to cell cycle arrest (at the S phase), strong apoptosis-inducing ability and satisfying cytotoxicity to a variety of drug-resistant tumor cell lines.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Materials Science and Engineering , Nanjing Tech University , Nanjing , Jiangsu 210009 , P.R. China
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| | - Yachao Li
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| | - Yahui Wu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| | - Dan Zhong
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| | - Xianghui Xu
- College of Materials Science and Engineering , Nanjing Tech University , Nanjing , Jiangsu 210009 , P.R. China
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| | - Zhongwei Gu
- College of Materials Science and Engineering , Nanjing Tech University , Nanjing , Jiangsu 210009 , P.R. China
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , Sichuan 610064 , P.R. China
| |
Collapse
|
114
|
Zhang H, Tian XT, Shang Y, Li YH, Yin XB. Theranostic Mn-Porphyrin Metal-Organic Frameworks for Magnetic Resonance Imaging-Guided Nitric Oxide and Photothermal Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28390-28398. [PMID: 30066560 DOI: 10.1021/acsami.8b09680] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chemotherapy remains restricted by its toxic adverse effects and resistance to drugs. The treatment of nitric oxide (NO) combined with imaging-guided physical therapy is a promising alternative for clinical applications. Herein, we report nanoscale metal-organic framework (NMOF) systems to integrate magnetic resonance (MR) imaging, spatiotemporally controllable NO delivery, and photothermal therapy (PTT) as a new means of cancer theranostics. As a proof of concept, the NMOFs are prepared with biocompatible Zr4+ ions and Mn-porphyrin as a bridging ligand. By inserting paramagnetic Mn ions into porphyrin rings, Mn-porphyrin renders the NMOFs strong T1-weighted MR contrast capacity and high photothermal conversion for efficient PTT. S-Nitrosothiol (SNO) is conjugated to the surfaces of the NMOFs for heat-sensitive NO generation. Moreover, single near-infrared (NIR) light triggers the controllable NO release and PTT simultaneously for their efficient synergistic therapy with one-step operation. Upon intravenous injection, NMOF-SNO shows effective tumor accumulation as exposed by the MR images of the tumor-bearing mice. When exposed to the NIR laser, the tumors of mice injected with NMOF-SNO are completely inhibited, verifying the efficiency of NMOF-SNO. For the first time, Mn-porphyrin NMOFs are developed to be an effective theranostic system for MR imaging-guided controllable NO release and photothermal synergetic therapy under single NIR irradiation.
Collapse
|
115
|
Fan W, Yung BC, Chen X. Stimuliresponsive NO‐Freisetzung für die abrufbereite Gas‐sensibilisierte synergistische Krebstherapie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800594] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Bryant C. Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| |
Collapse
|
116
|
Fan W, Yung BC, Chen X. Stimuli‐Responsive NO Release for On‐Demand Gas‐Sensitized Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201800594] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Bryant C. Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| |
Collapse
|
117
|
Lin YJ, Chen CC, Chi NW, Nguyen T, Lu HY, Nguyen D, Lai PL, Sung HW. In Situ Self-Assembling Micellar Depots that Can Actively Trap and Passively Release NO with Long-Lasting Activity to Reverse Osteoporosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705605. [PMID: 29665153 DOI: 10.1002/adma.201705605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/31/2018] [Indexed: 05/13/2023]
Abstract
Treatment with exogenous nitric oxide (NO) donors is regarded as being effective against osteoporosis. However, NO has a short half-life, limiting its clinical usefulness. To overcome this limitation, an injectable microparticle (MP) system is developed that consists of phase-change materials capric acid (CA) and octadecane, and encapsulates a NO donor. The therapeutic efficacy of the MPs is evaluated in ovariectomized (OVX) rats with osteoporosis. Upon subcutaneous administration, the MPs undergo a phase transition, leaching out the NO donor and generating NO bubbles that are instantly covered by a layer of tightly packed CA surfactant molecules, forming micellar depots. The in situ self-assembling micellar depots can actively protect the NO bubbles, prolonging their half-life, while the entrapped NO may passively diffuse through the micellar depots over time, performing a long-lasting therapeutic function, reversing the OVX-induced osteoporosis. It is possible to use the concept of in situ self-assembling micellar depots developed herein to expand the therapeutic effect of NO in its diverse range of clinical applications.
Collapse
Affiliation(s)
- Yu-Jung Lin
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
| | - Chun-Chieh Chen
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
- Department of Orthopaedic Surgery and Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan, (ROC)
| | - Nai-Wen Chi
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
| | - Trang Nguyen
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
| | - Hung-Yun Lu
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
| | - Dang Nguyen
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
| | - Po-Liang Lai
- Department of Orthopaedic Surgery and Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan, (ROC)
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
| |
Collapse
|
118
|
Yang C, Jeong S, Ku S, Lee K, Park MH. Use of gasotransmitters for the controlled release of polymer-based nitric oxide carriers in medical applications. J Control Release 2018; 279:157-170. [PMID: 29673643 DOI: 10.1016/j.jconrel.2018.04.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/22/2023]
Abstract
Nitric Oxide (NO) is a small molecule gasotransmitter synthesized by nitric oxide synthase in almost all types of mammalian cells. NO is synthesized by NO synthase by conversion of l-arginine to l-citrulline in the human body. NO then stimulates soluble guanylate cyclase, from which various physiological functions are mediated in a concentration-dependent manner. High concentrations of NO induce apoptosis or antibacterial responses whereas low NO circulation leads to angiogenesis. The bidirectional effect of NO has attracted considerable attention, and efforts to deliver NO in a controlled manner, especially through polymeric carriers, has been the topic of much research. This naturally produced signaling molecule has stood out as a potentially more potent therapeutic agent compared to exogenously synthesized drugs. In this review, we will focus on past efforts of using the controlled release of NO via polymer-based materials to derive specific therapeutic results. We have also added studies and our future suggestions on co-delivery methods with other gasotransmitters as a step towards developing multifunctional carriers.
Collapse
Affiliation(s)
- Chungmo Yang
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Soohyun Jeong
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seul Ku
- School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA
| | - Kangwon Lee
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institutes of Convergence Technology, Gyeonggi-do 16229, Republic of Korea.
| | - Min Hee Park
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
119
|
Zhang J, Song H, Ji S, Wang X, Huang P, Zhang C, Wang W, Kong D. NO prodrug-conjugated, self-assembled, pH-responsive and galactose receptor targeted nanoparticles for co-delivery of nitric oxide and doxorubicin. NANOSCALE 2018; 10:4179-4188. [PMID: 29442103 DOI: 10.1039/c7nr08176f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Targeted delivery and controlled release of nitric oxide (NO) locoregionally are in high demand and challenging in cancer treatment. Herein, we report an example of galactose receptor targeted, pH-responsive and self-assembled nanoparticle-based delivery of the NO prodrug O2-(2,4-dinitrophenyl) 1-[4-(propargyloxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (alkynyl-JSK), which was chemically conjugated to an amphiphilic block copolymer through a click reaction for the first time. The assembled NO prodrug nanoparticles show high NO capacity (the content of the NO prodrug in the copolymer, ∼23.4% (w/w)), good stability and a sustained NO release pattern with unique glutathione/glutathione S-transferase (GSH/GST) activated NO-releasing kinetics. Such NO-loaded nanoparticles exhibit superior cytotoxicity to HepG2 cells. More importantly, in combination with doxorubicin (DOX) chemotherapy a significant synergistic therapeutic effect was achieved, due to its excellent galactose receptor-targeting capability, rapid acid-triggered DOX release and sustained NO release. Our findings indicate that these multifunctional nanoparticles can serve as an efficient NO and chemotherapeutic agent delivery platform, holding great promise in cancer combinatorial treatment.
Collapse
Affiliation(s)
- Jimin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Dicyanomethylene-4H-pyran-based NIR fluorescent ratiometric chemosensor for pH measurement. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3334-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
121
|
Pramanick S, Kim J, Kim J, Saravanakumar G, Park D, Kim WJ. Synthesis and Characterization of Nitric Oxide-Releasing Platinum(IV) Prodrug and Polymeric Micelle Triggered by Light. Bioconjug Chem 2018; 29:885-897. [PMID: 29281788 DOI: 10.1021/acs.bioconjchem.7b00749] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, we report the proof of concept of photoresponsive chemotherapeutics comprising nitric oxide-releasing platinum prodrugs and polymeric micelles. Photoactivatable nitric oxide-releasing donors were integrated into the axial positions of a platinum(IV) prodrug, and the photolabile hydrophobic groups were grafted in the block copolymers. The hydrophobic interaction between nitric oxide donors and the photolabile groups allowed for the loading of platinum drugs and nitric oxide-releasing donors in the photolabile polymeric micelles. After cellular uptake of micelles, light irradiation induced the release of nitric oxide, which sensitized the cancer cells. Simultaneously, photolabile hydrophobic groups were cleaved from micelles, and the nitric oxide-releasing donor was altered to be more hydrophilic, resulting in the rapid release of platinum(IV) prodrugs. The strategy of using platinum(IV) prodrugs and nitric oxide led to enhanced anticancer effects.
Collapse
Affiliation(s)
- Swapan Pramanick
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu , Pohang 37673 , Republic of Korea
| | - Jihoon Kim
- Center for Self-assembly and Complexity , Institute for Basic Science , 77 Cheongam-ro , Nam-gu , Pohang 37673 , Republic of Korea
| | - Jinhwan Kim
- Center for Self-assembly and Complexity , Institute for Basic Science , 77 Cheongam-ro , Nam-gu , Pohang 37673 , Republic of Korea
| | - Gurusamy Saravanakumar
- Center for Self-assembly and Complexity , Institute for Basic Science , 77 Cheongam-ro , Nam-gu , Pohang 37673 , Republic of Korea
| | - Dongsik Park
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu , Pohang 37673 , Republic of Korea
| | - Won Jong Kim
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu , Pohang 37673 , Republic of Korea
| |
Collapse
|
122
|
Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, Peng R, Liu Z. Hollow MnO 2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun 2017; 8:902. [PMID: 29026068 PMCID: PMC5638920 DOI: 10.1038/s41467-017-01050-0] [Citation(s) in RCA: 915] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 08/15/2017] [Indexed: 01/01/2023] Open
Abstract
Herein, an intelligent biodegradable hollow manganese dioxide (H-MnO2) nano-platform is developed for not only tumor microenvironment (TME)-specific imaging and on-demand drug release, but also modulation of hypoxic TME to enhance cancer therapy, resulting in comprehensive effects favoring anti-tumor immune responses. With hollow structures, H-MnO2 nanoshells post modification with polyethylene glycol (PEG) could be co-loaded with a photodynamic agent chlorine e6 (Ce6), and a chemotherapy drug doxorubicin (DOX). The obtained H-MnO2-PEG/C&D would be dissociated under reduced pH within TME to release loaded therapeutic molecules, and in the meantime induce decomposition of tumor endogenous H2O2 to relieve tumor hypoxia. As a result, a remarkable in vivo synergistic therapeutic effect is achieved through the combined chemo-photodynamic therapy, which simultaneously triggers a series of anti-tumor immune responses. Its further combination with checkpoint-blockade therapy would lead to inhibition of tumors at distant sites, promising for tumor metastasis treatment.MnO2 nanostructures are promising TME-responsive theranostic agents in cancer. Here, the authors develop a nano-platform based on hollow H-MnO2 nanoshells able to modulate the tissue microenvironment, release a drug and inhibit tumor growth alone or in combination with check-point blockade therapy.
Collapse
Affiliation(s)
- Guangbao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Ligeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiaoqi Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yifan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Rui Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
123
|
Kim J, Yung BC, Kim WJ, Chen X. Combination of nitric oxide and drug delivery systems: tools for overcoming drug resistance in chemotherapy. J Control Release 2017; 263:223-230. [PMID: 28034787 PMCID: PMC5484762 DOI: 10.1016/j.jconrel.2016.12.026] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic drugs have made significant contributions to anticancer therapy, along with other therapeutic methods including surgery and radiotherapy over the past century. However, multidrug resistance (MDR) of cancer cells has remained as a significant obstacle in the achievement of efficient chemotherapy. Recently, there has been increasing evidence for the potential function of nitric oxide (NO) to overcome MDR. NO is an endogenous and biocompatible molecule, contrasting with other potentially toxic chemosensitizing agents that reverse MDR effects, which has raised expectations in the development of efficient therapeutics with low side effects. In particular, nanoparticle-based drug delivery systems not only facilitate the delivery of multiple therapeutic agents, but also help bypass MDR pathways, which are conducive for the efficient delivery of NO and anticancer drugs, simultaneously. Therefore, this review will discuss the mechanism of NO in overcoming MDR and recent progress of combined NO and drug delivery systems.
Collapse
Affiliation(s)
- Jihoon Kim
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea.; Center for Self-assembly and Complexity, Institute for Basic Science, 77 Cheongam-ro, Nam-gu, Pohang 790-784, Republic of Korea.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
124
|
Consoli GML, Di Bari I, Blanco AR, Nostro A, D’Arrigo M, Pistarà V, Sortino S. Design, Synthesis, and Antibacterial Activity of a Multivalent Polycationic Calix[4]arene-NO Photodonor Conjugate. ACS Med Chem Lett 2017; 8:881-885. [PMID: 28835806 DOI: 10.1021/acsmedchemlett.7b00228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/05/2017] [Indexed: 12/29/2022] Open
Abstract
The role of nitric oxide (NO) as an antimicrobial and anticancer agent continues to stimulate the search of compounds generating NO in a controlled fashion. Photochemical generators of NO are particularly appealing due to the accurate spatiotemporal control that light-triggering offers. This contribution reports a novel molecular construct in which multiple units of 3-(trifluoromethyl)-4-nitrobenzenamine NO photodonor are clustered and spatially organized by covalent linkage to a calix[4]arene scaffold bearing two quaternary ammonium groups at the lower rim. This multivalent calix[4]arene-NO donor conjugate is soluble in hydro-alcoholic solvent where it forms nanoaggregates able to release NO under the exclusive control of visible light inputs. The light-stimulated antibacterial activity of the nanoconstruct is demonstrated by the effective bacterial load reduction of Gram-positive Staphylococcus aureus ATCC 6538 and Gram-negative Escherichia coli ATCC 10536.
Collapse
Affiliation(s)
- Grazia M. L. Consoli
- Institute
of Biomolecular Chemistry, C.N.R., Via P. Gaifami, 18, 95126 Catania, Italy
| | - Ivana Di Bari
- Laboratory
of Photochemistry, Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | | | - Antonia Nostro
- Department
of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Polo Annunziata, 98168 Messina, Italy
| | - Manuela D’Arrigo
- Department
of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Polo Annunziata, 98168 Messina, Italy
| | - Venerando Pistarà
- Laboratory
of Photochemistry, Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Salvatore Sortino
- Laboratory
of Photochemistry, Department of Drug Science, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
125
|
Tan L, Huang R, Li X, Liu S, Shen YM. Controllable release of nitric oxide and doxorubicin from engineered nanospheres for synergistic tumor therapy. Acta Biomater 2017; 57:498-510. [PMID: 28499633 DOI: 10.1016/j.actbio.2017.05.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/20/2017] [Accepted: 05/08/2017] [Indexed: 01/25/2023]
Abstract
NaYF4:Yb,Er upconversion nanoparticles (UCNPs) capped with long-chain carboxylic acid were synthesized and then conjugated with chitosan (CS) in the aid of N-hydroxysuccinimide. The resultant nanocompound was integrated with doxorubicin (DOX) and Roussin's black salt (RBS), a photosensitive nitric oxide (NO) donor to produce stimuli-responsive UCNPs(DOX)@CS-RBS nanospheres as nanocarriers for controllable drug delivery. On the one hand, the encapsulated UCNPs can efficiently absorb NIR photons and convert them into visible photons to trigger NO release. On the other hand, the entrapped DOX can be released at lowered pH from the swollen nanospheres caused by stretched oleoyl-CS chains under acidic conditions. The UCNPs(DOX)@CS-RBS nanospheres exhibit great therapeutic efficacy, which is attributable to the combination of NO and DOX releases based on NO dose-dependent mechanisms. This study highlights the controllable release of NO and DOX from the same nanocarriers and the synergistic therapeutic effect on tumors, which could give new insights into improving cancer nanotherapeutics. STATEMENT OF SIGNIFICANCE In this paper, core-shell structured UCNPs(DOX)@CS-RBS nanospheres have been designed and synthesized via a step-by-step procedure. The stimuli-responsive UCNPs(DOX)@CS-RBS nanospheres act as nanocarriers for controllable drug delivery towards cancer therapy. The encapsulated UCNPs can efficiently absorb NIR photons and convert them into visible light to trigger NO release. Meanwhile, the entrapped DOX can be released from the swollen nanospheres caused by stretched oleoyl-CS chains at lowered pH typical of intracellular environment. Synergistic cancer therapy will be achieved through the combination of NO and DOX releases based on NO dose-dependent mechanisms. This study provides new drug nanocarriers with high antitumor efficacy for synergistic cancer therapy.
Collapse
|
126
|
Feng L, Wang Y, Luo Z, Huang Z, Zhang Y, Guo K, Ye D. Dual Stimuli-Responsive Nanoparticles for Controlled Release of Anticancer and Anti-inflammatory Drugs Combination. Chemistry 2017; 23:9397-9406. [DOI: 10.1002/chem.201701524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Liandong Feng
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Zhiliang Luo
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing 210023 P.R. China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| |
Collapse
|
127
|
Abstract
The increasing understanding of the role of nitric oxide (NO) in cancer biology has generated significant progress in the use of NO donor-based therapy to fight cancer. These advances strongly suggest the potential adoption of NO donor-based therapy in clinical practice, and this has been supported by several clinical studies in the past decade. In this review, we first highlight several types of important NO donors, including recently developed NO donors bearing a dinitroazetidine skeleton, represented by RRx-001, with potential utility in cancer therapy. Special emphasis is then given to the combination of NO donor(s) with other therapies to achieve synergy and to the hybridization of NO donor(s) with an anticancer drug/agent/fragment to enhance the activity or specificity or to reduce toxicity. In addition, we briefly describe inducible NO synthase gene therapy and nanotechnology, which have recently entered the field of NO donor therapy.
Collapse
Affiliation(s)
- Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, P. R. China
| | - Junjie Fu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, P. R. China
| |
Collapse
|
128
|
Palanikumar L, Jeena MT, Kim K, Yong Oh J, Kim C, Park MH, Ryu JH. Spatiotemporally and Sequentially-Controlled Drug Release from Polymer Gatekeeper-Hollow Silica Nanoparticles. Sci Rep 2017; 7:46540. [PMID: 28436438 PMCID: PMC5402273 DOI: 10.1038/srep46540] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/22/2017] [Indexed: 11/17/2022] Open
Abstract
Combination chemotherapy has become the primary strategy against cancer multidrug resistance; however, accomplishing optimal pharmacokinetic delivery of multiple drugs is still challenging. Herein, we report a sequential combination drug delivery strategy exploiting a pH-triggerable and redox switch to release cargos from hollow silica nanoparticles in a spatiotemporal manner. This versatile system further enables a large loading efficiency for both hydrophobic and hydrophilic drugs inside the nanoparticles, followed by self-crosslinking with disulfide and diisopropylamine-functionalized polymers. In acidic tumour environments, the positive charge generated by the protonation of the diisopropylamine moiety facilitated the cellular uptake of the particles. Upon internalization, the acidic endosomal pH condition and intracellular glutathione regulated the sequential release of the drugs in a time-dependent manner, providing a promising therapeutic approach to overcoming drug resistance during cancer treatment.
Collapse
Affiliation(s)
- L. Palanikumar
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - M. T. Jeena
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Kibeom Kim
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jun Yong Oh
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Chaekyu Kim
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Myoung-Hwan Park
- Department of Chemistry, Sahmyook University, Seoul, 01795, Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
129
|
Li R, Xie Y. Nanodrug delivery systems for targeting the endogenous tumor microenvironment and simultaneously overcoming multidrug resistance properties. J Control Release 2017; 251:49-67. [DOI: 10.1016/j.jconrel.2017.02.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/18/2022]
|
130
|
Li Y, Xu X, Zhang X, Li Y, Zhang Z, Gu Z. Tumor-Specific Multiple Stimuli-Activated Dendrimeric Nanoassemblies with Metabolic Blockade Surmount Chemotherapy Resistance. ACS NANO 2017; 11:416-429. [PMID: 28005335 DOI: 10.1021/acsnano.6b06161] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemotherapy resistance remains a serious impediment to successful antitumor therapy around the world. However, existing chemotherapeutic approaches are difficult to cope with the notorious multidrug resistance in clinical treatment. Herein, we developed tumor-specific multiple stimuli-activated dendrimeric nanoassemblies with a metabolic blockade to completely combat both physiological barriers and cellular factors of multidrug resistance. With a sophisticated molecular and supramolecular engineering, this type of tumor-specific multiple stimuli-activated nanoassembly based on dendrimeric prodrugs can hierarchically break through the sequential physiological barriers of drug resistance, including stealthy dendritic PEGylated corona to optimize blood transportation, robust nanostructures for efficient tumor passive targeting and accumulation, enzyme-activated tumor microenvironment targeted to deepen tumor penetration and facilitate cellular uptake, cytoplasmic redox-sensitive disintegration for sufficient release of encapsulated agents, and lysosome acid-triggered nucleus delivery of antitumor drugs. In the meantime, we proposed a versatile tactic of a tumor-specific metabolism blockade for provoking several pathways (ATP restriction, apoptotic activation, and anti-apoptotic inhibition) to restrain multiple cellular factors of drug resistance. The highly efficient antitumor activity to drug-resistant MCF-7R tumor in vitro and in vivo supports this design and strongly defeats both physiological barriers and cellular factors of chemotherapy resistance. This work sets up an innovative dendrimeric nanosystem to surmount multidrug resistance, contributing to the development of a comprehensive nanoparticulate strategy for future clinical applications.
Collapse
Affiliation(s)
- Yachao Li
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Xianghui Xu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Xiao Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Yunkun Li
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Zhijun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, Sichuan 610064, P.R. China
- College of Materials Science and Engineering, Nanjing Tech University , Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
131
|
Lee Y, Lee S, Lee DY, Yu B, Miao W, Jon S. Multistimuli-Responsive Bilirubin Nanoparticles for Anticancer Therapy. Angew Chem Int Ed Engl 2016; 55:10676-80. [DOI: 10.1002/anie.201604858] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/20/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Yonghyun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Soyoung Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Dong Yun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Byeongjun Yu
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Wenjun Miao
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| |
Collapse
|
132
|
Lee Y, Lee S, Lee DY, Yu B, Miao W, Jon S. Multistimuli-Responsive Bilirubin Nanoparticles for Anticancer Therapy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yonghyun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Soyoung Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Dong Yun Lee
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Byeongjun Yu
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Wenjun Miao
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury; Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); 291 Daehak-ro Daejeon 34141 Republic of Korea
| |
Collapse
|
133
|
Wu H, Liu S, Xiao L, Dong X, Lu Q, Kaplan DL. Injectable and pH-Responsive Silk Nanofiber Hydrogels for Sustained Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17118-26. [PMID: 27315327 DOI: 10.1021/acsami.6b04424] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Silk is useful as a drug carrier due to its biocompatibility, tunable degradation, and outstanding capacity in maintaining the function of drugs. Injectable silk hydrogels could deliver doxorubicin (DOX) for localized chemotherapy for breast cancer. To improve hydrogel properties, thixotropic silk nanofiber hydrogels in an all-aqueous solution were prepared and used to locally deliver DOX. The silk hydrogels displayed thixotropic capacity, allowing for easy injectability followed by solidification in situ. The hydrogels were loaded with DOX and released the drug over eight weeks with pH- and concentration-dependent release kinetics. In vitro and in vivo studies demonstrated that DOX-loaded silk hydrogels had good antitumor response, outperforming the equivalent dose of free DOX administered intravenously. Thixotropic silk hydrogels provide improved injectability to support sustained release, suggesting promising applications for localized chemotherapy.
Collapse
Affiliation(s)
- Hongchun Wu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
| | - Shanshan Liu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
| | - Liying Xiao
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, P.R. China
| | - Xiaodan Dong
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, P.R. China
| | - Qiang Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, P.R. China
| | - David L Kaplan
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, P.R. China
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
134
|
Pan WY, Lin KJ, Huang CC, Chiang WL, Lin YJ, Lin WC, Chuang EY, Chang Y, Sung HW. Localized sequence-specific release of a chemopreventive agent and an anticancer drug in a time-controllable manner to enhance therapeutic efficacy. Biomaterials 2016; 101:241-50. [PMID: 27294541 DOI: 10.1016/j.biomaterials.2016.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022]
Abstract
Combination chemotherapy with multiple drugs commonly requires several injections on various schedules, and the probability that the drug molecules reach the diseased tissues at the proper time and effective therapeutic concentrations is very low. This work elucidates an injectable co-delivery system that is based on cationic liposomes that are adsorbed on anionic hollow microspheres (Lipos-HMs) via electrostatic interaction, from which the localized sequence-specific release of a chemopreventive agent (1,25(OH)2D3) and an anticancer drug (doxorubicin; DOX) can be thermally driven in a time-controllable manner by an externally applied high-frequency magnetic field (HFMF). Lipos-HMs can greatly promote the accumulation of reactive oxygen species (ROS) in tumor cells by reducing their cytoplasmic expression of an antioxidant enzyme (superoxide dismutase) by 1,25(OH)2D3, increasing the susceptibility of cancer cells to the cytotoxic action of DOX. In nude mice that bear xenograft tumors, treatment with Lipos-HMs under exposure to HFMF effectively inhibits tumor growth and is the most effective therapeutic intervention among all the investigated. These empirical results demonstrate that the synergistic anticancer effects of sequential release of 1,25(OH)2D3 and DOX from the Lipos-HMs may have potential for maximizing DOX cytotoxicity, supporting more effective cancer treatment.
Collapse
Affiliation(s)
- Wen-Yu Pan
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Kun-Ju Lin
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan, ROC; Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Chieh-Cheng Huang
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Wei-Lun Chiang
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yu-Jung Lin
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Wei-Chih Lin
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Er-Yuan Chuang
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yen Chang
- Department of Cardiovascular Surgery, Heart Center, Cheng Hsin General Hospital, Taipei, Taiwan, ROC; Collage of Medicine, National Yang Ming University, Taipei, Taiwan, ROC.
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC.
| |
Collapse
|
135
|
Hu J, Liu F, Ju H. MALDI-MS Patterning of Caspase Activities and Its Application in the Assessment of Drug Resistance. Angew Chem Int Ed Engl 2016; 55:6667-70. [PMID: 27101158 DOI: 10.1002/anie.201601096] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/14/2016] [Indexed: 12/19/2022]
Abstract
Mass spectrometry (MS) has been widely used for enzyme activity assays. Herein, we propose a MALDI-MS patterning strategy for the convenient visual presentation of multiple enzyme activities with an easy-to-prepare chip. The array-based caspase-activity patterned chip (Casp-PC) is fabricated by hydrophobically assembling different phospholipid-tagged peptide substrates on a modified ITO slide. The advantages of amphipathic phospholipids lead to high-quality mass spectra for imaging analysis. Upon the respective cleavage of these substrates by different caspases, such as caspase-1, -2, -3, and -8, to produce a mass shift, the enzyme activities can be directly evaluated by MALDI-MS patterning by m/z-dependent imaging of the cleavage products. The ability to identify drug-sensitive/resistant cancer cells and assess the curative effects of anticancer drugs is demonstrated, indicating the applicability of the method and the designed chip.
Collapse
Affiliation(s)
- Junjie Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China.
| |
Collapse
|
136
|
Hu J, Liu F, Ju H. MALDI-MS Patterning of Caspase Activities and Its Application in the Assessment of Drug Resistance. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Junjie Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| |
Collapse
|
137
|
Huang CC, Chia WT, Chung MF, Lin KJ, Hsiao CW, Jin C, Lim WH, Chen CC, Sung HW. An Implantable Depot That Can Generate Oxygen in Situ for Overcoming Hypoxia-Induced Resistance to Anticancer Drugs in Chemotherapy. J Am Chem Soc 2016; 138:5222-5. [DOI: 10.1021/jacs.6b01784] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Wei-Tso Chia
- Department of Orthopaedics, National Taiwan University Hospital, Hsinchu Branch, Hsinchu 30013, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Song G, Liang C, Yi X, Zhao Q, Cheng L, Yang K, Liu Z. Perfluorocarbon-Loaded Hollow Bi2Se3 Nanoparticles for Timely Supply of Oxygen under Near-Infrared Light to Enhance the Radiotherapy of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2716-23. [PMID: 26848553 DOI: 10.1002/adma.201504617] [Citation(s) in RCA: 424] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 12/19/2015] [Indexed: 05/28/2023]
Abstract
Hollow Bi2 Se3 nanoparticles prepared by a cation exchange method are loaded with perfluorocarbon as an oxygen carrier. With these nanoparticles, a promising concept is demonstrated to enhance radiotherapy by not only using their X-ray-absorbing ability to locally concentrate radiation energy in the tumor, but also employing near-infrared light to trigger burst release of oxygen from the nanoparticles to overcome hypoxia-associated radio-resistance.
Collapse
Affiliation(s)
- Guosheng Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chao Liang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xuan Yi
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qi Zhao
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Yang
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
139
|
Yuan Y, Xu S, Zhang CJ, Liu B. Light-responsive AIE nanoparticles with cytosolic drug release to overcome drug resistance in cancer cells. Polym Chem 2016. [DOI: 10.1039/c6py00449k] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A photo-active amphiphilic polymer containing a photosensitizer with aggregation-induced emission (AIE) characteristics was developed for light-responsive cytosolic drug release to overcome drug resistance.
Collapse
Affiliation(s)
- Youyong Yuan
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| | - Chong-Jing Zhang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- Singapore 117585
- Singapore
- Institute of Materials Research and Engineering
| |
Collapse
|