101
|
One-dimensional metal-organic frameworks for electrochemical applications. Adv Colloid Interface Sci 2021; 298:102562. [PMID: 34768137 DOI: 10.1016/j.cis.2021.102562] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Metal-organic frameworks (MOFs) are as a category of crystalline porous materials. Extensive interest has been devoted to energy storage and energy conversion applications owing to their unique advantages of periodic architecture, high specific surface area, high adsorption, high conductivity, high specific capacitance, and high porosity. One-dimensional (1D) nanostructures have unique surface effects, easily regulated size, good agglutination of the substrate, and other distinct properties amenable to the field of energy storage and conversion. Therefore, 1D nanostructures could further improve the characteristic properties of MOFs, and it is of great importance for practical applications to control the size and morphological characteristics of MOFs. The electrochemical application of 1D MOFs is mainly discussed in this review, including energy storage applications in supercapacitors and batteries and energy conversion applications in catalysis. In addition, various synthesis strategies for 1D MOFs and their architectures are presented.
Collapse
|
102
|
Halide-Doping Effect of Strontium Cobalt Oxide Electrocatalyst and the Induced Activity for Oxygen Evolution in an Alkaline Solution. Catalysts 2021. [DOI: 10.3390/catal11111408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Perovskites of strontium cobalt oxyhalides having the chemical formulae Sr2CoO4-xHx (H = F, Cl, and Br; x = 0 and 1) were prepared using a solid-phase synthesis approach and comparatively evaluated as electrocatalysts for oxygen evolution in an alkaline solution. The perovskite electrocatalyst crystal phase, surface morphology, and composition were examined by X-ray diffraction, a scanning electron microscope, and energy-dispersive X-ray (EDX) mapping. The electrochemical investigations of the oxyhalides catalysts showed that the doping of F, Cl, or Br into the Sr2CoO4 parent oxide enhances the electrocatalytic activity for the oxygen evolution reaction (OER) with the onset potential as well as the potential required to achieve a current density of 10 mA/cm2 shifting to lower potential values in the order of Sr2CoO4 (1.64, 1.73) > Sr2CoO3Br (1.61, 1.65) > Sr2CoO3Cl (1.53, 1.60) > Sr2CoO3F (1.50, 1.56) V vs. HRE which indicates that Sr2CoO3F is the most active electrode among the studied catalysts under static and steady-state conditions. Moreover, Sr2CoO3F demonstrates long-term stability and remarkably less charge transfer resistance (Rct = 36.8 ohm) than the other oxyhalide counterparts during the OER. The doping of the perovskites with halide ions particularly the fluoride-ion enhances the surface oxygen vacancy density due to electron withdrawal away from the Co-atom which improves the ionic and electronic conductivity as well as the electrochemical activity of the oxygen evolution in alkaline solution.
Collapse
|
103
|
Li Y, Xu Z, Sun X, Han J, Guo R. Fe, P, N- and FeP, N-doped carbon hollow nanospheres: A comparison study toward oxygen reduction reaction electrocatalysts. J Colloid Interface Sci 2021; 602:376-383. [PMID: 34139535 DOI: 10.1016/j.jcis.2021.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022]
Abstract
In recent years, carbon materials co-doped with transition metals and heteroatoms have been widely used in the oxygen reduction reaction (ORR) as an alternative to platinum/carbon catalysts because of their high efficiency, low price, and appropriate sustainability. Herein, we report the synthesis of FeP, N-doped carbon (FeP, N-Carbon) hollow nanospheres (HNSs) and Fe, P, N-doped carbon (Fe, P, N-Carbon) HNSs. The FeP, N-Carbon was obtained via the pyrolysis of poly(o-phenylenediamine) (PoPD) HNSs in the presence of Fe(NO3)3 and phytic acid (PA), whereas Fe, P, N-Carbon was obtained by first pyrolyzing PoPD HNSs with Fe(NO3)3, followed by another cycle of pyrolysis with PA. Fe, P, N-Carbon exhibited a better ORR performance than FeP, N-Carbon, with an onset potential of 1.03 V, a half-wave potential of 0.89 V and a limiting current density of 5.75 mA cm-2. The findings will provide insights into the controlled synthesis of transition-metal-heteroatom-codoped carbon nanomaterials for the development of advanced ORR electrocatalysts.
Collapse
Affiliation(s)
- Yanan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| |
Collapse
|
104
|
Co/Co
2
P Nanoparticles Encapsulated within Hierarchically Porous Nitrogen, Phosphorus, Sulfur Co‐doped Carbon as Bifunctional Electrocatalysts for Rechargeable Zinc‐Air Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202101246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
105
|
Zhao Q, Zhu D, Zhou X, Li SH, Sun X, Cui J, Fan Z, Guo M, Zhao J, Teng B, Cheng B. Conductive One-Dimensional Coordination Polymers with Tunable Selectivity for the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52960-52966. [PMID: 34705428 DOI: 10.1021/acsami.1c16121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conductive materials involving nonprecious metal coordination complexes as electrocatalysts for the oxygen reduction reaction (ORR) have received increasing attention in recent years. Herein, we reported efficient ORR electrocatalysts containing M-S2N2 sites with tunable selectivity based on simple one-dimensional (1D) coordination polymers (CPs). The 1D CPs were synthesized from M(OAc)2 and 2,5-diamino-1,4-benzenedithiol (DABDT) by a solvent thermal method. Due to their good electrical conductivities (10-6-10-2 S cm-1), the 1D CPs could be used as ORR catalysts in low catalytic amounts without the addition of carbon materials. Cobalt-based CPs showed a well-organized structure of nanosheets with Co-S2N2 sites exposed and exhibited remarkable electrocatalytic ORR activity (Eonset = 0.93 V vs reversible hydrogen electrode (RHE), E1/2 = 0.82 V, n = 3.85, JL = 5.22 mA cm-2, Tafel slope of 63 mV dec-1) in alkaline media. However, nickel-based CPs favored a 2e- ORR process with ∼87% H2O2 selectivity and an Eonset of 0.78 V. This work provides new opportunities for the construction of ORR catalysts based on conductive nonprecious metal CPs.
Collapse
Affiliation(s)
- Qian Zhao
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Di Zhu
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Xun Zhou
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Sheng-Hua Li
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Xuyang Sun
- SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, P. R. China
| | - Jing Cui
- SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, P. R. China
| | - Zhi Fan
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Minjie Guo
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Jin Zhao
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Botao Teng
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Bowen Cheng
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| |
Collapse
|
106
|
Zhang H, Wang X, Li Z, Zhang C, Liu S. In situ encapsulation engineering boosts the electrochemical performance of highly graphitized N-doped porous carbon-based copper-cobalt selenides for bifunctional oxygen electrocatalysis. NANOSCALE 2021; 13:17663-17674. [PMID: 34668498 DOI: 10.1039/d1nr05125c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transition-metal selenides are gaining prominence as promising electrode materials for energy storage applications owing to their low electronegativity and environment-friendliness compared with metal sulfides/oxides. Herein, a CuCoSe@NC nanocomposite with copper-cobalt selenides embedded in highly graphitized N-doped porous carbon was synthesized by an in situ encapsulation strategy with metal-organic framework crystals (CuCo-BDC) as templates followed by selenization, and used as a bifunctional electrocatalyst for Zn-air batteries in lye. The result shows that the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activity of the optimal CuCoSe@NC-2 was enhanced, and the assembled Zn-air batteries exhibited a remarkable electrochemical performance with the use of the CuCoSe@NC-2 electrode, including a high power density (137.1 mW cm-2) and excellent charge-discharge cycling stability, which were better than those of the Pt/C + RuO2 electrocatalyst. Such improvement is attributed not only to the higher porosity and larger specific surface area (342 m2 g-1) of the carbon matrix, which increased the contact area with oxygen-containing species, but also the encapsulation effect of the highly graphitized N-doped carbon layer and the high content of pyridine-N species also further improved the conductivity of selenide composites. This work has introduced N-doped bimetallic selenides as an ideal candidate for bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Hang Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, PR China.
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Xuemin Wang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University, Tianjin 300350, PR China.
- National Institute of Advanced Materials, Nankai University, Tianjin 300350, PR China
- Tianjin Collaborative Innovation Center for Chemistry & Chemical Engineering, Tianjin 300072, PR China
| | - Zhengzheng Li
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Cui Zhang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University, Tianjin 300350, PR China.
- National Institute of Advanced Materials, Nankai University, Tianjin 300350, PR China
- Tianjin Collaborative Innovation Center for Chemistry & Chemical Engineering, Tianjin 300072, PR China
| | - Shuangxi Liu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University, Tianjin 300350, PR China.
- National Institute of Advanced Materials, Nankai University, Tianjin 300350, PR China
- Tianjin Collaborative Innovation Center for Chemistry & Chemical Engineering, Tianjin 300072, PR China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
107
|
Li M, Xia Z, Luo M, He L, Tao L, Yang W, Yu Y, Guo S. Structural Regulation of Pd‐Based Nanoalloys for Advanced Electrocatalysis. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100061] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Zhonghong Xia
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Mingchuan Luo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Lin He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Lu Tao
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Shaojun Guo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| |
Collapse
|
108
|
Li K, Wang C, Li H, Wen Y, Wang F, Xue Q, Huang Z, Fu C. Heterostructural Interface in Fe 3C-TiN Quantum Dots Boosts Oxygen Reduction Reaction for Al-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47440-47448. [PMID: 34591442 DOI: 10.1021/acsami.1c10192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxygen reduction electrocatalysts play important roles in metal-air batteries. Herein, Fe3C-TiN heterostructural quantum dots loaded on carbon nanotubes (FCTN@CNTs) are prepared as electrocatalysts for the oxygen reduction reaction (ORR) through a one-pot pyrolysis. The Fe3C-TiN quantum dots with a diameter of 2-5 nm show the unique characteristic of heterostructural interface. The as-prepared FCTN@CNTs display Pt/C comparable ORR performance (Eonset 1.06 and E1/2 0.95 V) in alkaline medium, which is ascribed to the heterostructural interface between TiN and Fe3C. Furthermore, the Al-air batteries with the FCTN@CNT catalyst display superior discharge performance, demonstrating good feasibility for practical application. This work provides an effective new method to synthesize affordable and efficient oxygen reduction reaction catalysts.
Collapse
Affiliation(s)
- Kaiqi Li
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuqing Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huanxin Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yongliang Wen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Fei Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingyue Xue
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongyuan Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
109
|
Progress in Development of Nanostructured Manganese Oxide as Catalyst for Oxygen Reduction and Evolution Reaction. ENERGIES 2021. [DOI: 10.3390/en14196385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rise in energy consumption is largely driven by the growth of population. The supply of energy to meet that demand can be fulfilled by slowly introducing energy from renewable resources. The fluctuating nature of the renewable energy production (i.e., affected by weather such as wind, sun light, etc.), necessitates the increasing demand in developing electricity storage systems. Reliable energy storage system will also play immense roles to support activities related to the internet of things. In the past decades, metal-air batteries have attracted great attention and interest for their high theoretical capacity, environmental friendliness, and their low cost. However, one of the main challenges faced in metal-air batteries is the slow rate of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) that affects the charging and the discharging performance. Various types of nanostructure manganese oxide with high specific surface area and excellent catalytic properties have been synthesized and studied. This review provides a discussion of the recent developments of the nanostructure manganese oxide and their performance in oxygen reduction and oxygen evolution reactions in alkaline media. It includes the experimental work in the nanostructure of manganese oxide, but also the fundamental understanding of ORR and OER. A brief discussion on electrocatalyst kinetics including the measurement and criteria for the ORR and the OER is also included. Finally, recently reported nanostructure manganese oxide catalysts are also discussed.
Collapse
|
110
|
Liang Z, Yang C, Zhang W, Zheng H, Cao R. Anion engineering of hierarchical Co-A (A = O, Se, P) hexagrams for efficient electrocatalytic oxygen evolution reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
111
|
Wang Y, Bao Z, Shi M, Liang Z, Cao R, Zheng H. The Role of Surface Curvature in Electrocatalysts. Chemistry 2021; 28:e202102915. [PMID: 34591340 DOI: 10.1002/chem.202102915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/05/2022]
Abstract
Excessive consumption of fossil fuels has caused unavoidable environmental problems. The development of renewable and clean alternatives is essential for the sustainable and green development of human society. Electrocatalysts are most important parts in these energy-related devices. Recently, scientists found that the surface curvature of electrocatalysts could play an important role for the improvement of catalytic performance and the optimization of intrinsic catalytic activity during electrocatalytic process. The role of surface curvature in electrocatalysts is still under investigating. In this minireview, we summarized the latest progress of electrocatalysts with different surface curvatures and their applications in energy-related applications. This review mainly involves the strategies for preparation of electrocatalysts with different surface curvatures, three typical electrocatalysts with different surface curvatures (curled surface, onion-like structure, and spiral structure), and the potential mechanisms that surface curvature in electrocatalysts affects activities.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zijia Bao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Mengke Shi
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
112
|
Yuan S, Zhang J, Hu L, Li J, Li S, Gao Y, Zhang Q, Gu L, Yang W, Feng X, Wang B. Decarboxylation‐Induced Defects in MOF‐Derived Single Cobalt Atom@Carbon Electrocatalysts for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuai Yuan
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Jinwei Zhang
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Linyu Hu
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Jiani Li
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Siwu Li
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Advanced Technology Research Institute (Jinan) Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District Beijing 100081 China
| |
Collapse
|
113
|
|
114
|
Konno Y, Yamamoto T, Nagayama T. Nanoporous manganese ferrite films by anodising electroplated Fe-Mn alloys for bifunctional oxygen electrodes. NANOSCALE 2021; 13:12738-12749. [PMID: 34477624 DOI: 10.1039/d1nr02457d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An electroplating-anodising method based on a facile and scalable electrochemical process was used to fabricate manganese ferrite porous oxide films for use as precious-metal-free oxygen reduction/evolution reaction (ORR/OER) electrodes. Porous oxide films of spinel manganese ferrites (MnxFe3-xO4) were formed on electroplated Fe-Mn films. The MnxFe3-xO4 porous oxide formed on microcracks in the Fe-Mn films constituted a nanoporous/microcrack hierarchical structure (NP/MC), which provided a large electrode surface area for ORR/OER. The electrochemically active surface area of the NP/MC on Fe-36 at% Mn was 33.3 cm2, which is nine times that of the nanoporous structure on Fe (3.67 cm2). The onset potential of the NP/MC on Fe-15 at% Mn and Fe-36 at% Mn was 0.88 V vs. RHE (overpotential, ∼350 mV) for the ORR at -0.1 mA cm-2. The OER onset potentials at 10 mA cm-2 were 1.79 V on Fe-15 at% Mn (∼560 mV) and 1.74 V on Fe-36 at% Mn (∼510 mV). The OER and ORR activities of the MnxFe3-xO4 porous oxides are better than those of spinel iron oxide (∼510 and ∼640 mV for the ORR and OER, respectively) because of the good intrinsic activity of MnxFe3-xO4 and greater surface area of the NP/MC. The ORR activities of the MnxFe3-xO4 porous oxides decreased to about 30% during ORR durability testing for 7.5 h, and the same level of activity was retained after 24 h of use. The MnxFe3-xO4 porous oxides retained a high level of activity during OER durability testing for 8 h.
Collapse
Affiliation(s)
- Yoshiki Konno
- Kyoto Municipal Institute of Industrial Technology and Culture, Kyoto 6008815, Japan.
| | | | | |
Collapse
|
115
|
Kiani M, Tian XQ, Zhang W. Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213954] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
116
|
Yuan S, Zhang J, Hu L, Li J, Li S, Gao Y, Zhang Q, Gu L, Yang W, Feng X, Wang B. Decarboxylation-Induced Defects in MOF-Derived Single Cobalt Atom@Carbon Electrocatalysts for Efficient Oxygen Reduction. Angew Chem Int Ed Engl 2021; 60:21685-21690. [PMID: 34331501 DOI: 10.1002/anie.202107053] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 11/08/2022]
Abstract
Developing transition metal single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is of great importance. Zeolitic imidazolate frameworks (ZIFs) as a subgroup of metal-organic frameworks (MOFs) are distinguished as SAC precursors, due to their large porosity and N content. However, the activity of the formed metal sites is limited. Herein, we report a decarboxylation-induced defects strategy to improve their intrinsic activity via increasing the defect density. Carboxylate/amide mixed-linker MOF (DMOF) was chosen to produce defective Co SACs (Co@DMOF) by gas-transport of Co species to DMOF upon heating. Comparing with ZIF-8 derived SAC (Co@ZIF-8-900), Co@DMOF-900 with more defects yet one fifth Co content and similar specific double-layer capacitance show better ORR activity and eight times higher turnover frequency (2.015 e s-1 site-1 ). Quantum calculation confirms the defects can weaken the adsorption free energy of OOH on Co sites and further boost the ORR process.
Collapse
Affiliation(s)
- Shuai Yuan
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jinwei Zhang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Linyu Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jiani Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Siwu Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou, 570228, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| |
Collapse
|
117
|
Lu H, Tournet J, Dastafkan K, Liu Y, Ng YH, Karuturi SK, Zhao C, Yin Z. Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chem Rev 2021; 121:10271-10366. [PMID: 34228446 DOI: 10.1021/acs.chemrev.0c01328] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.
Collapse
Affiliation(s)
- Haijiao Lu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Julie Tournet
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siva Krishna Karuturi
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
118
|
Li S, Zhu X, Yu H, Wang X, Liu X, Yang H, Li F, Zhou Q. Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes. ENVIRONMENTAL RESEARCH 2021; 197:111054. [PMID: 33775682 DOI: 10.1016/j.envres.2021.111054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic wastewater presents serious challenges in water treatment. Metal-organic frameworks (MOFs) have received significant attention as promising precursors and sacrificial templates in the preparation of porous carbon-supported catalysts. Herein, we investigated the sulfamethoxazole (SMX) degradation and electrochemical performance of microbial fuel cells (MFCs) that applied as-prepared Ni-MOF-74 and Ni-N-C (Ni-MOF-74 underwent pyrolysis treatment at different temperatures) as air-cathode catalyst. Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating disk electrode. The results showed that electron transfer number for Ni-MOF-74 was 2.12, while that of 800Ni-N-C was 3.44, which was close to four-electron reduction. Applying Ni-MOF-74 in MFCs, a maximum power density of 446 mW/m2 was obtained, which was close to that of 800Ni-N-C. Besides, using Ni-MOF-74 as cathode catalyst, a chemical oxygen demand removal rate of about 84% was obtained, and the degradation rate of 10 mg/L SMX was 61%. The degradation rate decreased with increasing antibiotic concentration, but the average degradation efficiency increased stepwise. Additionally, the relative abundance of resistant gene sul1 in the reactors of the new catalytic material was about 62% lower than that of sul1 in the control (Pt/C) reactors, and the relative abundance of sul2 was about 73% lower. Moreover, cost assessments related to the catalyst performance are presented. The findings of this study demonstrated that Ni-MOF-74 could be considered as a two-electron transfer ORR catalyst, and offers a promising technique for preparation of Ni-N-C for use as four-electron transfer ORR catalysts. In comparison, Ni-MOF-74 could be a promising ORR catalyst of MFCs for antibiotic degradation.
Collapse
Affiliation(s)
- Shengnan Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xuya Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Hang Yu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Xizi Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Xiaqing Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Hui Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China.
| | - Qixing Zhou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| |
Collapse
|
119
|
Catalyst with a low load of platinum and high activity for oxygen reduction derived from strong adsorption of Pt−N4 moieties on a carbon surface. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
120
|
Enhanced oxygen reduction performance of nitrogen and sulfur Co-doped graphene oxide by immobilized ionic liquid. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
121
|
Liang Z, Kong N, Yang C, Zhang W, Zheng H, Lin H, Cao R. Highly Curved Nanostructure-Coated Co, N-Doped Carbon Materials for Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2021; 60:12759-12764. [PMID: 33646597 DOI: 10.1002/anie.202101562] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 01/29/2023]
Abstract
Nitrogen-doped graphene could catalyze the electrochemical reduction and evolution of oxygen, but unfortunately suffers from sluggish catalytic kinetics. Herein, for the first time, we report an onion-like carbon coated Co, N-doped carbon (OLC/Co-N-C) material, which possesses multilayers of highly curved nanostructures that form mesoporous architectures. These unique nanospheres are produced when surfactant micelles are introduced to synthesis precursors. Owing to the combined electronic effect and nanostructuring effect, our OLC/Co-N-C materials exhibit high bifunctional oxygen reduction/evolution reaction (ORR/OER) activity, showing a promising application in rechargeable Zn-air batteries. Experimental results are rationalized by theoretical calculations, showing that the curvature of graphitic carbon plays a vital role in promoting activities of meta-carbon atoms near graphitic N and ortho/meta carbon atoms close to pyridinic N.
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ningning Kong
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Chenxi Yang
- Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
122
|
Zhou XY, Xu C, Guo PP, Sun WL, Wei PJ, Liu JG. Axial Ligand Coordination Tuning of the Electrocatalytic Activity of Iron Porphyrin Electrografted onto Carbon Nanotubes for the Oxygen Reduction Reaction. Chemistry 2021; 27:9898-9904. [PMID: 33876876 DOI: 10.1002/chem.202100736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 11/12/2022]
Abstract
The oxygen reduction reaction (ORR) is essential in many life processes and energy conversion systems. It is desirable to design transition metal molecular catalysts inspired by enzymatic oxygen activation/reduction processes as an alternative to noble-metal-Pt-based ORR electrocatalysts, especially in view point of fuel cell commercialization. We have fabricated bio-inspired molecular catalysts electrografted onto multiwalled carbon nanotubes (MWCNTs) in which 5,10,15,20-tetra(pentafluorophenyl) iron porphyrin (iron porphyrin FeF20 TPP) is coordinated with covalently electrografted axial ligands varying from thiophene to imidazole on the MWCNTs' surface. The catalysts' electrocatalytic activity varied with the axial coordination environment (i. e., S-thiophene, N-imidazole, and O-carboxylate); the imidazole-coordinated catalyst MWCNTs-Im-FeF20 TPP exhibited the highest ORR activity among the prepared catalysts. When MWCNT-Im-FeF20 TPP was loaded onto the cathode of a zinc-air battery, an open-cell voltage (OCV) of 1.35 V and a maximum power density (Pmax ) of 110 mW cm-2 were achieved; this was higher than those of MWCNTs-Thi-FeF20 TPP (OCV=1.30 V, Pmax =100 mW cm-2 ) and MWCNTs-Ox-FeF20 TPP (OCV=1.28 V, Pmax =86 mW cm-2 ) and comparable with a commercial Pt/C catalyst (OCV=1.45 V, Pmax =120 mW cm-2 ) under similar experimental conditions. This study provides a time-saving method to prepare covalently immobilized molecular electrocatalysts on carbon-based materials with structure-performance correlation that is also applicable to the design of other electrografted catalysts for energy conversion.
Collapse
Affiliation(s)
- Xin-You Zhou
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chao Xu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Peng-Peng Guo
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei-Li Sun
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
123
|
Sun J, Qiu X, Wang Z, Peng Z, Jiang L, Li G, Wang H, Liu H. An Efficient Oxygen Reduction Catalyst for Zn‐Air Battery: Cobalt Nanoparticles Encapsulated in 3D Nitrogen‐Doped Porous Carbon Networks Derived from Fish Scales. ChemCatChem 2021. [DOI: 10.1002/cctc.202001855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiankang Sun
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Xiaoyu Qiu
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Zhengyun Wang
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Zhuo Peng
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Lipei Jiang
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Guangfang Li
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Haitao Wang
- Key Laboratory for Green Chemical Process (Ministry of Education) School of Chemistry and Environmental Engineering Wuhan Institute of Technology (WIT) 693 Xiongchu Avenue Wuhan 430073 P. R. China
| | - Hongfang Liu
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| |
Collapse
|
124
|
Zhong L, Zhou H, Li R, Cheng H, Wang S, Chen B, Zhuang Y, Chen J, Yuan A. Co/CoO x heterojunctions encapsulated N-doped carbon sheets via a dual-template-guided strategy as efficient electrocatalysts for rechargeable Zn-air battery. J Colloid Interface Sci 2021; 599:46-57. [PMID: 33933796 DOI: 10.1016/j.jcis.2021.04.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
Developing highly efficient oxygen electrocatalysts is of vital importance for rechargeable Zn-air batteries (ZABs). Herein, Co/CoOx nano-heterojunctions encapsulated into nitrogen-doped carbon sheets (NCS@Co/CoOx) are fabricated via a dual-template-guided approach by using zeolitic imidazolate frameworks (ZIFs) as templates. The synergistic integration of structural and compositional advantages endows such catalyst with superior catalytic properties to benchmark noble-metal catalysts. To be specific, the hierarchical micro/mesopores affords massive mass transport channels and maximizes the exposure of accessible active sites, whereas the NCS matrix accelerates electron transfer and prevents the self-aggregation of active species during the electrocatalytic reaction. Moreover, abundant and synergistic Co-based active sites (CoO, Co3O4, Co-Nx) greatly promote the catalytic activity. As the cathode of both liquid and flexible solid-state ZABs, excellent device properties are achieved, outperforming those assembled with commercial Pt/C+RuO2 catalyst. This work presents a feasible and cost-effective strategy for developing oxygen electrocatalysts derived from ZIFs templates.
Collapse
Affiliation(s)
- Lin Zhong
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Hu Zhou
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Ruifeng Li
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Hao Cheng
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Sheng Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Boyuan Chen
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yongyue Zhuang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Junfeng Chen
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| |
Collapse
|
125
|
|
126
|
Liu X, Ma Y, Cai Y, Hu S, Chen J, Liu Z, Wang Z. Zeolitic imidazole framework derived N-doped porous carbon/metal cobalt nanoparticles hybrid for oxygen electrocatalysis and rechargeable Zn-air batteries. RSC Adv 2021; 11:15722-15728. [PMID: 35481167 PMCID: PMC9029078 DOI: 10.1039/d1ra01350e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/16/2021] [Indexed: 11/21/2022] Open
Abstract
Bifunctional electrocatalysts with high catalytic property for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are vital for high-performance zinc-air batteries (ZnABs). In this study, an efficient bifunctional electrocatalyst with hollow structure (C-N/Co (1/2)) has been successfully prepared through carbonization of ZIF-8@ZIF-67 and evaporation of Zn ions at high temperature. With Co nanoparticles encapsulated by an N-doped porous carbon matrix, the catalyst exhibits excellent stability in aqueous alkaline solution over an extended period and good tolerance to the methanol crossover effect. The integration of an N-doped graphitic carbon outer shell and Co nanoparticles enables high ORR and OER activity, as evidenced by ZnAB using the catalyst C-N/Co (1/2) in an air cathode.
Collapse
Affiliation(s)
- Xia Liu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 PR China
| | - Yuanyuan Ma
- Department of Materials Science and Engineering, National University of Singapore 117574 Singapore
| | - Yongliang Cai
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 PR China
| | - Song Hu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 PR China
| | - Jian Chen
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 PR China
| | - Zhaolin Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| | - Zhijuan Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing 211816 PR China
| |
Collapse
|
127
|
Friedman A, Reddy Samala N, Honig HC, Tasior M, Gryko DT, Elbaz L, Grinberg I. Control of Molecular Catalysts for Oxygen Reduction by Variation of pH and Functional Groups. CHEMSUSCHEM 2021; 14:1886-1892. [PMID: 33629811 DOI: 10.1002/cssc.202002756] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/22/2021] [Indexed: 06/12/2023]
Abstract
In the search for replacement of the platinum-based catalysts for fuel cells, MN4 molecular catalysts based on abundant transition metals play a crucial role in modeling and investigation of the influence of the environment near the active site in platinum-group metal-free (PGM-free) oxygen reduction reaction (ORR) catalysts. To understand how the ORR activity of molecular catalysts can be controlled by the active site structure through modification by the pH and substituent functional groups, the change of the ORR onset potential and the electron number in a broad pH range was examined for three different metallocorroles. Experiments revealed a switch between two different ORR mechanisms and a change from 2e- to 4e- pathway in the pH range of 3.5-6. This phenomenon was shown by density functional theory (DFT) calculations to be related to the protonation of the nitrogen atoms and carboxylic acid groups on the corroles indicated by the pKa values of the protonation sites in the vicinity of the ORR active sites. Control of the electron-withdrawing nature of these groups characterized by the pKa values could switch the ORR from the H+ to e- rate-determining step mechanisms and from 2e- to 4e- ORR pathways and also controlled the durability of the corrole catalysts. The results suggest that protonation of the nitrogen atoms plays a vital role in both the ORR activity and durability for these materials and that pKa of the N atoms at the active sites can be used as a descriptor for the design of high-performance, durable PGM-free catalysts.
Collapse
Affiliation(s)
- Ariel Friedman
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | | | - Hilah C Honig
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Mariusz Tasior
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44-52, 01-224, Warsaw, Poland
| | - Lior Elbaz
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Ilya Grinberg
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
128
|
Dhungana P, Varapragasam SJP, Vemuri B, Baride A, Shrestha N, Balasingam M, Gadhamshetty V, Koppang MD, Hoefelmeyer JD. A pH‐Universal Hollow‐Mn
3
O
4
/MWCNT/Nafion™ Modified Glassy Carbon Electrode for Electrochemical Oxygen Reduction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Pramod Dhungana
- Department of Chemistry University of South Dakota 414 E. Clark St. Vermillion SD 57069 USA
| | | | - Bhuvan Vemuri
- South Dakota School of Mines & Technology 501 E. St. Joseph St. Rapid City SD 57701 USA
| | - Aravind Baride
- Department of Chemistry University of South Dakota 414 E. Clark St. Vermillion SD 57069 USA
| | - Namita Shrestha
- South Dakota School of Mines & Technology 501 E. St. Joseph St. Rapid City SD 57701 USA
| | - Mithira Balasingam
- Department of Chemistry University of South Dakota 414 E. Clark St. Vermillion SD 57069 USA
| | | | - Miles D. Koppang
- Department of Chemistry University of South Dakota 414 E. Clark St. Vermillion SD 57069 USA
| | - James D. Hoefelmeyer
- Department of Chemistry University of South Dakota 414 E. Clark St. Vermillion SD 57069 USA
| |
Collapse
|
129
|
Liang Z, Kong N, Yang C, Zhang W, Zheng H, Lin H, Cao R. Highly Curved Nanostructure‐Coated Co, N‐Doped Carbon Materials for Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101562] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ningning Kong
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou 215123 China
| | - Chenxi Yang
- Sinopec Beijing Research Institute of Chemical Industry Beijing 100013 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haiping Lin
- School of Physics and Information Technology Shaanxi Normal University Xi'an 710119 China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
130
|
Zhao H, Yuan ZY. Design Strategies of Non-Noble Metal-Based Electrocatalysts for Two-Electron Oxygen Reduction to Hydrogen Peroxide. CHEMSUSCHEM 2021; 14:1616-1633. [PMID: 33587818 DOI: 10.1002/cssc.202100055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Indexed: 05/25/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a highly value-added and environmentally friendly chemical with various applications. The production of H2 O2 by electrocatalytic 2e- oxygen reduction reaction (ORR) has drawn considerable research attention, with a view to replacing the currently established anthraquinone process. Electrocatalysts with low cost, high activity, high selectivity, and superior stability are in high demand to realize precise control over electrochemical H2 O2 synthesis by 2e- ORR and the feasible commercialization of this system. This Review introduces a comprehensive overview of non-noble metal-based catalysts for electrochemical oxygen reduction to afford H2 O2 , providing an insight into catalyst design and corresponding reaction mechanisms. It starts with an in-depth discussion on the origins of 2e- /4e- selectivity towards ORR for catalysts. Recent advances in design strategies for non-noble metal-based catalysts, including carbon nanomaterials and transition metal-based materials, for electrochemical oxygen reduction to H2 O2 are then discussed, with an emphasis on the effects of electronic structure, nanostructure, and surface properties on catalytic performance. Finally, future challenges and opportunities are proposed for the further development of H2 O2 electrogeneration through 2e- ORR, from the standpoints of mechanistic studies and practical application.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong, 252000, P. R. China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
131
|
Song R, Cao X, Xu J, Zhou X, Wang X, Yuan N, Ding J. O,N-Codoped 3D graphene hollow sphere derived from metal-organic frameworks as oxygen reduction reaction electrocatalysts for Zn-air batteries. NANOSCALE 2021; 13:6174-6183. [PMID: 33734253 DOI: 10.1039/d0nr09174j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although Pt-based oxygen reduction reaction (ORR) catalysts have excellent performance, they are expensive and suffer from poor durability. It is necessary to explore carbon-based ORR electrocatalysts with low cost, high specific surface area, large porosity, and strong chemical stability. Herein, we have synthesized a zinc-based metal-organic framework precursor (Zn-BTC) using a simple solvothermal method. Then, carbonization and N doping have been carried out by means of high-temperature pyrolysis, ultimately affording metal-free 3D hollow spherical O and N dual-doped graphene framework composites (O,N-graphene) with an average diameter of about 4 μm and specific surface area as high as 1801.4 m2 g-1. O,N-Graphene has superior ORR electrocatalytic activity with an onset potential Eonset = 1.01 V vs. RHE and a half-wave potential E1/2 = 0.842 V vs. RHE, which are comparable with commercial 20 wt% Pt/C with a 4-electron reduction process. The O,N-graphene catalyst shows better durability and methanol tolerance at a lower cost than commercial 20 wt% Pt/C. The peak power density of O,N-graphene as the cathode of a traditional Zn-air battery is 152.8 mW cm-2, which is higher than that of a commercial 20 wt% Pt/C battery (119.8 mW cm-2). Our findings indicate that synergy among the 3D hollow structure, large specific surface area, highly conductive graphene framework, and pyridine N and graphite N defects left in O,N-graphene accelerated O2 diffusion and increased catalytically active sites, thereby affording superior ORR and improved Zn-air battery performance under alkaline conditions.
Collapse
Affiliation(s)
- Ruili Song
- Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou University, Changzhou 213164, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
132
|
Zhang W, Yang S, Bai S, Zhang L, Zhang Y, Yu F. Heterogenization of Ionic liquid Boosting Electrochemical Oxygen Reduction Performance of Co
3
O
4
Supported on Graphene Oxide. ChemCatChem 2021. [DOI: 10.1002/cctc.202001912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenlin Zhang
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Shuangcheng Yang
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Shao‐Tao Bai
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Lu‐Hua Zhang
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Yongkang Zhang
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
| | - Fengshou Yu
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 P. R. China
- State Key Laboratory of Fine Chemicals Dalian University of Technology (DUT) Dalian 116024 Liaoning P. R. China
| |
Collapse
|
133
|
Tuning the Covering on Gold Surfaces by Grafting Amino-Aryl Films Functionalized with Fe(II) Phthalocyanine: Performance on the Electrocatalysis of Oxygen Reduction. Molecules 2021; 26:molecules26061631. [PMID: 33804112 PMCID: PMC7998582 DOI: 10.3390/molecules26061631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022] Open
Abstract
Current selective modification methods, coupled with functionalization through organic or inorganic molecules, are crucial for designing and constructing custom-made molecular materials that act as electroactive interfaces. A versatile method for derivatizing surfaces is through an aryl diazonium salt reduction reaction (DSRR). A prominent feature of this strategy is that it can be carried out on various materials. Using the DSRR, we modified gold surface electrodes with 4-aminebenzene from 4-nitrobenzenediazonium tetrafluoroborate (NBTF), regulating the deposited mass of the aryl film to achieve covering control on the electrode surface. We got different degrees of covering: monolayer, intermediate, and multilayer. Afterwards, the ArNO2 end groups were electrochemically reduced to ArNH2 and functionalized with Fe(II)-Phthalocyanine to study the catalytic performance for the oxygen reduction reaction (ORR). The thickness of the electrode covering determines its response in front of ORR. Interestingly, the experimental results showed that an intermediate covering film presents a better electrocatalytic response for ORR, driving the reaction by a four-electron pathway.
Collapse
|
134
|
Zheng J, Peng X, Wang Z. Plasma-assisted defect engineering of N-doped NiCo 2O 4 for efficient oxygen reduction. Phys Chem Chem Phys 2021; 23:6591-6599. [PMID: 33704337 DOI: 10.1039/d1cp00525a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Defect control is a promising way to enhance the electrocatalysis performance of metal oxides. Oxygen vacancy enriched NiCo2O4 was successfully prepared using cold plasma. Oxygen as a plasma-forming gas introduces oxygen vacancies via electron etching. The concentration of oxygen vacancies can be controlled by different plasma-forming gas. CoO, which formed on the plasma samples, is beneficial for quick charge transfer and electrocatalytic performance. A high amount of nitrogen atoms of up to 10.1% was doped on NiCo2O4 because of the enriched oxygen vacancies and improved the stability of the oxygen defects and the conductivity of the catalyst. Electrocatalytic studies showed that the plasma-induced N-doped NiCo2O4 shows enhanced electrocatalytic performance for the oxygen reduction reaction (ORR). It shows a typical four-electron process that considerably improves the current density and onset potential. The HO2- % was as low as 0.59% and current density was 4.9 mA cm-2 at 0.2 V (Vs. RHE) on the plasma-treated NiCo2O4. Calculations based on density functional theory reveal the mechanism for the promotion of the catalytic ORR activity via plasma treatment. This increases the electron density near the Fermi level, reducing the work function, and changing the position of the d-band center.
Collapse
Affiliation(s)
- Jingxuan Zheng
- National Engineering Research Centre of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | | | | |
Collapse
|
135
|
Li C, Xu W, Ye L, Liu J, Wang F. Hydrothermal-Induced Formation of Well-Defined Hollow Carbons with Curvature-Activated N-C Sites for Zn-Air Batteries. Chemistry 2021; 27:6247-6253. [PMID: 33496039 DOI: 10.1002/chem.202005112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/05/2022]
Abstract
Metal-free carbons have been regarded as one of the promising materials alternatives to precious-metal catalysts for oxygen reduction reaction (ORR) due to their high activity and stability. In this paper, well-defined N-doped hollow carbons (NHCs) are firstly synthesized by using an ammonia-based hydrothermal synthesis that is environmentally friendly and suitable for mass production in industry and a commercial black carbon as raw material. Moreover, the shell thickness of the NHCs can be easily tuned by this hydrothermal strategy. Zn-air battery test results reveal shell thickness-dependent activity and durability for ORR over the NHCs, which exceeds that obtained by commercial Pt/C (20 wt %). The enhanced battery performance can be attributed to the curvature-activated N-C moieties on the hollow carbon surface, which served as the main active sites for ORR as evidenced by DFT calculations. The proposed approach may open a way for designing curved hollow carbons with high graphitization degree and dopant nitrogen level for metal-air batteries or fuel cells.
Collapse
Affiliation(s)
- Chunxiao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wanli Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liangwen Ye
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jingjun Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for, Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
136
|
Wang Y, Yu H, Zhu L, Shi Z, Wang R, Zhang Z, Qiu S. Cytosine-Co assemblies derived CoNx rich Co-NCNT as efficient tri-functional electrocatalyst. J Colloid Interface Sci 2021; 585:276-286. [DOI: 10.1016/j.jcis.2020.11.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
|
137
|
Arif Khan M, Sun C, Cai J, Ye D, Zhao K, Zhang G, Shi S, Ali Shah L, Fang J, Yang C, Zhao H, Mu S, Zhang J. Potassium‐Ion Activating Formation of Fe−N−C Moiety as Efficient Oxygen Electrocatalyst for Zn‐Air Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202001625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Muhammad Arif Khan
- School of Material Science and Engineering Shanghai University Shanghai 200444 P.R China
- College of Sciences & Institute for Sustainable Energy Shanghai University Shanghai 200444 P. R. China
| | - Congli Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Jian Cai
- Department of Physics, College of Sciences & Institute for Sustainable Energy Shanghai University Shanghai 200444 PR China
| | - Daixin Ye
- College of Sciences & Institute for Sustainable Energy Shanghai University Shanghai 200444 P. R. China
| | - Kangning Zhao
- College of Sciences & Institute for Sustainable Energy Shanghai University Shanghai 200444 P. R. China
| | - Guobing Zhang
- College of Mechanical Engineering City University of Hong Kong Kowloon P. R. China
| | - Shanshan Shi
- College of Sciences & Institute for Sustainable Energy Shanghai University Shanghai 200444 P. R. China
| | - Luqman Ali Shah
- Polymer Laboratory National Centre of Excellence in Physical Chemistry University of Peshawar Peshawar 25120 Pakistan
| | - Jianhui Fang
- College of Sciences & Institute for Sustainable Energy Shanghai University Shanghai 200444 P. R. China
| | - Chao Yang
- Institute of Material Science and Technologies Technical University Berlin Berlin 10623 Germany
| | - Hongbin Zhao
- College of Sciences & Institute for Sustainable Energy Shanghai University Shanghai 200444 P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China
| | - Jiujun Zhang
- College of Sciences & Institute for Sustainable Energy Shanghai University Shanghai 200444 P. R. China
| |
Collapse
|
138
|
Zhu G, Qi Y, Liu F, Ma S, Xiang G, Jin F, Liu Z, Wang W. Reconstructing 1D Fe Single-atom Catalytic Structure on 2D Graphene Film for High-Efficiency Oxygen Reduction Reaction. CHEMSUSCHEM 2021; 14:866-875. [PMID: 33236522 DOI: 10.1002/cssc.202002359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Indexed: 06/11/2023]
Abstract
The ordinary intrinsic activity and disordered distribution of metal sites in zero/one-dimensional (0D/1D) single-atom catalysts (SACs) lead to inferior catalytic efficiency and short-term endurance in the oxygen reduction reaction (ORR), which restricts the large-scale application of hydrogen-oxygen fuel cells and metal-air batteries. To improve the activity of SACs, a mild synthesis method was chosen to conjugate 1D Fe SACs with 2D graphene film (Fe SAC@G) that realized a composite structure with well-ordered atomic-Fe coordination configuration. The product exhibits outstanding ORR electrocatalytic efficiency and stability in 0.1 M KOH aqueous solution. DFT-D computational results manifest the intrinsic ORR activity of Fe SAC@G originated from the newly-formed FeN4 -O-FeN4 bridge structure with moderate adsorption ability towards ORR intermediates. These findings provide new ways for designing SACs with high activity and long-term stability.
Collapse
Affiliation(s)
- Guangqi Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yanling Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Fan Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shenqian Ma
- State Key Laboratory of Chemical Resource Engineering College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guolei Xiang
- State Key Laboratory of Chemical Resource Engineering College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fengmin Jin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zigeng Liu
- Institut für Energie und Klimaforschung (IEK-9), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Wei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Key Laboratory of Metal Fuel Cell of Sichuan Province, Deyang, 618019, Sichuan, P. R. China
| |
Collapse
|
139
|
Sui C, Tan R, Chen Y, Yin G, Wang Z, Xu W, Li X. MOFs-Derived Fe-N Codoped Carbon Nanoparticles as O 2-Evolving Reactor and ROS Generator for CDT/PDT/PTT Synergistic Treatment of Tumors. Bioconjug Chem 2021; 32:318-327. [PMID: 33543921 DOI: 10.1021/acs.bioconjchem.0c00694] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal-organic frameworks (MOFs) derivatives had been widely explored in electronic and environmental fields, but rarely evaluated in the biomedical applications. Herein, Fe-N codoped carbon (FeNC) nanoparticles were synthesized and characterized via facile pyrolysis of precursor ZIF-8 (Fe/Zn) nanoparticles, and their potential applications in tumor therapy were assessed in this investigation both in vitro and in vivo. After PAA (sodium polyacrylate) modification, the FeNC@PAA nanoparticles were able to initiate a Fe-based Fenton-like reaction to generate ·OH and O2 for chemodynamic therapy (CDT) and O2 evolution. Meanwhile, the porphyrin-like metal center in the FeNC@PAA nanoparticles could be used as a photosensitizer for photodynamic therapy (PDT) of tumors, which could be enhanced by O2 generated in CDT. Furthermore, the FeNC@PAA nanoparticles were also found to be effective in photothermal therapy (PTT) with a photothermal conversion efficiency of 29.15%, owing to a high absorbance in the near-infrared region (NIR). In conclusion, the synthesized FeNC@PAA nanoparticles exhibited promising applications in O2 evolution and CDT/PDT/PTT synergistic treatment of tumors.
Collapse
Affiliation(s)
- Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer,Tianjin 300060, P.R. China.,Tianjin Medical University, Tianjin 300203, P.R. China
| | - Rui Tan
- Tianjin Medical University, Tianjin 300203, P.R. China.,Department of Neurosurgery Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yiwen Chen
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer,Tianjin 300060, P.R. China.,Tianjin Medical University, Tianjin 300203, P.R. China
| | - Guotao Yin
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer,Tianjin 300060, P.R. China.,Tianjin Medical University, Tianjin 300203, P.R. China
| | - Ziyang Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer,Tianjin 300060, P.R. China.,Tianjin Medical University, Tianjin 300203, P.R. China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer,Tianjin 300060, P.R. China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin's Clinical Research Center for Cancer,Tianjin 300060, P.R. China
| |
Collapse
|
140
|
Hu Y, Li C, Xi S, Deng Z, Liu X, Cheetham AK, Wang J. Direct Pyrolysis of a Manganese-Triazolate Metal-Organic Framework into Air-Stable Manganese Nitride Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003212. [PMID: 33643801 PMCID: PMC7887590 DOI: 10.1002/advs.202003212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Indexed: 06/12/2023]
Abstract
Although metal-organic frameworks (MOFs) are being widely used to derive functional nanomaterials through pyrolysis, the actual mechanisms involved remain unclear. In the limited studies to date, elemental metallic species are found to be the initial products, which limits the variety of MOF-derived nanomaterials. Here, the pyrolysis of a manganese triazolate MOF is examined carefully in terms of phase transformation, reaction pathways, and morphology evolution in different conditions. Surprisingly, the formation of metal is not detected when manganese triazolate is pyrolyzed in an oxygen-free environment. Instead, a direct transformation into nanoparticles of manganese nitride, Mn2N x embedded in N-doped graphitic carbon took place. The electrically conductive Mn2N x nanoparticles show much better air stability than bulk samples and exhibit promising electrocatalytic performance for the oxygen reduction reaction. The findings on pyrolysis mechanisms expand the potential of MOF as a precursor to derive more functional nanomaterials.
Collapse
Affiliation(s)
- Yating Hu
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering Drive 1Singapore117574Singapore
- Function HubHong Kong University of Science and Technology (Guangzhou)S&T Building, Nansha IT ParkGuangzhou511458China
| | - Changjian Li
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering Drive 1Singapore117574Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering SciencesAgency for Science, Technology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Zeyu Deng
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering Drive 1Singapore117574Singapore
| | - Ximeng Liu
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering Drive 1Singapore117574Singapore
| | - Anthony K. Cheetham
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering Drive 1Singapore117574Singapore
- Materials Research LaboratoryUniversity of CaliforniaSanta BarbaraCA93106USA
| | - John Wang
- Department of Materials Science and EngineeringNational University of Singapore9 Engineering Drive 1Singapore117574Singapore
| |
Collapse
|
141
|
Wang D, Pan X, Yang P, Li R, Xu H, Li Y, Meng F, Zhang J, An M. Transition Metal and Nitrogen Co-Doped Carbon-based Electrocatalysts for the Oxygen Reduction Reaction: From Active Site Insights to the Rational Design of Precursors and Structures. CHEMSUSCHEM 2021; 14:33-55. [PMID: 33078564 DOI: 10.1002/cssc.202002137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Considering the urgent requirement for clean and sustainable energy, fuel cells and metal-air batteries have emerged as promising energy storage and conversion devices to alleviate the worldwide energy challenges. The key step in accelerating the sluggish oxygen reduction reaction (ORR) kinetics at the cathode is to develop cost-effective and high-efficiency non-precious metal catalysts, which can be used to replace expensive Pt-based catalysts. Recently, the transition metal and nitrogen co-doped carbon (M-Nx /C) materials with tailored morphology, tunable composition, and confined structure show great potential in both acidic and alkaline media. Herein, the mechanism of ORR is provided, followed by recent efforts to clarify the actual structures of active sites. Furthermore, the progress of optimizing the catalytic performance of M-Nx /C catalysts by modulating nitrogen-rich precursors and porous structure engineering is highlighted. The remaining challenges and development prospects of M-Nx /C catalysts are also outlined and evaluated.
Collapse
Affiliation(s)
- Dan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaona Pan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Peixia Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Ruopeng Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Hao Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yun Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Fan Meng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jinqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Maozhong An
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
142
|
Zhao H, Yuan ZY. Design Strategies of Transition-Metal Phosphate and Phosphonate Electrocatalysts for Energy-Related Reactions. CHEMSUSCHEM 2021; 14:130-149. [PMID: 33030810 DOI: 10.1002/cssc.202002103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The key challenge to developing renewable energy conversion and storage devices lies in the exploration and rational engineering of cost-effective and highly efficient electrocatalysts for various energy-related electrochemical reactions. Transition-metal phosphates and phosphonates have shown remarkable performances for these reactions based on their unique physicochemical properties. Compared with transition-metal oxides, phosphate groups in transition-metal phosphates and phosphonates show flexible coordination with diverse orientations, making them an ideal platform for designing active electrocatalysts. Although numerous efforts have been spent on the development of transition-metal phosphate and phosphonate electrocatalysts, some urgent issues, such as low intrinsic catalytic efficiency and low electronic conductivity, have to be resolved in accordance with their applications. In this Review, we focus on the design strategies of highly efficient transition-metal phosphate and phosphonate electrocatalysts, with special emphasis on the tuning of transition-metal-center coordination environment, optimization of electronic structures, increase of catalytically active site densities, and construction of heterostructures. Guided by these strategies, recently developed transition-metal phosphate and phosphonate materials have exhibited excellent activity, selectivity, and stability for various energy-related electrocatalytic reactions, showing great potential for replacing noble-metal-based catalysts in next-generation advanced energy techniques. The existing challenges and prospects regarding these materials are also presented.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, Shandong, P. R. China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
143
|
Liu H, Yang DH, Wang XY, Zhang J, Han BH. N-doped graphitic carbon shell-encapsulated FeCo alloy derived from metal–polyphenol network and melamine sponge for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. J Colloid Interface Sci 2021; 581:362-373. [DOI: 10.1016/j.jcis.2020.07.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 11/17/2022]
|
144
|
Woo J, Lim JS, Kim JH, Joo SH. Heteroatom-doped carbon-based oxygen reduction electrocatalysts with tailored four-electron and two-electron selectivity. Chem Commun (Camb) 2021; 57:7350-7361. [PMID: 34231572 DOI: 10.1039/d1cc02667d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxygen reduction reaction (ORR) plays a pivotal role in electrochemical energy conversion and commodity chemical production. Oxygen reduction involving a complete four-electron (4e-) transfer is important for the efficient operation of polymer electrolyte fuel cells, whereas the ORR with a partial 2e- transfer can serve as a versatile method for producing industrially important hydrogen peroxide (H2O2). For both the 4e- and 2e- pathway ORR, platinum-group metals (PGMs) have been materials of prevalent choice owing to their high intrinsic activity, but they are costly and scarce. Hence, the development of highly active and selective non-precious metal catalysts is of crucial importance for advancing electrocatalysis of the ORR. Heteroatom-doped carbon-based electrocatalysts have emerged as promising alternatives to PGM catalysts owing to their appreciable activity, tunable selectivity, and facile preparation. This review provides an overview of the design of heteroatom-doped carbon ORR catalysts with tailored 4e- or 2e- selectivities. We highlight catalyst design strategies that promote 4e- or 2e- ORR activity. We also summarise the major active sites and activity descriptors of the respective ORR pathways and describe the catalyst properties controlling the ORR mechanisms. We conclude the review with a summary and suggestions for future research.
Collapse
Affiliation(s)
- Jinwoo Woo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - June Sung Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Jae Hyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea. and Department of Chemistry, College of Natural Sciences, Seoul National University (SNU), 1 Gwanak-ro, Seoul 08826, Republic of Korea
| | - Sang Hoon Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea. and Department of Chemistry, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
145
|
Liu Q, Kang Q, Wang Z, Lu Q, Gao F. One-pot synthesis of mesoporous palladium/C nanodendrites as high-performance oxygen reduction eletrocatalysts through a facile dual surface protecting agent-assisted strategy. Dalton Trans 2021; 50:6297-6305. [PMID: 33881067 DOI: 10.1039/d1dt00026h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium (Pd) is regarded as a potential non-platinum electrocatalyst to drive oxygen reduction in fuel cells. The development of Pd-based electrocatalysts with high performances through structural engineering is still highly desirable. Herein, a facile one-pot synthesis strategy with the assistance of dual surface protecting agents was developed to fabricate carbon-supported Pd (Pd/C) nanodendrites with high mesoporosity. The mesoporous spherical Pd/C nanodendrites are built with connected nanoparticles with a small size of several nanometers and coated by simultaneously formed carbon layers. The used dual protecting agents, glycine and oleylamine, exhibit synergistic effects to engineer Pd growth to form the unique mesoporous dendritic structure. Benefiting from the mesoporous feature, small size, defect-rich surface and carbon coating, the obtained mesoporous Pd/C nanodendrites exhibit great electrocatalytic performance toward the oxygen reduction reaction (ORR).
Collapse
Affiliation(s)
- Qiuyue Liu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Qiaoling Kang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhenhua Wang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Feng Gao
- Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
146
|
Bai F, Xu L, Wang D, An L, Hao Z, Li F. Effect of the valence state of Mn in MnO x/Ti 4O 7 composites on the catalytic performance for oxygen reduction reaction and oxygen evolution reaction. RSC Adv 2021; 11:1524-1530. [PMID: 35424097 PMCID: PMC8693610 DOI: 10.1039/d0ra08575h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022] Open
Abstract
Manganese oxide composites with mixed valence states were prepared through the hydrothermal method by compositing with Ti4O7 and calcining at different temperatures, and their ORR and OER catalytic performance were investigated. The prepared catalysts were characterized by XRD, SEM-EDS, HRTEM-EDS, and XPS methods to analyse their phase constitution, morphology feature, and surface composition. The major phase of manganese oxides was Mn3O4, which is a one-dimensional structure, and its growth was induced by Ti4O7. The ORR and OER catalytic activity can be enhanced due to the preferred orientation of manganese oxides. Electrochemical measurements, namely CV, LSV and EIS, were utilized for determining the ORR and OER catalytic activity, whereas CA and ADT were used for studying the durability and stability. A Li–O2 battery was assembled to test the electrochemical behavior and properties in practical application. MnOx/Ti4O7 calcined at 300 °C exhibited the best catalytic activity of 0.72 V vs. RHE half-wave potential for ORR and 0.67 V vs. RHE overpotential for OER. The proportion of Mn3+ was also highest in all the MnOx/Ti4O7 composites. The assembled Li–O2 battery shows high performance with a voltage gap of only 0.85 V. Therefore, it can be affirmed that the inducement of Ti4O7 could strengthen the preferred orientation in manganese oxide growth and Mn3+ in MnOx/Ti4O7 plays a vital role in catalyzing ORR and OER, with both improving the ORR and OER bifunctional catalytic performance of manganese oxides. Manganese oxide composites with mixed valence states were prepared by compositing with Ti4O7 and calcination temperature could influence their ORR and OER catalytic performance observably.![]()
Collapse
Affiliation(s)
- Fan Bai
- Beijing Key Laboratory for Catalysis and Separation
- Department of Environment and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Lincheng Xu
- Beijing Key Laboratory for Catalysis and Separation
- Department of Environment and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Daode Wang
- Beijing Key Laboratory for Catalysis and Separation
- Department of Environment and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
- China
| | - Li An
- Beijing Key Laboratory for Catalysis and Separation
- Faculty of Environment and Life
- Beijing University of Technology
- Beijing 100124
- China
| | - Zhanzhong Hao
- Department of Chemistry
- Baotou Teachers' College
- Baotou 014000
- China
| | - Fan Li
- Beijing Key Laboratory for Catalysis and Separation
- Department of Environment and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
- China
| |
Collapse
|
147
|
Liang Z, Wang HY, Zheng H, Zhang W, Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem Soc Rev 2021; 50:2540-2581. [DOI: 10.1039/d0cs01482f] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| |
Collapse
|
148
|
MOF derived multi-metal oxides anchored N, P-doped carbon matrix as efficient and durable electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2021; 581:608-618. [DOI: 10.1016/j.jcis.2020.07.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
|
149
|
Abstract
Metal–organic frameworks (MOFs) are a valuable group of porous crystalline solids with inorganic and organic parts that can be used in dual catalysis.
Collapse
Affiliation(s)
- Kayhaneh Berijani
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
150
|
A comparison of single and double Co sites incorporated in N-doped graphene for the oxygen reduction reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|