101
|
He H, Zhu Q, Zhang W, Zhang H, Chen J, Li C, Du M. Metal and Co‐Catalyst Free CO
2
Conversion with a Bifunctional Covalent Organic Framework (COF). ChemCatChem 2020. [DOI: 10.1002/cctc.202000949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hongming He
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Qian‐Qian Zhu
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Wen‐Wen Zhang
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Han‐Wen Zhang
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Jing Chen
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Cheng‐Peng Li
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Miao Du
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 P. R. China
| |
Collapse
|
102
|
Progress of MOF-Derived Functional Materials Toward Industrialization in Solar Cells and Metal-Air Batteries. Catalysts 2020. [DOI: 10.3390/catal10080897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cutting-edge photovoltaic cells are an indispensable part of the ongoing progress of earth-friendly plans for daily life energy consumption. However, the continuous electrical demand that extends to the nighttime requires a prior deployment of efficient real-time storage systems. In this regard, metal-air batteries have presented themselves as the most suitable candidates for solar energy storage, combining extra lightweight with higher power outputs and promises of longer life cycles. Scientific research over non-precious functional catalysts has always been the milestone and still contributing significantly to exploring new advanced materials and moderating the cost of both complementary technologies. Metal-organic frameworks (MOFs)-derived functional materials have found their way to the application as storage and conversion materials, owing to their structural variety, porous advantages, as well as the tunability and high reactivity. In this review, we provide a detailed overview of the latest progress of MOF-based materials operating in metal-air batteries and photovoltaic cells.
Collapse
|
103
|
Yuan R, Yan Z, Shaga A, He H. Solvent-free mechanochemical synthesis of a carbazole-based porous organic polymer with high CO2 capture and separation. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
104
|
Jin F. An excellently stable heterovalent copper–organic framework based on Cu4I4 and Cu(COO)2N2 SBUs: The catalytic performance for CO2 cycloaddition reaction and Knoevenagel condensation reaction. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
105
|
Liu Y, Lu YK, Zhang B, Hou L, Wang YY. Post-Synthetic Functionalization of Ni-MOF by Eu3+ Ions: Luminescent Probe for Aspartic Acid and Magnetic Property. Inorg Chem 2020; 59:7531-7538. [DOI: 10.1021/acs.inorgchem.0c00402] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
- Shaanxi Institute of International Trade& Commerce, Xi’an 712046, P. R. China
| | - Yu-Ke Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Bin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| |
Collapse
|
106
|
Guo F, Su C, Fan Y, Shi W, Zhang X. Assembly of Two Self-Interpenetrating Metal–Organic Frameworks Based on a Trigonal Ligand: Syntheses, Crystal Structures, and Properties. Inorg Chem 2020; 59:7135-7142. [DOI: 10.1021/acs.inorgchem.0c00596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Feng Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, People’s Republic of China
| | - Changhua Su
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252059, People’s Republic of China
| | - Yuhang Fan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, People’s Republic of China
| | - Wenbing Shi
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, People’s Republic of China
| | - Xiuling Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, People’s Republic of China
| |
Collapse
|
107
|
Synthesis, crystal structure and catalytic property of a highly stable 3D Cu(II)-organic framework. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
108
|
Gan L, Chidambaram A, Fonquernie PG, Light ME, Choquesillo-Lazarte D, Huang H, Solano E, Fraile J, Viñas C, Teixidor F, Navarro JAR, Stylianou KC, Planas JG. A Highly Water-Stable meta-Carborane-Based Copper Metal–Organic Framework for Efficient High-Temperature Butanol Separation. J Am Chem Soc 2020; 142:8299-8311. [DOI: 10.1021/jacs.0c01008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lei Gan
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), E-08193 Bellaterra, Barcelona, Spain
| | - Arunraj Chidambaram
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l’Industrie 17, 1951 Sion, Switzerland
| | - Pol G. Fonquernie
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), E-08193 Bellaterra, Barcelona, Spain
| | - Mark E. Light
- Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Av. de las Palmeras 4, E-18100 Armilla, Granada, Spain
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Eduardo Solano
- NCD-SWEET Beamline, ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Julio Fraile
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), E-08193 Bellaterra, Barcelona, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), E-08193 Bellaterra, Barcelona, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), E-08193 Bellaterra, Barcelona, Spain
| | - Jorge A. R. Navarro
- Departamento de Quı́mica Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, E-18071 Granada, Spain
| | - Kyriakos C. Stylianou
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l’Industrie 17, 1951 Sion, Switzerland
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - José G. Planas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), E-08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
109
|
Guo F, Su C, Fan Y, Shi W, Zhang X. Rational design and synthesis of a stable pillar-layer Na I-organic framework as a multi-responsive luminescent sensor in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118106. [PMID: 32004871 DOI: 10.1016/j.saa.2020.118106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
A stable pillar-layer NaI-organic framework, [Na2(DCPB)∙(H2O)2]n (namely 1), was rationally designed and synthesized by the assemble process of NaI and 1,3-di(4'-carboxyl-phenyl)benzene (H2DCPB). Benefiting from the luminescent property and high stability in water, the as-synthesized 1 is a potential multi-responsive luminescent sensor material toward Cr2O72-, Fe3+, and nitrofurazone (NFZ) in water. Ground 1 not only has the excellent detectability and selectivity but also possesses outstanding stability and circularity. The calculated Ksv values of 1 are 8.8×103 for Fe3+, 9.9×103 for Cr2O72-, and 2.7×104 M-1 for NFZ in aqueous solutions, respectively. Furthermore, 1 is able to accurately detect NFZ in real bovine serum samples through luminescence detection technology.
Collapse
Affiliation(s)
- Feng Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China.
| | - Changhua Su
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yuhang Fan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Wenbing Shi
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Xiuling Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| |
Collapse
|
110
|
Pal TK, De D, Bharadwaj PK. Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213173] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
111
|
Guo F, Su C, Fan Y, Shi W, Zhang X. Construction of a dual-response luminescent metal-organic framework with excellent stability for detecting Fe3+ and antibiotic with high selectivity and sensitivity. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
112
|
Liu M, Zhao P, Gu Y, Ping R, Gao J, Liu F. Squaramide functionalized ionic liquids with well-designed structures: Highly-active and recyclable catalyst platform for promoting cycloaddition of CO2 to epoxides. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
113
|
Li B. A PbII-organic framework based on 5-nitronicotinic acid as a bi-functional fluorescence sensor for Fe3+ and temperature. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1743276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Bin Li
- Green Drug Laboratory, Wei Fang University of Science and Technology, Shandong, P. R. China
| |
Collapse
|
114
|
Construction of a heterometallic organic framework based on cuprous-halide clusters and lanthanide clusters with CO2 storage and transformation. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
115
|
Ke SC, Luo TT, Chang GG, Huang KX, Li JX, Ma XC, Wu J, Chen J, Yang XY. Spatially Ordered Arrangement of Multifunctional Sites at Molecule Level in a Single Catalyst for Tandem Synthesis of Cyclic Carbonates. Inorg Chem 2020; 59:1736-1745. [PMID: 31927961 DOI: 10.1021/acs.inorgchem.9b02952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With fossil energy resources increasingly drying up and gradually causing serious environmental impacts, pursuing a tandem and green synthetic route for a complex and high-value-added compound by using low-cost raw materials has attracted considerable attention. In this regard, the selective and efficient conversion of light olefins with CO2 into high-value-added organic cyclic carbonates (OCCs) is of great significance owing to their high atom economy and absence of the isolation of intermediates. To fulfill this expectation, a multifunctional catalytic system with controllable spatial arrangement of varied catalytic sites and stable texture, in particular, within a single catalyst, is generally needed. Here, by using a stepwise electrostatic interaction strategy, imidazolium-based ILs and Au nanoparticles (NPs) were stepwise immobilized into a sulfonic group grafted MOF to construct a multifunctional single catalyst with a highly ordered arrangement of catalytic sites. The Au NPs and imidazolium cation are separately responsible for the selective epoxidation and cycloaddition reaction. The mesoporous cage within the MOF enriches the substrate molecules and provides a confined catalytic room for the tandem catalysis. More importantly, the highly ordered arrangement of the varied active sites and strong electrostatic attraction interaction result in the intimate contact and effective mass transfer between the catalytic sites, which allow for the highly efficient (>74% yield) and stable (repeatedly usage for at least 8 times) catalytic transformation. The stepwise electrostatic interaction strategy herein provides an absolutely new approach in fabricating the controllable multifunctional catalysts, especially for tandem catalysis.
Collapse
Affiliation(s)
- Shan-Chao Ke
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Ting-Ting Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China.,Material Research and Testing Center of Wuhan University of Technology, Nanostructure Research Centre , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Gang-Gang Chang
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Ke-Xin Huang
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Jia-Xin Li
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Xiao-Chen Ma
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Jian Wu
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Jian Chen
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , 122 Luoshi Road , 430070 Wuhan , Hubei , China
| |
Collapse
|
116
|
Miao C, Su TE. Self-assembly of two Ag(I) metal-organic frameworks based on tri(pyridin-4-yl)amine: Crystal structures, anion-directed effect, and Cr2O72− capture behaviour. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
117
|
Wang L. A Dual-Functional Lead(II) Metal–Organic Framework Based on 5-Aminonicotinic Acid as a Luminescent Sensor for Selective Sensing of Nitroaromatic Compounds and Detecting the Temperature. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01186-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
118
|
Shi Z, Tao Y, Wu J, Zhang C, He H, Long L, Lee Y, Li T, Zhang YB. Robust Metal–Triazolate Frameworks for CO2 Capture from Flue Gas. J Am Chem Soc 2020; 142:2750-2754. [DOI: 10.1021/jacs.9b12879] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhaolin Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Tao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiasheng Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cuizheng Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hailong He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Liuliu Long
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yongjin Lee
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
119
|
Gupta M, Chatterjee N, De D, Saha R, Chattaraj PK, Oliver CL, Bharadwaj PK. Metal-Organic Frameworks of Cu(II) Constructed from Functionalized Ligands for High Capacity H 2 and CO 2 Gas Adsorption and Catalytic Studies. Inorg Chem 2020; 59:1810-1822. [PMID: 31965795 DOI: 10.1021/acs.inorgchem.9b03012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two Cu(II)-based metal-organic frameworks (MOFs) having paddle-wheel secondary building units (SBUs), namely, 1Me and 1ipr, were synthesized solvothermally using two new bent di-isophthalate ligands incorporating different substituents. The MOFs showed high porosity (BET surface area, 2191 m2/g for 1Me and 1402 m2/g for 1ipr). For 1Me, very high CO2 adsorption (98.5 wt % at 195 K, 42.9 wt % at 273 K, 23.3 wt % at 298 K) at 1 bar was found, while for 1ipr, it was significantly less (14.3 wt % at 298 K and 1 bar, 54.4 wt % at 298 K at 50 bar). 1Me exhibited H2 uptake of 3.2 wt % at 77 K and 1 bar of pressure, which compares well with other benchmark MOFs. For 1ipr, the H2 uptake was found to be 2.54 wt % under similar experimental conditions. The significant adsorption of H2 and CO2 for 1Me could be due to the presence of micropores as well as unsaturated metal sites in these MOFs besides the presence of substituents that interact with the gas molecules. The experimental adsorption behavior of the MOFs could be justified by theoretical calculations. Additionally, catalytic conversions of CO2 and CS2 into useful chemicals like cyclic carbonates, cyclic trithiocarbonates, and cyclic dithiocarbonates could be achieved.
Collapse
Affiliation(s)
- Mayank Gupta
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| | - Nabanita Chatterjee
- Centre for Supramolecular Chemistry Research (CSCR), Department of Chemistry , University of Cape Town , Cape Town , South Africa
| | - Dinesh De
- Department of Basic Science, Vishwavidyalaya Engineering College, Lakhanpur , Sarguja University , Lakhanpur , Chhattisgarh - 497116 , India
| | - Ranajit Saha
- Department of Chemistry and Center for Theoretical Studies , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Center for Theoretical Studies , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India.,Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Clive L Oliver
- Centre for Supramolecular Chemistry Research (CSCR), Department of Chemistry , University of Cape Town , Cape Town , South Africa
| | - Parimal K Bharadwaj
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208016 , India.,Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| |
Collapse
|
120
|
Liang GM, Xiong P, Azam K, Ni QL, Zeng JQ, Gui LC, Wang XJ. A Discrete Tetrahedral Indium Cage as an Efficient Heterogeneous Catalyst for the Fixation of CO2 and the Strecker Reaction of Ketones. Inorg Chem 2020; 59:1653-1659. [PMID: 31965792 DOI: 10.1021/acs.inorgchem.9b02763] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guang-Ming Liang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People’s Republic of China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People’s Republic of China
| | - Peng Xiong
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Khan Azam
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Qing-Ling Ni
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Jian-Qiang Zeng
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Liu-Cheng Gui
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Xiu-Jian Wang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People’s Republic of China
| |
Collapse
|
121
|
Zhu QQ, Zhou QS, Zhang HW, Zhang WW, Lu DQ, Guo MT, Yuan Y, Sun F, He H. Design and Construction of a Metal-Organic Framework as an Efficient Luminescent Sensor for Detecting Antibiotics. Inorg Chem 2020; 59:1323-1331. [PMID: 31920084 DOI: 10.1021/acs.inorgchem.9b03032] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We first design and synthesize a dendritic aromatic 6-carboxyl linker (H6TDCPB), which is successfully assembled with Cd(II) ion to construct a porous metal-organic framework with a raw Cd6 cluster, {[Cd3(TDCPB)·2DMAc]·DMAc·4H2O}n (namely, complex 1). More interestingly, six adjacent linkers are packed together by π-π-stacking interactions to form an amazing six-molecule accumulation in the crystal structure. By virtue of high stability and luminescent properties, the as-synthesized sample not merely owns an excellent detectable ability but also possesses an outstanding selectivity for nitrofurans with remarkable recursitivity.
Collapse
Affiliation(s)
- Qian-Qian Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Qiao-Shu Zhou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Han-Wen Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Wen-Wen Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Di-Qiu Lu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Mei-Tong Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Ye Yuan
- Faculty of Chemistry , Northeast Normal University , Changchun 130024 , People's Republic of China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| |
Collapse
|
122
|
Tian YB, Wang YY, Chen SM, Gu ZG, Zhang J. Epitaxial Growth of Highly Transparent Metal-Porphyrin Framework Thin Films for Efficient Bifacial Dye-Sensitized Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1078-1083. [PMID: 31804061 DOI: 10.1021/acsami.9b19022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bifacial dye-sensitized solar cells (DSSCs) are regarded as promising solar energy conversion devices with high efficiency and less resource consumption. In this work, a highly transparent and efficient counter electrode (CE) is fabricated by introducing highly dispersed single Pt atoms doped into the van der Waals layer-by-layer epitaxially grown Zn-TCPP thin film (Zn-TCPP-Pt). The resulting Zn-TCPP-Pt CE has similar catalytic activity to commercial Pt CE but shows a better light transmission capacity in the range of visible light. The bifacial DSSC with Zn-TCPP-Pt thin film CE achieves high power conversion efficiencies of 5.48 and 4.88% under front-side and rear-side irradiation, respectively. With maximized atomic efficiency, excellent performance was obtained with about 1% Pt content and highly transparent CEs. Therefore, the light energy resource utilization rate of such less Pt and transparence CE is greatly improved in bifacial dye-sensitized solar cells, making it a promising candidate to replace Pt CE.
Collapse
Affiliation(s)
- Yi-Bo Tian
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350108 , P. R. China
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , P. R. China
| | - Yan-Yue Wang
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350108 , P. R. China
| | - Shu-Mei Chen
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350108 , P. R. China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , P. R. China
| |
Collapse
|
123
|
MOFs-Based Catalysts Supported Chemical Conversion of CO2. Top Curr Chem (Cham) 2020; 378:11. [DOI: 10.1007/s41061-019-0269-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/20/2019] [Indexed: 11/26/2022]
|
124
|
El-Sayed ESM, Yuan D. Metal-Organic Cages (MOCs): From Discrete to Cage-based Extended Architectures. CHEM LETT 2020. [DOI: 10.1246/cl.190731] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- El-Sayed M. El-Sayed
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
- Chemical Refining Laboratory, Refining Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
125
|
Zhao N, Cai K, He H. The synthesis of metal-organic frameworks with template strategies. Dalton Trans 2020; 49:11467-11479. [PMID: 32720963 DOI: 10.1039/d0dt01879a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of metal-organic frameworks (MOFs) with a template strategy is still fascinating and has received considerable attention from structural chemists. In this review, developments in tuning MOF hosts or pore structures with a template strategy in the past decades are summarized. By adding templates into MOF precursors, novel template@MOF materials can always be obtained, which cannot be accessed by traditional synthesis procedures. Template@MOF materials can be structurally characterized to help understand the interactions between host frameworks and guest templates. On the other hand, changing the species or amount of template may lead to a pore structure change that can be used as a molecular container to load functional guest molecules with matching sizes for specific applications. It is hoped that this review will provide future researchers with new insight into the design and synthesis of MOF materials by applying suitable templates.
Collapse
Affiliation(s)
- Nian Zhao
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, P. R. China
| | - Kun Cai
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Mico and Nano Materials, College of Advanced Materials and Energy, Xuchang University, Henan 461000, P. R. China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|
126
|
Jia H, Qi Y, Wang X, Xie J, Yu W. Water-stable CdII-based metal–organic framework as a reversible luminescent sensor for NFT with excellent recyclability and selectivity. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
127
|
He C, Hou C, Wang YM, Gong XY, Jiang HL, Sun YB, Liu K, Cao XQ. Open metal site (OMS) and Lewis basic site (LBS)-functionalized copper–organic framework with high CO2 uptake performance and highly selective CO2/N2 and CO2/CH4 separation. CrystEngComm 2020. [DOI: 10.1039/c9ce02005e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A robust porous metal–organic framework with dual functionalities of open metal sites (OMSs) and O-rich Lewis basic sites (LBSs) has been designed and synthesized, and shows high CO2 uptake and excellent selectivity for CO2 over N2 and CH4.
Collapse
Affiliation(s)
- Cheng He
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian 271016
- P. R. China
| | - Chao Hou
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian 271016
- P. R. China
| | - Yu Min Wang
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian 271016
- P. R. China
| | - Xue Yong Gong
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian 271016
- P. R. China
| | - Hong Li Jiang
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian 271016
- P. R. China
| | - Yong Bin Sun
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian 271016
- P. R. China
| | - Kun Liu
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian 271016
- P. R. China
| | - Xiao Qun Cao
- School of Chemistry and Pharmaceutical Engineering
- Shandong First Medical University & Shandong Academy of Medical Science
- Taian 271016
- P. R. China
| |
Collapse
|
128
|
Guo F, Su C, Fan Y, Shi W. Constructing an Interpenetrated NiII-Based Coordination Polymer Based on a Flexible Dicarboxylate Ligand and an N-Donor Ligand: Preparation, Topological Diversity, and Catalytic Properties. Aust J Chem 2020. [DOI: 10.1071/ch19498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel coordination polymer (CP) was constructed using 1,3-bis(4-carboxyphenoxy) propane (H2bcp), 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene (bimb), and NiII ions. [Ni(bcp)(bimb)]·H2O]n (1) shows an interesting 2D+2D → 3D inclined polyrotaxane topology. The structure was characterised by many methods. This work indicates that the flexible and neutral pyridine ligand plays a significant role in constructing CPs. Furthermore, 1 is a highly efficient catalyst for the reaction of CO2 and epoxides.
Collapse
|
129
|
Yi L, Guo F. Rational Construction of a 2D PbII Coordination Polymer as a Sensitive Turn-Off Fluorescent Switch for Fe3+, Cr2O72−, and NFT. Aust J Chem 2020. [DOI: 10.1071/ch19416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A PbII coordination polymer, [Pb(L)2]n (denoted as complex 1), was generated successfully by the assembly process of PbII and 5-fluoronicotinic acid (HL) under solvothermal synthesis. The obtained 1 was characterised by element analysis, powder and single-crystal X-ray diffraction, thermogravimetric analysis, and UV-vis and fluorescent spectroscopy. The resultant 1 has an outstanding application as a fluorescent sensor for Fe3+, Cr2O72−, and NFT with excellent selectivity and reusability.
Collapse
|
130
|
Yuan R, He H. State of the art methods and challenges of luminescent metal–organic frameworks for antibiotic detection. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00955e] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review focuses on recent developments in the design and synthesis of luminescence MOFs for monitoring antibiotics.
Collapse
Affiliation(s)
- Rongrong Yuan
- Department of Materials Science and Engineering
- Jilin Jianzhu University
- Changchun 130118
- P. R. China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|
131
|
Zhang X, Chen Z, Liu X, Hanna SL, Wang X, Taheri-Ledari R, Maleki A, Li P, Farha OK. A historical overview of the activation and porosity of metal–organic frameworks. Chem Soc Rev 2020; 49:7406-7427. [DOI: 10.1039/d0cs00997k] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A historical overview of the activation and porosity of MOFs including strategies to design and preserve permanent porosity in MOFs.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Xinyao Liu
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| | - Sylvia L. Hanna
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Reza Taheri-Ledari
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | - Ali Maleki
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| | - Peng Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Fudan University
- Shanghai 200438
- P. R. China
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
- Department of Chemical and Biological Engineering
| |
Collapse
|
132
|
Guo F, Zhang X. Metal–organic frameworks for the energy-related conversion of CO2 into cyclic carbonates. Dalton Trans 2020; 49:9935-9947. [DOI: 10.1039/d0dt01516d] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MOFs are promising heterogeneous catalysts for chemical fixation of CO2 and epoxides into cyclic carbonates.
Collapse
Affiliation(s)
- Feng Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials
- College of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing 408100
- P. R. China
| | - Xiuling Zhang
- College of Chemistry and Chemical Engineering
- Dezhou University
- Dezhou
- People's Republic of China
| |
Collapse
|
133
|
Lan J, Qu Y, Zhang X, Ma H, Xu P, Sun J. A novel water-stable MOF Zn(Py)(Atz) as heterogeneous catalyst for chemical conversion of CO2 with various epoxides under mild conditions. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.09.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
134
|
Hou SL, Dong J, Zhao B. Formation of CX Bonds in CO 2 Chemical Fixation Catalyzed by Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806163. [PMID: 31216093 DOI: 10.1002/adma.201806163] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Transformation of CO2 based on metal-organic framework (MOF) catalysts is becoming a hot research topic, not only because it will help to reduce greenhouse gas emission, but also because it will allow for the production of valuable chemicals. In addition, a large number of impressive products have been synthesized by utilizing CO2 . In fact, it is the formation of new covalent bonds between CO2 and substrate molecules that successfully result in CO2 solidly inserting into the products, and only four types of new CX bonds, including CH, CC, CN, and CO bonds, are observed in this exploration. An overview of recent progress in constructing CX bonds for CO2 conversion catalyzed by various MOF catalysts is provided. The catalytic mechanism of generating different CX bonds is further discussed according to both structural features of MOFs and the interactions among CO2 , substrates, as well as MOFs. The future opportunities and challenges in this field are also tentatively covered.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin, 300071, China
| | - Jie Dong
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin, 300071, China
| |
Collapse
|
135
|
Wang XX, Yang J, Xu X, Ma JF. Highly Stable Copper(I)-Thiacalix[4]arene-Based Frameworks for Highly Efficient Catalysis of Click Reactions in Water. Chemistry 2019; 25:16660-16667. [PMID: 31793069 DOI: 10.1002/chem.201903966] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Indexed: 01/24/2023]
Abstract
Environmentally friendly metal-organic frameworks (MOFs) have gained considerable attention for their potential use as heterogeneous catalysts. Herein, two CuI -based MOFs, namely, [Cu4 Cl4 L]⋅CH3 OH⋅1.5 H2 O (1-Cl) and [Cu4 Br4 L]⋅DMF⋅0.5 H2 O (1-Br), were assembled with new functionalized thiacalix[4]arenes (L) and halogen anions X- (X=Cl and Br) under solvothermal conditions. Remarkably, catalysts 1-Cl and 1-Br exhibit great stability in aqueous solutions over a wide pH range. Significantly, MOFs 1-Cl and 1-Br, as recycled heterogeneous catalysts, are capable of highly efficient catalysis for click reactions in water. The MOF structures, especially the exposed active CuI sites and 1D channels, play a key role in the improved catalytic activities. In particular, their catalytic activities in water are greatly superior to those in organic solvents or even in mixed solvents. This work proposes an attractive route for the design and self-assembly of environmentally friendly MOFs with high catalytic activity and reusability in water.
Collapse
Affiliation(s)
- Xue-Xia Wang
- Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Jin Yang
- Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Jian-Fang Ma
- Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| |
Collapse
|
136
|
Zhu QQ, Zhang WW, Zhang HW, Yuan Y, Yuan R, Sun F, He H. A Double-Walled Porous Metal–Organic Framework as a Highly Efficient Catalyst for Chemical Fixation of CO2 with Epoxides. Inorg Chem 2019; 58:15637-15643. [DOI: 10.1021/acs.inorgchem.9b02717] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qian-Qian Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Wen-Wen Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Han-Wen Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Rongrong Yuan
- Dapartment of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, People’s Republic of China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| |
Collapse
|
137
|
Yilmaz G, Peh SB, Zhao D, Ho GW. Atomic- and Molecular-Level Design of Functional Metal-Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901129. [PMID: 31728281 PMCID: PMC6839644 DOI: 10.1002/advs.201901129] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/21/2019] [Indexed: 05/12/2023]
Abstract
Continuing population growth and accelerated fossil-fuel consumption with recent technological advancements have engendered energy and environmental concerns, urging researchers to develop advanced functional materials to overcome the associated problems. Metal-organic frameworks (MOFs) have emerged as frontier materials due to their unique porous organic-inorganic hybrid periodic assembly and exceptional diversity in structural properties and chemical functionalities. In particular, the modular nature and modularity-dependent activity of MOFs and MOF derivatives have accentuated the delicate atomic- and molecular design and synthesis of MOFs, and their meticulous conversion into carbons and transition-metal-based materials. Synthetic control over framework architecture, content, and reactivity has led to unprecedented merits relevant to various energy and environmental applications. Herein, an overview of the atomic- and molecular-design strategies of MOFs to realize application-targeted properties is provided. Recent progress on the development of MOFs and MOF derivatives based on these strategies, along with their performance, is summarized with a special emphasis on design-structure and functionality-activity relationships. Next, the respective energy- and environmental-related applications of catalysis and energy storage, as well as gas storage-separation and water harvesting with close association to the energy-water-environment nexus are highlighted. Last, perspectives on current challenges and recommendations for further development of MOF-based materials are also discussed.
Collapse
Affiliation(s)
- Gamze Yilmaz
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering4 Engineering Drive 4Singapore117585Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering4 Engineering Drive 4Singapore117585Singapore
| | - Ghim Wei Ho
- Department of Electrical and Computer EngineeringNational University of Singapore4 Engineering Drive 3Singapore117583Singapore
- Institute of Materials Research and EngineeringA*STAR (Agency for Science, Technology and Research)3 Research LinkSingapore117602Singapore
| |
Collapse
|
138
|
Maity K, Nath K, Sinnwell MA, Motkuri RK, Thallapally PK, Biradha K. Isoreticular Expansion of Metal–Organic Frameworks via Pillaring of Metal Templated Tunable Building Layers: Hydrogen Storage and Selective CO
2
Capture. Chemistry 2019; 25:14500-14505. [DOI: 10.1002/chem.201902491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Kartik Maity
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 India
| | - Karabi Nath
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 India
| | - Michael A. Sinnwell
- Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Radha Kishan Motkuri
- Energy and Environment Directorate Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Praveen K. Thallapally
- Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Kumar Biradha
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 India
| |
Collapse
|
139
|
Xue YS, Cheng WW, Luo XM, Cao JP, Xu Y. Multifunctional Polymolybdate-Based Metal-Organic Framework as an Efficient Catalyst for the CO 2 Cycloaddition and as the Anode of a Lithium-Ion Battery. Inorg Chem 2019; 58:13058-13065. [PMID: 31532643 DOI: 10.1021/acs.inorgchem.9b01977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A three-dimensional polymolybdate-based metal-organic framework (POMOF) consisting of Zn-ε-Keggin unit and organic linker, {[PMo8VMo4VIO37(OH)3Zn4][BPE]2}·[BPE] (1), was successfully obtained by the hydrothermal method. Compound 1 is composed of Zn-ε-Keggin units and BPE ligands, featuring a fascinating 5-fold interpenetrating framework with dia topology. The catalytic performance of compound 1 was investigated, and experiments showed that 1 could effectively facilitate the cycloaddition reaction of CO2 with epoxides as Lewis acid heterogeneous catalyst. Moreover, compound 1 also was studied as LIBs anode material, and it showed reversible capacity of 546 mA h g-1 at 100th cycle.
Collapse
Affiliation(s)
- Yun-Shan Xue
- College of Chemical Engineering , State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , P. R. China.,School of Chemistry and Environmental Engineering , Yancheng Teachers University , Yancheng , Jiangsu 224002 , P. R. China
| | - Wei-Wei Cheng
- College of Chemical Engineering , State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , P. R. China
| | - Xi-Ming Luo
- College of Chemical Engineering , State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , P. R. China
| | - Jia-Peng Cao
- College of Chemical Engineering , State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , P. R. China
| | - Yan Xu
- College of Chemical Engineering , State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009 , P. R. China
| |
Collapse
|
140
|
Zhang X, Jiang Y, Fei H. UiO-type metal-organic frameworks with NHC or metal-NHC functionalities for N-methylation using CO 2 as the carbon source. Chem Commun (Camb) 2019; 55:11928-11931. [PMID: 31531430 DOI: 10.1039/c9cc06659d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We demonstrate the first metal-organic framework (MOF) that catalyzes N-methylation of amines using 1 atm CO2 and phenylsilane under ambient conditions. Compared with its homogeneous analog, the incorporation of N-heterocyclic carbene (NHC) into the MOF provides more efficient catalysis with improved reaction kinetics, turnover numbers and recyclability. Moreover, the metalated NHC functionalized MOF achieves direct N-methylation of amines bearing carboxylate moieties, which are common building blocks in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Xu Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji Universtiy, 1239 Siping Rd., Shanghai 200092, P. R. China.
| | - Yilin Jiang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji Universtiy, 1239 Siping Rd., Shanghai 200092, P. R. China.
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji Universtiy, 1239 Siping Rd., Shanghai 200092, P. R. China.
| |
Collapse
|
141
|
Ding M, Cai X, Jiang HL. Improving MOF stability: approaches and applications. Chem Sci 2019; 10:10209-10230. [PMID: 32206247 PMCID: PMC7069376 DOI: 10.1039/c9sc03916c] [Citation(s) in RCA: 522] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
This review summarizes recent advances in the design and synthesis of stable MOFs and highlights the relationships between the stability and functional applications.
Metal–organic frameworks (MOFs) have been recognized as one of the most important classes of porous materials due to their unique attributes and chemical versatility. Unfortunately, some MOFs suffer from the drawback of relatively poor stability, which would limit their practical applications. In the recent past, great efforts have been invested in developing strategies to improve the stability of MOFs. In general, stable MOFs possess potential toward a broader range of applications. In this review, we summarize recent advances in the design and synthesis of stable MOFs and MOF-based materials via de novo synthesis and/or post-synthetic structural processing. Also, the relationships between the stability and functional applications of MOFs are highlighted, and finally, the subsisting challenges and the directions that future research in this field may take have been indicated.
Collapse
Affiliation(s)
- Meili Ding
- Hefei National Laboratory for Physical Sciences at the Microscale , CAS Key Laboratory of Soft Matter Chemistry , Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| | - Xuechao Cai
- Hefei National Laboratory for Physical Sciences at the Microscale , CAS Key Laboratory of Soft Matter Chemistry , Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China . .,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale , CAS Key Laboratory of Soft Matter Chemistry , Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China .
| |
Collapse
|
142
|
Zhang X, Zhang R, Jin Y, Li T. Two PbII-based coordination polymers based on 5-aminonicotinic acid and 5-hydroxynicotinic acid for Knoevenagel condensation reaction and luminescent sensor. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.120927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
143
|
Sun Y, Han H. A novel 3D AgI cationic metal–organic framework based on 1,2,4,5-tetra(4-pyridyl) benzene with selective adsorption of CO2 over CH4, H2O over C2H5OH, and trapping Cr2O72–. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
144
|
Miao C. Design and construction of a 2D PbII coordination polymer as a multi-response luminescent sensor for Fe3+, Cr2O72−, and TNP. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
145
|
A highly stable 3D metal−organic framework for selectively luminescent sensing and knoevenagel condensation reaction. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
146
|
Guo F, Su C, Fan Y, Fu W. Two Pb(II) coordination complexes based on 5-halonicotinate (Cl or Br): Structural diversities and sensing performance. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.05.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
147
|
Franz DM, Belof JL, McLaughlin K, Cioce CR, Tudor B, Hogan A, Laratelli L, Mulcair M, Mostrom M, Navas A, Stern AC, Forrest KA, Pham T, Space B. MPMC and MCMD: Free High‐Performance Simulation Software for Atomistic Systems. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Douglas M. Franz
- University of South Florida Department of Chemistry 4202 E. Fowler Ave., CHE205 Tampa FL 33620‐5250 USA
| | - Jonathan L. Belof
- Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550 USA
| | - Keith McLaughlin
- University of South Florida Department of Chemistry 4202 E. Fowler Ave., CHE205 Tampa FL 33620‐5250 USA
| | - Christian R. Cioce
- Sandia National Laboratories 1515 Eubank Blvd SE Albuquerque NM 87123 USA
| | - Brant Tudor
- University of South Florida Department of Chemistry 4202 E. Fowler Ave., CHE205 Tampa FL 33620‐5250 USA
| | - Adam Hogan
- University of South Florida Department of Chemistry 4202 E. Fowler Ave., CHE205 Tampa FL 33620‐5250 USA
| | - Luciano Laratelli
- University of South Florida Department of Chemistry 4202 E. Fowler Ave., CHE205 Tampa FL 33620‐5250 USA
| | - Meagan Mulcair
- University of South Florida Department of Chemistry 4202 E. Fowler Ave., CHE205 Tampa FL 33620‐5250 USA
| | - Matthew Mostrom
- University of South Florida Department of Chemistry 4202 E. Fowler Ave., CHE205 Tampa FL 33620‐5250 USA
| | - Alejandro Navas
- Oxford University School of Geography and the Environment South Parks Road Oxford OX1 3QY UK
| | - Abraham C. Stern
- Department of Chemistry University of California Irvine, 500 East Peltason Dr. Irvine CA 92697‐5255 USA
| | - Katherine A. Forrest
- University of South Florida Department of Chemistry 4202 E. Fowler Ave., CHE205 Tampa FL 33620‐5250 USA
| | - Tony Pham
- University of South Florida Department of Chemistry 4202 E. Fowler Ave., CHE205 Tampa FL 33620‐5250 USA
- University of Tampa Department of Chemistry Biochemistry, and Physics 401 W. Kennedy Blvd. Tampa FL 33606‐1490 USA
| | - Brian Space
- University of South Florida Department of Chemistry 4202 E. Fowler Ave., CHE205 Tampa FL 33620‐5250 USA
| |
Collapse
|
148
|
Wei JH, Yi JW, Han ML, Li B, Liu S, Wu YP, Ma LF, Li DS. A Water-Stable Terbium(III)-Organic Framework as a Chemosensor for Inorganic Ions, Nitro-Containing Compounds and Antibiotics in Aqueous Solutions. Chem Asian J 2019; 14:3694-3701. [PMID: 31347761 DOI: 10.1002/asia.201900706] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/19/2019] [Indexed: 12/22/2022]
Abstract
Effective detection of organic/inorganic pollutants, such as antibiotics, nitro-compounds, excessive Fe3+ and MnO4 - , is crucial for human health and environmental protection. Here, a new terbium(III)-organic framework, namely [Tb(TATAB)(H2 O)]⋅2H2 O (Tb-MOF, H3 TATAB=4,4',4''-s-triazine-1,3,5-triyltri-m-aminobenzoic acid), was assembled and characterized. The Tb-MOF exhibits a water-stable 3D bnn framework. Due to the existence of competitive absorption, Tb-MOF has a high selectivity for detecting Fe3+ , MnO4 - , 4-nirophenol and nitroimidazole (ronidazole, metronidazole, dimetridazole, ornidazole) in aqueous through luminescent quenching. The results suggest that Tb-MOF is a simple and reliable reagent with multiple sensor responses in practical applications. To the best of our knowledge, this work represents the first TbIII -based MOF as an efficient fluorescent sensor for detecting metal ions, inorganic anions, nitro-compounds, and antibiotics simultaneously.
Collapse
Affiliation(s)
- Jun-Hua Wei
- College of Materials & Chemical Engineering, Collaborative Innovation Centre for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang, 443002, P. R. China
| | - Jing-Wei Yi
- College of Materials & Chemical Engineering, Collaborative Innovation Centre for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang, 443002, P. R. China
| | - Min-Le Han
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Bo Li
- College of Materials & Chemical Engineering, Collaborative Innovation Centre for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang, 443002, P. R. China
| | - Shan Liu
- College of Materials & Chemical Engineering, Collaborative Innovation Centre for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang, 443002, P. R. China
| | - Ya-Pan Wu
- College of Materials & Chemical Engineering, Collaborative Innovation Centre for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang, 443002, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Dong-Sheng Li
- College of Materials & Chemical Engineering, Collaborative Innovation Centre for Microgrid of New Energy of Hubei Province, China Three Gorges University, Yichang, 443002, P. R. China
| |
Collapse
|
149
|
Li J. A 2D Pb(II) coordination polymer based on 5-fluoronicotinic acid: Syntheses, structure and luminescence property. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
150
|
Acetonitrile sensing property of a microporous Co(II) metal-organic framework based on azobenzenetetracarboxylate ligand. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|