101
|
Ohtani R, Anegawa Y, Watanabe H, Tajima Y, Kinoshita M, Matsumori N, Kawano K, Yanaka S, Kato K, Nakamura M, Ohba M, Hayami S. Metal Complex Lipids for Fluid–Fluid Phase Separation in Coassembled Phospholipid Membranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yuka Anegawa
- Department of Chemistry Graduate School of Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Hikaru Watanabe
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yutaro Tajima
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Masanao Kinoshita
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuaki Matsumori
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kenichi Kawano
- Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) National Institutes of Natural Sciences 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) National Institutes of Natural Sciences 5-1 Higashiyama Myodaiji Okazaki 444-8787 Japan
- Graduate School of Pharmaceutical Sciences Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya Aichi 467-8603 Japan
| | - Masaaki Nakamura
- Department of Chemistry Graduate School of Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Masaaki Ohba
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shinya Hayami
- Department of Chemistry Graduate School of Science Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
102
|
Ohtani R, Anegawa Y, Watanabe H, Tajima Y, Kinoshita M, Matsumori N, Kawano K, Yanaka S, Kato K, Nakamura M, Ohba M, Hayami S. Metal Complex Lipids for Fluid-Fluid Phase Separation in Coassembled Phospholipid Membranes. Angew Chem Int Ed Engl 2021; 60:13603-13608. [PMID: 33723910 DOI: 10.1002/anie.202102774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/08/2022]
Abstract
We demonstrate a fluid-fluid phase separation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes using a metal complex lipid of type [Mn(L1)] (1; HL1=1-(2-hydroxybenzamide)-2-(2-hydroxy-3-formyl-5-hexadecyloxybenzylideneamino)ethane). Small amount of 1 produces two separated domains in DMPC, whose phase transition temperatures of lipids (Tc ) are both lower than that of the pristine DMPC. Variable temperature fluorescent microscopy for giant-unilamellar vesicles of DMPC/1 hybrids demonstrates that visible phase separations remain in fluid phases up to 37 °C, which is clearly over the Tc of DMPC. This provides a new dimension for the application of metal complex lipids toward controlling lipid distributions in fluid membranes.
Collapse
Affiliation(s)
- Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuka Anegawa
- Department of Chemistry, Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Hikaru Watanabe
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yutaro Tajima
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
103
|
Yuan Z, Zhou Y, Qiao Z, Eng Aik C, Tu WC, Wu X, Chen YC. Stimulated Chiral Light-Matter Interactions in Biological Microlasers. ACS NANO 2021; 15:8965-8975. [PMID: 33988971 DOI: 10.1021/acsnano.1c01805] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chiral light-matter interactions have emerged as a promising area in biophysics and quantum optics. Great progress in enhancing chiral light-matter interactions have been investigated through passive resonators or spontaneous emission. Nevertheless, the interaction between chiral biomolecules and stimulated emission remains unexplored. Here we introduce the concept of a biological chiral laser by amplifying chiral light-matter interactions in an active resonator through stimulated emission process. Green fluorescent proteins or chiral biomolecules encapsulated in Fabry-Perot microcavity served as the gain material while excited by either left-handed or right-handed circularly polarized pump laser. Owing to the nonlinear pump energy dependence of stimulated emission, significant enhancement of chiral light-matter interactions was demonstrated. Detailed experiments and theory revealed that a lasing dissymmetry factor is determined by molecular absorption dissymmetry factor at its excitation wavelength. Finally, chirality transfer was investigated under a stimulated emission process through resonance energy transfer. Our findings elucidate the mechanism of stimulated chiral light-matter interactions, providing better understanding of light-matter interaction in biophysics, chiral sensing, and quantum biophotonics.
Collapse
Affiliation(s)
- Zhiyi Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Yunke Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Zhen Qiao
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chan Eng Aik
- Centre for Disruptive Photonic Technologies, TPI and SPMS, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Wei-Chen Tu
- Department of Electrical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Xiaoqin Wu
- College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yu-Cheng Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
104
|
Zhang Y, Geng Z, Zhang Y, Xu Z, Li H, Cheng Y, Quan Y. Deep Blue Circularly Polarized Luminescence Response Behavior of an Achiral Pyrene-Based Emitter Regulated by Chiral Co-assembly Helical Nanofibers. J Phys Chem Lett 2021; 12:3767-3772. [PMID: 33844918 DOI: 10.1021/acs.jpclett.1c00865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Supramolecular co-assembly provides a brand-new powerful strategy for regulating simple organic molecules into various hierarchical nano- and microstructures as smart functional materials. In particular, chiral supramolecular assemblies with strong fluorescent emission have received extensive attention for their application as circularly polarized luminescence (CPL) emitters. Herein, we synthesized three achiral pyrene derivatives, but only the chiral co-assembly (R/S-NMe2-Py-2) can exhibit the regular and orderly helical nanofiber via π-π stacking interaction between chiral N,N'-dimethyl-binaphthyldiamine enantiomers (R/S-NMe2) and the achiral pyrene derivative (Py-2). Interestingly, this kind of 2:1 molar ratio (R/S-NMe2)2-Py-2 co-assembly with a helical nanofiber structure can emit a strong deep blue CPL signal from the achiral pyrene-based emitter, and the dissymmetry factor gem value can reach 0.027 (λem = 423 nm) in the film from spin-coating.
Collapse
Affiliation(s)
- Yuxia Zhang
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhongxing Geng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhaoran Xu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Li
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yixiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
105
|
Li XL, Yu S, Chen MN, Jiang M, Wang RZ, Xing LB. Artificial light-harvesting supramolecular assemblies with controllable fluorescence intensity formed by cyclodextrin-based host-gost complexation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
106
|
Huang S, Yu H, Li Q. Supramolecular Chirality Transfer toward Chiral Aggregation: Asymmetric Hierarchical Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002132. [PMID: 33898167 PMCID: PMC8061372 DOI: 10.1002/advs.202002132] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/21/2020] [Indexed: 05/21/2023]
Abstract
Self-assembly, as a typical bottom-up strategy for the fabrication of functional materials, has been applied to fabricate chiral materials with subtle chiral nanostructures. The chiral nanostructures exhibit great potential in asymmetric catalysis, chiral sensing, chiral electronics, photonics, and even the realization of several biological functions. According to existing studies, the supramolecular chirality transfer process combined with hierarchical self-assembly plays a vital role in the fabrication of multiscale chiral structures. This progress report focuses on the hierarchical self-assembly of chiral or achiral molecules that aggregate with asymmetric spatial structures such as twisted bands, helices, and superhelices in different environments. Herein, recent studies on the chirality transfer induced self-assembly based on a variety of supramolecular interactions are summarized. In addition, the influence of different environments and the states of systems including solutions, condensed states, gel systems, interfaces on the asymmetric hierarchical self-assembly, and the expression of chirality are explored. Moreover, both the driving forces that facilitate chiral bias and the supramolecular interactions that play an important role in the expression, transfer, and amplification of the chiral sense are correspondingly discussed.
Collapse
Affiliation(s)
- Shuai Huang
- School of Materials Science and EngineeringKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationPeking UniversityBeijing100871China
- Institute of Advanced MaterialsSchool of Chemistry and Chemical EngineeringSoutheast UniversityNanjingJiangsu Province211189China
| | - Haifeng Yu
- School of Materials Science and EngineeringKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationPeking UniversityBeijing100871China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary ProgramKent State UniversityKentOH44242USA
| |
Collapse
|
107
|
Moreno K, Merlet E, McClenaghan N, Buffeteau T, Ferrand Y, Olivier C. Influence of Positional Isomerism on the Chiroptical Properties of Functional Aromatic Oligoamide Foldamers. Chempluschem 2021; 86:496-503. [PMID: 33755326 DOI: 10.1002/cplu.202100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Indexed: 12/25/2022]
Abstract
A series of functionalized quinoline-based aromatic oligoamide foldamers were prepared in their two enantiomeric forms, comprising an enantiopure terminal camphanyl chiral inducer, which governed the adjacent (P-/M-) helical-handedness. Hierarchical chirality transfer was further investigated in chromophore-appended variants via a range of electronic and vibrational spectroscopic techniques, including circularly polarized luminescence, vibrational circular dichroism and fluorescence. Intense total and polarized photoluminescence (up to Φlum =0.39, glum =1.5×10-3 ) was observed in the visible region from these modular multicomponent architectures and a significant influence of positional isomerism was evidenced. The optimal position of a fluorophore substituent on the quinoline hexamers was determined as being position 2 over position 6, as stronger chiroptical features were systematically observed with the 2-positioned derivatives.
Collapse
Affiliation(s)
- Kevin Moreno
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| | - Eric Merlet
- Institut de Chimie et Biologie des Membranes et des Nano-objets, UMR 5248 CNRS, Université de Bordeaux, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Nathan McClenaghan
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| | - Thierry Buffeteau
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| | - Yann Ferrand
- Institut de Chimie et Biologie des Membranes et des Nano-objets, UMR 5248 CNRS, Université de Bordeaux, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Céline Olivier
- Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, 33405, Talence Cedex, France
| |
Collapse
|
108
|
Ni B, Li Y, Liu W, Li B, Li H, Yang Y. Circularly polarized luminescence from structurally coloured polymer films. Chem Commun (Camb) 2021; 57:2796-2799. [PMID: 33599669 DOI: 10.1039/d1cc00201e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Structurally coloured polymer films with circularly polarized luminescence (CPL) properties were prepared by the photopolymerization of cholesteric liquid crystal mixtures doped with aggregation-induced emission (AIE)-active tetraphenylethylene. The films show good CPL performance with the luminescence dissymmetry factor up to 0.58 and enhanced fluorescence efficiency.
Collapse
Affiliation(s)
- Baining Ni
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. and State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
109
|
Huang JC, Ye GM, Yu M, Huang R, Zhao Z, Qin A, Wu ST, Xie Z. Circularly Polarized Luminescence of Achiral Metal-Organic Colloids and Guest Molecules in a Vortex Field. Chemistry 2021; 27:6760-6766. [PMID: 33543548 DOI: 10.1002/chem.202005481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Indexed: 12/26/2022]
Abstract
Recently, scientists have reported a range of chiral fluorescence materials or chiral composites that can emit circularly polarized luminescence. Herein, two achiral metal-organic colloidal solutions were studied, showing active circularly polarized luminescence, which is observed in vortex stirring. The absolute values for glum are 0.05 and 0.03 and the plus or minus sign of glum depends on the colloidal structure and stirring direction, which make the property easy to manipulate. Further, the host-guest interaction study suggests both electrostatic interactions and coordination bonding may influence the chiroptical property from the colloidal solution to the guest molecule. Rhodamine 6G and its carboxylic acid derivative exhibit good quantum yields and acceptable glum values in the colloidal solution.
Collapse
Affiliation(s)
- Jian-Cai Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China.,Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
| | - Guang-Ming Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China.,Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
| | - Maoxing Yu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from, Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Ruishan Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from, Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from, Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from, Molecular Aggregates, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Shu-Ting Wu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China.,Fujian Science & Technology Innovation Laboratory for, Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
| | - Zenghong Xie
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| |
Collapse
|
110
|
Jiménez J, Poncet M, Míguez‐Lago S, Grass S, Lacour J, Besnard C, Cuerva JM, Campaña AG, Piguet C. Bright Long‐Lived Circularly Polarized Luminescence in Chiral Chromium(III) Complexes. Angew Chem Int Ed Engl 2021; 60:10095-10102. [DOI: 10.1002/anie.202101158] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Juan‐Ramón Jiménez
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Maxime Poncet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Sandra Míguez‐Lago
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Stéphane Grass
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Céline Besnard
- Laboratory of Crystallography University of Geneva quai E. Ansermet 24 1211 Geneva 4 Switzerland
| | - Juan M. Cuerva
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Araceli G. Campaña
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
111
|
Jiménez J, Poncet M, Míguez‐Lago S, Grass S, Lacour J, Besnard C, Cuerva JM, Campaña AG, Piguet C. Bright Long‐Lived Circularly Polarized Luminescence in Chiral Chromium(III) Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juan‐Ramón Jiménez
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Maxime Poncet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Sandra Míguez‐Lago
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Stéphane Grass
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| | - Céline Besnard
- Laboratory of Crystallography University of Geneva quai E. Ansermet 24 1211 Geneva 4 Switzerland
| | - Juan M. Cuerva
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Araceli G. Campaña
- Department of Organic Chemistry University of Granada, Unidad de Excelencia de Química (UEQ) Avda. Fuentenueva 18071 Granada Spain
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry University of Geneva quai E. Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
112
|
Zhang H, Han J, Jin X, Duan P. Improving the Overall Properties of Circularly Polarized Luminescent Materials Through Arene–Perfluoroarene Interactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haowen Zhang
- College of Chemistry Zhengzhou University No.100 Science Avenue Zhengzhou 450001 P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Pengfei Duan
- College of Chemistry Zhengzhou University No.100 Science Avenue Zhengzhou 450001 P. R. China
- CAS Center for Excellence in Nanoscience CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
113
|
Zhang H, Han J, Jin X, Duan P. Improving the Overall Properties of Circularly Polarized Luminescent Materials Through Arene-Perfluoroarene Interactions. Angew Chem Int Ed Engl 2021; 60:4575-4580. [PMID: 33236479 DOI: 10.1002/anie.202014891] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/06/2022]
Abstract
A major trade-off in the field of circularly polarized luminescence (CPL) of pure organic materials is that the large luminescence dissymmetry factor (glum ) usually gives rise to the suppression of luminescence efficiency (ΦPL ). Here, a supramolecular self-assembled system, driven by arene-perfluoroarene (AP) interactions of chiral polycyclic aromatic hydrocarbons (PAHs) and octafluoronaphthalene (OFN), is reported to provide a solution to this problem. Two kinds of chiral PAHs based on pyrene and anthracene could co-assemble with OFN in hybrid solvents to form long-range-ordered AP assemblies. The detailed process of AP interaction driving self-assembly was verified by morphological measurements and fluorescence spectra. The AP assemblies exhibited chirality amplification not only in the excited state but also in the ground state. In addition, the AP assemblies showed an enhanced luminescence efficiency compared with the individual chiral PAHs due to the energy-barrier effect of OFN. The present strategy based on AP interactions could be applied to boost the development of highly efficient CPL-active materials.
Collapse
Affiliation(s)
- Haowen Zhang
- College of Chemistry, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Xue Jin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Pengfei Duan
- College of Chemistry, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, P. R. China.,CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
114
|
Martínez-Aguirre MA, Li Y, Vanthuyne N, Bouteiller L, Raynal M. Dissecting the Role of the Sergeants in Supramolecular Helical Catalysts: From Chain Capping to Intercalation. Angew Chem Int Ed Engl 2021; 60:4183-4191. [PMID: 33180372 DOI: 10.1002/anie.202012457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Indexed: 11/05/2022]
Abstract
Controlling the properties of supramolecular assemblies requires unveiling the specific interactions between their components. In the present work, the catalytic properties and structure of co-assemblies composed of a benzene-1,3,5-tricarboxamide (BTA) ligand coordinated to copper (the soldier) and seven enantiopure BTAs (the sergeants) have been determined. Whatever the sergeant, the enantioselectivity of the reaction is directly proportional to the optical purity of the supramolecular helices. More strikingly, the role played by the sergeant in the co-assembly process differs significantly: from almost pure intercalator (when it is incorporated in the stacks of the soldier and generates long homochiral helices) to pure chain capper (when it leads to the formation of partly helically biased and short assemblies). The former situation leads to optimal enantioselectivity for the catalytic system under study (58 % ee) while the latter situation leads to very low selectivity (8 % ee). The successful rationalization of this high and unexpected difference is crucial for the development of more efficient catalysts and more elaborate supramolecular systems.
Collapse
Affiliation(s)
- Mayte A Martínez-Aguirre
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Yan Li
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2, UMR 7313, 13397, Marseille Cedex 20, France
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
115
|
Zhao J, Hao A, Xing P. Enhancing Optical Activities of Benzimidazole Derivatives through Coassembly for High-Efficiency Synthesis of Chiroptical Nanomaterials and Accurate ee % Detection of Natural Acids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6830-6843. [PMID: 33502861 DOI: 10.1021/acsami.0c20735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing efficient protocols to enhance the optical activities of chiral self-assemblies is a key to realizing their chiroptical functions such as chiral sensing and displays. Here, we have reported a coassembly protocol to efficiently boost the chiroptical responses, whereby the synthesis of chiroptical nanomaterials and highly accurate detection of enantiomeric excess (ee %) were achieved. A series of benzimidazole derivatives with different topologies underwent spontaneous aggregation and symmetry breaking in solution, generating silent Cotton effects, yet exclusive weak left-handed circularly polarized luminescence (CPL). The coassembly with natural hydroxyl acids via complementary H bonds afforded chiral nanostructures with emerged Cotton effects and enhanced CPL. Dissymmetry g-factors were dramatically boosted (glum from 1 × 10-3 to 5.5 × 10-2, gabs from 0 to 6.7 × 10-3). In addition, proof of concept of recognition and detection of natural chiral molecules was realized with high accuracy.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
116
|
Cao Z, Hao A, Xing P. Photoresponsive chiral vesicles as a light harvesting matrix with tunable chiroptical properties. NANOSCALE 2021; 13:700-707. [PMID: 33355574 DOI: 10.1039/d0nr06835g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A chiral vesicle system with photo-regulated chiroptical properties including Cotton effects and circularly polarized luminescence (CPL) was reported. Photoresponsive cyanostilbene was conjugated to the cholesteryl group, which provides chiral centers and lipophilic domain for the flexible vesicle membrane formation. The building block self-assembled into vesicles with exciton Cotton effects and CPL. The high dissymmetry g-factor of CPL at 10-2 order of magnitude was achieved. Upon UV light irradiation, Cotton effects were enhanced with an elevated g-factor by 3-fold, while the CPL dissymmetry factor showed a light irradiation resistance. A hydrophobic fluorescent dye (Nile Red) was loaded into vesicle membranes to allow energy transfer and chirality transfer to give red color CPL with retained high g-factor, while resistance to the UV light irradiation of vesicles was enhanced after loading the fluorescent dye. This study highlights the fabrication of the chiral vesicle system with noninvasively stimulus-responsive chiroptical properties, which may provide new thoughts for the fabrication of smart chiroptical materials in aqueous media.
Collapse
Affiliation(s)
- Zhaozhen Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
117
|
Zhang D, Yu W, Li S, Xia Y, Li X, Li Y, Yi T. Artificial Light-Harvesting Metallacycle System with Sequential Energy Transfer for Photochemical Catalysis. J Am Chem Soc 2021; 143:1313-1317. [DOI: 10.1021/jacs.0c12522] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dengqing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Suwan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yan Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianying Li
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiran Li
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
118
|
Yao K, Shen Y, Li Y, Li X, Quan Y, Cheng Y. Ultrastrong Red Circularly Polarized Luminescence Promoted from Chiral Transfer and Intermolecular Förster Resonance Energy Transfer in Ternary Chiral Emissive Nematic Liquid Crystals. J Phys Chem Lett 2021; 12:598-603. [PMID: 33382604 DOI: 10.1021/acs.jpclett.0c03438] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chiral emissive liquid crystals (N*-LCs) have been proved to greatly amplify the circularly polarized luminescence (CPL) signals due to highly regular spiral arrangement of dyes in a well-organized liquid crystals system. Normally, CPL materials with a high luminescence dissymmetry factor (glum) and quantum yield (QY) can meet the real application requirement. Here, four chiral aggregate-induced emission (AIE) active donors (Guests A1-A4: R-C2, R-C4, R-C6, R-C8, chiral dopant, and energy donor) and achiral AIE-active acceptors (Guest B: PBCy, CPL emitter) were doped into the commercial nematic liquid crystals E7 (N-LCs, Host) to form CPL-active ternary chiral emissive N-LCs (T-N*-LCs), respectively. This kind of T-N*-LCs could emit strong red CPL with QY = 16.56% and glum up to 1.51 through intermolecular energy transfer and chirality induction from the supramolecular self-assembly of T-N*-LCs. This work provides the effective strategy for the development of high glum CPL materials.
Collapse
Affiliation(s)
- Kun Yao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Key Laboratory of High-Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yihao Shen
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yang Li
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Key Laboratory of High-Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaojing Li
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiwu Quan
- Key Laboratory of High-Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yixiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
119
|
Wade J, Brandt JR, Reger D, Zinna F, Amsharov KY, Jux N, Andrews DL, Fuchter MJ. 500-Fold Amplification of Small Molecule Circularly Polarised Luminescence through Circularly Polarised FRET. Angew Chem Int Ed Engl 2021; 60:222-227. [PMID: 33030274 PMCID: PMC7839560 DOI: 10.1002/anie.202011745] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 11/15/2022]
Abstract
Strongly dissymmetric circularly polarised (CP) luminescence from small organic molecules could transform a range of technologies, such as display devices. However, highly dissymmetric emission is usually not possible with small organic molecules, which typically give dissymmetric factors of photoluminescence (gPL ) less than 10-2 . Here we describe an almost 103 -fold chiroptical amplification of a π-extended superhelicene when embedded in an achiral conjugated polymer matrix. This combination increases the |gPL | of the superhelicene from approximately 3×10-4 in solution to 0.15 in a blend film in the solid-state. We propose that the amplification arises not simply through a chiral environment effect, but instead due to electrodynamic coupling between the electric and magnetic transition dipoles of the polymer donor and superhelicene acceptor, and subsequent CP Förster resonance energy transfer. We show that this amplification effect holds across several achiral polymer hosts and thus represents a simple and versatile approach to enhance the g-factors of small organic molecules.
Collapse
Affiliation(s)
- Jessica Wade
- Department of Chemistry and Molecular Sciences Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
- Institute for Molecular Science and Engineering and Centre for Processable ElectronicsImperial College LondonSouth Kensington CampusLondonSW7 2AZUK
| | - Jochen R. Brandt
- Department of Chemistry and Molecular Sciences Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
- Institute for Molecular Science and Engineering and Centre for Processable ElectronicsImperial College LondonSouth Kensington CampusLondonSW7 2AZUK
| | - David Reger
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Strasse 1091058ErlangenGermany
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaVia Moruzzi 1356124PisaItaly
| | - Konstantin Y. Amsharov
- Institute for Organic ChemistryMartin-Luther-Universität Halle-WittenbergKurt-Mothes-Straße 206120HalleGermany
| | - Norbert Jux
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Strasse 1091058ErlangenGermany
| | | | - Matthew J. Fuchter
- Department of Chemistry and Molecular Sciences Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
- Institute for Molecular Science and Engineering and Centre for Processable ElectronicsImperial College LondonSouth Kensington CampusLondonSW7 2AZUK
| |
Collapse
|
120
|
Xiao T, Zhang L, Wu H, Qian H, Ren D, Li ZY, Sun XQ. Supramolecular polymer-directed light-harvesting system based on a stepwise energy transfer cascade. Chem Commun (Camb) 2021; 57:5782-5785. [DOI: 10.1039/d1cc01788h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An artificial light-harvesting system based on supramolecular polymeric nanoparticles has been successfully assembled in water, which displays efficient two-step sequential energy-transfer processes with a high antenna effect.
Collapse
Affiliation(s)
- Tangxin Xiao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Liangliang Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Haoran Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Hongwei Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Dongxing Ren
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Zheng-Yi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Xiao-Qiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| |
Collapse
|
121
|
Song Q, Goia S, Yang J, Hall SCL, Staniforth M, Stavros VG, Perrier S. Efficient Artificial Light-Harvesting System Based on Supramolecular Peptide Nanotubes in Water. J Am Chem Soc 2020; 143:382-389. [PMID: 33348987 PMCID: PMC8172009 DOI: 10.1021/jacs.0c11060] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Artificial
light-harvesting systems in aqueous media which mimic
nature are of significant importance; however, they are often restrained
by the solubility and the undesired aggregation-caused quenching effect
of the hydrophobic chromophores. Here, we report a generalized strategy
toward the construction of efficient artificial light-harvesting systems
based on supramolecular peptide nanotubes in water. By molecularly
aligning the hydrophobic chromophores along the nanotubes in a slipped
manner, an artificial light-harvesting system with a two-step sequential
Förster resonance energy transfer process is successfully fabricated,
showing an energy transfer efficiency up to 95% and a remarkably high
fluorescence quantum yield of 30%, along with high stability. Furthermore,
the spectral emission could be continuously tuned from blue through
green to orange, as well as outputted as a white light continuum with
a fluorescence quantum yield of 29.9%. Our findings provide a versatile
approach of designing efficient artificial light-harvesting systems
and constructing highly emissive organic materials in aqueous media.
Collapse
Affiliation(s)
- Qiao Song
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sofia Goia
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,Molecular Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jie Yang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Stephen C L Hall
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Michael Staniforth
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vasilios G Stavros
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
122
|
Martínez‐Aguirre MA, Li Y, Vanthuyne N, Bouteiller L, Raynal M. Dissecting the Role of the Sergeants in Supramolecular Helical Catalysts: From Chain Capping to Intercalation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mayte A. Martínez‐Aguirre
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire Equipe Chimie des Polymères 4 Place Jussieu 75005 Paris France
| | - Yan Li
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire Equipe Chimie des Polymères 4 Place Jussieu 75005 Paris France
| | - Nicolas Vanthuyne
- Aix Marseille Université Centrale Marseille CNRS, iSm2, UMR 7313 13397 Marseille Cedex 20 France
| | - Laurent Bouteiller
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire Equipe Chimie des Polymères 4 Place Jussieu 75005 Paris France
| | - Matthieu Raynal
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire Equipe Chimie des Polymères 4 Place Jussieu 75005 Paris France
| |
Collapse
|
123
|
Zhou Z, Zhou J, Chen L, Zhao Q, Zhang C, Ge G. Chirality reversal, enhancement and transfer by pH-adjusted surfactant assembly. Chem Commun (Camb) 2020; 56:15345-15348. [PMID: 33231225 DOI: 10.1039/d0cc07008d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The controllable chirality reversal and enhancement at a supramolecular level is crucial for the synthesis and applications of circularly active materials, which has been achieved by a pH-adjusted amphiphilic chiral surfactant assembly approach, and reveals the relationship between the chirality behavior and its assembly morphology in a non-covalent interaction regime and its ability to transfer chirality from chiral molecules to achiral ones under appropriate conditions.
Collapse
Affiliation(s)
- Zhanglang Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Plus, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
124
|
Wade J, Brandt JR, Reger D, Zinna F, Amsharov KY, Jux N, Andrews DL, Fuchter MJ. 500‐Fold Amplification of Small Molecule Circularly Polarised Luminescence through Circularly Polarised FRET. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011745] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jessica Wade
- Department of Chemistry and Molecular Sciences Research Hub Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
- Institute for Molecular Science and Engineering and Centre for Processable Electronics Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Jochen R. Brandt
- Department of Chemistry and Molecular Sciences Research Hub Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
- Institute for Molecular Science and Engineering and Centre for Processable Electronics Imperial College London South Kensington Campus London SW7 2AZ UK
| | - David Reger
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Germany
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Konstantin Y. Amsharov
- Institute for Organic Chemistry Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Straße 2 06120 Halle Germany
| | - Norbert Jux
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Germany
| | - David L. Andrews
- University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Matthew J. Fuchter
- Department of Chemistry and Molecular Sciences Research Hub Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
- Institute for Molecular Science and Engineering and Centre for Processable Electronics Imperial College London South Kensington Campus London SW7 2AZ UK
| |
Collapse
|
125
|
Arrico L, Di Bari L, Zinna F. Quantifying the Overall Efficiency of Circularly Polarized Emitters. Chemistry 2020; 27:2920-2934. [DOI: 10.1002/chem.202002791] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Lorenzo Arrico
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
126
|
Fu K, Jin X, Zhou M, Ma K, Duan P, Yu ZQ. Amplifying the excited state chirality through self-assembly and subsequent enhancement via plasmonic silver nanowires. NANOSCALE 2020; 12:19760-19767. [PMID: 32966503 DOI: 10.1039/d0nr04510a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of circularly polarized luminescent materials with a large luminescence dissymmetry factor (glum) is continuing to be a big challenge. Here, we present a general approach for amplifying circular polarization of circularly polarized luminescence (CPL) through intergrating molecular self-assembly and surface plasmon resonance (SPR). Molecular self-assembly could amplify the CPL performance. Subsequently, the composites built of nanoassemblies and achiral silver nanowires (AgNWs) show intense CPL activity with an amplified glum value. By applying an external magnetic field, the CPL activity of the nanoassemblies/AgNWs composites has been significantly enhanced, confirming a plasmon-enhanced circular polarization. Our design strategy based on SPR-enhanced circular polarization of the chiral emissive systems suggests that combining plasmonic nanomaterials with chiral organic materials could aid in the development of novel CPL active nanomaterials.
Collapse
Affiliation(s)
- Kuo Fu
- College of Chemistry and Environmental Engineering, Low dimensional Materials, Genome Initiative Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen, 518055, P.R. China. and CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Xue Jin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Minghao Zhou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Kai Ma
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Low dimensional Materials, Genome Initiative Shenzhen University, 1066 Xueyuan Avenue, Nanshan, Shenzhen, 518055, P.R. China.
| |
Collapse
|
127
|
Chen W, Ma K, Duan P, Ouyang G, Zhu X, Zhang L, Liu M. Circularly polarized luminescence of nanoassemblies via multi-dimensional chiral architecture control. NANOSCALE 2020; 12:19497-19515. [PMID: 32966505 DOI: 10.1039/d0nr04239k] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Circularly polarized luminescence (CPL) materials are currently an important class of chiroptical materials that are attracting increasing interest. Nanoassemblies constructed from chiral or achiral building blocks show great potential for achieving CPL-active nanomaterials with high quantum yields and dissymmetry factors, which is crucial for further applications. In nanoassemblies, the dimensional morphology affects the chiroptical properties significantly since the microscopic packing modes will affect the luminescence processes and chirality transfer processes. In this review, we will show some examples for illustrating the relationship between multi-dimensional morphology and chiroptical properties. Furthermore, with dimensional morphology tuning, higher dissymmetry factors would be obtained. We hope to provide a useful and powerful insight into the design and control of CPL-active nanoassemblies via morphology control.
Collapse
Affiliation(s)
- Wenjie Chen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Ma
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China and State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | - Li Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China. and CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
128
|
Sang Y, Han J, Zhao T, Duan P, Liu M. Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1900110. [PMID: 31394014 DOI: 10.1002/adma.201900110] [Citation(s) in RCA: 531] [Impact Index Per Article: 106.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/13/2019] [Indexed: 05/22/2023]
Abstract
Currently, the development of circularly polarized luminescent (CPL) materials has drawn extensive attention due to the numerous potential applications in optical data storage, displays, backlights in 3D displays, and so on. While the fabrication of CPL-active materials generally requires chiral luminescent molecules, the introduction of the "self-assembly" concept offers a new perspective in obtaining the CPL-active materials. Following this approach, various self-assembled materials, including organic-, inorganic-, and hybrid systems can be endowed with CPL properties. Benefiting from the advantages of self-assembly, not only chiral molecules, but also achiral species, as well as inorganic nanoparticles have potential to be self-assembled into chiral nanoassemblies showing CPL activity. In addition, the dissymmetry factor, an important parameter of CPL materials, can be enhanced through various pathways of self-assembly. Here, the present status and progress of self-assembled nanomaterials with CPL activity are reviewed. An overview of the key factors in regulating chiral emission materials at the supramolecular level will largely boost their application in multidisciplinary fields.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Tonghan Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Pengfei Duan
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Division of Nanophotonics, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| |
Collapse
|
129
|
Xiao T, Wu H, Sun G, Diao K, Wei X, Li ZY, Sun XQ, Wang L. An efficient artificial light-harvesting system with tunable emission in water constructed from a H-bonded AIE supramolecular polymer and Nile Red. Chem Commun (Camb) 2020; 56:12021-12024. [PMID: 32901631 DOI: 10.1039/d0cc05077f] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the aid of CTAB amphiphile, water-phase artificial light-harvesting systems were fabricated as nanoparticles by the self-assembly of two low-molecular-weight organic molecules: a UPy-functionalized TPE derivative 1 with both supramolecular polymerization and AIE capabilities as a donor and a fluorescent chromophore NiR as an acceptor. Owing to the flexibility of supramolecular self-assembly, tunable emissions including white-light emission could be easily realized with high energy transfer efficiency and the antenna effect.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Zhang C, Yan ZP, Dong XY, Han Z, Li S, Fu T, Zhu YY, Zheng YX, Niu YY, Zang SQ. Enantiomeric MOF Crystals Using Helical Channels as Palettes with Bright White Circularly Polarized Luminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002914. [PMID: 32803797 DOI: 10.1002/adma.202002914] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/09/2020] [Indexed: 05/15/2023]
Abstract
The host-guest chemistry of metal-organic frameworks (MOFs) has enabled the derivation of numerous new functionalities. However, intrinsically chiral MOFs (CMOFs) with helical channels have not been used to realize crystalline circularly polarized luminescence (CPL) materials. Herein, enantiomeric pairs of MOF crystals are reported, where achiral fluorophores adhere to the inner surface of helical channels via biology-like H-bonds and hence inherit the helicity of the host MOFs, eventually amplifying the luminescence dissymmetry factor (glum ) of the host l/d-CMOF (±1.50 × 10-3 ) to a maximum of ±0.0115 for the composite l/d-CMOF⊃fluorophores. l/d-CMOF⊃fluorophores in pairs generate bright color-tunable CPL and almost ideal white CPL (0.33, 0.32) with a record-high photoluminescence quantum yield of ≈30%, which are further assembled into a white circularly polarized light-emitting diode. The present strategy opens a new avenue for propagating the chirality of MOFs to realize universal chiroptical materials.
Collapse
Affiliation(s)
- Chong Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhi-Ping Yan
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xi-Yan Dong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Zhen Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Si Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Fu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yan-Yan Zhu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yun-Yin Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
131
|
Hu M, Feng HT, Yuan YX, Zheng YS, Tang BZ. Chiral AIEgens – Chiral recognition, CPL materials and other chiral applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213329] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
132
|
Zhao T, Han J, Duan P, Liu M. New Perspectives to Trigger and Modulate Circularly Polarized Luminescence of Complex and Aggregated Systems: Energy Transfer, Photon Upconversion, Charge Transfer, and Organic Radical. Acc Chem Res 2020; 53:1279-1292. [PMID: 32649172 DOI: 10.1021/acs.accounts.0c00112] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chiral functional materials with circularly polarized luminescence (CPL) have risen rapidly in recent years because of their fascinating characteristics and potential applications in various research fields. CPL refers to the differential spontaneous emission of left (L)- and right (R)-handed circularly polarized light upon photon or electron excitation. Generally, an outstanding CPL-active material needs to possess a high luminescence dissymmetry factor (glum) (defined as 2(IL - IR)/(IL + IR) where I is the emission intensity), which is between -2 and +2. Although the exciting development in CPL-active materials was achieved, the modulation of CPL signs is still a challenge. For small organic systems, a relatively small glum value, one of the key parameters of CPL, limits their practical applications. Searching for efficient approaches for amplifying glum is important. Therefore, over the past decades, besides optimizing the structure of small molecules, many other strategies to obtain efficient CPL-active materials have been developed. For instance, self-assembly has been well demonstrated as an effective approach to amplify the supramolecular chirality as well as the glum values. On the other hand, chiral liquid crystals (CLCs), which are capable of selective reflection of left- and right-handed circularly polarized light, also to serve as a host matrix for endowing guest emitters with CPL activity and high glum values. However, self-assembly focuses on modulating the conformation and spatial arrangement of chiral emitters. And the CPL of a luminophore-doped CLC matrix depends on the helix pitch and band gap positions. Lately, novel photophysical approaches to modulate CPL signs have gradually emerged.In this Account, we discuss the recent progress of excited-state-regulation involved CPL-active materials. The emergence, amplification, and inversion of CPL can be adjusted through regulation of the excited state of chiral emitters. For example, Förster resonance energy transfer (FRET) can amplify the glum values of chiral energy acceptors in chiral supramolecular assemblies. By combining the concepts of photon upconversion and CPL, high-energy upconverted circularly polarized emission was achieved under excitation of low-energy light, accompanied by an amplified glum. In addition, the organic systems with unpaired electrons, i.e., charge transfer (CT) system and open-shell π-radical, show favorable CPL properties, which can be flexibly tuned with an applied magnetic field. It should be noted that these photophysical process are associated with the excited state of chiral emitters. So far, while the main focus is on the regulation of the molecular and supramolecular nanostructures, direct regulation of the excited state of the chiral system will serve as a new platform to understand and regulate the CPL activity and will be helpful to develop smart chiroptical materials.
Collapse
Affiliation(s)
- Tonghan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minghua Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No.11, ZhongGuanCun BeiYiTiao, Beijing 100190, P.R. China
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No.2, ZhongGuanCun BeiYiJie, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
133
|
Zhao J, Xing P. Helical Nanostructures with Circularly Polarized Luminescence from the Multicomponent Assembly of π-Conjugated N-terminal Amino Acids. Chempluschem 2020; 85:1511-1522. [PMID: 32644303 DOI: 10.1002/cplu.202000397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2020] [Indexed: 11/06/2022]
Abstract
Self-assembled structures with circularly polarized luminescence (CPL) have attracted great attention in recent years. π-conjugated N-terminal amino acids with chiral amino acid residues and luminophores are capable of forming self-assembled structures at hierarchical levels, whereby chirality can be transferred to the macroscopic scale with easily modulated CPL properties. Due to the presence of multiple noncovalent binding sites, including hydrogen bonding and aromatic interactions, π-conjugated N-terminal amino acids are emerging core candidates for incorporation into multicomponent self-assembled architectures, accomplishing rational control over supramolecular chirality as well as showing rich chiroptical properties. In this Minireview, we provide a brief summary of multiple-component coassembled systems comprising π-conjugated N-terminal amino acids, small organic species and metal ions. The synthesis of helical structures and manipulation of supramolecular chirality by controlling the self-assembled species is introduced, and the CPL properties of multiple-component π-conjugated N-terminal amino acids are also briefly summarized.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
134
|
Zhao Z, Zhang H, Lam JWY, Tang BZ. Aggregationsinduzierte Emission: Einblicke auf Aggregatebene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916729] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zheng Zhao
- Department of ChemistryDepartment of Chemical and Biological EngineeringInstitute for Advanced StudyHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Haoke Zhang
- Department of ChemistryDepartment of Chemical and Biological EngineeringInstitute for Advanced StudyHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Jacky W. Y. Lam
- Department of ChemistryDepartment of Chemical and Biological EngineeringInstitute for Advanced StudyHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of ChemistryDepartment of Chemical and Biological EngineeringInstitute for Advanced StudyHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center for Aggregation-Induced EmissionState Key Laboratory of Luminescent Materials and DevicesSCUT-HKUST Joint Research InstituteSouth China University of Technology, Tianhe Qu Guangzhou 510640 China
| |
Collapse
|
135
|
Zhao Z, Zhang H, Lam JWY, Tang BZ. Aggregation-Induced Emission: New Vistas at the Aggregate Level. Angew Chem Int Ed Engl 2020; 59:9888-9907. [PMID: 32048428 DOI: 10.1002/anie.201916729] [Citation(s) in RCA: 616] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 12/13/2022]
Abstract
Aggregation-induced emission (AIE) describes a photophysical phenomenon in which molecular aggregates exhibit stronger emission than the single molecules. Over the course of the last 20 years, AIE research has made great strides in material development, mechanistic study and high-tech applications. The achievements of AIE research demonstrate that molecular aggregates show many properties and functions that are absent in molecular species. In this review, we summarize the advances in the field of AIE and its related areas. We specifically focus on the new properties of materials attained by molecular aggregates beyond the microscopic molecular level. We hope this review will inspire more research into molecular ensembles at and beyond the meso level and lead to the significant progress in material and biological science.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Chemistry, Department of Chemical and Biological Engineering, Institute for Advanced Study, Hong Kong Branch of Chinese National Engineering Research Center, for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Haoke Zhang
- Department of Chemistry, Department of Chemical and Biological Engineering, Institute for Advanced Study, Hong Kong Branch of Chinese National Engineering Research Center, for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jacky W Y Lam
- Department of Chemistry, Department of Chemical and Biological Engineering, Institute for Advanced Study, Hong Kong Branch of Chinese National Engineering Research Center, for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Department of Chemical and Biological Engineering, Institute for Advanced Study, Hong Kong Branch of Chinese National Engineering Research Center, for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.,HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China.,Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Tianhe Qu, Guangzhou, 510640, China
| |
Collapse
|
136
|
Liu Z, Jiang Y, Jiang J, Zhai D, Wang D, Liu M. Self-assembly of isomeric naphthalene appended glucono derivatives: nanofibers and nanotwists with circularly polarized luminescence emission. SOFT MATTER 2020; 16:4115-4120. [PMID: 32195501 DOI: 10.1039/c9sm02542a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two isomeric naphthalene appended glucono derivatives substituted at the 1 or 2-naphthyl positions (Nap-1 and Nap-2) were designed and their self-assembly behaviors and optical properties were investigated. Nap-1 and Nap-2 were found to self-assemble into nanofibers and nanotwists, respectively. While the molecular chirality of the glucono moiety could not be effectively transferred to the naphthalene moiety in the Nap-1 system, this was achieved in the Nap-2 assembly. Thus, the Nap-2 assembly showed obvious circular dichroism (CD) and circularly polarized luminescence (CPL) signals. From the XRD patterns and IR spectra of the supramolecular assemblies, it was found that Nap-2 packed in a more orderly fashion than Nap-1, leading to a hierarchical assembly forming nanotwist structures. Moreover, a light-harvesting system based on Nap-2 supramolecular gels and dyes was established, in which an efficient energy transfer was demonstrated from Nap-2 to an acceptor Eosin Y. It was further found that both chirality and energy transfer enhanced the dissymmetry factor of Eosin Y CPL emission.
Collapse
Affiliation(s)
- Zongwen Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | | | | | | | | | | |
Collapse
|
137
|
Chen X, Cao Q, Bisoyi HK, Wang M, Yang H, Li Q. An Efficient Near‐Infrared Emissive Artificial Supramolecular Light‐Harvesting System for Imaging in the Golgi Apparatus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xu‐Man Chen
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Qin Cao
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| | - Meng Wang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Hong Yang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
138
|
Ma S, Jiang J, Liu Z, Jiang Y, Wu Z, Liu M. A self-assembled nanohelix for white circularly polarized luminescence via chirality and energy transfer. NANOSCALE 2020; 12:7895-7901. [PMID: 32227012 DOI: 10.1039/c9nr10946c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chiral nanostructures and their optical activity have been attracting great interest. Here, we designed an enantiomer bolaamphiphile containing a naphthalene moiety (bola-1) and an alkyl spacer, and investigated its self-assembly as well as optical activity. It was found that the compound could form gels in various organic or mixed organic/water mixtures. In mixed DMSO/water, it formed a nanohelix. Due to the fluorescent nature of the naphthyl group, the nanohelix showed both CD and circularly polarized luminescence (CPL). When three achiral fluorescent molecules, pyrene-1-carboxylic acid (D2), rhodamine 110 (D3) and rhodamine B (D4), were incorporated into the helical structures formed by bola-1, the nanohelix could be retained and the CPL from the dye molecules could be induced. In addition, an energy transfer occurred between the bola-1 nanohelix and the dyes. By mixing the different emission dyes with the bola-1 in an appropriate ratio, white CPL was obtained. It was found that the dissymmetry factor of the white CPL could be increased through energy transfer. This work provided a new convenient and efficient way for obtaining white CPL.
Collapse
Affiliation(s)
- Sijia Ma
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China.
| | | | | | | | | | | |
Collapse
|
139
|
Chen X, Cao Q, Bisoyi HK, Wang M, Yang H, Li Q. An Efficient Near‐Infrared Emissive Artificial Supramolecular Light‐Harvesting System for Imaging in the Golgi Apparatus. Angew Chem Int Ed Engl 2020; 59:10493-10497. [DOI: 10.1002/anie.202003427] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Xu‐Man Chen
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Qin Cao
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| | - Meng Wang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Hong Yang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing 211189 China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
140
|
Jana P, Kanvah S. Aggregation-Induced Emission and Organogels with Chiral and Racemic Pyrene-Substituted Cyanostyrenes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2720-2728. [PMID: 32092273 DOI: 10.1021/acs.langmuir.9b03946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The synthesis, photophysical investigations, and organogel formation of pyrene-phenyl acrylonitriles (1-6) bearing mono-, di-, and trichiral and racemic substitutions were studied. The molecules self-assemble in water and show remarkable emission wavelength and intensity changes associated with distinct color changes. Cryo-scanning electron microscopy (Cryo-SEM) images show the formation of uniform nanoaggregates for the monosubstituted derivatives and network-like structures for di- and trisubstituted derivatives. The favorable π-π stacking ability of the coplanar pyrene ring, steric restrictions due to the cyano group, and beneficial noncovalent interactions from the citronellol moiety allow the molecules to form excellent organogels with fibrous and twisted ribbon morphology for the racemic and chiral derivatives. The organogels based on small molecules could be of high relevance for potential investigations involving soft biological matter.
Collapse
Affiliation(s)
- Palash Jana
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
141
|
Ji L, Zhao Y, Tao M, Wang H, Niu D, Ouyang G, Xia A, Liu M. Dimension-Tunable Circularly Polarized Luminescent Nanoassemblies with Emerging Selective Chirality and Energy Transfer. ACS NANO 2020; 14:2373-2384. [PMID: 32027478 DOI: 10.1021/acsnano.9b09584] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The selective interplay between dimensional morphology transition and signal transfer is an important feature for both nanomaterials and biosystems. While most of those reported examples considered either dimensional transition or signal transfer, the integrated interplay or selectivity for these two aspects in single self-assembled system has been rarely studied. Here, we report that a positively charged chiral π-building block could self-assemble into multidimensional nanostructures, which showed tunable circularly polarized luminescence (CPL). Impressively, when these CPL-active multidimensional structures interacted with two achiral dyes (positively charged ThT and negatively charged CNA), 3D nanocubes and 0D nanospheres showed neither chirality transfer nor energy transfer, while 2D nanoplates could successfully trigger a selective chirality or energy transfer depending on the charge type of acceptor dyes, which then emitted an enhanced CPL signal. This work demonstrated rational design of charged π-building block for the construction of dimension controllable and selective signal transfer self-assembly system, which might deepen the understanding the interplay of dimensional structures and signal transfer functions in natural and nano systems.
Collapse
Affiliation(s)
- Lukang Ji
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Yang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- College of Pharmacy , Hebei University , Baoding 071002 , P.R. China
| | - Min Tao
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Hanxiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Dian Niu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Andong Xia
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
- Collaborative Innovation Centre of Chemical Science and Engineering , Nankai University , Tianjin 300072 , P.R. China
| |
Collapse
|
142
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
143
|
Katla J, Shaik A, Dahiwadkar R, Thiruvenkatam V, Kanvah S. One- and Two-Component Organogels Containing Cyanostilbene without any Auxiliary Substituents. Chempluschem 2020; 84:1789-1795. [PMID: 31943862 DOI: 10.1002/cplu.201900564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Pyridyl acrylonitrile without traditional auxiliary groups form stable organogels in ethanol. The addition of a second non-gelating cyanostilbene component results in a more stable two-component gel. Single crystal X-ray data reveal the influence of C-H⋅ ⋅ ⋅N, C-H⋅ ⋅ ⋅π, and π-π interactions in the formation of organogels. The morphology of the xerogels was studied by using SEM, which showed the self-assembly of molecules to fibers and sheet-like structures, and phase differences upon the gel formation and the structural phase characterization was measured using powder XRD. Exposure of the organogels to acidic (TFA) vapors results in distinct color changes and loss of gelation properties, thus highlighting the potential of these gels in sensing. The results represent a rare example of two-component organogels using two different cyanostilbene units and show that functional two-component organogels can be formed by utilizing the synergistic effects of the individual components.
Collapse
Affiliation(s)
- Jagadish Katla
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Gandhinagar, 382355, India
| | - Althaf Shaik
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Gandhinagar, 382355, India
| | - Rahul Dahiwadkar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Gandhinagar, 382355, India
| | - Vijay Thiruvenkatam
- Department of Biological Engineering and Physics, Indian Institute of Technology Gandhinagar, Palaj Gandhinagar, 382355, India
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Gandhinagar, 382355, India
| |
Collapse
|
144
|
Shang H, Ding Z, Shen Y, Yang B, Liu M, Jiang S. Multi-color tunable circularly polarized luminescence in one single AIE system. Chem Sci 2020; 11:2169-2174. [PMID: 34123307 PMCID: PMC8150103 DOI: 10.1039/c9sc05643b] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circularly polarized luminescence (CPL) materials with a large luminescence dissymmetry factor (glum) and multi-color properties are very attractive. While multi-color tunable CPL can be realized by different organic dyes, the challenge of realizing both a higher glum and multiple colors using a single component remains. Here, we design an aggregation-induced emission (AIE) fluorophore, which is a pyridine functionalized cyanostilbene attached to a chiral unit, and realize multi-color tunable CPL with a high glum. The compound can self-assemble into a nanohelix and form both gel and xerogel films, exhibiting blue CPL with large glum values of −3.0 × 10−2 and −1.7 × 10−2, respectively. With the assistance of pyridine protonation, the xerogel films exhibit red-shifted CPL signals from 480 nm to 530 nm, covering from blue via green and yellow to orange. Additionally, the glum remains constant during the process. This work paves a simple and convenient way to construct multi-color tunable CPL materials using a single molecule. A multi-color tunable circularly polarized luminescence (CPL) xerogel film with a large luminescence dissymmetry factor (glum) is achieved using a single compound upon protonation.![]()
Collapse
Affiliation(s)
- Hongxing Shang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Zeyang Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Yue Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Minghua Liu
- CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shimei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
145
|
Zhao T, Han J, Qin X, Zhou M, Duan P. Amplifying Dissymmetry Factor of Upconverted Circularly Polarized Luminescence through Chirality-Induced Spin Polarization in the Photon Upconversion Process. J Phys Chem Lett 2020; 11:311-317. [PMID: 31854190 DOI: 10.1021/acs.jpclett.9b03408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A general phenomenon about upconverted circularly polarized luminescence (UC-CPL) based on triplet-triplet annihilation (TTA) was realized in an ambient environment by coupling three kinds of chiral acceptors with corresponding achiral sensitizers. All of the dissymmetry factors of UC-CPL exhibited significant amplification compared with the prompt CPL of the used chiral acceptors. Chirality-induced spin polarization during the TTA-UC process was in charge of the amplified dissymmetry factor of UC-CPL. Chirality-induced spin-polarized triplet excitons will suppress the TTA efficiency because the spin-polarized electrons go against the electron exchange within triplet excitons. However, the chirality-induced spin-polarized singlet excitons resulting from the TTA process can be promoted, enabling a large dissymmetry factor of UC-CPL.
Collapse
Affiliation(s)
- Tonghan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology (NCNST) , No. 11, ZhongGuanCun BeiYiTiao , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology (NCNST) , No. 11, ZhongGuanCun BeiYiTiao , Beijing 100190 , People's Republic of China
| | - Xujin Qin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology (NCNST) , No. 11, ZhongGuanCun BeiYiTiao , Beijing 100190 , People's Republic of China
| | - Minghao Zhou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology (NCNST) , No. 11, ZhongGuanCun BeiYiTiao , Beijing 100190 , People's Republic of China
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication , National Center for Nanoscience and Technology (NCNST) , No. 11, ZhongGuanCun BeiYiTiao , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
146
|
Li JJ, Zhang HY, Dai XY, Liu ZX, Liu Y. A highly efficient light-harvesting system with sequential energy transfer based on a multicharged supramolecular assembly. Chem Commun (Camb) 2020; 56:5949-5952. [DOI: 10.1039/d0cc01292k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A highly efficient light-harvesting system with two-step sequential energy transfer was designed by the nonconvalent interaction of pillar[5]arene with pyridinium modified tetraphenylethene, sulforhodamine 101 and sulfonated aluminum phthalocyanine.
Collapse
Affiliation(s)
- Jing-Jing Li
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Heng-Yi Zhang
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xian-Yin Dai
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Zhi-Xue Liu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- College of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
147
|
Artificial light-harvesting supramolecular assemblies with different morphology formed by cucurbit[n]urils-based host-guest complexation. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
148
|
Hao M, Sun G, Zuo M, Xu Z, Chen Y, Hu X, Wang L. A Supramolecular Artificial Light‐Harvesting System with Two‐Step Sequential Energy Transfer for Photochemical Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912654] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Min Hao
- Key Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Guangping Sun
- Key Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Minzan Zuo
- Key Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zuqiang Xu
- Key Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yuan Chen
- Key Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Xiao‐Yu Hu
- Key Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
- College of Material Science and TechnologyNanjing University of Aeronautics and Astronautics Nanjing 211100 China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOEJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
- School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
| |
Collapse
|
149
|
Hao M, Sun G, Zuo M, Xu Z, Chen Y, Hu XY, Wang L. A Supramolecular Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Photochemical Catalysis. Angew Chem Int Ed Engl 2019; 59:10095-10100. [PMID: 31625651 DOI: 10.1002/anie.201912654] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 12/16/2022]
Abstract
An artificial light-harvesting system with sequential energy-transfer process was fabricated based on a supramolecular strategy. Self-assembled from the host-guest complex formed by water-soluble pillar[5]arene (WP5), a bola-type tetraphenylethylene-functionalized dialkyl ammonium derivative (TPEDA), and two fluorescent dyes, Eosin Y (ESY) and Nile Red (NiR), the supramolecular vesicles achieve efficient energy transfer from the AIE guest TPEDA to ESY. ESY can function as a relay to further transfer the energy to the second acceptor NiR and realize a two-step sequential energy-transfer process with good efficiency. By tuning the donor/acceptor ratio, bright white light emission can be successfully achieved with a CIE coordinate of (0.33, 0.33). To better mimic natural photosynthesis and make full use of the harvested energy, the WP5⊃TPEDA-ESY-NiR system can be utilized as a nanoreactor: photocatalyzed dehalogenation of α-bromoacetophenone was realized with 96 % yield in aqueous medium.
Collapse
Affiliation(s)
- Min Hao
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guangping Sun
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Minzan Zuo
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zuqiang Xu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuan Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiao-Yu Hu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
150
|
Levine AM, Biswas S, Braunschweig AB. Photoactive organic material discovery with combinatorial supramolecular assembly. NANOSCALE ADVANCES 2019; 1:3858-3869. [PMID: 36132107 PMCID: PMC9419180 DOI: 10.1039/c9na00476a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/04/2019] [Indexed: 05/20/2023]
Abstract
Organic semiconductors have received substantial attention as active components in optoelectronic devices because of their processability and customizable properties. Tailoring the organic active layer in these devices to exhibit the desired optoelectronic properties requires understanding the complex and often subtle structure-property relationships governing their photophysical response to light. Both structural organization and molecular orbitals play pivotal roles, and their interactions with each other are difficult to anticipate based upon the structure of the components alone, especially in systems comprised of multiple components. In pursuit of design rules, there is a need to explore multicomponent systems combinatorially to access larger data sets, and supramolecularly to use error correcting, noncovalent assembly to achieve long-range order. This review will focus on the use of supramolecular chemistry to study combinatorial, hierarchical organic systems with emergent optoelectronic properties. Specifically, we will describe systems that undergo excited state deactivation by charge transfer (CT), singlet fission (SF), and Förster resonance energy transfer (FRET). Adopting combinatorial, supramolecular assembly to study emergent photophysics promises to rapidly accelerate progress in this research field.
Collapse
Affiliation(s)
- Andrew M Levine
- Advanced Science Research Center, Graduate Center, City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry, Hunter College 695 Park Avenue New York NY 10065 USA
- Graduate Center, City University of New York 365 5th Avenue New York NY 10016 USA
| | - Sankarsan Biswas
- Advanced Science Research Center, Graduate Center, City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry, Hunter College 695 Park Avenue New York NY 10065 USA
- Graduate Center, City University of New York 365 5th Avenue New York NY 10016 USA
| | - Adam B Braunschweig
- Advanced Science Research Center, Graduate Center, City University of New York 85 St. Nicholas Terrace New York NY 10031 USA
- Department of Chemistry, Hunter College 695 Park Avenue New York NY 10065 USA
- Graduate Center, City University of New York 365 5th Avenue New York NY 10016 USA
| |
Collapse
|