101
|
Muneoka K, Allan CH, Yang X, Lee J, Han M. Mammalian regeneration and regenerative medicine. ACTA ACUST UNITED AC 2008; 84:265-80. [DOI: 10.1002/bdrc.20137] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
102
|
Satoh A, Bryant SV, Gardiner DM. Regulation of dermal fibroblast dedifferentiation and redifferentiation during wound healing and limb regeneration in the Axolotl. Dev Growth Differ 2008; 50:743-54. [DOI: 10.1111/j.1440-169x.2008.01072.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
103
|
Yoshinari N, Ishida T, Kudo A, Kawakami A. Gene expression and functional analysis of zebrafish larval fin fold regeneration. Dev Biol 2008; 325:71-81. [PMID: 18950614 DOI: 10.1016/j.ydbio.2008.09.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/29/2008] [Accepted: 09/22/2008] [Indexed: 11/29/2022]
Abstract
Teleost fish have a remarkable ability to regenerate their body parts compared to many higher vertebrates including humans. To facilitate molecular and genetic approaches for regeneration, we previously established an assay using the fin fold of zebrafish larvae. Here, we performed transcriptional profiling and identified genes differentially controlled during regeneration. From up-regulated transcripts, we identified a number of genes with localized expressions. Strikingly, all identified genes were also induced in the regenerating adult fin, which has a different tissue origin from the larval fin fold. This result supports the commonality of regeneration irrespective of tissue type and stage. Importantly, our analysis suggested that the regenerating tissue had many more compartments than generally assumed ones, the blastema and wound epidermis. By pharmacological and genetic approaches, we further evaluated functional involvement of induced molecules. Inhibition of Mmp9 function impaired proper morphological restoration without disturbing cell proliferation. Genetic mutations of blastema genes, hspa9 and smarca4, disrupted the fin fold regeneration by impairing the blastema cell proliferation. Thus, our results demonstrate that the regeneration model of juvenile zebrafish offers a powerful assay to dissect the regeneration processes.
Collapse
Affiliation(s)
- Nozomi Yoshinari
- Department of Biological Information, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
104
|
Roy S, Gatien S. Regeneration in axolotls: a model to aim for! Exp Gerontol 2008; 43:968-73. [PMID: 18814845 DOI: 10.1016/j.exger.2008.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 08/18/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
Urodele amphibians such as the axolotl are the champions of tissue regeneration amongst vertebrates. These animals have mastered the ability to repair and replace most of their tissues following damage or amputation even well into adulthood. In fact it seems that the ability of these organisms to regenerate perfectly is not affected by their age. In addition to being able to regenerate, these animals display a remarkable resistance to cancer. They therefore represent a unique model organism to study regeneration and cancer resistance in vertebrates. The need for this research is even more pressing at the dawn of the 21st century as we are faced with an ever aging world population which has to deal with an increase in organ failure and cancer incidence. Hopefully, this mini review will put in perspective some of the reasons why studying tissue regeneration in salamanders could yield significant knowledge to help regenerative medicine achieve the desired goal of allowing humans to repair and regenerate some of their own tissues as they age.
Collapse
Affiliation(s)
- Stéphane Roy
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Down-Town Branch, Montréal, QC, Canada.
| | | |
Collapse
|
105
|
Glandular stem cells are a promising source for much more than beta-cell replacement. Ann Anat 2008; 191:62-9. [PMID: 18838258 DOI: 10.1016/j.aanat.2008.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 06/25/2008] [Indexed: 12/26/2022]
Abstract
Glandular stem cells (GSCs) can be obtained from exocrine glands such as pancreas or salivary glands using well-established cell culturing methods. The resulting cell populations are characterized by a high proliferative capacity and an unusually high plasticity. Cells from pancreas have been demonstrated to differentiate into a multitude of cell types and even into oocyte-like cells. It has been found that the preparation method for GSCs can be applied to many vertebrates, including fishes and birds. Since the cells are excellently cryopreservable, this finding has been utilized to establish a new stem cell bank for preserving living cells of rare and wild animals. Apart from these advances, this mini-review also points out that GSCs from pancreas must not be confused with beta-cell progenitors but constitute a distinct cell type.
Collapse
|
106
|
Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 2008; 319:321-35. [DOI: 10.1016/j.ydbio.2008.04.030] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/19/2022]
|
107
|
Han M, Yang X, Lee J, Allan CH, Muneoka K. Development and regeneration of the neonatal digit tip in mice. Dev Biol 2007; 315:125-35. [PMID: 18234177 DOI: 10.1016/j.ydbio.2007.12.025] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 11/24/2022]
Abstract
The digit tips of children and rodents are known to regenerate following amputation. The skeletal structure that regenerates is the distal region of the terminal phalangeal bone that is associated with the nail organ. The terminal phalanx forms late in gestation by endochondral ossification and continues to elongate until sexual maturity (8 weeks of age). Postnatal elongation at its distal end occurs by appositional ossification, i.e. direct ossification on the surface of the terminal phalanx, whereas proximal elongation results from an endochondral growth plate. Amputation through the middle of the terminal phalanx regenerates whereas regenerative failure is observed following amputation to remove the distal 2/3 of the bone. Regeneration is characterized by the formation of a blastema of proliferating cells that appear undifferentiated and express Bmp4. Using chondrogenic and osteogenic markers we show that redifferentiation does not occur by endochondral ossification but by the direct ossification of blastema cells that form the rudiment of the digit tip. Once formed the rudiment elongates by appositional ossification in parallel with unamputated control digits. Regenerated digits are consistently shorter than unamputated control digits. Finally, we present a case study of a child who suffered an amputation injury at a proximal level of the terminal phalanx, but failed to regenerate despite conservative treatment and the presence of the nail organ. These clinical and experimental findings expand on previously published observations and initiate a molecular assessment of a mammalian regeneration model.
Collapse
Affiliation(s)
- Manjong Han
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | |
Collapse
|
108
|
Nishidate M, Nakatani Y, Kudo A, Kawakami A. Identification of novel markers expressed during fin regeneration by microarray analysis in medaka fish. Dev Dyn 2007; 236:2685-93. [PMID: 17676638 DOI: 10.1002/dvdy.21274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Urodeles and fish have a remarkable ability to regenerate lost body parts, whereas many higher vertebrates, including mammals, retain only a limited capacity. It is known that the formation of specialized cell populations such as the wound epidermis or blastema is crucial for regeneration; however, the molecular basis for their formation has not been elucidated. Recently, approaches using differential display and microarray have been done in zebrafish for searching molecules involved in regeneration. Here, we used the medaka fish, a distantly diverged fish species, for microarray screening of transcripts up-regulated during regeneration. By setting criteria for selecting transcripts that are reliably and reproducibly up-regulated during regeneration, we identified 140 transcripts. Of them, localized in situ expression of 12 transcripts of 22 tested was detected either in differentiating cartilage, basal wound epidermis, or blastema. Our results provide useful molecular markers for dissecting the regeneration process at a fine cellular resolution.
Collapse
Affiliation(s)
- Masanobu Nishidate
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
109
|
Lévesque M, Gatien S, Finnson K, Desmeules S, Villiard É, Pilote M, Philip A, Roy S. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls. PLoS One 2007; 2:e1227. [PMID: 18043735 PMCID: PMC2082079 DOI: 10.1371/journal.pone.0001227] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 10/31/2007] [Indexed: 11/23/2022] Open
Abstract
Axolotls (urodele amphibians) have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-β). In the present study, the full length sequence of the axolotl TGF-β1 cDNA was isolated. The spatio-temporal expression pattern of TGF-β1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-β signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-β type I receptor, SB-431542, we show that TGF-β signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-β signaling are down-regulated. These data directly implicate TGF-β signaling in the initiation and control of the regeneration process in axolotls.
Collapse
Affiliation(s)
- Mathieu Lévesque
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Samuel Gatien
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Kenneth Finnson
- Department of Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Sophie Desmeules
- Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| | - Éric Villiard
- Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| | - Mireille Pilote
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Anie Philip
- Department of Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Stéphane Roy
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
- Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
110
|
Abstract
While urodele amphibians (newts and salamanders) can regenerate limbs as adults, other tetrapods (reptiles, birds and mammals) cannot and just undergo wound healing. In adult mammals such as mice and humans, the wound heals and a scar is formed after injury, while wound healing is completed without scarring in an embryonic mouse. Completion of regeneration and wound healing takes a long time in regenerative and non-regenerative limbs, respectively. However, it is the early steps that are critical for determining the extent of regenerative response after limb amputation, ranging from wound healing with scar formation, scar-free wound healing, hypomorphic limb regeneration to complete limb regeneration. In addition to the accumulation of information on gene expression during limb regeneration, functional analysis of signaling molecules has recently shown important roles of fibroblast growth factor (FGF), Wnt/beta-catenin and bone morphogenic protein (BMP)/Msx signaling. Here, the routine steps of wound healing/limb regeneration and signaling molecules specifically involved in limb regeneration are summarized. Regeneration of embryonic mouse digit tips and anuran amphibian (Xenopus) limbs shows intermediate regenerative responses between the two extremes, those of adult mammals (least regenerative) and urodele amphibians (more regenerative), providing a range of models to study the various abilities of limbs to regenerate.
Collapse
Affiliation(s)
- Hitoshi Yokoyama
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
111
|
San Miguel-Ruiz JE, García-Arrarás JE. Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima. BMC DEVELOPMENTAL BIOLOGY 2007; 7:115. [PMID: 17945004 PMCID: PMC2176065 DOI: 10.1186/1471-213x-7-115] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 10/18/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND All animals possess some type of tissue repair mechanism. In some species, the capacity to repair tissues is limited to the healing of wounds. Other species, such as echinoderms, posses a striking repair capability that can include the replacement of entire organs. It has been reported that some mechanisms, namely extracellular matrix remodeling, appear to occur in most repair processes. However, it remains unclear to what extent the process of organ regeneration, particularly in animals where loss and regeneration of complex structures is a programmed natural event, is similar to wound healing. We have now used the sea cucumber Holothuria glaberrima to address this question. RESULTS Animals were lesioned by making a 3-5 mm transverse incision between one of the longitudinal muscle pairs along the bodywall. Lesioned tissues included muscle, nerve, water canal and dermis. Animals were allowed to heal for up to four weeks (2, 6, 12, 20, and 28 days post-injury) before sacrificed. Tissues were sectioned in a cryostat and changes in cellular and tissue elements during repair were evaluated using classical dyes, immmuohistochemistry and phalloidin labeling. In addition, the temporal and spatial distribution of cell proliferation in the animals was assayed using BrdU incorporation. We found that cellular events associated with wound healing in H. glaberrima correspond to those previously shown to occur during intestinal regeneration. These include: (1) an increase in the number of spherule-containing cells, (2) remodeling of the extracellular matrix, (3) formation of spindle-like structures that signal dedifferentiation of muscle cells in the area flanking the lesion site and (4) intense cellular division occurring mainly in the coelomic epithelium after the first week of regeneration. CONCLUSION Our data indicate that H. glaberrima employs analogous cellular mechanisms during wound healing and organ regeneration. Thus, it is possible that regenerative limitations in some organisms are due either to the absence of particular mechanisms associated with repair or the inability of activating the repair process in some tissues or stages.
Collapse
|
112
|
Slack JM. Regeneration Yesterday and Today. Cell Stem Cell 2007. [DOI: 10.1016/j.stem.2007.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
113
|
Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 2007; 4:413-37. [PMID: 17251138 PMCID: PMC2373411 DOI: 10.1098/rsif.2006.0179] [Citation(s) in RCA: 461] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/08/2006] [Indexed: 12/12/2022] Open
Abstract
Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or molecules in situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration.
Collapse
Affiliation(s)
| | - Mark W.J Ferguson
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
114
|
Yokoyama H, Ogino H, Stoick-Cooper CL, Grainger RM, Moon RT. Wnt/beta-catenin signaling has an essential role in the initiation of limb regeneration. Dev Biol 2007; 306:170-8. [PMID: 17442299 PMCID: PMC2703180 DOI: 10.1016/j.ydbio.2007.03.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 03/09/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
Anuran (frog) tadpoles and urodeles (newts and salamanders) are the only vertebrates capable of fully regenerating amputated limbs. During the early stages of regeneration these amphibians form a "blastema", a group of mesenchymal progenitor cells that specifically directs the regrowth of the limb. We report that wnt-3a is expressed in the apical epithelium of regenerating Xenopus laevis limb buds, at the appropriate time and place to play a role during blastema formation. To test whether Wnt/beta-catenin signaling is required for limb regeneration, we created transgenic X. laevis tadpoles that express Dickkopf-1 (Dkk1), a specific inhibitor of Wnt/beta-catenin signaling, under the control of a heat-shock promoter. Heat-shock immediately before limb amputation or during early blastema formation blocked limb regeneration but did not affect the development of contralateral, un-amputated limb buds. When the transgenic tadpoles were heat-shocked following the formation of a blastema, however, they retained the ability to regenerate partial hindlimb structures. Furthermore, heat-shock induced Dkk1 blocked fgf-8 but not fgf-10 expression in the blastema. We conclude that Wnt/beta-catenin signaling has an essential role during the early stages of limb regeneration, but is not absolutely required after blastema formation.
Collapse
Affiliation(s)
- Hitoshi Yokoyama
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Hajime Ogino
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Cristi L. Stoick-Cooper
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Rob M. Grainger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Randall T. Moon
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
115
|
Stoick-Cooper CL, Moon RT, Weidinger G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 2007; 21:1292-315. [PMID: 17545465 DOI: 10.1101/gad.1540507] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While all animals have evolved strategies to respond to injury and disease, their ability to functionally recover from loss of or damage to organs or appendages varies widely damage to skeletal muscle, but, unlike amphibians and fish, they fail to regenerate heart, lens, retina, or appendages. The relatively young field of regenerative medicine strives to develop therapies aimed at improving regenerative processes in humans and is predicated on >40 years of success with bone marrow transplants. Further progress will be accelerated by implementing knowledge about the molecular mechanisms that regulate regenerative processes in model organisms that naturally possess the ability to regenerate organs and/or appendages. In this review we summarize the current knowledge about the signaling pathways that regulate regeneration of amphibian and fish appendages, fish heart, and mammalian liver and skeletal muscle. While the cellular mechanisms and the cell types involved in regeneration of these systems vary widely, it is evident that shared signals are involved in tissue regeneration. Signals provided by the immune system appear to act as triggers of many regenerative processes. Subsequently, pathways that are best known for their importance in regulating embryonic development, in particular fibroblast growth factor (FGF) and Wnt/beta-catenin signaling (as well as others), are required for progenitor cell formation or activation and for cell proliferation and specification leading to tissue regrowth. Experimental activation of these pathways or interference with signals that inhibit regenerative processes can augment or even trigger regeneration in certain contexts.
Collapse
Affiliation(s)
- Cristi L Stoick-Cooper
- Department of Pharmacology, Howard Hughes Medical Institute, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
116
|
Abstract
Regenerative medicine focuses on new therapies to replace or restore lost, damaged, or aging cells in the human body to restore function. This goal is being realized by collaborative efforts in nonmammalian and human development, stem cell biology, genetics, materials science, bioengineering, and tissue engineering. At present, understanding existing reparative processes in humans and exploring the latent ability to regenerate tissue remains the focus in this field. This review covers recent work in limb regeneration, fetal wound healing, stem cell biology, somatic nuclear transfer, and tissue engineering as a foundation for developing new clinical therapies to augment and stimulate human regeneration.
Collapse
Affiliation(s)
- Geoffrey C Gurtner
- Children's Surgical Research Program, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|
117
|
Hutchison C, Pilote M, Roy S. The axolotl limb: a model for bone development, regeneration and fracture healing. Bone 2007; 40:45-56. [PMID: 16920050 DOI: 10.1016/j.bone.2006.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/30/2006] [Accepted: 07/04/2006] [Indexed: 11/18/2022]
Abstract
Among vertebrates, urodele amphibians (e.g., axolotls) have the unique ability to perfectly regenerate complex body parts after amputation. The limb has been the most widely studied due to the presence of three defined axes and its ease of manipulation. Hence, the limb has been chosen as a model to study the process of skeletogenesis during axolotl development, regeneration and to analyze this animal's ability to heal bone fractures. Extensive studies have allowed researchers to gain some knowledge of the mechanisms controlling growth and pattern formation in regenerating and developing limbs, offering an insight into how vertebrates are able to regenerate tissues. In this study, we report the cloning and characterization of two axolotl genes; Cbfa-1, a transcription factor that controls the remodeling of cartilage into bone and PTHrP, known for its involvement in the differentiation and maturation of chondrocytes. Whole-mount in situ hybridization and immunohistochemistry results show that Cbfa-1, PTHrP and type II collagen are expressed during limb development and regeneration. These genes are expressed during specific stages of limb development and regeneration which are consistent with the appearance of skeletal elements. The expression pattern for Cbfa-1 in late limb development was similar to the expression pattern found in the late stages of limb regeneration (i.e. re-development phase) and it did not overlap with the expression of type II collagen. It has been reported that the molecular mechanisms involved in the re-development phase of limb regeneration are a recapitulation of those used in developing limbs; therefore the detection of Cbfa-1 expression during regeneration supports this assertion. Conversely, PTHrP expression pattern was different during limb development and regeneration, by its intensity and by the localization of the signal. Finally, despite its unsurpassed abilities to regenerate, we tested whether the axolotl was able to regenerate non-union bone fractures. We show that while the axolotl is able to heal a non-stabilized union fracture, like other vertebrates, it is incapable of healing a bone gap of critical dimension. These results suggest that the axolotl does not use the regeneration process to repair bone fractures.
Collapse
Affiliation(s)
- Cara Hutchison
- Department of Biochemistry, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
118
|
Kierdorf U, Kierdorf H, Szuwart T. Deer antler regeneration: Cells, concepts, and controversies. J Morphol 2007; 268:726-38. [PMID: 17538973 DOI: 10.1002/jmor.10546] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The periodic replacement of antlers is an exceptional regenerative process in mammals, which in general are unable to regenerate complete body appendages. Antler regeneration has traditionally been viewed as an epimorphic process closely resembling limb regeneration in urodele amphibians, and the terminology of the latter process has also been applied to antler regeneration. More recent studies, however, showed that, unlike urodele limb regeneration, antler regeneration does not involve cell dedifferentiation and the formation of a blastema from these dedifferentiated cells. Rather, these studies suggest that antler regeneration is a stem-cell-based process that depends on the periodic activation of, presumably neural-crest-derived, periosteal stem cells of the distal pedicle. The evidence for this hypothesis is reviewed and as a result, a new concept of antler regeneration as a process of stem-cell-based epimorphic regeneration is proposed that does not involve cell dedifferentiation or transdifferentiation. Antler regeneration illustrates that extensive appendage regeneration in a postnatal mammal can be achieved by a developmental process that differs in several fundamental aspects from limb regeneration in urodeles.
Collapse
Affiliation(s)
- Uwe Kierdorf
- Department of Biology, University of Hildesheim, 31141 Hildesheim, Germany.
| | | | | |
Collapse
|
119
|
Ebert R, Schütze N, Schilling T, Seefried L, Weber M, Nöth U, Eulert J, Jakob F. Influence of hormones on osteogenic differentiation processes of mesenchymal stem cells. Expert Rev Endocrinol Metab 2007; 2:59-78. [PMID: 30743749 DOI: 10.1586/17446651.2.1.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone development, regeneration and maintenance are governed by osteogenic differentiation processes from mesenchymal stem cells through to mature bone cells, which are directed by local growth and differentiation factors and modulated strongly by hormones. Mesenchymal stem cells develop from both mesoderm and neural crest and can give rise to development, regeneration and maintenance of mesenchymal tissues, such as bone, cartilage, muscle, tendons and discs. There are only limited data regarding the effects of hormones on early events, such as regulation of stemness and maintenance of the mesenchymal stem cell pool. Hormones, such as estrogens, vitamin D-hormone and parathyroid hormone, besides others, are important modulators of osteogenic differentiation processes and bone formation, starting off with fate decision and the development of osteogenic offspring from mesenchymal stem cells, which end up in osteoblasts and osteocytes. Hormones are involved in fetal bone development and regeneration and, in childhood, adolescence and adulthood, they control adaptive needs for growth and reproduction, nutrition, physical power and crisis adaptation. As in other tissues, aging in mesenchymal stem cells and their osteogenic offspring is accompanied by the accumulation of genomic and proteomic damage caused by oxidative burden and insufficient repair. Failsafe programs, such as apoptosis and cellular senescence avoid tumorigenesis. Hormones can influence the pace of such events, thus supporting the quality of tissue regeneration in aging organisms in vivo; for example, by delaying osteoporosis development. The potential for hormones in systemic therapeutic strategies is well appreciated and some concepts are approved for clinical use already. Their potential for cell-based therapeutic strategies for tissue regeneration is probably underestimated and could enhance the quality of tissue-engineering constructs for transplantation and the concept of in situ-guided tissue regeneration.
Collapse
Affiliation(s)
- Regina Ebert
- a University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Norbert Schütze
- b University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Tatjana Schilling
- c University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Lothar Seefried
- d University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Meike Weber
- e University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Ulrich Nöth
- f University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Jochen Eulert
- g University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| | - Franz Jakob
- h University of Wuerzburg, Orthopedic Center for Musculoskeletal Research, Brettreichstrasse 11, 97074 Wuerzburg, Germany.
| |
Collapse
|
120
|
Smith A, Avaron F, Guay D, Padhi BK, Akimenko MA. Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblast differentiation and function. Dev Biol 2006; 299:438-54. [PMID: 16959242 DOI: 10.1016/j.ydbio.2006.08.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 08/04/2006] [Accepted: 08/07/2006] [Indexed: 12/17/2022]
Abstract
The zebrafish caudal fin provides a simple model to study molecular mechanisms of dermal bone regeneration. We previously showed that misexpression of Bone morphogenetic protein 2b (Bmp2b) induces ectopic bone formation within the regenerate. Here we show that in addition to bmp2b and bmp4 another family member, bmp6, is involved in fin regeneration. We further investigated the function of BMP signaling by ectopically expressing the BMP signaling inhibitor Chordin which caused: (1) inhibition of regenerate outgrowth due to a decrease of blastema cell proliferation and downregulation of msxb and msxC expression and (2) reduced bone matrix deposition resulting from a defect in the maturation and function of bone-secreting cells. We then identified targets of BMP signaling involved in regeneration of the bone of the fin rays. runx2a/b and their target col10a1 were downregulated following BMP signaling inhibition. Unexpectedly, the sox9a/b transcription factors responsible for chondrocyte differentiation were detected in the non-cartilaginous fin rays, sox9a and sox9b were not only differentially expressed but also differentially regulated since sox9a, but not sox9b, was downregulated in the absence of BMP signaling. Finally, this analysis revealed the surprising finding of the expression, in the fin regenerate, of several factors which are normally the signatures of chondrogenic elements during endochondral bone formation although fin rays form through dermal ossification, without a cartilage intermediate.
Collapse
Affiliation(s)
- A Smith
- Ottawa Health Research Institute, 725 Parkdale Avenue, Ottawa, ON, Canada K1Y4E9
| | | | | | | | | |
Collapse
|