101
|
Cleophas MC, Joosten LA, Stamp LK, Dalbeth N, Woodward OM, Merriman TR. ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:129-142. [PMID: 28461764 PMCID: PMC5404803 DOI: 10.2147/pgpm.s105854] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a result of the association of a common polymorphism (rs2231142, Q141K) in the ATP-binding cassette G2 (ABCG2) transporter with serum urate concentration in a genome-wide association study, it was revealed that ABCG2 is an important uric acid transporter. This review discusses the relevance of ABCG2 polymorphisms in gout, possible etiological mechanisms, and treatment approaches. The 141K ABCG2 urate-increasing variant causes instability in the nucleotide-binding domain, leading to decreased surface expression and function. Trafficking of the protein to the cell membrane is altered, and instead, there is an increased ubiquitin-mediated proteasomal degradation of the variant protein as well as sequestration into aggresomes. In humans, this leads to decreased uric acid excretion through both the kidney and the gut with the potential for a subsequent compensatory increase in renal urinary excretion. Not only does the 141K polymorphism in ABCG2 lead to hyperuricemia through renal overload and renal underexcretion, but emerging evidence indicates that it also increases the risk of acute gout in the presence of hyperuricemia, early onset of gout, tophi formation, and a poor response to allopurinol. In addition, there is some evidence that ABCG2 dysfunction may promote renal dysfunction in chronic kidney disease patients, increase systemic inflammatory responses, and decrease cellular autophagic responses to stress. These results suggest multiple benefits in restoring ABCG2 function. It has been shown that decreased ABCG2 141K surface expression and function can be restored with colchicine and other small molecule correctors. However, caution should be exercised in any application of these approaches given the role of surface ABCG2 in drug resistance.
Collapse
Affiliation(s)
- M C Cleophas
- Department of Internal Medicine.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - L A Joosten
- Department of Internal Medicine.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - L K Stamp
- Department of Medicine, University of Otago Christchurch, Christchurch
| | - N Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - O M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
102
|
Waldman SA, Terzic A. Clinical Pharmacology & Therapeutics: Past, Present, and Future. Clin Pharmacol Ther 2017; 101:300-303. [PMID: 28194770 DOI: 10.1002/cpt.592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
Clinical Pharmacology & Therapeutics (CPT), the definitive and timely source for advances in human therapeutics, transcends the drug discovery, development, regulation, and utilization continuum to catalyze, evolve, and disseminate discipline-transformative knowledge. Prioritized themes and multidisciplinary content drive the science and practice of clinical pharmacology, offering a trusted point of reference. An authoritative herald across global communities, CPT is a timeless information vehicle at the vanguard of discovery, translation, and application ushering therapeutic innovation into modern healthcare.
Collapse
Affiliation(s)
- S A Waldman
- Department of Pharmacology and Experimental Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - A Terzic
- Center for Regenerative Medicine, Departments of Cardiovascular Diseases, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
103
|
Maggio N, Firer M, Zaid H, Bederovsky Y, Aboukaoud M, Gandelman-Marton R, Noyman I, Ekstein D, Blatt I, Marom E, Schwartzberg E, Israel S, Ingber A, Brautbar C, Eyal S. Causative Drugs of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis in Israel. J Clin Pharmacol 2017; 57:823-829. [PMID: 28181259 DOI: 10.1002/jcph.873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/16/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Nicola Maggio
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maria Firer
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Huda Zaid
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yana Bederovsky
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mohammed Aboukaoud
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Revital Gandelman-Marton
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Assaf Harofeh Medical Center, Zerifin, Israel
| | - Iris Noyman
- Department of Pediatric Neurology, Soroka Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Dana Ekstein
- Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ilan Blatt
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Marom
- Pharmaceutical Division, Israel Ministry of Health, Jerusalem, Israel
| | - Eyal Schwartzberg
- Pharmaceutical Division, Israel Ministry of Health, Jerusalem, Israel
| | - Shoshana Israel
- Tissue Typing Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Arieh Ingber
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Chaim Brautbar
- Tissue Typing Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
104
|
Mahon S. Apply Resources to Practice: Use Current Genetics and Genomics Content in Oncology. Clin J Oncol Nurs 2017; 21:34-38. [DOI: 10.1188/17.cjon.34-38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
105
|
Alfirevic A, Pirmohamed M. Genomics of Adverse Drug Reactions. Trends Pharmacol Sci 2017; 38:100-109. [DOI: 10.1016/j.tips.2016.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 11/16/2022]
|
106
|
Caudle KE, Gammal RS, Whirl-Carrillo M, Hoffman JM, Relling MV, Klein TE. Evidence and resources to implement pharmacogenetic knowledge for precision medicine. Am J Health Syst Pharm 2016; 73:1977-1985. [PMID: 27864205 PMCID: PMC5117674 DOI: 10.2146/ajhp150977] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The current state of pharmacogenetic data curation and dissemination is described, and evidence-based resources for applying pharmacogenetic data in clinical practice are reviewed. SUMMARY Implementation of pharmacogenetics in clinical practice has been relatively slow despite substantial scientific progress in understanding linkages between genetic variation and variability of drug response and effect. One factor that has inhibited the adoption of genetic data to guide medication use is a lack of knowledge of how to translate genetic test results into clinical action based on currently available evidence. Other implementation challenges include controversy over selection of appropriate evidentiary thresholds for routine clinical implementation of pharmacogenetic data and the difficulty of compiling scientific data to support clinical recommendations given that large randomized controlled trials to demonstrate the utility of pharmacogenetic testing are not feasible or are not considered necessary to establish clinical utility. Organizations such as the Clinical Pharmacogenetics Implementation Consortium (CPIC) and the Pharmacogenomics Knowledgebase (PharmGKB) systematically evaluate emerging evidence of pharmacogenomic linkages and publish evidence-based prescribing recommendations to inform clinical practice. Both CPIC and PharmGKB provide online resources that facilitate the interpretation of genetic test results and provide prescribing recommendations for specific gene-drug pairs. CONCLUSION Resources provided by organizations such as CPIC and PharmGKB, which use standardized approaches to evaluate the literature and provide clinical guidance for a growing number of gene-drug pairs, are essential for the implementation of pharmacogenetics into routine clinical practice.
Collapse
Affiliation(s)
- Kelly E Caudle
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN.
| | - Roseann S Gammal
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
- Department of Pharmacy Practice, MCPHS University, Boston, MA
| | - Michelle Whirl-Carrillo
- Pharmacogenomics Knowledgebase (PharmGKB), Stanford University School of Medicine, Palo Alto, CA
| | - James M Hoffman
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Mary V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Teri E Klein
- Pharmacogenomics Knowledgebase (PharmGKB), Stanford University School of Medicine, Palo Alto, CA
| |
Collapse
|
107
|
Yang W, Wu G, Broeckel U, Smith CA, Turner V, Haidar CE, Wang S, Carter R, Karol SE, Neale G, Crews KR, Yang JJ, Mullighan CG, Downing JR, Evans WE, Relling MV. Comparison of genome sequencing and clinical genotyping for pharmacogenes. Clin Pharmacol Ther 2016; 100:380-8. [PMID: 27311679 DOI: 10.1002/cpt.411] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/23/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
We compared whole exome sequencing (WES, n = 176 patients) and whole genome sequencing (WGS, n = 68) and clinical genotyping (DMET array-based approach) for interrogating 13 genes with Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines. We focused on 127 CPIC important variants: 103 single nucleotide variations (SNV), 21 insertion/deletions (Indel), HLA-B alleles, and two CYP2D6 structural variations. WES and WGS provided interrogation of nonoverlapping sets of 115 SNV/Indels with call rate >98%. Among 68 loci interrogated by both WES and DMET, 64 loci (94.1%, confidence interval [CI]: 85.6-98.4%) showed no discrepant genotyping calls. Among 66 loci interrogated by both WGS and DMET, 63 loci (95.5%, CI: 87.2-99.0%) showed no discrepant genotyping calls. In conclusion, even without optimization to interrogate pharmacogenetic variants, WES and WGS displayed potential to provide reliable interrogation of most pharmacogenes and further validation of genome sequencing in a clinical lab setting is warranted.
Collapse
Affiliation(s)
- W Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - G Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - U Broeckel
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - C A Smith
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - V Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - C E Haidar
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - S Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - R Carter
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - S E Karol
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - G Neale
- Hartwell Center, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - K R Crews
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - C G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - J R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - W E Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - M V Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
108
|
Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castañeda-Sanabria J, Coyfish M, Guillo S, Jansen TL, Janssens H, Lioté F, Mallen C, Nuki G, Perez-Ruiz F, Pimentao J, Punzi L, Pywell T, So A, Tausche AK, Uhlig T, Zavada J, Zhang W, Tubach F, Bardin T. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis 2016; 76:29-42. [DOI: 10.1136/annrheumdis-2016-209707] [Citation(s) in RCA: 817] [Impact Index Per Article: 102.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/14/2016] [Accepted: 06/29/2016] [Indexed: 12/22/2022]
Abstract
BackgroundNew drugs and new evidence concerning the use of established treatments have become available since the publication of the first European League Against Rheumatism (EULAR) recommendations for the management of gout, in 2006. This situation has prompted a systematic review and update of the 2006 recommendations.MethodsThe EULAR task force consisted of 15 rheumatologists, 1 radiologist, 2 general practitioners, 1 research fellow, 2 patients and 3 experts in epidemiology/methodology from 12 European countries. A systematic review of the literature concerning all aspects of gout treatments was performed. Subsequently, recommendations were formulated by use of a Delphi consensus approach.ResultsThree overarching principles and 11 key recommendations were generated. For the treatment of flare, colchicine, non-steroidal anti-inflammatory drugs (NSAIDs), oral or intra-articular steroids or a combination are recommended. In patients with frequent flare and contraindications to colchicine, NSAIDs and corticosteroids, an interleukin-1 blocker should be considered. In addition to education and a non-pharmacological management approach, urate-lowering therapy (ULT) should be considered from the first presentation of the disease, and serum uric acid (SUA) levels should be maintained at<6 mg/dL (360 µmol/L) and <5 mg/dL (300 µmol/L) in those with severe gout. Allopurinol is recommended as first-line ULT and its dosage should be adjusted according to renal function. If the SUA target cannot be achieved with allopurinol, then febuxostat, a uricosuric or combining a xanthine oxidase inhibitor with a uricosuric should be considered. For patients with refractory gout, pegloticase is recommended.ConclusionsThese recommendations aim to inform physicians and patients about the non-pharmacological and pharmacological treatments for gout and to provide the best strategies to achieve the predefined urate target to cure the disease.
Collapse
|
109
|
Hoffman JM, Dunnenberger HM, Kevin Hicks J, Caudle KE, Whirl Carrillo M, Freimuth RR, Williams MS, Klein TE, Peterson JF. Developing knowledge resources to support precision medicine: principles from the Clinical Pharmacogenetics Implementation Consortium (CPIC). J Am Med Inform Assoc 2016; 23:796-801. [PMID: 27026620 DOI: 10.1093/jamia/ocw027] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/13/2016] [Indexed: 11/13/2022] Open
Abstract
To move beyond a select few genes/drugs, the successful adoption of pharmacogenomics into routine clinical care requires a curated and machine-readable database of pharmacogenomic knowledge suitable for use in an electronic health record (EHR) with clinical decision support (CDS). Recognizing that EHR vendors do not yet provide a standard set of CDS functions for pharmacogenetics, the Clinical Pharmacogenetics Implementation Consortium (CPIC) Informatics Working Group is developing and systematically incorporating a set of EHR-agnostic implementation resources into all CPIC guidelines. These resources illustrate how to integrate pharmacogenomic test results in clinical information systems with CDS to facilitate the use of patient genomic data at the point of care. Based on our collective experience creating existing CPIC resources and implementing pharmacogenomics at our practice sites, we outline principles to define the key features of future knowledge bases and discuss the importance of these knowledge resources for pharmacogenomics and ultimately precision medicine.
Collapse
Affiliation(s)
- James M Hoffman
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Henry M Dunnenberger
- Center for Molecular Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| | - J Kevin Hicks
- Pharmacy Department and Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kelly E Caudle
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Robert R Freimuth
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Marc S Williams
- Genomic Medicine Institute, Geisinger Health System, Danville, PA, USA
| | - Teri E Klein
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Josh F Peterson
- Departments of Medicine and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
110
|
ABCG2 loss-of-function polymorphism predicts poor response to allopurinol in patients with gout. THE PHARMACOGENOMICS JOURNAL 2016; 17:201-203. [PMID: 26810134 DOI: 10.1038/tpj.2015.101] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/19/2015] [Accepted: 11/16/2015] [Indexed: 01/04/2023]
Abstract
Many patients fail to achieve the recommended serum urate (SU) target (<6 mgdl-1) with allopurinol. The aim of our study was to examine the association of ABCG2 with SU target in response to standard doses of allopurinol using a cohort with confirmed adherence. Good response was defined as SU<6 mgdl-1 on allopurinol ⩽300 mgd-1 and poor response as SU⩾6 mgdl-1 despite allopurinol >300 mgd-1. Adherence was confirmed by oxypurinol concentrations. ABCG2 genotyping was performed using pre-designed single nucleotide polymorphism (SNP) TaqMan assays. Of 264 patients, 120 were good responders, 68 were poor responders and 76 were either non-adherent or could not be classified. The minor allele of ABCG2 SNP rs2231142 conferred a significantly increased risk of poor response to allopurinol (odds ratio=2.71 (1.70-4.48), P=6.0 × 10-5). This association remained significant after adjustment for age, sex, body mass index, ethnicity, estimated glomerular filtration rate, diuretic use and SU off urate-lowering therapy. ABCG2 rs2231142 predicts poor response to allopurinol, as defined by SU⩾6 mgdl-1 despite allopurinol >300 mgd-1.
Collapse
|
111
|
Stamp LK, Day RO, Yun J. Allopurinol hypersensitivity: investigating the cause and minimizing the risk. Nat Rev Rheumatol 2015; 12:235-42. [PMID: 26416594 DOI: 10.1038/nrrheum.2015.132] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allopurinol is the most commonly prescribed urate-lowering therapy for the management of gout. Serious adverse reactions associated with allopurinol, while rare, are feared owing to the high mortality. Such reactions can manifest as a rash combined with eosinophilia, leukocytosis, fever, hepatitis and progressive kidney failure. Risk factors for allopurinol-related severe adverse reactions include the recent introduction of allopurinol, the presence of the HLA-B(*)58:01 allele, and factors that influence the drug concentration. The interactions between allopurinol, its metabolite, oxypurinol, and T cells have been studied, and evidence exists that the presence of the HLA-B(*)58:01 allele and a high concentration of oxypurinol function synergistically to increase the number of potentially immunogenic-peptide-oxypurinol-HLA-B(*)58:01 complexes on the cell surface, thereby increasing the risk of T-cell sensitization and a subsequent adverse reaction. This Review will discuss the above issues and place this in the clinical context of reducing the risk of serious adverse reactions.
Collapse
Affiliation(s)
- Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand
| | - Richard O Day
- Department of Clinical Pharmacology &Toxicology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - James Yun
- Department of Clinical Immunology and Allergy, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|