101
|
Kondrashov FA, Kondrashov AS. Measurements of spontaneous rates of mutations in the recent past and the near future. Philos Trans R Soc Lond B Biol Sci 2010; 365:1169-76. [PMID: 20308091 PMCID: PMC2871817 DOI: 10.1098/rstb.2009.0286] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rate of spontaneous mutation in natural populations is a fundamental parameter for many evolutionary phenomena. Because the rate of mutation is generally low, most of what is currently known about mutation has been obtained through indirect, complex and imprecise methodological approaches. However, in the past few years genome-wide sequencing of closely related individuals has made it possible to estimate the rates of mutation directly at the level of the DNA, avoiding most of the problems associated with using indirect methods. Here, we review the methods used in the past with an emphasis on next generation sequencing, which may soon make the accurate measurement of spontaneous mutation rates a matter of routine.
Collapse
Affiliation(s)
- Fyodor A Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, , C/Dr. Aiguader 88, Barcelona Biomedical Research Park Building 08003, Barcelona, Spain.
| | | |
Collapse
|
102
|
Abstract
Although mutation provides the fuel for phenotypic evolution, it also imposes a substantial burden on fitness through the production of predominantly deleterious alleles, a matter of concern from a human-health perspective. Here, recently established databases on de novo mutations for monogenic disorders are used to estimate the rate and molecular spectrum of spontaneously arising mutations and to derive a number of inferences with respect to eukaryotic genome evolution. Although the human per-generation mutation rate is exceptionally high, on a per-cell division basis, the human germline mutation rate is lower than that recorded for any other species. Comparison with data from other species demonstrates a universal mutational bias toward A/T composition, and leads to the hypothesis that genome-wide nucleotide composition generally evolves to the point at which the power of selection in favor of G/C is approximately balanced by the power of random genetic drift, such that variation in equilibrium genome-wide nucleotide composition is largely defined by variation in mutation biases. Quantification of the hazards associated with introns reveals that mutations at key splice-site residues are a major source of human mortality. Finally, a consideration of the long-term consequences of current human behavior for deleterious-mutation accumulation leads to the conclusion that a substantial reduction in human fitness can be expected over the next few centuries in industrialized societies unless novel means of genetic intervention are developed.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
103
|
Gasparini C, Marino IAM, Boschetto C, Pilastro A. Effect of male age on sperm traits and sperm competition success in the guppy (Poecilia reticulata). J Evol Biol 2009; 23:124-35. [PMID: 19912453 DOI: 10.1111/j.1420-9101.2009.01889.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deleterious mutations can accumulate in the germline with age, decreasing the genetic quality of sperm and imposing a cost on female fitness. If these mutations also affect sperm competition ability or sperm production, then females will benefit from polyandry as it incites sperm competition and, consequently, minimizes the mutational load in the offspring. We tested this hypothesis in the guppy (Poecilia reticulata), a species characterized by polyandry and intense sperm competition, by investigating whether age affects post-copulatory male traits and sperm competition success. Females did not discriminate between old and young males in a mate choice experiment. While old males produced longer and slower sperm with larger reserves of strippable sperm, compared to young males, artificial insemination did not reveal any effect of age on sperm competition success. Altogether, these results do not support the hypothesis that polyandry evolved in response to costs associated with mating with old males in the guppy.
Collapse
Affiliation(s)
- C Gasparini
- Dipartimento di Biologia, Università di Padova, Padova, Italy.
| | | | | | | |
Collapse
|
104
|
Adiga SK, Khan Z, Upadhya D, Kalthur G, Kumar P. Ability of deoxyribonucleic acid–damaged sperm to withstand freeze-thaw–induced damage during cryopreservation. Fertil Steril 2009; 92:959-963. [DOI: 10.1016/j.fertnstert.2008.07.1754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 07/04/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
|
105
|
Abstract
The telomeres of most eukaryotes are characterized by guanine-rich repeats synthesized by the reverse transcriptase telomerase. Complete loss of telomerase is tolerated for several generations in most species, but modestly reduced telomerase levels in human beings are implicated in bone marrow failure, pulmonary fibrosis and a spectrum of other diseases including cancer. Differences in telomerase deficiency phenotypes between species most likely reflect a tumour suppressor function of telomeres in long-lived mammals that does not exist as such in short-lived organisms. Another puzzle provided by current observations is that family members with the same genetic defect, haplo-insufficiency for one of the telomerase genes, can present with widely different diseases. Here, the crucial role of telomeres and telomerase in human (stem cell) biology is discussed from a Darwinian perspective. It is proposed that the variable phenotype and penetrance of heritable human telomerase deficiencies result from additional environmental, genetic and stochastic factors or combinations thereof.
Collapse
|
106
|
Understanding what determines the frequency and pattern of human germline mutations. Nat Rev Genet 2009; 10:478-88. [PMID: 19488047 DOI: 10.1038/nrg2529] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Surprising findings about human germline mutation have come from applying new technologies to detect rare mutations in germline DNA, from analysing DNA sequence divergence between humans and closely related species, and from investigating human polymorphic variation. In this Review we discuss how these approaches affect our current understanding of the roles of sex, age, mutation hot spots, germline selection and genomic factors in determining human nucleotide substitution mutation patterns and frequencies. To enhance our understanding of mutation and disease, more extensive molecular data on the human germ line with regard to mutation origin, DNA repair, epigenetic status and the effect of newly arisen mutations on gamete development are needed.
Collapse
|
107
|
Weise J, GüneŞ Ç. Differential regulation of human and mousetelomerase reverse transcriptase(TERT) promoter activity during testis development. Mol Reprod Dev 2009; 76:309-17. [DOI: 10.1002/mrd.20954] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
108
|
MØLLER AP, MOUSSEAU TA, RUDOLFSEN G, BALBONTíN J, MARZAL A, HERMOSELL I, DE LOPE F. Senescent sperm performance in old male birds. J Evol Biol 2008; 22:334-44. [DOI: 10.1111/j.1420-9101.2008.01650.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
109
|
Abstract
Mitochondrial DNA mutation rates have now been measured in several model organisms. The patterns of mutation are strikingly different among species and point to modulation of mutation-selection balance in the evolution of nucleotide composition.
Collapse
|
110
|
Haag-Liautard C, Coffey N, Houle D, Lynch M, Charlesworth B, Keightley PD. Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol 2008; 6:e204. [PMID: 18715119 PMCID: PMC2517619 DOI: 10.1371/journal.pbio.0060204] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/15/2008] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial DNA (mtDNA) variants are widely used in evolutionary genetics as markers for population history and to estimate divergence times among taxa. Inferences of species history are generally based on phylogenetic comparisons, which assume that molecular evolution is clock-like. Between-species comparisons have also been used to estimate the mutation rate, using sites that are thought to evolve neutrally. We directly estimated the mtDNA mutation rate by scanning the mitochondrial genome of Drosophila melanogaster lines that had undergone approximately 200 generations of spontaneous mutation accumulation (MA). We detected a total of 28 point mutations and eight insertion-deletion (indel) mutations, yielding an estimate for the single-nucleotide mutation rate of 6.2 × 10−8 per site per fly generation. Most mutations were heteroplasmic within a line, and their frequency distribution suggests that the effective number of mitochondrial genomes transmitted per female per generation is about 30. We observed repeated occurrences of some indel mutations, suggesting that indel mutational hotspots are common. Among the point mutations, there is a large excess of G→A mutations on the major strand (the sense strand for the majority of mitochondrial genes). These mutations tend to occur at nonsynonymous sites of protein-coding genes, and they are expected to be deleterious, so do not become fixed between species. The overall mtDNA mutation rate per base pair per fly generation in Drosophila is estimated to be about 10× higher than the nuclear mutation rate, but the mitochondrial major strand G→A mutation rate is about 70× higher than the nuclear rate. Silent sites are substantially more strongly biased towards A and T than nonsynonymous sites, consistent with the extreme mutation bias towards A+T. Strand-asymmetric mutation bias, coupled with selection to maintain specific nonsynonymous bases, therefore provides an explanation for the extreme base composition of the mitochondrial genome of Drosophila. Mitochondria are the energy-producing organelles of the cell, and they contain genetic information encoded on their own genome. Because rates of mutation for mitochondrial genomes are believed to be much higher than those in nuclear DNA, mitochondrial genetic differences between and within species are particularly useful in population genetics, for example, as markers of population movements. We have directly estimated the mutation rate in the mitochondrial genome of the fruit fly Drosophila melanogaster in lines that had been allowed to randomly accumulate mutations in the virtual absence of effective natural selection. We scanned for new mutations by comparing the DNA of different lines by a sensitive mutation detection technique. We show that the mitochondrial mutation rate is about ten times higher than the nuclear DNA mutation rate. Strikingly, however, almost all of the single–base pair mutations that we detected change G to A at an amino acid site of a protein-coding gene. The explanation for this effect seems to be that natural selection maintains the nucleotide G at amino acid sites, whereas most silent sites are under weaker selection and have previously mutated to A or T. The mutation rate for G to A changes is 70 times higher than the nuclear DNA mutation rate. This extreme mutation bias maintains the high A+T content of the Drosophila mitochondrial genome. We show that the mitochondrial DNA mutation rate in D. melanogaster is 10X higher than the nuclear mutation rate, and that major-strand G-->A hypermutablity explains the extremely biased base composition of the mitochondrial genome.
Collapse
Affiliation(s)
- Cathy Haag-Liautard
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicole Coffey
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - David Houle
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter D Keightley
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
111
|
The cellular, developmental and population-genetic determinants of mutation-rate evolution. Genetics 2008; 180:933-43. [PMID: 18757919 DOI: 10.1534/genetics.108.090456] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the matter has been subject to considerable theoretical study, there are numerous open questions regarding the mechanisms driving the mutation rate in various phylogenetic lineages. Most notably, empirical evidence indicates that mutation rates are elevated in multicellular species relative to unicellular eukaryotes and prokaryotes, even on a per-cell division basis, despite the need for the avoidance of somatic damage and the accumulation of germline mutations. Here it is suggested that multicellularity discourages selection against weak mutator alleles for reasons associated with both the cellular and the population-genetic environments, thereby magnifying the vulnerability to somatic mutations (cancer) and increasing the risk of extinction from the accumulation of germline mutations. Moreover, contrary to common belief, a cost of fidelity need not be invoked to explain the lower bound to observed mutation rates, which instead may simply be set by the inability of selection to advance very weakly advantageous antimutator alleles in finite populations.
Collapse
|
112
|
Spontaneous mutations in diploid Saccharomyces cerevisiae: another thousand cell generations. Genet Res (Camb) 2008; 90:229-41. [PMID: 18593510 DOI: 10.1017/s0016672308009324] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we performed a 1012-generation mutation accumulation (MA) study in yeast and found that a surprisingly large proportion of fitness-altering mutations were beneficial. To verify this result and assess the impact of sampling error in our previous study, we have continued the MA experiment for an additional 1050 cell generations and re-estimated mutation parameters. After correcting for biases due to selection, we estimate that 13% of the mutations accumulated during this study are beneficial. We conclude that the high proportions of beneficial mutations observed in this and our previous study cannot be explained by sampling error. We also estimate the genome-wide mutation rate to be 13.7x10-5 mutations per haploid genome per cell generation and the absolute value of the average heterozygous effect of a mutation to be 7.3%.
Collapse
|
113
|
Choi SK, Yoon SR, Calabrese P, Arnheim N. A germ-line-selective advantage rather than an increased mutation rate can explain some unexpectedly common human disease mutations. Proc Natl Acad Sci U S A 2008; 105:10143-8. [PMID: 18632557 PMCID: PMC2474563 DOI: 10.1073/pnas.0801267105] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Indexed: 11/18/2022] Open
Abstract
Two nucleotide substitutions in the human FGFR2 gene (C755G or C758G) are responsible for virtually all sporadic cases of Apert syndrome. This condition is 100-1,000 times more common than genomic mutation frequency data predict. Here, we report on the C758G de novo Apert syndrome mutation. Using data on older donors, we show that spontaneous mutations are not uniformly distributed throughout normal testes. Instead, we find foci where C758G mutation frequencies are 3-4 orders of magnitude greater than the remaining tissue. We conclude this nucleotide site is not a mutation hot spot even after accounting for possible Luria-Delbruck "mutation jackpots." An alternative explanation for such foci involving positive selection acting on adult self-renewing Ap spermatogonia experiencing the rare mutation could not be rejected. Further, the two youngest individuals studied (19 and 23 years old) had lower mutation frequencies and smaller foci at both mutation sites compared with the older individuals. This implies that the mutation frequency of foci increases as adults age, and thus selection could explain the paternal age effect for Apert syndrome and other genetic conditions. Our results, now including the analysis of two mutations in the same set of testes, suggest that positive selection can increase the relative frequency of premeiotic germ cells carrying such mutations, although individuals who inherit them have reduced fitness. In addition, we compared the anatomical distribution of C758G mutation foci with both new and old data on the C755G mutation in the same testis and found their positions were not correlated with one another.
Collapse
Affiliation(s)
- Soo-Kyung Choi
- Molecular and Computational Biology Program, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089-2910
| | - Song-Ro Yoon
- Molecular and Computational Biology Program, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089-2910
| | - Peter Calabrese
- Molecular and Computational Biology Program, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089-2910
| | - Norman Arnheim
- Molecular and Computational Biology Program, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089-2910
| |
Collapse
|
114
|
Cole DN, Carlson JA, Wilson VL. Human germline and somatic cells have similar TP53 and Kirsten-RAS gene single base mutation frequencies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:417-425. [PMID: 18418864 DOI: 10.1002/em.20390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding the risk of offspring inheriting rare mutations, and the frequencies at which these mutations are present in germ cells can be explored with direct analysis of human semen samples. The present work utilized the ultrasensitive PCR/RE/LCR mutation assay to detect, identify and determine the prevalence single base substitution mutations in the TP53 and KRAS genes in human sperm. Four disease-associated base sites in the TP53 and KRAS genes, three of which are known to be heritable to live, term offspring, were studied in sperm from eleven human semen specimens. Eight of the specimens (73%) displayed single base substitution mutations, and 30% of all base sites tested were found to harbor mutations ranging in prevalence from 1 x 10(-6) to 1 x 10(-5) wild type sperm. These germ cell single base substitution mutation frequencies are very similar to somatic tissue TP53 and KRAS mutation frequencies. Equivalent single base mutation frequencies in both germ and somatic cells suggest that there is no unusual selection or mutation protective process operating premeiotically in the germline, and that a selection bias at the level of sperm viability, conception, early cleavage, implantation, and/or embryogenesis operates to exclude the majority of these TP53 mutations and all of the activating KRAS mutations.
Collapse
Affiliation(s)
- Derek N Cole
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
115
|
The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex. Genetics 2008; 178:2113-21. [PMID: 18430937 DOI: 10.1534/genetics.107.081927] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The effective use of microsatellite loci as tools for microevolutionary analysis requires knowledge of the factors influencing the rate and pattern of mutation, much of which is derived from indirect inference from population samples. Interspecific variation in microsatellite stability also provides a glimpse into aspects of phylogenetic constancy of mutational processes. Using long-term series of mutation-accumulation lines, we have obtained direct estimates of the spectrum of microsatellite mutations in two model systems: the nematode Caenorhabditis elegans and the microcrustacean Daphnia pulex. Although the scaling of the mutation rate with the number of tandem repeats is highly consistent across distantly related species, including yeast and human, the per-cell-division mutation rate appears to be elevated in multicellular species. Contrary to the expectations under the stepwise mutation model, most microsatellite mutations in C. elegans and D. pulex involve changes of multiple repeat units, with expansions being much more common than contractions.
Collapse
|
116
|
Abstract
The mutation process ultimately defines the genetic features of all populations and, hence, has a bearing on a wide range of issues involving evolutionary genetics, inheritance, and genetic disorders, including the predisposition to cancer. Nevertheless, formidable technical barriers have constrained our understanding of the rate at which mutations arise and the molecular spectrum of their effects. Here, we report on the use of complete-genome sequencing in the characterization of spontaneously arising mutations in the yeast Saccharomyces cerevisiae. Our results confirm some findings previously obtained by indirect methods but also yield numerous unexpected findings, in particular a very high rate of point mutation and skewed distribution of base-substitution types in the mitochondrion, a very high rate of segmental duplication and deletion in the nuclear genome, and substantial deviations in the mutational profile among various model organisms.
Collapse
|
117
|
Zhao Y, Epstein RJ. Programmed genetic instability: a tumor-permissive mechanism for maintaining the evolvability of higher species through methylation-dependent mutation of DNA repair genes in the male germ line. Mol Biol Evol 2008; 25:1737-49. [PMID: 18535014 PMCID: PMC2464741 DOI: 10.1093/molbev/msn126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tumor suppressor genes are classified by their somatic behavior either as caretakers (CTs) that maintain DNA integrity or as gatekeepers (GKs) that regulate cell survival, but the germ line role of these disease-related gene subgroups may differ. To test this hypothesis, we have used genomic data mining to compare the features of human CTs (n = 38), GKs (n = 36), DNA repair genes (n = 165), apoptosis genes (n = 622), and their orthologs. This analysis reveals that repair genes are numerically less common than apoptosis genes in the genomes of multicellular organisms (P < 0.01), whereas CT orthologs are commoner than GK orthologs in unicellular organisms (P < 0.05). Gene targeting data show that CTs are less essential than GKs for survival of multicellular organisms (P < 0.0005) and that CT knockouts often permit offspring viability at the cost of male sterility. Patterns of human familial oncogenic mutations confirm that isolated CT loss is commoner than is isolated GK loss (P < 0.00001). In sexually reproducing species, CTs appear subject to less efficient purifying selection (i.e., higher Ka/Ks) than GKs (P = 0.000003); the faster evolution of CTs seems likely to be mediated by gene methylation and reduced transcription-coupled repair, based on differences in dinucleotide patterns (P = 0.001). These data suggest that germ line CT/repair gene function is relatively dispensable for survival, and imply that milder (e.g., epimutational) male prezygotic repair defects could enhance sperm variation—and hence environmental adaptation and speciation—while sparing fertility. We submit that CTs and repair genes are general targets for epigenetically initiated adaptive evolution, and propose a model in which human cancers arise in part as an evolutionarily programmed side effect of age- and damage-inducible genetic instability affecting both somatic and germ line lineages.
Collapse
Affiliation(s)
- Yongzhong Zhao
- Laboratory of Computational Oncology, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | |
Collapse
|
118
|
|
119
|
Valentine CR, Rainey HF, Farrell JM, Shaddock JG, Dobrovolsky VN, Delongchamp RR. Frequency and spectrum of ENU-induced mutation in the X174 transgene in mouse splenic lymphocytes and their significance to spontaneous transgenic rodent mutation frequencies. Mutagenesis 2008; 23:383-97. [DOI: 10.1093/mutage/gen026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
120
|
Abstract
The depth of a cell of a multicellular organism is the number of cell divisions it underwent since the zygote, and knowing this basic cell property would help address fundamental problems in several areas of biology. At present, the depths of the vast majority of human and mouse cell types are unknown. Here, we show a method for estimating the depth of a cell by analyzing somatic mutations in its microsatellites, and provide to our knowledge for the first time reliable depth estimates for several cells types in mice. According to our estimates, the average depth of oocytes is 29, consistent with previous estimates. The average depth of B cells ranges from 34 to 79, linearly related to the mouse age, suggesting a rate of one cell division per day. In contrast, various types of adult stem cells underwent on average fewer cell divisions, supporting the notion that adult stem cells are relatively quiescent. Our method for depth estimation opens a window for revealing tissue turnover rates in animals, including humans, which has important implications for our knowledge of the body under physiological and pathological conditions. All the cells in our body are descendants of a single cell – the fertilized egg. Some cells are relatively close descendants, having undergone a small number of cell divisions, while other cells may be hundreds or even thousands of divisions deep. So far, science was unable to provide even gross estimates for the depths of the vast majority of human and mouse cells. In this study, we show that precise depth estimates of cells can be obtained from the analysis of non-hazardous mutations that spontaneously accumulate during normal development. The concept behind the method is simple: deeper cells tend to acquire more mutations and “drift away” from the original DNA sequence of the fertilized egg. Knowing how deep cells are is the key to many fundamental open questions in biology and medicine, such as whether neurons in our brain can regenerate, or whether new eggs are created in adult females.
Collapse
|
121
|
Entezam A, Usdin K. ATR protects the genome against CGG.CCG-repeat expansion in Fragile X premutation mice. Nucleic Acids Res 2007; 36:1050-6. [PMID: 18160412 PMCID: PMC2241920 DOI: 10.1093/nar/gkm1136] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fragile X mental retardation syndrome is a repeat expansion disease caused by expansion of a CGG.CCG-repeat tract in the 5' UTR of the FMR1 gene. In humans, small expansions occur more frequently on paternal transmission while large expansions are exclusively maternal in origin. It has been suggested that expansion is the result of aberrant DNA replication, repair or recombination. To distinguish amongst these possibilities we crossed mice containing 120 CGG.CCG-repeats in the 5' UTR of the mouse Fmr1 gene to mice with mutations in ATR, a protein important in the cellular response to stalled replication forks and bulky DNA lesions. We show here that ATR heterozygosity results in increased expansion rates of maternally, but not paternally, transmitted alleles. In addition, age-related somatic expansions occurred in mice of both genders that were not seen in ATR wild-type animals. Some ATR-sensitive expansion occurs in postmitotic cells including haploid gametes suggesting that aberrant DNA repair is responsible. Our data suggest that two mechanisms of repeat expansion exist that may explain the small and large expansions seen in humans. In addition, our data provide an explanation for the maternal bias of large expansions in humans and the lower incidence of these expansions in mice.
Collapse
Affiliation(s)
- Ali Entezam
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | |
Collapse
|
122
|
Kalthur G, Adiga SK, Upadhya D, Rao S, Kumar P. Effect of cryopreservation on sperm DNA integrity in patients with teratospermia. Fertil Steril 2007; 89:1723-7. [PMID: 17953963 DOI: 10.1016/j.fertnstert.2007.06.087] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 06/22/2007] [Accepted: 06/22/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To test whether sperm with abnormal head morphology are more likely to undergo DNA damage and/or chromatin modification during the process of freeze-thawing. DESIGN In this prospective study, the semen samples from forty-four men attending the infertility clinic were included. Samples were divided into aliquots to allow direct comparison of fresh and frozen spermatozoa from the same ejaculate. The sperm morphology and the sperm DNA damage were evaluated before and after cryopreservation. The relationship between sperm head abnormalities and freeze-thaw-induced DNA modification was assessed. SETTING(S) University hospital fertility center. PATIENT(S) Men attending infertility clinic for semen analysis. INTERVENTION(S) The normospermic and teratospermic semen samples were evaluated for DNA damage before and after cryopreservation by comet assay and acridine orange bindability test. MAIN OUTCOME MEASURE(S) Elucidation of association between sperm morphologic defect and cryodamage. RESULT(S) A threefold increase in the amount of DNA damage was observed in teratospermic samples compared with their normospermic counterparts, indicating a higher susceptibility of morphologically abnormal sperm to cryodamage. CONCLUSION(S) The susceptibility of morphologically abnormal sperm to DNA damage/chromatin modification during the freeze-thaw process is significantly higher than that of sperm with normal morphology.
Collapse
Affiliation(s)
- Guruprasad Kalthur
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal, India
| | | | | | | | | |
Collapse
|
123
|
Radwan J. Maintenance of genetic variation in sexual ornaments: a review of the mechanisms. Genetica 2007; 134:113-27. [PMID: 17874278 DOI: 10.1007/s10709-007-9203-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
Female preferences for elaborate male sexual traits have been documented in a number of species in which males contribute only genes to the next generation. In such systems, mate choice has been hypothesised to benefit females genetically. For the genetic benefits to be possible there must be additive genetic variation (V A) for sexual ornaments, such that highly ornamented males can pass fitter genes on to the progeny of choosy females. Here, I review the mechanisms that can contribute to the maintenance of this variation. The variation may be limited to sexual ornaments, resulting in Fisherian benefits in terms of the increased reproductive success of male progeny produced by choosy females. Alternatively, ornaments may capture V A in other life-history traits. In the latter case, "good genes" benefits may apply in terms of improved performance of the progeny of either sex. Some mechanisms, however, such as negative pleiotropy, sexually antagonistic variation or overdominance, can maintain V A in ornaments and other life-history traits with little variation in total fitness, leaving little room for any genetic benefits of mate choice. Distinguishing between these mechanisms has consequences not only for the theory of sexual selection, but also for evolution of sex and for biological conservation. I discuss how the traditional ways of testing for genetic benefits can usefully be supplemented by tests detecting benefits resulting from specific mechanisms maintaining V A in sexual ornaments.
Collapse
Affiliation(s)
- Jacek Radwan
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, Cracow, Poland.
| |
Collapse
|
124
|
Fricke C, Maklakov AA. Male age does not affect female fitness in a polyandrous beetle, Callosobruchus maculatus. Anim Behav 2007. [DOI: 10.1016/j.anbehav.2006.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
125
|
Qin J, Calabrese P, Tiemann-Boege I, Shinde DN, Yoon SR, Gelfand D, Bauer K, Arnheim N. The molecular anatomy of spontaneous germline mutations in human testes. PLoS Biol 2007; 5:e224. [PMID: 17760502 PMCID: PMC1951783 DOI: 10.1371/journal.pbio.0050224] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 06/19/2007] [Indexed: 12/05/2022] Open
Abstract
The frequency of the most common sporadic Apert syndrome mutation (C755G) in the human fibroblast growth factor receptor 2 gene (FGFR2) is 100-1,000 times higher than expected from average nucleotide substitution rates based on evolutionary studies and the incidence of human genetic diseases. To determine if this increased frequency was due to the nucleotide site having the properties of a mutation hot spot, or some other explanation, we developed a new experimental approach. We examined the spatial distribution of the frequency of the C755G mutation in the germline by dividing four testes from two normal individuals each into several hundred pieces, and, using a highly sensitive PCR assay, we measured the mutation frequency of each piece. We discovered that each testis was characterized by rare foci with mutation frequencies 10(3) to >10(4) times higher than the rest of the testis regions. Using a model based on what is known about human germline development forced us to reject (p < 10(-6)) the idea that the C755G mutation arises more frequently because this nucleotide simply has a higher than average mutation rate (hot spot model). This is true regardless of whether mutation is dependent or independent of cell division. An alternate model was examined where positive selection acts on adult self-renewing Ap spermatogonial cells (SrAp) carrying this mutation such that, instead of only replacing themselves, they occasionally produce two SrAp cells. This model could not be rejected given our observed data. Unlike the disease site, similar analysis of C-to-G mutations at a control nucleotide site in one testis pair failed to find any foci with high mutation frequencies. The rejection of the hot spot model and lack of rejection of a selection model for the C755G mutation, along with other data, provides strong support for the proposal that positive selection in the testis can act to increase the frequency of premeiotic germ cells carrying a mutation deleterious to an offspring, thereby unfavorably altering the mutational load in humans. Studying the anatomical distribution of germline mutations can provide new insights into genetic disease and evolutionary change.
Collapse
Affiliation(s)
- Jian Qin
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Peter Calabrese
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Irene Tiemann-Boege
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Deepali Narendra Shinde
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Song-Ro Yoon
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - David Gelfand
- Program in Core Research, Roche Molecular Systems, Alameda, California, United States of America
| | - Keith Bauer
- Program in Core Research, Roche Molecular Systems, Alameda, California, United States of America
| | - Norman Arnheim
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
126
|
Eichenlaub-Ritter U, Adler ID, Carere A, Pacchierotti F. Gender differences in germ-cell mutagenesis and genetic risk. ENVIRONMENTAL RESEARCH 2007; 104:22-36. [PMID: 17156773 DOI: 10.1016/j.envres.2006.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 10/16/2006] [Accepted: 10/16/2006] [Indexed: 05/12/2023]
Abstract
Current international classification systems for chemical mutagens are hazard-based rather than aimed at assessing risks quantitatively. In the past, germ-cell tests have been mainly performed with a limited number of somatic cell mutagens, and rarely under conditions aimed at comparing gender-specific differences in susceptibility to mutagen exposures. There are profound differences in the genetic constitution, and in hormonal, structural, and functional aspects of differentiation and control of gametogenesis between the sexes. A critical review of the literature suggests that these differences may have a profound impact on the relative susceptibility, stage of highest sensitivity and the relative risk for the genesis of gene mutation, as well as structural and numerical chromosomal aberrations in male and female germ cells. Transmission of germ-cell mutations to the offspring may also encounter gender-specific influences. Gender differences in susceptibility to chemically derived alterations in imprinting patterns may pose a threat for the health of the offspring and may also be transmitted to future generations. Recent reports on different genetic effects from high acute and from chronic low-dose exposures challenge the validity of conclusions drawn from standard methods of mutagenicity testing. In conclusion, research is urgently needed to identify genetic hazards for a larger range of chemical compounds, including those suspected to disturb proper chromosome segregation. Alterations in epigenetic programming and their health consequences will have to be investigated. More attention should be paid to gender-specific genetic effects. Finally, the database for germ-cell mutagens should be enlarged using molecular methodologies, and genetic epidemiology studies should be performed with these techniques to verify human genetic risk.
Collapse
|
127
|
Prokop ZM, Stuglik M, Żabińska I, Radwan J. Male age, mating probability, and progeny fitness in the bulb mite. Behav Ecol 2007. [DOI: 10.1093/beheco/arm012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
128
|
Jaroudi S, SenGupta S. DNA repair in mammalian embryos. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2007; 635:53-77. [PMID: 17141556 DOI: 10.1016/j.mrrev.2006.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 09/21/2006] [Accepted: 09/25/2006] [Indexed: 11/15/2022]
Abstract
Mammalian cells have developed complex mechanisms to identify DNA damage and activate the required response to maintain genome integrity. Those mechanisms include DNA damage detection, DNA repair, cell cycle arrest and apoptosis which operate together to protect the conceptus from DNA damage originating either in parental gametes or in the embryo's somatic cells. DNA repair in the newly fertilized preimplantation embryo is believed to rely entirely on the oocyte's machinery (mRNAs and proteins deposited and stored prior to ovulation). DNA repair genes have been shown to be expressed in the early stages of mammalian development. The survival of the embryo necessitates that the oocyte be sufficiently equipped with maternal stored products and that embryonic gene expression commences at the correct time. A Medline based literature search was performed using the keywords 'DNA repair' and 'embryo development' or 'gametogenesis' (publication dates between 1995 and 2006). Mammalian studies which investigated gene expression were selected. Further articles were acquired from the citations in the articles obtained from the preliminary Medline search. This paper reviews mammalian DNA repair from gametogenesis to preimplantation embryos to late gestational stages.
Collapse
Affiliation(s)
- Souraya Jaroudi
- Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Sioban SenGupta
- Department of Obstetrics and Gynaecology, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK.
| |
Collapse
|
129
|
Abstract
Although the X chromosome is usually similar to the autosomes in size and cytogenetic appearance, theoretical models predict that its hemizygosity in males may cause unusual patterns of evolution. The sequencing of several genomes has indeed revealed differences between the X chromosome and the autosomes in the rates of gene divergence, patterns of gene expression and rates of gene movement between chromosomes. A better understanding of these patterns should provide valuable information on the evolution of genes located on the X chromosome. It could also suggest solutions to more general problems in molecular evolution, such as detecting selection and estimating mutational effects on fitness.
Collapse
Affiliation(s)
- Beatriz Vicoso
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | | |
Collapse
|
130
|
Sasaki MS. Delayed manifestation and transmission bias of de novo chromosome mutations: their relevance for radiation health effect. JOURNAL OF RADIATION RESEARCH 2006; 47 Suppl B:B45-56. [PMID: 17019052 DOI: 10.1269/jrr.47.b45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The origin and transmission of de novo chromosome mutations were reviewed on the basis of our chromosome studies in retinoblastoma patients and male infertility. In a series of 264 sporadic retinoblastoma families, gross chromosome rearrangements involving the RB1 locus were identified in 23 cases (8.7%), of which 16 were non-mosaic and 7 were mosaic mutations. The newly formed chromosome mutations, whether they were non-mosaic or mosaic, had a strong bias towards paternally derived chromosome, indicating that they shared a common mechanism where a pre-mutational event or instability is carried over to zygote by sperm and manifested as gross chromosome mutation at the early stages of development. The de novo chromosome mutations are preferentially transmitted through female carriers. This transmission bias is consistent with the finding of higher frequencies of translocation carriers in infertile men (7.69% versus 0.27% in general populations) in whom meiotic progression is severely suppressed, possibly through activation of meiotic checkpoints. Such a meiotic surveillance mechanism may minimize the spreading of newly-arisen chromosome mutations in populations. A quantitative model of meiotic surveillance mechanism is proposed and successfully applied to the published data on ;humped' dose-response curves for radiation-induced spermatogonial reciprocal translocations in several mammalian species.
Collapse
Affiliation(s)
- Masao S Sasaki
- Radiation Biology Center, Kyoto University, Kyoto, Japan.
| |
Collapse
|
131
|
Woodruff RC, Thomson JN. The Fundamental Theorem of Neutral Evolution: Rates of Substitution and Mutation Should Factor in Premeiotic Clusters. Genetica 2005; 125:333-9. [PMID: 16247704 DOI: 10.1007/s10709-005-4982-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 04/01/2005] [Indexed: 01/27/2023]
Abstract
Mutations do not always arise as single events. Many new mutations actually occur in the cell lineage before germ cell formation or meiosis and are therefore replicated pre-meiotically. The increased likelihood of substitutions caused by these clusters of new mutant alleles can change the fundamental theorem of neutral evolution.
Collapse
Affiliation(s)
- R C Woodruff
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | |
Collapse
|
132
|
Baumber J, Ball BA, Linfor JJ. Assessment of the cryopreservation of equine spermatozoa in the presence of enzyme scavengers and antioxidants. Am J Vet Res 2005; 66:772-9. [PMID: 15934604 DOI: 10.2460/ajvr.2005.66.772] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effect of the addition of enzyme scavengers and antioxidants to the cryopreservation extender on characteristics of equine spermatozoa after freezing and thawing. SAMPLE POPULATION 2 ejaculates collected from each of 5 stallions. PROCEDURE Equine spermatozoa were cryopreserved in freezing extender alone (control samples) or with the addition of catalase (200 U/mL), superoxide dismutase (200 U/mL), reduced glutathione (10 mM), ascorbic acid (10 mM), alpha-tocopherol (25, 50, 100, or 500 microM or 1 mM), or the vehicle for alpha-tocopherol (0.5% ethanol). After thawing, spermatozoal motility was assessed via computer-assisted analysis and DNA fragmentation was assessed via the comet assay. Spermatozoal mitochondrial membrane potential, acrosomal integrity, and viability were determined by use of various specific staining techniques and flow cytometry. RESULTS The addition of enzyme scavengers or antioxidants to cryopreservation extender did not improve spermatozoal motility, DNA fragmentation, acrosomal integrity, viability, or mitochondrial membrane potential after thawing. Superoxide dismutase increased DNA fragmentation, likely because of the additional oxidative stress caused by the generation of hydrogen peroxide by this enzyme. Interestingly, the addition of the vehicle for alpha-tocopherol resulted in a significant decrease in live acrosome-intact spermatozoa. CONCLUSIONS AND CLINICAL RELEVANCE The addition of antioxidants to the cryopreservation extender did not improve the quality of equine spermatozoa after thawing, which suggests that the role of oxidative stress in cryopreservation-induced damage of equine spermatozoa requires further investigation. Our data suggest that solubilizing alpha-tocopherol in ethanol may affect spermatozoal viability; consequently, water-soluble analogues of alpha-tocopherol may be preferred for future investigations.
Collapse
Affiliation(s)
- Julie Baumber
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
133
|
Joseph SB, Hall DW. Spontaneous mutations in diploid Saccharomyces cerevisiae: more beneficial than expected. Genetics 2005; 168:1817-25. [PMID: 15611159 PMCID: PMC1448740 DOI: 10.1534/genetics.104.033761] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We performed a 1012-generation mutation-accumulation (MA) experiment in the yeast, Saccharomyces cerevisiae. The MA lines exhibited a significant reduction in mean fitness and a significant increase in variance in fitness. We found that 5.75% of the fitness-altering mutations accumulated were beneficial. This finding contradicts the widely held belief that nearly all fitness-altering mutations are deleterious. The mutation rate was estimated as 6.3 x 10(-5) mutations per haploid genome per generation and the average heterozygous fitness effect of a mutation as 0.061. These estimates are compatible with previous estimates in yeast.
Collapse
Affiliation(s)
- Sarah B Joseph
- Section of Integrative Biology, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
134
|
Hill KA, Halangoda A, Heinmoeller PW, Gonzalez K, Chitaphan C, Longmate J, Scaringe WA, Wang JC, Sommer SS. Tissue-specific time courses of spontaneous mutation frequency and deviations in mutation pattern are observed in middle to late adulthood in Big Blue mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:442-454. [PMID: 15690342 DOI: 10.1002/em.20119] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To better define the time course of spontaneous mutation frequency in middle to late adulthood of the mouse, measurements were made at 10, 14, 17, 23, 25, and 30 months of age in samples of adipose tissue, liver, cerebellum (90% neurons), and the male germline (95% germ cells). A total of 46 million plaque-forming units (pfus) were screened at the six time points and 1,450 circular blue plaques were harvested and sequenced. These data improve resolution and confirm the previously observed occurrence of at least two tissue-specific profiles of spontaneous mutation frequency (elevation with age in adipose tissue and liver, and constancy with age in neurons and male germ cells), a low mutation frequency in the male germline, and a mutation pattern unchanged with age within a tissue. These findings appear to extend to very old age (30 months). Additional findings include interanimal variation in spontaneous mutation frequency is larger in adipose tissues and liver compared with neurons and male germ cells, and subtle but significant differences in the mutation pattern among tissues, consistent with a minor effect of tissue-specific metabolism. The presumptive unaltered balance of DNA damage and repair with age in the male germline has evolutionary consequences. It is of particular interest given the controversy over whether or not increasing germline mutation frequency with paternal age underlies the reports associating older males with a higher incidence of some types of genetic disease. These most detailed measurements available to date regarding the time course of spontaneous mutation frequency and pattern in individual tissues help to constrain hypotheses regarding the role of mutational mechanisms in DNA repair and aging.
Collapse
Affiliation(s)
- Kathleen A Hill
- Department of Molecular Genetics, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
|
136
|
Zheng P, Schramm RD, Latham KE. Developmental regulation and in vitro culture effects on expression of DNA repair and cell cycle checkpoint control genes in rhesus monkey oocytes and embryos. Biol Reprod 2005; 72:1359-69. [PMID: 15703371 DOI: 10.1095/biolreprod.104.039073] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
DNA repair is essential for maintaining genomic integrity, and may be required in the early embryo to correct damage inherited via the gametes, damage that arises during DNA replication, or damage that arises in response to exposure to genotoxic agents. The capacity of preimplantation stage mammalian embryos to repair damaged DNA has not been well characterized, particularly in primate embryos. In this study, we examined the expression of 48 mRNAs related to sensing different kinds of DNA damage, repairing that DNA damage, and controlling the cell cycle to provide an opportunity for DNA repair. The expression data reveal dynamic temporal changes, indicating a changing ability of the rhesus embryo to detect and repair different kinds of DNA damage. Low expression or overexpression of specific DNA repair genes may limit the ability of the embryo to respond to DNA damage at certain stages. Additionally, our data reveal that in vitro culture may lead to dysregulation of many such genes and a potentially impaired ability to repair DNA damage, thus affecting cellular viability and long-term embryo viability via effects on genome integrity. This effect of in vitro culture on nonhuman primate embryos may be relevant to assessing the potential advantages and disadvantages of prolonged in vitro culture of human embryos.
Collapse
Affiliation(s)
- Ping Zheng
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
137
|
Abstract
BACKGROUND The role of paternal ageing on the incidence of some genetic diseases in offspring depends on the hypothesis that spontaneous mutations accumulate due to continuous cell divisions during spermatogenesis. We examined the effect of paternal age on the complex multifactorial character, stillbirth. METHODS In 3,619,647 Italian singletons born in 1990-1996 we evaluated stillbirth risk as a function of paternal ageing by means of multiple logistic regression models, which included maternal age and family education, as categorical covariates and interactions. The categorical risk was estimated for mothers and fathers beyond threshold ages of 35 and 40 years, respectively. RESULTS Stillbirth risk increases with paternal ageing in mothers > or =30 years old, and maternal age and family education modify the impact. In families with low education, the risk accounts for odds ratio (OR) 1.015 [95% confidence interval (CI) 1.01-1.02] in mothers aged 30-34 years, and for OR 1.032 (95% CI 1.02-1.04) in mothers aged > or =35 years; in families with higher education the risk accounts for OR 1.008 (95% CI 1.00-1.02) and OR 1.025 (95% CI 1.01-1.04), respectively, in mothers aged 30-34 and > or =35 years. In these latter families, for mothers aged <35 and fathers > or =40 years the risk accounts for OR 1.12 (95% CI 1.00-1.25). CONCLUSIONS The effect of paternal ageing on stillbirth risk is revealed in mothers aged > or =30 years and is modified by family education. In mothers aged 30-34 years from families with high education, the increase imputable to paternal ageing might be indicative of a genetic component.
Collapse
Affiliation(s)
- P Astolfi
- Department of Genetics and Microbiology 'A. Buzzati Traverso', University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | | | | |
Collapse
|
138
|
Abstract
Trinucleotide expansions cause at least 30 diseases including Huntington's disease (HD). Many are inherited predominantly through paternal transmissions, which are probably the result of germ-cell-specific mutations. A recent study of testicular germ cells in HD patients revealed that expansions occur in diploid cells before the completion of meiosis. Therefore, expansions are not limited to the late-haploid spermatids, in which the genome is 'sleeping'. These results have implications both for research aimed at understanding the transmission of this serious mutation and for developing new therapies for the disease.
Collapse
Affiliation(s)
- Christopher E Pearson
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, 555 University Avenue, Elm Wing 11-135, Toronto, Ontario, Canada M5G 1X8.
| |
Collapse
|
139
|
Splendore A, Jabs EW, Félix TM, Passos-Bueno MR. Parental origin of mutations in sporadic cases of Treacher Collins syndrome. Eur J Hum Genet 2003; 11:718-22. [PMID: 12939661 DOI: 10.1038/sj.ejhg.5201029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In some autosomal dominant conditions, there is a correlation between new mutations and paternal age, with new mutations arising almost exclusively in the male germ line. To test this hypothesis in Treacher Collins syndrome, we analyzed 22 sporadic cases, determining the parental origin of the pathogenic mutation in 10 informative families. Mutations were found to be of both paternal and maternal origin, without a detectable parental age effect, confirming that a paternal age effect is not universal to all autosomal dominant disorders. A discussion on the parental origin of mutations and paternal age effect in other diseases is included.
Collapse
Affiliation(s)
- Alessandra Splendore
- Centro de Estudos do Genoma Humano, Departamento de Biologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP 05508-900, Cidade Universitaria, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
140
|
Yoon SR, Dubeau L, de Young M, Wexler NS, Arnheim N. Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc Natl Acad Sci U S A 2003; 100:8834-8. [PMID: 12857955 PMCID: PMC166399 DOI: 10.1073/pnas.1331390100] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule DNA analysis of testicular germ cells isolated by laser capture microdissection from two Huntington disease patients showed that trinucleotide repeat expansion mutations were present before the end of the first meiotic division, and some mutations were present even before meiosis began. Most of the larger Huntington disease mutations were found in the postmeiotic cell population, suggesting that expansions may continue to occur during meiosis and/or after meiosis is complete. Defining the germ-line cell compartments where the trinucleotide repeat expansions occur could help to elucidate the underlying mechanisms of instability.
Collapse
Affiliation(s)
- Song-Ro Yoon
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089-1340, USA
| | | | | | | | | |
Collapse
|
141
|
Baumber J, Ball BA, Linfor JJ, Meyers SA. Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa. JOURNAL OF ANDROLOGY 2003; 24:621-8. [PMID: 12826702 DOI: 10.1002/j.1939-4640.2003.tb02714.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The objective of this study was to examine the effect of reactive oxygen species (ROS) and cryopreservation on DNA fragmentation of equine spermatozoa. In experiment 1, equine spermatozoa were incubated (1 hour, 38 degrees C) according to the following treatments: 1) sperm alone; 2) sperm + xanthine (X, 0.3 mM)-xanthine oxidase (XO, 0.025 U/mL); 3) sperm + X (0.6 mM)-XO (0.05 U/mL); and 4) sperm + X (1 mM)-XO (0.1 U/mL). In experiment 2, spermatozoa were incubated (1 hour, 38 degrees C) with X (1 mM)-XO (0.1 U/mL) and either catalase (200 U/mL), superoxide dismutase (SOD, 200 U/mL), or reduced glutathione (GSH, 10 mM). Following incubation, DNA fragmentation was determined by the single cell gel electrophoresis (comet) assay. In experiment 3, equine spermatozoa were cryopreserved, and DNA fragmentation was determined in fresh, processed, and postthaw sperm samples. In experiment 1, incubation of equine spermatozoa in the presence of ROS, generated by the X-XO system, increased DNA fragmentation (P <.005). In Experiment 2, the increase in DNA fragmentation associated with X-XO treatment was counteracted by the addition of catalase and GSH but not by SOD, suggesting that hydrogen peroxide and not superoxide appears to be the ROS responsible for such damage. In experiment 3, cryopreservation of equine spermatozoa was associated with an increase (P <.01) in DNA fragmentation when compared with fresh or processed samples. This study indicates that ROS and cryopreservation promote DNA fragmentation in equine spermatozoa; the involvement of ROS in cryopreservation-induced DNA damage remains to be determined.
Collapse
Affiliation(s)
- Julie Baumber
- Departments of Population Health and Reproduction and Anatomy, Physiology, and Cell Biology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
142
|
Aitken RJ, Baker MA, Sawyer D. Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease. Reprod Biomed Online 2003; 7:65-70. [PMID: 12930576 DOI: 10.1016/s1472-6483(10)61730-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The human male is characterized by extremely poor semen quality as reflected in the number, morphology and motility of the spermatozoa and a high incidence of nuclear and mitochondrial DNA damage. As a consequence of these factors, defective sperm function is thought to be a major contributor to the aetiology of human infertility, as well as childhood diseases including dominant genetic mutations such as achondroplasia and cancer. Factors associated with the origin of poor semen quality include: (i) a lack of selection pressure for high fecundity genes in developed countries, (ii) an evolutionary lineage associated with the deterioration of several male fertility genes in humans and their close ancestors, (iii) genetic factors including, but not limited to, Y-chromosome deletions (iv) paternal age and (v) environmental factors. A model is proposed whereby factors such as ageing or environmental toxicants initiate DNA strand breakage in the spermatozoa of affected males, eventually leading to a mutation in the embryo. This hypothesis stresses the importance of discovering the identity of those environmental factors that are capable of damaging DNA integrity in the male germ line. Such information could make an important contribution to understanding of the origins of both male infertility and a variety of pathological conditions that affect humans, including cancer and dominant genetic disease.
Collapse
Affiliation(s)
- R John Aitken
- ARC Centre of Excellence in Biotechnology and Development, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, NSW 2308, Australia.
| | | | | |
Collapse
|
143
|
|
144
|
Abstract
Mutation rate is an essential parameter in genetic research. Counting the number of mutant individuals provides information for a direct estimate of mutation rate. However, mutant individuals in the same family can share the same mutations due to premeiotic mutation events, so that the number of mutant individuals can be significantly larger than the number of mutation events observed. Since mutation rate is more closely related to the number of mutation events, whether one should count only independent mutation events or the number of mutants remains controversial. We show in this article that counting mutant individuals is a correct approach for estimating mutation rate, while counting only mutation events will result in underestimation. We also derived the variance of the mutation-rate estimate, which allows us to examine a number of important issues about the design of such experiments. The general strategy of such an experiment should be to sample as many families as possible and not to sample much more offspring per family than the reciprocal of the pairwise correlation coefficient within each family. To obtain a reasonably accurate estimate of mutation rate, the number of sampled families needs to be in the same or higher order of magnitude as the reciprocal of the mutation rate.
Collapse
Affiliation(s)
- Yun-Xin Fu
- Human Genetics Center, University of Texas, Houston 77030, USA.
| | | |
Collapse
|
145
|
Tiemann-Boege I, Navidi W, Grewal R, Cohn D, Eskenazi B, Wyrobek AJ, Arnheim N. The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect. Proc Natl Acad Sci U S A 2002; 99:14952-7. [PMID: 12397172 PMCID: PMC137526 DOI: 10.1073/pnas.232568699] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The lifelong spermatogonial stem cell divisions unique to male germ cell production are thought to contribute to a higher mutation frequency in males. The fact that certain de novo human genetic conditions (e.g., achondroplasia) increase in incidence with the age of the father is consistent with this idea. Although it is assumed that the paternal age effect is the result of an increasing frequency of mutant sperm as a man grows older, no direct molecular measurement of the germ-line mutation frequency has been made to confirm this hypothesis. Using sperm DNA from donors of different ages, we determined the frequency of the nucleotide substitution in the fibroblast growth factor receptor 3 (FGFR3) gene that causes achondroplasia. Surprisingly, the magnitude of the increase in mutation frequency with age appears insufficient to explain why older fathers have a greater chance of having a child with this condition. A number of alternatives may explain this discrepancy, including selection for sperm that carry the mutation or an age-dependent increase in premutagenic lesions that remain unrepaired in sperm and are inefficiently detected by the PCR assay.
Collapse
Affiliation(s)
- Irene Tiemann-Boege
- Molecular and Computational Biology Program, University of Southern California, Los Angeles 90089-1340, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
McCune AR, Fuller RC, Aquilina AA, Dawley RM, Fadool JM, Houle D, Travis J, Kondrashov AS. A low genomic number of recessive lethals in natural populations of bluefin killifish and zebrafish. Science 2002; 296:2398-401. [PMID: 12089444 DOI: 10.1126/science.1071757] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite the importance of selection against deleterious mutations in natural populations, reliable estimates of the genomic numbers of mutant alleles in wild populations are scarce. We found that, in wild-caught bluefin killifish Lucania goodei (Fundulidae) and wild-caught zebrafish Danio rerio (Cyprinidae), the average numbers of recessive lethal alleles per individual are 1.9 (95% confidence limits 1.3 to 2.6) and 1.4 (95% confidence limits 1.0 to 2.0), respectively. These results, together with data on several Drosophila species and on Xenopus laevis, show that phylogenetically distant animals with different genome sizes and numbers of genes carry similar numbers of lethal mutations.
Collapse
Affiliation(s)
- Amy R McCune
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Vogel EW, Nivard MJ. Phenotypes of Drosophila homologs of human XPF and XPG to chemically-induced DNA modifications. Mutat Res 2001; 476:149-65. [PMID: 11336992 DOI: 10.1016/s0027-5107(01)00121-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DmXPF (mei9) and DmXPG (mus201) mutants are Drosophila homologs of the mammalian XPF and XPG genes, respectively. For Drosophila germ cells, causal correlations exist between the magnitude of a potentiating effect of a deficiency in these functions, measured as the M(NER-)/M(NER+) mutability ratio, and the type of DNA modification. M(NER-)/M(NER+) mutability ratios may vary with time interval between DNA adduct formation and repair, mutagen dose and depend also on the genetic endpoint measured. For forward mutations, there is no indication of any differential response of DmXPF compared to DmXPG. Subtle features appeared from a class-by-class comparison: (i) Methylating agents always produce higher M(NER-)/M(NER+) ratios than their ethylating analogs; (ii) M(NER-)/M(NER+) mutability ratios are significantly enhanced for cross-linking N-mustards, aziridine and di-epoxide compounds, but not for cross-linking nitrosoureas. The low hypermutability effects with bifunctional nitrogen mustards, aziridine and epoxide compounds are attributed to unrepaired mono-alkyl adducts; (iii) The efficient repair of mono-alkyl-adducts at ring nitrogens in wild-type germ cells is evident from the absence of a dose-response relationship for ethylene oxide, propylene imine and methyl methanesulfonate (MMS). These chemicals become powerful germline mutagens when the NER system is disrupted. Systematic studies of the type performed on germ cells are not available for somatic cells of Drosophila. The sparse data available show large differences in the response of germ cells and somatic cells. The bifunctional agent mechlorethamine (MEC) but not the monofunctional MMS or 2-chloroethylamine cause in NER(-) XXfemale symbol the highest potentiating effect on mitotic recombination. The causes of the discrepancy between the extraordinarily high activity of MEC in mus201 somatic cells and its low potentiating effect in germ cells is unknown at present.
Collapse
Affiliation(s)
- E W Vogel
- Department of Radiation Genetics & Chemical Mutagenesis, MGC Sylvius Laboratories, Leiden University Medical Centre, Wassenaarseweg 72, 2300 RA Leiden, The Netherlands.
| | | |
Collapse
|
148
|
Yang HP, Tanikawa AY, Kondrashov AS. Molecular nature of 11 spontaneous de novo mutations in Drosophila melanogaster. Genetics 2001; 157:1285-92. [PMID: 11238412 PMCID: PMC1461551 DOI: 10.1093/genetics/157.3.1285] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To investigate the molecular nature and rate of spontaneous mutation in Drosophila melanogaster, we screened 887,000 individuals for de novo recessive loss-of-function mutations at eight loci that affect eye color. In total, 28 mutants were found in 16 independent events (13 singletons and three clusters). The molecular nature of the 13 events was analyzed. Coding exons of the locus were affected by insertions or deletions >100 nucleotides long (6 events), short frameshift insertions or deletions (4 events), and replacement nucleotide substitutions (1 event). In the case of 2 mutant alleles, coding regions were not affected. Because approximately 70% of spontaneous de novo loss-of-function mutations in Homo sapiens are due to nucleotide substitutions within coding regions, insertions and deletions appear to play a much larger role in spontaneous mutation in D. melanogaster than in H. sapiens. If so, the per nucleotide mutation rate in D. melanogaster may be lower than in H. sapiens, even if their per locus mutation rates are similar.
Collapse
Affiliation(s)
- H P Yang
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
149
|
Abstract
Resolution of several unsettled problems in genetics depends on the genomic rate of deleterious mutation, U. Selection against mutations can be a major factor in evolution only if U > or =1. Recently, significant progress has been made in measuring U in multicellular eukaryotes. An indirect estimate, based on a human-chimpanzee pseudogene comparison, produced U>3 for hominoids. By contrast, an estimate for Drosophila based on comparison of synonymous protein-coding sites produced U<0.1. However, the Drosophila figure might be underestimated because of selection at synonymous sites. Perhaps, the best way to measure U is to observe mutations shortly after they appear. So far, this direct approach has been applied only to humans and Caenorhabditis elegans, yielding high estimates of mutation rates.
Collapse
Affiliation(s)
- A S Kondrashov
- National Center for Biotechnology Information, NIH, 45 Center Drive, MSC 6600, Bethesda, MD 20892, USA.
| |
Collapse
|
150
|
Voet T, Vermeesch J, Carens A, Dürr J, Labaere C, Duhamel H, David G, Marynen P. Efficient male and female germline transmission of a human chromosomal vector in mice. Genome Res 2001; 11:124-36. [PMID: 11156621 PMCID: PMC311020 DOI: 10.1101/gr.159901] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A small accessory chromosome that was mitotically stable in human fibroblasts was transferred into the hprt(-) hamster cell line CH and developed as a human chromosomal vector (HCV) by the introduction of a selectable marker and the 3' end of an HPRT minigene preceded by a loxP sequence. This HCV is stably maintained in the hamster cell line. It consists mainly of alphoid sequences of human chromosome 20 and a fragment of human chromosome region 1p22, containing the tissue factor gene F3. The vector has an active centromere, and telomere sequences are lacking. By transfecting a plasmid containing the 5' end of HPRT and a Cre-encoding plasmid into the HCV(+) hamster cell line, the HPRT minigene was reconstituted by Cre-mediated recombination and expressed by the cells. The HCV was then transferred to male mouse R1-ES cells and it did segregate properly. Chimeras were generated containing the HCV as an independent chromosome in a proportion of the cells. Part of the male and female offspring of the chimeras did contain the HCV. The HCV(+) F1 animals harbored the extra chromosome in >80% of the cells. The HCV was present as an independent chromosome with an active centromere and the human F3 gene was expressed from the HCV in a human-tissue-specific manner. Both male and female F1 mice did transmit the HCV to F2 offspring as an independent chromosome with properties similar to the original vector. This modified small accessory chromosome, thus, shows the properties of a useful chromosomal vector: It segregates stably as an independent chromosome, sequences can be inserted in a controlled way and are expressed from the vector, and the HCV is transmitted through the male and female germline in mice.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecules, Neuronal/biosynthesis
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Line
- Chimera/genetics
- Chromosomes, Artificial/genetics
- Chromosomes, Human/genetics
- Chromosomes, Human/virology
- Contactins
- Cricetinae
- Crosses, Genetic
- Embryo, Mammalian
- Female
- Fibroblasts
- Gene Transfer Techniques
- Genetic Vectors/biosynthesis
- Genetic Vectors/genetics
- Humans
- Hypoxanthine Phosphoribosyltransferase/genetics
- Integrases/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mitosis/genetics
- Mutagenesis, Insertional
- Recombination, Genetic
- Simian virus 40/genetics
- Stem Cells/physiology
- Viral Proteins
Collapse
Affiliation(s)
- T Voet
- Human Genome Laboratory, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|