101
|
Abstract
Atovaquone is a broad-spectrum antiparasitic agent active against malaria, Pneumocystis carinii pneumonia, toxoplasmosis and babesiosis. When used as a single agent, resistance to atovaquone arose rapidly in falciparum malaria, requiring the development of a new antimalarial drug combination of atovaquone and proguanil. Recent laboratory investigations have provided insights into the mode of atovaquone action, and identified the molecular basis for the resistance development. Mutations within a catalytic domain of the cytochrome bc(1)complex present within the parasite mitochondrial inner membrane were shown to be responsible for atovaquone resistance. Here, we review these studies and propose a mechanism by which atovaquone resistance may arise quickly in malaria parasites. Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Akhil B. Vaidya
- Department of Microbiology and Immunology, MCP Hahnemann University, Philadelphia, USA
| | | |
Collapse
|
102
|
Ohno T, Umeda S, Hamasaki N, Kang D. Binding of human mitochondrial transcription factor A, an HMG box protein, to a four-way DNA junction. Biochem Biophys Res Commun 2000; 271:492-8. [PMID: 10799324 DOI: 10.1006/bbrc.2000.2656] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial transcription factor A (mtTFA), the only known transcription factor in mitochondria, is also implicated in maintenance of mitochondrial genome although little is elucidated about its molecular basis. mtTFA is a member of HMG box proteins family. Some HMG proteins bind with high affinity to four-way DNA junctions that mimic a Holliday structure, a putative intermediate in DNA recombination. To explore possible involvement of a Holliday-like structure in the maintenance of mitochondrial genome, we examine the binding of recombinant human mtTFA to a synthetic four-way DNA junction. The human mtTFA binds to the four-way DNA junction with an approximately 10-fold higher affinity than to the corresponding linear duplex DNA and with essentially the same affinity as to a 40-mer DNA containing the human mitochondrial light strand promoter sequence. The mtTFA binds to the four-way as a monomer. Both of the two HMG box domains of human mtTFA are required for the high affinity binding to the four-way junction.
Collapse
Affiliation(s)
- T Ohno
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | | | | | | |
Collapse
|
103
|
Abstract
Both the chromosomal and extrachromosomal components of the apicomplexan genome have been supplemented by genes from a plastid-bearing endocytobiont: probably an algal cell. The sequence of the apicomplexan plastid's vestigial genome indicates that a large number (>100) of genes of endocytobiotic origin must have transferred laterally to the host cell nucleus where they control maintenance of the plastid organelle and supply its functional components by means of post-translational protein trafficking. Should the nuclear genes prove to be less divergent phylogenetically than those left on the plastid genome, they might give better clues than we have at present to the origin of the plastid-bearing endocytobiont. Most of these nuclear genes still await discovery, but the on-going genome sequencing project will reveal the function of the organelle, as well as many "housekeeping" processes of interest on a wider front. The plastid's own protein synthetic machinery, being cyanobacterial in origin, offers conventional targets for antibiotic intervention, and this is discussed here using a structural model of elongation factor Tu. Uncovering the vital function(s) of the plastid organelle will provide new drug targets.
Collapse
Affiliation(s)
- S Sato
- National Institute for Medical Research, Mill Hill, London, UK
| | | | | |
Collapse
|
104
|
Abstract
Mitochondrial genomes have been sequenced from a wide variety of organisms, including an increasing number of parasites. They maintain some characteristics in common across the spectrum of life-a common core of genes related to mitochondrial respiration being most prominent-but have also developed a great diversity of gene content, organisation, and expression machineries. The characteristics of mitochondrial genomes vary widely among the different groups of protozoan parasites, from the minute genomes of the apicomplexans to amoebae with 20 times as many genes. Kinetoplastid protozoa have a similar number of genes to metazoans, but the details of gene organisation and expression in kinetoplastids require extraordinary mechanisms. Mitochondrial genes in nematodes and trematodes appear quite sedate in comparison, but a closer look shows a strong tendency to unusual tRNA structure and alternative initiation codons among these groups. Mitochondrial genes are increasingly coming into play as aids to phylogenetic and epidemiologic analyses, and mitochondrial functions are being recognised as potential drug targets. In addition, examination of mitochondrial genomes is producing further insights into the diversity of the wide-ranging group of organisms comprising the general category of parasites.
Collapse
Affiliation(s)
- J E Feagin
- Seattle Biomedical Research Institute, 4 Nickerson St., Seattle, WA 98109-1651, USA.
| |
Collapse
|
105
|
Abstract
In this review, we sum up the research carried out over two decades on mitochondrial DNA (mtDNA) replication, primarily by comparing this system in Saccharomyces cerevisiae and Homo sapiens. Brief incursions into systems of other organisms have also been achieved when they provide new information.S. cerevisiae and H. sapiens mitochondrial DNA (mtDNA) have been thought for a long time to share closely related architecture and replication mechanisms. However, recent studies suggest that mitochondrial genome of S. cerevisiae may be formed, at least partially, from linear multimeric molecules, while human mtDNA is circular. Although several proteins involved in the replication of these two genomes are very similar, divergences are also now increasingly evident. As an example, the recently cloned human mitochondrial DNA polymerase beta-subunit has no counterpart in yeast. Yet, yeast Abf2p and human mtTFA are probably not as closely functionally related as thought previously. Some mtDNA metabolism factors, like DNA ligases, were until recently largely uncharacterized, and have been found to be derived from alternative nuclear products. Many factors involved in the metabolism of mitochondrial DNA are linked through genetic or biochemical interconnections. These links are presented on a map. Finally, we discuss recent studies suggesting that the yeast mtDNA replication system diverges from that observed in man, and may involve recombination, possibly coupled to alternative replication mechanisms like rolling circle replication.
Collapse
Affiliation(s)
- N Lecrenier
- Unité de Biochimie Physiologique, Place Croix-du-Sud 2/20, 1348, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
106
|
Abstract
Analysis of mammalian mtDNA by two-dimensional agarose gel electrophoresis revealed two classes of replication intermediate. One was resistant to single-strand nuclease digestion and displayed the mobility properties of coupled leading- and lagging- strand replication products. Intermediates of coupled, unidirectional mtDNA replication were found in mouse liver and human placenta and were the predominant species in cultured cells recovering from transient mtDNA replication. Replication intermediates sensitive to single-strand nuclease were most abundant in untreated cultured cells. These are presumed to derive from the orthodox, strand-asynchronous mode of mtDNA replication. These findings indicate that two modes of mtDNA replication operate in mammalian cells and that changes in mtDNA copy number involve an alteration in the mode of mtDNA replication.
Collapse
Affiliation(s)
- I J Holt
- Department of Molecular Pathology, University of Dundee, Ninewells Medical School, United Kingdom.
| | | | | |
Collapse
|
107
|
Srivastava IK, Morrisey JM, Darrouzet E, Daldal F, Vaidya AB. Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol Microbiol 1999; 33:704-11. [PMID: 10447880 DOI: 10.1046/j.1365-2958.1999.01515.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Atovaquone represents a class of antimicrobial agents with a broad-spectrum activity against various parasitic infections, including malaria, toxoplasmosis and Pneumocystis pneumonia. In malaria parasites, atovaquone inhibits mitochondrial electron transport at the level of the cytochrome bc1 complex and collapses mitochondrial membrane potential. In addition, this drug is unique in being selectively toxic to parasite mitochondria without affecting the host mitochondrial functions. A better understanding of the structural basis for the selective toxicity of atovaquone could help in designing drugs against infections caused by mitochondria-containing parasites. To that end, we derived nine independent atovaquone-resistant malaria parasite lines by suboptimal treatment of mice infected with Plasmodium yoelii; these mutants exhibited resistance to atovaquone-mediated collapse of mitochondrial membrane potential as well as inhibition of electron transport. The mutants were also resistant to the synergistic effects of atovaquone/ proguanil combination. Sequencing of the mitochondrially encoded cytochrome b gene placed these mutants into four categories, three with single amino acid changes and one with two adjacent amino acid changes. Of the 12 nucleotide changes seen in the nine independently derived mutants 11 replaced A:T basepairs with G:C basepairs, possibly because of reactive oxygen species resulting from atovaquone treatment. Visualization of the resistance-conferring amino acid positions on the recently solved crystal structure of the vertebrate cytochrome bc1 complex revealed a discrete cavity in which subtle variations in hydrophobicity and volume of the amino acid side-chains may determine atovaquone-binding affinity, and thereby selective toxicity. These structural insights may prove useful in designing agents that selectively affect cytochrome bc1 functions in a wide range of eukaryotic pathogens.
Collapse
Affiliation(s)
- I K Srivastava
- Department of Microbiology and Immunology, 2900 Queen Lane, MCP Hahnemann School of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
108
|
Learngaramkul P, Petmitr S, Krungkrai SR, Prapunwattana P, Krungkrai J. Molecular characterization of mitochondria in asexual and sexual blood stages of Plasmodium falciparum. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 1999; 2:15-20. [PMID: 10527885 DOI: 10.1006/mcbr.1999.0145] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular mechanisms that regulate gene expression during development of asexual stage to sexual stage of Plasmodium falciparum in the human erythrocyte are largely unknown. There were apparent variations in ultrastructural characteristics of the mitochondrion between the two developing stages. The asexual stage's mitochondrion had developed less than that of the sexual stage. The respiratory complexes of the mitochondrial electron transport system in the asexual stage were approximately 8-10 times less active than those in the sexual stage. Using quantitative polymerase chain reaction to amplify the cytochrome b gene encoding a subunit of mitochondrial cytochrome c reductase, the amount of the cytochrome b gene of the sexual stage was calculated to be approximately 3 times higher than that obtained from the asexual stage. Moreover, using quantitative reverse-transcription polymerase chain reaction, a relatively high level of approximately 1.3-kb transcript mRNA of the cytochrome b gene was observed in the sexual stage compared to the asexual stage. A known single-copy chromosomal dihydrofolate reductase gene was found to have a similar amount in the two stages. These results suggest that the copy number of the mitochondrial gene, including transcriptional and translational mechanisms, plays a major regulatory role in differential expression during the development of the asexual to sexual stage of P. falciparum in the human cell.
Collapse
Affiliation(s)
- P Learngaramkul
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
109
|
Abstract
General recombination is essential for growth of phage T4, because origin initiation of DNA replication is inactivated during development, and recombination-dependent initiation is necessary for continuing DNA replication. The requirement of recombination for T4 growth has apparently been a driving force to acquire and maintain multiple recombination mechanisms. This requirement makes this phage an excellent model to analyze several recombination mechanisms that appear redundant under optimal growth conditions but become essential under other conditions, or at different stages of the developmental program. The most important substrate for wild-type T4 recombination is single-stranded DNA generated by incomplete replication of natural or artificial chromosomal ends, or by nucleolytic degradation from induced breaks, or nicks. Recombination circumvents the further erosion of such ends. There are multiple proteins and multiple pathways to initiate formation of recombinants (by single-strand annealing or by strand invasion) and to convert recombinational intermediates into final recombinants ("cut and paste" or "cut and package"), or to initiate extensive DNA replication by "join-copy" or "join-cut-copy" mechanisms. Most T4 recombination is asymmetrical, favoring the initiation of replication. In wild-type T4 these pathways are integrated with physiological changes of other DNA transactions: mainly replication, transcription, and packaging. DNA replication and packaging enzymes participate in recombination, and recombination intermediates supply substrates for replication and packaging. The replicative recombination pathways are also important for transmission of intron DNA to intronless genomes ("homing"), and are implicated in horizontal transfer of foreign genes during evolution of the T-even phages. When horizontal transfer involves heteroduplex formation and repair, it is intrinsically mutagenic and contributes to generation of species barriers between phages.
Collapse
Affiliation(s)
- G Mosig
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA.
| |
Collapse
|
110
|
Abstract
The need for new antimalarials comes from the widespread resistance to those in current use. New antimalarial targets are required to allow the discovery of chemically diverse, effective drugs. The search for such new targets and new drug chemotypes will likely be helped by the advent of functional genomics and structure-based drug design. After validation of the putative targets as those capable of providing effective and safe drugs, targets can be used as the basis for screening compounds in order to identify new leads, which, in turn, will qualify for lead optimization work. The combined use of combinatorial chemistry--to generate large numbers of structurally diverse compounds--and of high throughput screening systems--to speed up the testing of compounds--hopefully will help to optimize the process. Potential chemotherapeutic targets in the malaria parasite can be broadly classified into three categories: those involved in processes occurring in the digestive vacuole, enzymes involved in macromolecular and metabolite synthesis, and those responsible for membrane processes and signalling. The processes occurring in the digestive vacuole include haemoglobin digestion, redox processes and free radical formation, and reactions accompanying haem release followed by its polymerization into haemozoin. Many enzymes in macromolecular and metabolite synthesis are promising potential targets, some of which have been established in other microorganisms, although not yet validated for Plasmodium, with very few exceptions (such as dihydrofolate reductase). Proteins responsible for membrane processes, including trafficking and drug transport and signalling, are potentially important also to identify compounds to be used in combination with antimalarial drugs to combat resistance.
Collapse
Affiliation(s)
- P L Olliaro
- UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, Geneva, Switzerland
| | | |
Collapse
|
111
|
Backert S, Kunnimalaiyaan M, Börner T, Nielsen BL. In vitro replication of mitochondrial plasmid mp1 from the higher plant Chenopodium album (L.): a remnant of bacterial rolling circle and conjugative plasmids? J Mol Biol 1998; 284:1005-15. [PMID: 9837722 DOI: 10.1006/jmbi.1998.2254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
According to the endosymbiotic theory, mitochondrial genomes evolved from the chromosome of an alpha-proteobacterium-like ancestor and developed during evolution an extraordinary variation in size, structure and replication. We studied in vitro DNA replication of the mitochondrial circular plasmid mp1 (1309 bp) from the higher plant Chenopodium album (L.) as a model system that replicates in a manner reminiscent of bacterial rolling circle plasmids. Several mp1 subclones were tested for their ability to support DNA replication using a newly developed in vitro system. Neutral/neutral two-dimensional gel electrophoresis of the in vitro products revealed typical simple Y patterns of intermediates consistent with a rolling circle type of replication. Replication activity was very high for a BamHI-restricted total plasmid DNA clone, a 464 bp BamHI/KpnI fragment and a 363 bp BamHI/SmaI fragment. Further subcloning of a 148 bp BamHI/EcoRI fragment resulted in the strongest in vitro DNA replication activity, while a 1161 bp-template outside of this region resulted in a substantial loss of activity. Electron microscopic studies of in vitro DNA replication products from the highly active clones also revealed sigma-shaped molecules. These results support our in vivo data for the presence of a predominant replication origin between positions 628 and 776 on the plasmid map. This sequence shares homology with double-stranded rolling circle origin (dso) or transfer origin (oriT) nicking motifs from bacterial plasmids. mp1 is the first described rolling circle plasmid in eukaryotes.
Collapse
MESH Headings
- Base Sequence
- Chenopodiaceae/genetics
- Chenopodiaceae/metabolism
- Conjugation, Genetic
- DNA Replication
- DNA, Bacterial/biosynthesis
- DNA, Circular/biosynthesis
- DNA, Mitochondrial/biosynthesis
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/ultrastructure
- DNA, Plant/biosynthesis
- DNA, Plant/genetics
- DNA, Plant/ultrastructure
- Microscopy, Electron
- Plasmids/biosynthesis
- Plasmids/genetics
- Plasmids/ultrastructure
- Replication Origin
- Restriction Mapping
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- S Backert
- Department of Botany and Microbiology, Auburn University, 101 Life Sciences Building, Auburn, AL, 36849, USA.
| | | | | | | |
Collapse
|
112
|
Sharma I, Pasha ST, Sharma YD. Complete nucleotide sequence of the Plasmodium vivax 6 kb element. Mol Biochem Parasitol 1998; 97:259-63. [PMID: 9879907 DOI: 10.1016/s0166-6851(98)00140-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- I Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, Delhi
| | | | | |
Collapse
|
113
|
Braguglia D, Heun P, Pasero P, Duncker BP, Gasser SM. Semi-conservative replication in yeast nuclear extracts requires Dna2 helicase and supercoiled template. J Mol Biol 1998; 281:631-49. [PMID: 9710536 DOI: 10.1006/jmbi.1998.1973] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the preparation of nuclear extracts from yeast cells synchronised in S-phase that support the aphidicolin-sensitive, semi-conservative replication of primer-free, supercoiled plasmid in vitro. This is monitored by one and two-dimensional gel electrophoresis of replication intermediates that have incorporated [alpha-32P]dATP, by the conversion of methylated template DNA into a hemi-methylated or DpnI-resistant form, and by substitution of dTTP with the heavy derivative BrdUTP, which results in a shift in density corresponding to complete second strand synthesis. We demonstrate dependence on DNA pol delta and the pol alpha/primase complex, and are able to detect putative Okazaki fragments under ATP-limiting conditions. In contrast to the semi-conservative replication of supercoiled plasmid, linear or open-circular templates incorporate labelled nucleotides through repair synthesis that produces no significant density shift on CsCl gradients. Consistent with a true replication reaction we find that semi-conservative replication of plasmid DNA is stimulated in S-phase relative to G1-phase nuclear extracts, and is independent of the recombination-promoting factor Rad52p. Using this novel system we demonstrate that semi-conservative replication, but not polymerase activity per se, requires the activity of the DNA helicase encoded by DNA2.
Collapse
Affiliation(s)
- D Braguglia
- Swiss Institute for Experimental Cancer Research, Ch. des Boveresses 155, Epalinges/Lausanne, CH-1066, Switzerland
| | | | | | | | | |
Collapse
|
114
|
Martín-Parras L, Lucas I, Martínez-Robles ML, Hernández P, Krimer DB, Hyrien O, Schvartzman JB. Topological complexity of different populations of pBR322 as visualized by two-dimensional agarose gel electrophoresis. Nucleic Acids Res 1998; 26:3424-32. [PMID: 9649629 PMCID: PMC147708 DOI: 10.1093/nar/26.14.3424] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neutral/neutral two-dimensional (2D) agarose gelelectrophoresis was used to investigate populations of the different topological conformations that pBR322 can adopt in vivo in bacterial cells as well as in Xenopus egg extracts. To help in interpretation and identification of all the different signals, undigested as well as DNA samples pretreated with DNase I, topoisomerase I and topoisomerase II were analyzed. The second dimension of the 2D gel system was run with or without ethidium bromide to account for any possible changes in the migration behavior of DNA molecules caused by intercalation of this planar agent. Finally, DNA samples were isolated from a recA-strain of Escherichia coli , as well as after direct labeling of the replication intermediates in extracts of Xenopus laevis eggs. Altogether, the results obtained demonstrated that 2D gels can be readily used to identify most of the complex topological populations that circular molecules can adopt in vivo in both bacteria and eukaryotic cells.
Collapse
Affiliation(s)
- L Martín-Parras
- Departamento de Biología Celular y del Desarrollo, CIB (CSIC), Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
115
|
MacAlpine DM, Perlman PS, Butow RA. The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo. Proc Natl Acad Sci U S A 1998; 95:6739-43. [PMID: 9618482 PMCID: PMC22617 DOI: 10.1073/pnas.95.12.6739] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abf2p is a high mobility group (HMG) protein found in yeast mitochondria that is required for the maintenance of wild-type (rho+) mtDNA in cells grown on fermentable carbon sources, and for efficient recombination of mtDNA markers in crosses. Here, we show by two-dimensional gel electrophoresis that Abf2p promotes or stabilizes Holliday recombination junction intermediates in rho+ mtDNA in vivo but does not influence the high levels of recombination intermediates readily detected in the mtDNA of petite mutants (rho-). mtDNA recombination junctions are not observed in rho+ mtDNA of wild-type cells but are elevated to detectable levels in cells with a null allele of the MGT1 gene (Deltamgt1), which codes for a mitochondrial cruciform-cutting endonuclease. The level of recombination intermediates in rho+ mtDNA of Deltamgt1 cells is decreased about 10-fold if those cells contain a null allele of the ABF2 gene. Overproduction of Abf2p by >/= 10-fold in wild-type rho+ cells, which leads to mtDNA instability, results in a dramatic increase in mtDNA recombination intermediates. Specific mutations in the two Abf2p HMG boxes required for DNA binding diminishes these responses. We conclude that Abf2p functions in the recombination of rho+ mtDNA.
Collapse
Affiliation(s)
- D M MacAlpine
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9148, USA
| | | | | |
Collapse
|
116
|
Zelenaya-Troitskaya O, Newman SM, Okamoto K, Perlman PS, Butow RA. Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae. Genetics 1998; 148:1763-76. [PMID: 9581629 PMCID: PMC1460092 DOI: 10.1093/genetics/148.4.1763] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies have established that the mitochondrial high mobility group (HMG) protein, Abf2p, of Saccharomyces cerevisiae influences the stability of wild-type (rho+) mitochondrial DNA (mtDNA) and plays an important role in mtDNA organization. Here we report new functions for Abf2p in mtDNA transactions. We find that in homozygous deltaabf2 crosses, the pattern of sorting of mtDNA and mitochondrial matrix protein is altered, and mtDNA recombination is suppressed relative to homozygous ABF2 crosses. Although Abf2p is known to be required for the maintenance of mtDNA in rho+ cells growing on rich dextrose medium, we find that it is not required for the maintenance of mtDNA in p cells grown on the same medium. The content of both rho+ and rho- mtDNAs is increased in cells by 50-150% by moderate (two- to threefold) increases in the ABF2 copy number, suggesting that Abf2p plays a role in mtDNA copy control. Overproduction of Abf2p by > or = 10-fold from an ABF2 gene placed under control of the GAL1 promoter, however, leads to a rapid loss of rho+ mtDNA and a quantitative conversion of rho+ cells to petites within two to four generations after a shift of the culture from glucose to galactose medium. Overexpression of Abf2p in rho- cells also leads to a loss of mtDNA, but at a slower rate than was observed for rho+ cells. The mtDNA instability phenotype is related to the DNA-binding properties of Abf2p because a mutant Abf2p that contains mutations in residues of both HMG box domains known to affect DNA binding in vitro, and that binds poorly to mtDNA in vivo, complements deltaabf2 cells only weakly and greatly lessens the effect of overproduction on mtDNA instability. In vivo binding was assessed by colocalization to mtDNA of fusions between mutant or wild-type Abf2p and green fluorescent protein. These findings are discussed in the context of a model relating mtDNA copy number control and stability to mtDNA recombination.
Collapse
Affiliation(s)
- O Zelenaya-Troitskaya
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas 75235-9148, USA
| | | | | | | | | |
Collapse
|
117
|
Oldenburg DJ, Bendich AJ. The structure of mitochondrial DNA from the liverwort, Marchantia polymorpha. J Mol Biol 1998; 276:745-58. [PMID: 9500926 DOI: 10.1006/jmbi.1997.1581] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of mitochondrial DNA (mtDNA) from cultured cells of the liverwort, Marchantia polymorpha, was analyzed by pulsed-field gel electrophoresis (PFGE) and moving pictures of the fluorescently labeled molecules. Previous electron microscopic analysis with this liverwort revealed a unique property among land plants: mtDNA circles of only one size, that of the 186 kb genome, with no subgenomic circles. Most of the mtDNA was immobile in PFGE and contained complex structures, larger than the genome size with a bright fluorescent node and multiple attached fibers. The mobile mtDNA was mostly linear molecules in monomeric to pentameric lengths of the unit genome that increased following mung bean nuclease digestion, with a corresponding decrease in the immobile fraction. From 0 to 5% of the mtDNA was found as circular molecules the size of the genome and its oligomers; no subgenome-sized circles were present. Radiolabeling revealed that mtDNA synthesis began soon after transfer of cells to fresh medium and most newly replicated mtDNA was immobile; the circular form of the genome was not rapidly labeled.
Collapse
MESH Headings
- DNA Replication
- DNA, Circular/biosynthesis
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Mitochondrial/biosynthesis
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- DNA, Plant/biosynthesis
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Electrophoresis, Gel, Pulsed-Field
- Genome, Plant
- Microscopy, Fluorescence
- Models, Biological
- Molecular Structure
- Plants/chemistry
- Plants/genetics
- Plants/metabolism
- Recombination, Genetic
- Single-Strand Specific DNA and RNA Endonucleases
- Thymidine/metabolism
Collapse
Affiliation(s)
- D J Oldenburg
- Department of Botany, University of Washington, Seattle, WA 98195-5325, USA
| | | |
Collapse
|
118
|
|
119
|
Abstract
Genomes comprising a pair of separated inverted repeats and called 'amphimers' are reviewed. Amphimeric genomes are observed in a large variety of different organisms, ranging from archaebacteria to mammals. The widespread existence of amphimeric genomes in nature could be due to their particular dynamic structure. Amphimeric genomes containing long inverted segments may provide the only form in which a duplicated segment is stably retained in genomes. Amphimers are often found in amplified subgenomes, indicating that they could promote a special mechanism of DNA replication and amplification. The possible mechanisms of generation, isomerization and replication/amplification of different types of amphimeric genomes are discussed. The study of amphimeric mitochondrial petite genomes of yeast could be a good model system for the study of the role of inverted repeat sequences in genome dynamics.
Collapse
Affiliation(s)
- E Rayko
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, Paris, France.
| |
Collapse
|
120
|
Kogoma T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 1997; 61:212-38. [PMID: 9184011 PMCID: PMC232608 DOI: 10.1128/mmbr.61.2.212-238.1997] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chromosome replication in Escherichia coli is normally initiated at oriC, the origin of chromosome replication. E. coli cells possess at least three additional initiation systems for chromosome replication that are normally repressed but can be activated under certain specific conditions. These are termed the stable DNA replication systems. Inducible stable DNA replication (iSDR), which is activated by SOS induction, is proposed to be initiated from a D-loop, an early intermediate in homologous recombination. Thus, iSDR is a form of recombination-dependent DNA replication (RDR). Analysis of iSDR and RDR has led to the proposal that homologous recombination and double-strand break repair involve extensive semiconservative DNA replication. RDR is proposed to play crucial roles in homologous recombination, double-strand break repair, restoration of collapsed replication forks, and adaptive mutation. Constitutive stable DNA replication (cSDR) is activated in mhA mutants deficient in RNase HI or in recG mutants deficient in RecG helicase. cSDR is proposed to be initiated from an R-loop that can be formed by the invasion of duplex DNA by an RNA transcript, which most probably is catalyzed by RecA protein. The third form of SDR is nSDR, which can be transiently activated in wild-type cells when rapidly growing cells enter the stationary phase. This article describes the characteristics of these alternative DNA replication forms and reviews evidence that has led to the formulation of the proposed models for SDR initiation mechanisms. The possible interplay between DNA replication, homologous recombination, DNA repair, and transcription is explored.
Collapse
Affiliation(s)
- T Kogoma
- Department of Cell Biology, University of New Mexico Health Sciences Center, Albuquerque 87131, USA.
| |
Collapse
|
121
|
van Dijk MR, Vinkenoog R, Ramesar J, Vervenne RA, Waters AP, Janse CJ. Replication, expression and segregation of plasmid-borne DNA in genetically transformed malaria parasites. Mol Biochem Parasitol 1997; 86:155-62. [PMID: 9200122 DOI: 10.1016/s0166-6851(97)02843-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To fully exploit the transfection technology developed for Plasmodium we investigated the features of replication, expression and segregation of an episomally maintained DNA construct during a sexual blood stage development in genetically transformed parasites of P. berghei. Using DNA in situ hybridisation techniques we were able to show that the introduced DNA construct is located in the nucleus of the parasite and is not segregating uniformly during schizogony. Replication of the construct mainly takes place between 16 and 24 h after invasion of the merozoites, coinciding with chromosomal replication. Furthermore the plasmid-borne DHFR/TS gene is constitutively transcribed throughout the asexual blood stage development. Hence the DHFR/TS promoter would appear to be a useful tool in the study of (over)expression of introduced genes and performing complementation studies in transfected parasites during the complete a sexual blood stage development of P. berghei.
Collapse
Affiliation(s)
- M R van Dijk
- Department of Parasitology, University of Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|