101
|
Yu X, Wang L, Jiang X, Rowe D, Wei M. Biomimetic CaP coating incorporated with parathyroid hormone improves the osseointegration of titanium implant. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2177-2186. [PMID: 22639151 DOI: 10.1007/s10856-012-4682-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
Parathyroid hormone (PTH) is a well-known therapeutic agent for osteoporosis treatment, however, the inconvenience of daily administration and side effect from systematic administration severely limits its application in clinic. PTH has been incorporated into a biomimetic calcium phosphate (CaP) coating via a co-precipitation method in a modified simulated body fluid. The aim of the current study is to evaluate the osseointegration response of PTH incorporated CaP coating on titanium implants. Implants with different doses of PTH were inserted into tibiae of mice and evaluated by X-ray, micro-CT, histology and back-scattered scanning electron microscopy. Improved osseointegration of the implants loaded with PTH was observed compared to CaP coating only after 28 days of implantation in mouse tibiae. Micro-CT analysis showed better bone integration around the implant incorporated with PTH. Bone area and bone contact evaluations have demonstrated that peri-implant bone regeneration is highly dependent on the dosage of PTH incorporated. The higher the PTH content, the more bone formed surrounding the implant. Therefore, our results suggest that biomimetic CaP coating could be a useful a carrier for PTH local delivery, which results in improved bone-to-implant integration.
Collapse
Affiliation(s)
- Xiaohua Yu
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | | | |
Collapse
|
102
|
Gu YX, Du J, Zhao JM, Si MS, Mo JJ, Lai HC. Characterization and preosteoblastic behavior of hydroxyapatite-deposited nanotube surface of titanium prepared by anodization coupled with alternative immersion method. J Biomed Mater Res B Appl Biomater 2012; 100:2122-30. [DOI: 10.1002/jbm.b.32777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/23/2012] [Accepted: 06/28/2012] [Indexed: 11/09/2022]
|
103
|
Wang J, Tang J, Zhang P, Li Y, Wang J, Lai Y, Qin L. Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review. J Biomed Mater Res B Appl Biomater 2012; 100:1691-701. [PMID: 22566412 DOI: 10.1002/jbm.b.32707] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/01/2012] [Accepted: 03/05/2012] [Indexed: 11/11/2022]
Abstract
As a bioabsorbable metal with mechanical properties close to bone, pure magnesium or its alloys have great potential to be developed as medical implants for clinical applications. However, great efforts should be made to avoid its fast degradation in vivo for orthopedic applications when used for fracture fixation. Therefore, how to decease degradation rate of pure magnesium or its alloys is one of the focuses in Research and Development (R&D) of medical implants. It has been recognized that surface modification is an effective method to prevent its initial degradation in vivo to maintain its desired mechanical strength. This article reviews the recent progress in surface modifications for prevention of fast degradation of magnesium or its alloys using in vitro testing model, a fast yet relevant model before moving towards time-consuming and expensive in vivo testing. Pros and cons of various surface modifications are also discussed for the goal to design available products to be applied in clinical trials.
Collapse
Affiliation(s)
- Jiali Wang
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Chinese Academy of Sciences, Shenzhen, China.
| | | | | | | | | | | | | |
Collapse
|
104
|
Osteoblast response to porous titanium surfaces coated with zinc-substituted hydroxyapatite. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:313-8. [DOI: 10.1016/j.tripleo.2011.02.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/22/2011] [Indexed: 11/20/2022]
|
105
|
Roy M, Fielding GA, Beyenal H, Bandyopadhyay A, Bose S. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating. ACS APPLIED MATERIALS & INTERFACES 2012; 4:1341-9. [PMID: 22313742 PMCID: PMC3319099 DOI: 10.1021/am201610q] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Implant-related infection is one of the key concerns in total joint hip arthroplasties. To reduce bacterial adhesion, we used silver (Ag)/silver oxide (Ag(2)O) doping in plasma sprayed hydroxyapatite (HA) coating on titanium substrate. HA powder was doped with 2.0, 4.0, and 6.0 wt % Ag, heat-treated at 800 °C and used for plasma spray coating using a 30 kW plasma spray system, equipped with supersonic nozzle. Application of supersonic plasma nozzle significantly reduced phase decomposition and amorphous phase formation in the HA coatings as evident by X-ray diffraction (XRD) study and Fourier transformed infrared spectroscopic (FTIR) analysis. Adhesive bond strength of more than 15 MPa ensured the mechanical integrity of the coatings. Resistance against bacterial adhesion of the coatings was determined by challenging them against Pseudomonas aeruginosa (PAO1). Live/dead staining of the adherent bacteria on the coating surfaces indicated a significant reduction in bacterial adhesion due to the presence of Ag. In vitro cell-material interactions and alkaline phosphatase (ALP) protein expressions were evaluated by culturing human fetal osteoblast cells (hFOB). Our results suggest that the plasma-sprayed HA coatings doped with an optimum amount of Ag can have excellent antimicrobial property without altering mechanical property of the Ag-doped HA coatings.
Collapse
Affiliation(s)
- Mangal Roy
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Gary A. Fielding
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Haluk Beyenal
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
106
|
Xie C, Lu H, Li W, Chen FM, Zhao YM. The use of calcium phosphate-based biomaterials in implant dentistry. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:853-862. [PMID: 22201031 DOI: 10.1007/s10856-011-4535-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/12/2011] [Indexed: 05/31/2023]
Abstract
Since calcium phosphates (CaPs) were first proposed, a wide variety of formulations have been developed and continuously optimized, some of which (e.g. calcium phosphate cements, CPCs) have been successfully commercialized for clinical applications. These CaP-based biomaterials have been shown to be very attractive bone substitutes and efficient drug delivery vehicles across diverse biomedical applications. In this article, CaP biomaterials, principally CPCs, are addressed as alternatives/complements to autogenous bone for grafting in implant dentistry and as coating materials for enhancing the osteoinductivity of titanium implants, highlighting their performance benefits simultaneously as carriers for growth factors and as scaffolds for cell proliferation, differentiation and penetration. Different strategies for employing CaP biomaterials in dental implantology aim to ultimately reach the same goal, namely to enhance the osseointegration process for dental implants in the context of immediate loading and to augment the formation of surrounding bone to guarantee long-term success.
Collapse
Affiliation(s)
- Cheng Xie
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | |
Collapse
|
107
|
Roy M, Balla VK, Bandyopadhyay A, Bose S. MgO-doped tantalum coating on Ti: microstructural study and biocompatibility evaluation. ACS APPLIED MATERIALS & INTERFACES 2012; 4:577-80. [PMID: 22248182 PMCID: PMC3288316 DOI: 10.1021/am201365e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pure and MgO incorporated Ta coatings were prepared on Cp-Ti substrate using laser engineered net shaping (LENS), which resulted in diffuse coating-substrate interface. MgO was found along the Ta grain boundaries in the Ta matrix that increased the coating hardness from 185 ± 2.7 HV to 794 ± 93 HV. In vitro biocompatibility study showed excellent early cellular attachment and later stage proliferation in MgO incorporated coatings. The results indicated that although Ta coatings had higher biocompatibility than Ti, it could further be improved by incorporating MgO in the coating, while simultaneously improving the mechanical properties.
Collapse
Affiliation(s)
- Mangal Roy
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | | | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
108
|
Zhou H, Lawrence JG, Touny AH, Bhaduri SB. Biomimetic coating of bisphosphonate incorporated CDHA on Ti6Al4V. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:365-374. [PMID: 22180142 DOI: 10.1007/s10856-011-4524-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 11/23/2011] [Indexed: 05/31/2023]
Abstract
Bi-functional coatings of carbonated calcium deficient hydroxyapatite (CDHA) on Ti alloys were developed by using a biomimetic coating process. The bi-functionality was achieved by loading alendonate sodium (AS), an approved bisphosphonate drug used for the treatment of osteoporosis, into the inner layers of CDHA coatings. Three possible methods of loading AS into CDHA coatings were systematically studied and compared. The results indicated that the co-precipitation method had greater benefits and can modify the release profile of AS by incorporating AS in the inner layers of the coatings. As a preliminary study, the influences of applied AS dosage to CDHA coatings were evaluated using XRD and SEM. In vitro tests indicated that the AS content on CDHA coatings played a significant role, and optimum AS content in local area is beneficial for osteoblast cells proliferation. It is expected that the CDHA-AS coatings via the co-precipitation approach have potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Bioengineering, The University of Toledo, Toledo, OH, USA.
| | | | | | | |
Collapse
|
109
|
Rajesh P, Muraleedharan CV, Sureshbabu S, Komath M, Varma H. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:339-348. [PMID: 22105226 DOI: 10.1007/s10856-011-4501-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/11/2011] [Indexed: 05/31/2023]
Abstract
Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.
Collapse
Affiliation(s)
- P Rajesh
- Bioceramics Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum, Kerala, India
| | | | | | | | | |
Collapse
|
110
|
KUWABARA A, HORI N, SAWADA T, HOSHI N, WATAZU A, KIMOTO K. Enhanced biological responses of a hydroxyapatite/TiO 2 hybrid structure when surface electric charge is controlled using radiofrequency sputtering. Dent Mater J 2012; 31:368-76. [DOI: 10.4012/dmj.2011-220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
111
|
Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 2012; 8:20-30. [PMID: 22040686 DOI: 10.1016/j.actbio.2011.10.016] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 12/13/2022]
Abstract
Magnesium has been suggested as a revolutionary biodegradable metal for use as an orthopaedic material. As a biocompatible and degradable metal, it has several advantages over the permanent metallic materials currently in use, including eliminating the effects of stress shielding, improving biocompatibility concerns in vivo and improving degradation properties, removing the requirement of a second surgery for implant removal. The rapid degradation of magnesium, however, is a double-edged sword as it is necessary to control the corrosion rates of the materials to match the rates of bone healing. In response, calcium phosphate coatings have been suggested as a means to control these corrosion rates. The potential calcium phosphate phases and their coating techniques on substrates are numerous and can provide several different properties for different applications. The reactivity and low melting point of magnesium, however, require specific parameters for calcium phosphate coatings to be successful. Within this review, an overview of the different calcium phosphate phases, their properties and their behaviour in vitro and in vivo has been provided, followed by the current coating techniques used for calcium phosphates that may be or may have been adapted for magnesium substrates.
Collapse
Affiliation(s)
- Shaylin Shadanbaz
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
112
|
Dittrick S, Balla VK, Bose S, Bandyopadhyay A. Wear Performance of Laser Processed Tantalum Coatings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011; 31:1832-1835. [PMID: 22058608 DOI: 10.1016/j.msec.2011.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This first generation investigation evaluates the in vitro tribological performance of laser-processed Ta coatings on Ti for load-bearing implant applications. Linear reciprocating wear tests in simulated body fluid showed one order of magnitude less wear rate, of the order of 10(-4)mm(3)(N.m)(-1), for Ta coatings compared to Ti. Our results demonstrate that Ta coatings can potentially minimize the early-stage bone-implant interface micro-motion induced wear debris generation due to their excellent bioactivity comparable to that of hydroxyapatite (HA), high wear resistance and toughness compared to popular HA coatings.
Collapse
Affiliation(s)
- Stanley Dittrick
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | | | | | | |
Collapse
|
113
|
Rajesh P, Muraleedharan CV, Komath M, Varma H. Laser surface modification of titanium substrate for pulsed laser deposition of highly adherent hydroxyapatite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1671-1679. [PMID: 21598038 DOI: 10.1007/s10856-011-4342-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/09/2011] [Indexed: 05/30/2023]
Abstract
Biomedical implant devices made out of titanium and its alloys are benefited by a modified surface or a bioactive coating to enhance bone bonding ability and to function effectively in vivo for the intended period of time. In this respect hydroxyapatite coating developed through pulsed laser deposition is a promising approach. Since the success of the bioactive ceramic coated implant depends mainly on the substrate-coating strength; an attempt has been made to produce micro patterned surface structure on titanium substrate for adherent hydroxyapatite coating. A pulsed Nd-YAG laser beam (355 nm) with 10 Hz repetition rate was used for surface treatment of titanium as well as hydroxyapatite deposition. The unfocussed laser beam was used to modify the substrate surface with 500-18,000 laser pulses while keeping the polished substrate in water. Hydroxyapatite deposition was done in a vacuum deposition chamber at 400 °C with the focused laser beam under 1 × 10⁻³ mbar oxygen pressure. Deposits were analyzed to understand the physico-chemical, morphological and mechanical characteristics. The obtained substrate and coating surface morphology indicates that laser treatment method can provide controlled micro-topography. Scratch test analysis and microindentation hardness values of coating on laser treated substrate indicate higher mechanical adhesion with respect to coatings on untreated substrates.
Collapse
Affiliation(s)
- P Rajesh
- Bioceramics Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum 695012, Kerala, India
| | | | | | | |
Collapse
|
114
|
Roy M, Bandyopadhyay A, Bose S. Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. J Biomed Mater Res B Appl Biomater 2011; 99:258-65. [DOI: 10.1002/jbm.b.31893] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/28/2011] [Accepted: 05/08/2011] [Indexed: 11/11/2022]
|
115
|
Surface characteristics and biological studies of hydroxyapatite coating by a new method. J Biomed Mater Res B Appl Biomater 2011; 98:395-407. [DOI: 10.1002/jbm.b.31864] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/26/2011] [Accepted: 03/30/2011] [Indexed: 11/07/2022]
|
116
|
Hao J, Kuroda S, Ohya K, Bartakova S, Aoki H, Kasugai S. Enhanced osteoblast and osteoclast responses to a thin film sputtered hydroxyapatite coating. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1489-99. [PMID: 21567286 DOI: 10.1007/s10856-011-4329-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 04/27/2011] [Indexed: 05/19/2023]
Abstract
A sputtering technique followed by a low temperature hydrothermal treatment has been demonstrated to produce a dense-and-bioactive hydroxyapatite thin film coating. The purpose of the present study was to investigate osteoblast and osteoclast responses to the hydroxyapatite coated plates and titanium plates with similar roughness. Rat bone marrow stromal cells were cultured on these plates to induce osteoblasts. The cells showed a significantly enhanced proliferation on the hydroxyapatite surface, accompanied by increase of osteoblastic phenotypes. The co-cultured osteoclasts exhibited the significantly different cell number and morphology between the hydroxyapatite and the titanium surfaces. A series of osteoclast marker genes were more stimulated on the hydroxyapatite and thirty two percent of the hydroxyapatite surface area could be resorbed by osteoclasts. The thin film sputtered hydroxyapatite could provide a favorable surface for both osteoblast and osteoclast formation and their function, indicating its good osteoconductivity and biodegradability.
Collapse
Affiliation(s)
- J Hao
- Section of Oral Implantology and Regenerative Dental Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | |
Collapse
|
117
|
Perfusion electrodeposition of calcium phosphate on additive manufactured titanium scaffolds for bone engineering. Acta Biomater 2011; 7:2310-9. [PMID: 21215337 DOI: 10.1016/j.actbio.2010.12.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/22/2010] [Accepted: 12/29/2010] [Indexed: 12/17/2022]
Abstract
A perfusion electrodeposition (P-ELD) system was reported to functionalize additive manufactured Ti6Al4V scaffolds with a calcium phosphate (CaP) coating in a controlled and reproducible manner. The effects and interactions of four main process parameters - current density (I), deposition time (t), flow rate (f) and process temperature (T) - on the properties of the CaP coating were investigated. The results showed a direct relation between the parameters and the deposited CaP mass, with a significant effect for t (P=0.001) and t-f interaction (P=0.019). Computational fluid dynamic analysis showed a relatively low electrolyte velocity within the struts and a high velocity in the open areas within the P-ELD chamber, which were not influenced by a change in f. This is beneficial for promoting a controlled CaP deposition and hydrogen gas removal. Optimization studies showed that a minimum t of 6 h was needed to obtain complete coating of the scaffold regardless of I, and the thickness was increased by increasing I and t. Energy-dispersive X-ray and X-ray diffraction analysis confirmed the deposition of highly crystalline synthetic carbonated hydroxyapatite under all conditions (Ca/P ratio=1.41). High cell viability and cell-material interactions were demonstrated by in vitro culture of human periosteum derived cells on coated scaffolds. This study showed that P-ELD provides a technological tool to functionalize complex scaffold structures with a biocompatible CaP layer that has controlled and reproducible physicochemical properties suitable for bone engineering.
Collapse
|
118
|
Xu S, Yang X, Chen X, Lin X, Zhang L, Yang G, Gao C, Gou Z. Hybrid calcium phosphate coatings with the addition of trace elements and polyaspartic acid by a low-thermal process. Biomed Mater 2011; 6:035002. [DOI: 10.1088/1748-6041/6/3/035002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
119
|
Xiong J, Li Y, Hodgson PD, Wen C. In vitro osteoblast-like cell proliferation on nano-hydroxyapatite coatings with different morphologies on a titanium-niobium shape memory alloy. J Biomed Mater Res A 2011; 95:766-73. [PMID: 20725978 DOI: 10.1002/jbm.a.32903] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The morphology of nanomaterials significantly affects their physical, chemical, and biological properties. In the present study, nano-hydroxyapatite coatings with different morphologies were produced on the surface of a titanium-niobium shape memory alloy via a hydrothermal process. The effect of the nano-hydroxyapatite coatings on the in vitro proliferation of SaOS-2 osteoblast-like cells was investigated. Factors including crystallinity, surface micro-roughness, and surface energy of the nano-hydroxyapatite coatings were discussed. Results show that in vitro proliferation of the osteoblast-like cells was significantly enhanced on the nano-hydroxyapatite-coated titanium-niobium alloy compared to the titanium-niobium alloy without coating. The cell numbers on the nano-hydroxyapatite-coated titanium-niobium alloy changed consistently with the surface energy of the hydroxyapatite coatings. This study suggests that surface energy as a characteristic parameter influencing the in vitro proliferation of osteoblast-like cells was predominant over the crystallinity and surface micro-roughness of the nano-hydroxyapatite coatings.
Collapse
Affiliation(s)
- Jianyu Xiong
- Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | | | | | | |
Collapse
|
120
|
Roy M, Balla VK, Bandyopadhyay A, Bose S. Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma. Acta Biomater 2011; 7:866-73. [PMID: 20854939 DOI: 10.1016/j.actbio.2010.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/24/2022]
Abstract
In this study we report the fabrication of compositionally graded hydroxyapatite (HA) coatings on Ti by combining laser engineering net shaping (LENS) and radio frequency induction plasma spraying processes. Initially, HA powder was embedded in the Ti substrates using LENS, forming a Ti-HA composite layer. Later, RF induction plasma spraying was used to deposit HA on these Ti substrates with a Ti-HA composite layer on top. Phase analysis by X-ray diffraction indicated phase transformation of HA to β-tricalcium phosphate in the laser processed coating. Laser processed coatings showed the formation of a metallurgically sound and diffused substrate-coating interface, which significantly increased the coating hardness to 922 ± 183 Hv from that of the base metal hardness of 189 ± 22 Hv. In the laser processed multilayer coating a compositionally graded nature was successfully achieved, however, with severe cracking and a consequent decrease in the flexural strength of the coating. To obtain a structurally stable coating with a composition gradient across the coating thickness a phase pure HA layer was sprayed on top of the laser processed single layer coatings using induction plasma spray. The plasma sprayed HA coatings were strongly adherent to the LENS-TCP coatings, with adhesive bond strength of 21 MPa. In vitro biocompatibility of these coatings, using human fetal osteoblast cells, showed a clear improvement in cellular activity from uncoated Ti compared with LENS-TCP-coated Ti and reached a maximum in the plasma sprayed HA coating.
Collapse
|
121
|
Roy M, Bandyopadhyay A, Bose S. Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants. SURFACE & COATINGS TECHNOLOGY 2011; 205:2785-2792. [PMID: 21552358 PMCID: PMC3086534 DOI: 10.1016/j.surfcoat.2010.10.042] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This paper reports preparation of a highly crystalline nano hydroxyapatite (HA) coating on commercially pure titanium (Cp-Ti) using inductively coupled radio frequency (RF) plasma spray and their in vitro and in vivo biological response. HA coatings were prepared on Ti using normal and supersonic plasma nozzles at different plate powers and working distances. X-ray diffraction (XRD) and Fourier transformed infrared spectroscopic (FTIR) analysis show that the normal plasma nozzle lead to increased phase decomposition, high amorphous calcium phosphate (ACP) phase formation, and severe dehydroxylation of HA. In contrast, coatings prepared using supersonic nozzle retained the crystallinity and phase purity of HA due to relatively short exposure time of HA particles in the plasma. In addition, these coatings exhibited a microstructure that varied from porous and glassy structure at the coating-substrate interface to dense HA at the top surface. The microstructural analysis showed that the coating was made of multigrain HA particles of ~200 nm in size, which consisted of recrystallized HA grains in the size range of 15- 20 nm. Apart from the type of nozzle, working distance was also found to have a strong influence on the HA phase decomposition, while plate power had little influence. Depending on the plasma processing conditions, a coating thickness between 300 and 400 μm was achieved where the adhesive bond strengths were found to be between 4.8 MPa to 24 MPa. The cytotoxicity of HA coatings was examined by culturing human fetal osteoblast cells (hFOB) on coated surfaces. In vivo studies, using the cortical defect model in rat femur, evaluated the histological response of the HA coatings prepared with supersonic nozzle. After 2 weeks of implantation, osteoid formation was evident on the HA coated implant surface, which could indicate early implant- tissue integration in vivo.
Collapse
Affiliation(s)
- Mangal Roy
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | | | | |
Collapse
|
122
|
Yu X, Wei M. Controlling Bovine Serum Albumin Release From Biomimetic Calcium Phosphate Coatings. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jbnb.2011.21004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
123
|
Dorozhkin SV. Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater 2010; 1:22-107. [PMID: 24955932 PMCID: PMC4030894 DOI: 10.3390/jfb1010022] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/16/2010] [Accepted: 11/25/2010] [Indexed: 12/18/2022] Open
Abstract
In the late 1960s, much interest was raised in regard to biomedical applications of various ceramic materials. A little bit later, such materials were named bioceramics. This review is limited to bioceramics prepared from calcium orthophosphates only, which belong to the categories of bioactive and bioresorbable compounds. There have been a number of important advances in this field during the past 30-40 years. Namely, by structural and compositional control, it became possible to choose whether calcium orthophosphate bioceramics were biologically stable once incorporated within the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of calcium orthophosphate bioceramics-which is able to promote regeneration of bones-was developed. Presently, calcium orthophosphate bioceramics are available in the form of particulates, blocks, cements, coatings, customized designs for specific applications and as injectable composites in a polymer carrier. Current biomedical applications include artificial replacements for hips, knees, teeth, tendons and ligaments, as well as repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jawbone, spinal fusion and bone fillers after tumor surgery. Exploratory studies demonstrate potential applications of calcium orthophosphate bioceramics as scaffolds, drug delivery systems, as well as carriers of growth factors, bioactive peptides and/or various types of cells for tissue engineering purposes.
Collapse
|
124
|
Keim S, Brunner JG, Fabry B, Virtanen S. Control of magnesium corrosion and biocompatibility with biomimetic coatings. J Biomed Mater Res B Appl Biomater 2010; 96:84-90. [DOI: 10.1002/jbm.b.31742] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
125
|
Symietz C, Lehmann E, Gildenhaar R, Krüger J, Berger G. Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy bone implant material. Acta Biomater 2010; 6:3318-24. [PMID: 20167296 DOI: 10.1016/j.actbio.2010.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/02/2010] [Accepted: 02/10/2010] [Indexed: 11/16/2022]
Abstract
Femtosecond lasers provide a novel method of attaching bioceramic material to a titanium alloy, thereby improving the quality of bone implants. The ultrashort 30 fs laser pulses (790 nm wavelength) penetrate a thin dip-coated layer of fine ceramic powder, while simultaneously melting a surface layer of the underlying metal. The specific adjustment of the laser parameters (pulse energy and number of pulses per spot) avoids unnecessary melting of the bioactive calcium phosphate, and permits a defined thin surface melting of the metal, which in turn is not heated throughout, and therefore maintains its mechanical stability. It is essential to choose laser energy densities that correspond to the interval between the ablation fluences of both materials involved: about 0.1-0.4 Jcm(-2). In this work, we present the first results of this unusual technique, including laser ablation studies, scanning electron microscopy and optical microscope images, combined with EDX data.
Collapse
Affiliation(s)
- Christian Symietz
- BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany.
| | | | | | | | | |
Collapse
|
126
|
|
127
|
Improving islet transplantation: a road map for a widespread application for the cure of persons with type I diabetes. Curr Opin Organ Transplant 2010; 14:683-7. [PMID: 19779341 DOI: 10.1097/mot.0b013e328332c44c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The widespread application of replacement therapies for type I diabetes is at present limited by the side-effects of systemic immunosuppression. Results obtained in several animal models show that islet encapsulation can control the rejection process without systemic side-effects. However, results have, in general, been disappointing when transferred to large animal models or to humans. RECENT FINDINGS Growing insights into how cells respond to mechanical forces and surrounding extracellular matrixes indicate that differences in the Young's modulus (the resistance to deformation) between the implanted biomaterial and surrounding tissues induce inflammation and fibrosis. A valid approach would be to select for implantation a tissue having a higher value of the Young's modulus, for example, bone, allowing direct contact with the highly vascularized bone marrow providing nutrient and oxygen support as well as a rapid distribution of released insulin to the systemic circulation. SUMMARY Development of a biochamber with bone-integrating properties will allow initiation of clinical trials with allogeneic human islets, xenogeneic pig islets or insulin-producing cells generated from human embryonic stem cell (hESC)/inducible pluripotent stem cell (iPSC).
Collapse
|
128
|
Ramaswamy Y, Wu C, Zreiqat H. Orthopedic coating materials: considerations and applications. Expert Rev Med Devices 2009; 6:423-30. [PMID: 19572797 DOI: 10.1586/erd.09.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The host response to titanium and its alloys is not always favorable, as a fibrous layer may form at the skeletal tissue-device interface, causing aseptic loosening. Therefore, a great deal of current orthopedic research is focused on developing implants with improved osseointegration properties in order to increase their clinical success. Promising new studies have been reported regarding coating the currently available implants with various coating materials and techniques so as to improve the long-term stability of implants. This article will discuss various coating materials developed, their advantages and disadvantages as coating materials and their biological performance.
Collapse
Affiliation(s)
- Yogambha Ramaswamy
- Tissue Engineering and Biomaterials Research Unit, Biomedical Engineering, School of Aerospace, Mechanical, Mechatronic Engineering, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
129
|
Ibasco S, Tamimi F, Meszaros R, Nihouannen DL, Vengallatore S, Harvey E, Barralet JE. Magnesium-sputtered titanium for the formation of bioactive coatings. Acta Biomater 2009; 5:2338-47. [PMID: 19357004 DOI: 10.1016/j.actbio.2009.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 11/17/2022]
Abstract
Osteoconductive coatings may improve the clinical performance of implanted metallic biomaterials. Several low-temperature coating methods have been reported where a supersaturated solution is used to deposit typically apatitic materials. However, due to the very low solubility of apatite, the concentration of calcium and phosphate ions attainable in a supersaturated solution is relatively low ( approximately 1-2mM), thus coating formation is slow, with several solution changes required to form a uniform and clinically relevant coating. In order to avoid this problem, we present a novel method where substrates were initially sputter coated with pure magnesium metal and then immersed in differing phosphate solutions. In this method, upon immersion the implant itself becomes the source of cations and only the anions to be incorporated into the coating are present in solution. These ions react rapidly, forming a continuous coating and avoiding problems of premature non-localized precipitation. The different coatings resulting from varying the phosphate solutions were then characterized in terms of morphology and composition by microscopy and chemical analyses. Upon immersion of the sputter-coated metals into ammonium phosphate solution, it was found that a uniform struvite (MgNH(4)PO(4).6H(2)O) coating was formed. Upon subsequent immersion into a calcium phosphate solution, stable coatings were formed. The coated surfaces also enhanced both osteoblastic cellular adhesion and cell viability compared to bare titanium. The concept of sputter-coating a reactive metal to form an adherent inorganic metal coating appears promising in the field of developing rapid-forming low-temperature bioceramic coatings.
Collapse
|
130
|
Abstract
The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. These materials are of the special significance because they represent the inorganic part of major normal (bones, teeth and dear antlers) and pathological (i.e. those appearing due to various diseases) calcified tissues of mammals. Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium ortho-phosphates. For example, self-setting hydraulic cements made of calcium orthophosphates are helpful in bone repair, while titanium substitutes covered by a surface layer of calcium orthophosphates are used for hip joint endoprostheses and as tooth substitutes. Porous scaffolds made of calcium orthophosphates are very promising tools for tissue engineering applications. In addition, technical grade calcium orthophosphates are very popular mineral fertilizers. Thus ere calcium orthophosphates are of great significance for humankind and, in this paper, an overview on the current knowledge on this subject is provided.
Collapse
|
131
|
Norowski PA, Bumgardner JD. Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater 2009; 88:530-43. [PMID: 18698626 DOI: 10.1002/jbm.b.31152] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dental implants have 89% plus survival rates at 10-15 years, but peri-implantitis or dental implant infections may be as high as 14%. Peri-implantitis can limit clinical success and impose health and financial burdens to patients and health providers. The pathogenic species associated with periodontitis (e.g., Fusobacterium ssp, A. actinomycetemcomitans, P. gingivalis) are also associated with peri-implantitis. Incidence of peri-implantitis is highest within the first 12 months after implantation, and is higher in patients who smoke or have poor oral health as well as with calcium-phosphate-coated or surface-roughened implants. Biomaterial therapies using fibers, gels, and beads to deliver antibiotics have been used in the treatment of Peri-implantitis though clinical efficacy is not well documented. Guided tissue regeneration membranes (e.g., collagen, poly-lactic/glycolic acid, chitosan, ePTFE) loaded with antimicrobials have shown success in reosseointegrating infected implants in animal models but have not been proven in humans. Experimental approaches include the development of anti-bioadhesion coatings, coating surfaces with antimicrobial agents (e.g., vancomycin, Ag, Zn) or antimicrobial releasing coatings (e.g., calcium phosphate, polylactic acid, chitosan). Future strategies include the development of surfaces that become antibacterial in response to infection, and improvements in the permucosal seal. Research is still needed to identify strategies to prevent bacterial attachment and enhance normal cell/tissue attachment to implant surfaces.
Collapse
Affiliation(s)
- P Andrew Norowski
- Biomedical Engineering Department, Herff College of Engineering, University of Memphis and Joint Biomedical Engineering Program, University of Memphis - University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | | |
Collapse
|
132
|
Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials 2008; 29:4751-9. [PMID: 18829101 DOI: 10.1016/j.biomaterials.2008.08.043] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 08/28/2008] [Indexed: 12/14/2022]
Abstract
It would be ideal to have implants which can simultaneously inhibit bacterial adhesion and promote osteoblast functions. In this work, titanium surfaces were modified with poly(methacrylic acid) (P(MAA)) followed by immobilization of silk sericin. Firstly a trichlorosilane coupling agent, which is an atom transfer radical polymerization (ATRP) initiator, was immobilized on the oxidized titanium surface to facilitate the surface-initiated ATRP of methacrylic acid sodium salt (MAAS). The pendant carboxyl end groups of the grafted and partially protonated MAA chains were subsequently coupled with silk sericin via carbodiimide chemistry. The functionalized Ti surfaces were characterized by X-ray photoelectron spectroscopy, and assayed for osteoblast cell functions and bacterial adhesion. The covalently immobilized MAA brushes significantly reduce the adhesion of the two bacterial strains (Staphylococcus aureus and Staphylococcus epidermidis) tested. The silk sericin-immobilized surfaces, at the same time, promote osteoblast cells' adhesion, proliferation, and alkaline phosphatase activity. Thus, the P(MAA) and silk sericin functionalized Ti surfaces have potential applications combating biomaterial-centered infection and promoting osseointegration.
Collapse
|
133
|
Abstract
Hydroxyapatite powder is produced using combustion synthesis method. The powder was produced using a low-temperature processing method involving time as short as 15 minutes. As silver is known to have anti-bacterial properties, silver-doped hydroxyapatite was also produced by the same method. Both the powders were fully crystalline. XRD indicated the presence of an additional phase of CaO in both the samples. FT-IR indicated the presence of hydroxide, phosphate and carbonate groups. Silver addition tends to control the reactions of powder with a test Tris buffer environment and maintain a stable pH for a longer period of 500-hour duration.
Collapse
|
134
|
de Jonge LT, Leeuwenburgh SCG, Wolke JGC, Jansen JA. Organic–Inorganic Surface Modifications for Titanium Implant Surfaces. Pharm Res 2008; 25:2357-69. [DOI: 10.1007/s11095-008-9617-0] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 04/29/2008] [Indexed: 12/12/2022]
|