101
|
Seo HS, Serra R. Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints. Dev Biol 2007; 310:304-16. [PMID: 17822689 PMCID: PMC2042108 DOI: 10.1016/j.ydbio.2007.07.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 07/27/2007] [Accepted: 07/30/2007] [Indexed: 02/06/2023]
Abstract
In this study, we address the function of Transforming Growth Factor beta (TGF-beta) and its type II receptor (Tgfbr2) in limb development in vivo. Mouse embryos were generated in which the Tgfbr2 gene was deleted in early limb mesenchyme using Prx1Cre-mediated LoxP recombination. A high level of Tgfbr2 gene deletion was verified in limb mesenchyme by PCR between E9.5 and E10.5 days in Cre expressing mice. RT-PCR assays indicated a significant depletion of Tgfbr2 mRNA by E10.5 days as a result of Cre mediated gene deletion. Furthermore, limb mesenchyme from Cre(+);Tgfbr2(f/f) mice placed in micromass culture did not respond to exogenously added TGF-beta1 confirming the functional deletion of the receptor. However, there was an unexpected increase in the number and intensity of Alcian blue stained chondrogenic nodules in micromass cultures derived from Tgfbr2-deleted limbs relative to cultures from control limbs suggesting that Tgfbr2 normally limits chondrogenesis in vitro. In vivo, early limb development and chondrocyte differentiation occurred normally in Tgfbr2-depleted mice. Later in development, depletion of Tgfbr2 in limb mesenchyme resulted in short limbs and fusion of the joints in the phalanges. Alteration in the length of the long bones was primarily due to a decrease in chondrocyte proliferation after E13.5 days. In addition, the transition from prehypertrophic to hypertrophic cells was accelerated while there was a delay in late hypertrophic differentiation leading to a reduction in the length of the marrow cavity. In the joint, cartilage cells replaced interzone cells during development. Analysis of markers for joint development indicated that the joint was specified properly and that the interzone cells were initially formed but not maintained. The results suggest that Tgfbr2 is required for normal development of the skeleton and that Tgfbr2 can act to limit chondrogenesis in mesenchymal cells like the interzone.
Collapse
Affiliation(s)
- Hwa-Seon Seo
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0005, USA
| | - Rosa Serra
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0005, USA
| |
Collapse
|
102
|
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional growth factors belonging to the transforming growth factor beta (TGFbeta) multigene family. Current evidence indicates that they may play different and even antagonistic roles at different stages of limb development. Refined studies of their function in these processes have been impeded in the mouse due to the early lethality of null mutants for several BMP ligands and their receptors. Recently, however, these questions have benefited from the very powerful Cre-loxP technology. In this review, I intend to summarize what has been learned from this conditional mutagenesis approach in the mouse limb, focusing on Bmp2, Bmp4 and Bmp7 while restricting my analysis to the initial phases of limb formation and patterning. Two major aspects are discussed, the role of BMPs in dorsal-ventral polarization of the limb bud, together with their relation to apical ectodermal ridge (AER) induction, and their role in controlling digit number and identity. Particular attention is paid to the methodology, its power and its limits.
Collapse
Affiliation(s)
- Benoît Robert
- Institut Pasteur, Unité de Recherche Associée 2578 Centre National de la Recherche Scientifique, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
103
|
Southam L, Rodriguez-Lopez J, Wilkins JM, Pombo-Suarez M, Snelling S, Gomez-Reino JJ, Chapman K, Gonzalez A, Loughlin J. An SNP in the 5′-UTR of GDF5 is associated with osteoarthritis susceptibility in Europeans and with in vivo differences in allelic expression in articular cartilage. Hum Mol Genet 2007; 16:2226-32. [PMID: 17616513 DOI: 10.1093/hmg/ddm174] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A compelling genetic association with osteoarthritis (OA) of a functional SNP (rs143383, T/C) in the 5'-UTR of the GDF5 gene was recently reported in case-control cohorts from Japan and China. GDF5 is a pro-chondrogenic growth factor. The T-allele frequency of the gene was elevated in cases, with an odds ratio (OR) of 1.79, and in vitro functional studies demonstrated that this allele mediated a moderate but significant reduction in the activity of the GDF5 promoter in several cell lines. Our initial objective was to assess whether the SNP was also associated with OA in a broad European population by genotyping the SNP in 2487 cases and 2018 age-matched controls from the UK and Spain. The T-allele was associated with OA (P = 0.03, OR = 1.10) as was carrier status for this allele (P = 0.004, OR = 1.28), demonstrating that the SNP is associated with OA in two diverse ethnic groups, Asians and Europeans. We subsequently assessed the functional effect of the SNP on GDF5 allelic expression using RNA extracted from the cartilage of OA patients who had undergone joint-replacement surgery. The associated T-allele showed up to a 27% reduction in expression relative to the C-allele (P = 0.00007), revealing that the functional effect mediated by SNP rs143383 on GDF5 expression is active in patients who have severe disease up to the point at which they require surgery. A small but persistent imbalance of GDF5 expression throughout life therefore appears to render an individual more susceptible to OA.
Collapse
|
104
|
Guimont P, Grondin F, Dubois CM. Sox9-dependent transcriptional regulation of the proprotein convertase furin. Am J Physiol Cell Physiol 2007; 293:C172-83. [PMID: 17360815 DOI: 10.1152/ajpcell.00349.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The proprotein convertase furin participates in the maturation/bioactivation of a variety of proproteins involved in chondrogenesis events. These include parathyroid hormone-related peptide (PTHrP), an autocrine/paracrine factor that is crucial to both normal cartilage development and cartilage-related pathological processes. Despite the known importance of furin activity in the bioactivation of the polypeptides, the mechanisms that control furin regulation in chondrogenesis remain unknown. To gain insight into the molecular regulation of furin, we used the mouse prechondrogenic ATDC5 cell line, an established in vitro model of cartilage differentiation. Peak expression of both furin mRNA and furin PTHrP maturation was observed during chondrocyte nodule formation stage, an event that correlated with increased mRNA levels of Sox9, a potent high-mobility-group (HMG) box-containing transcription factor required for cartilage formation. Inhibition of furin activity led to a diminution in maturation of PTHrP, suggesting a relationship between Sox9-induced regulation of furin and chondrogenesis events. Transient transfection of Sox9 in nonchondrogenic cells resulted in a marked increase in furin mRNA and in the transactivation of the furin P1A promoter. Direct Sox9 action on the P1A promoter was narrowed down to a critical paired site with Sox9 binding capability in vitro and in vivo. Sox9 transactivation effect was inhibited by L-Sox5 and Sox-6, two Sox9 homologs also expressed in ATDC5 cells. Sox6 inhibitory effect was reduced when using Sox6-HMG-box mutants, indicating a repressive effect through direct HMG-box/DNA binding. Our work suggests a mechanism by which furin is regulated during chondrogenesis. It also adds to the complexity of Sox molecule interaction during gene regulation.
Collapse
Affiliation(s)
- Philippe Guimont
- Immunology Division, Faculty of Medicine, Université de Sherbrooke, QC, Canada J1H 5N4
| | | | | |
Collapse
|
105
|
Giannoni P, Cancedda R. Articular chondrocyte culturing for cell-based cartilage repair: needs and perspectives. Cells Tissues Organs 2007; 184:1-15. [PMID: 17190975 DOI: 10.1159/000096946] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2006] [Indexed: 01/13/2023] Open
Abstract
Articular cartilage displays a limited capacity of self-regeneration after injury. Thus, the biology of this tissue and its cellular components - the chondrocytes - has become the focus of several investigations, driven by tissue engineering and the basic and clinical research fields, aiming to ameliorate the present clinical approaches to cartilage repair. In this work, we present a brief recapitulation of the events that lead to cartilage development during the skeletal embryonal growth. The intrinsic phenotypic plasticity of the mesenchymal precursors and the adult chondrocytes is evaluated, dependent on the cell source, its physiopathological state, and as a function of the donor's age. The phenotypic changes induced by the basic culturing techniques are also taken into account, thus highlighting the phenotypic plasticity of the chondrocyte as the main property which could couple the differentiation process to the repair process. Chondrocyte proliferation and the contemporary maintenance of the chondrogenic differentiation potential are regarded as the two primary goals to be achieved in order to fulfill the quantitative needs of the clinical applications and the qualitative requirements of a properly repaired tissue. In this light, the effects of several growth factors and medium supplements are investigated. Finally, the latest improvements in culturing conditions and their possible clinical applications are presented as well.
Collapse
|
106
|
Zhang Y, An HS, Thonar EJMA, Chubinskaya S, He TC, Phillips FM. Comparative effects of bone morphogenetic proteins and sox9 overexpression on extracellular matrix metabolism of bovine nucleus pulposus cells. Spine (Phila Pa 1976) 2006; 31:2173-9. [PMID: 16946650 DOI: 10.1097/01.brs.0000232792.66632.d8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vitro biologic study of the effects of adenovirus expressing bone morphogenetic proteins (BMPs) and adenovirus expressing Sox9 on extracellular matrix metabolism by bovine nucleus pulposus cells. OBJECTIVE To compare the effects of recombinant adenoviral vectors expressing various BMPs (2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, and 15) and Sox9 on extracellular matrix accumulation by bovine nucleus pulposus cells. SUMMARY OF BACKGROUND DATA Nucleus pulposus matrix production may be promoted by transducing the cells with genes that permit the sustained expression of growth factors. The choice of the particular factors or BMPs to be studied for these applications has been largely based on the commercial availability of such products. To our knowledge, this study is the first effort to evaluate systematically the relative effectiveness of the various members of the BMP family in promoting intervertebral disc matrix repair. METHODS Adult bovine nucleus pulposus cells cultured in monolayer were transduced with adenoviruses expressing human BMP-2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, and 15, and adenovirus expressing Sox9. Proteoglycan and collagen accumulation, and cell proliferation were measured 6 days after viral transduction. As a positive control, cells were cultured without any exogenous gene in the presence of recombinant human (rh)BMP-7. RESULTS Nucleus pulposus cells transduced with adenoviruses expressing BMP-2, 3, 4, 5, 7, 8, 10, 13, 15, and Sox9 accumulated more proteoglycans than nucleus pulposus cells transduced with adenovirus expressing green fluorescent protein (control). It is noteworthy that nucleus pulposus cells transduced with adenoviruses expressing BMP-2 and 7 resulted in essentially as great a stimulation of proteoglycan accumulation as nucleus pulposus cells maintained in the presence of rhBMP-7 (adenoviruses expressing BMP-2: 104% increase; adenoviruses expressing BMP-7: 162% increase; and rhBMP-7: 120% increase). Nucleus pulposus cells transduced with BMP-2, 4, 5, 7, 8, 10, 14, 15, and Sox9 accumulated significantly more collagen compared to nucleus pulposus cells transduced with adenovirus expressing green fluorescent protein; adenoviruses expressing BMP-4 and 14 were the most effective (552% and 661% increase, respectively). Nucleus pulposus cells also proliferated, as measured by deoxyribonucleic acid content, when transduced with adenoviruses expressing BMP-2 and 8. CONCLUSIONS To our knowledge, for the first time, we have shown the relative effectiveness of 12 different BMPs and Sox9 in stimulating proteoglycan and collagen production by nucleus pulposus cells. Adenoviruses expressing BMP-2 and 7 were the most effective in stimulating proteoglycan accumulation, while adenoviruses expressing BMP-4 and 14 were the most effective in stimulating collagen accumulation. To our knowledge, this study is the first to compare the relative effectiveness of various BMPs and Sox9 on extracellular matrix accumulation by nucleus pulposus cells, and could help to develop more efficacious approaches to the treatment of degenerating intervertebral discs.
Collapse
Affiliation(s)
- Yejia Zhang
- Department of Orthopedic Surgery, Rush University Medical Center.
| | | | | | | | | | | |
Collapse
|
107
|
Birger Y, Davis J, Furusawa T, Rand E, Piatigorsky J, Bustin M. A role for chromosomal protein HMGN1 in corneal maturation. Differentiation 2006; 74:19-29. [PMID: 16466397 PMCID: PMC3730489 DOI: 10.1111/j.1432-0436.2006.00054.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Corneal differentiation and maturation are associated with major changes in the expression levels of numerous genes, including those coding for the chromatin-binding high-mobility group (HMG) proteins. Here we report that HMGN1, a nucleosome-binding protein that alters the structure and activity of chromatin, affects the development of the corneal epithelium in mice. The corneal epithelium of Hmgn1(-/-) mice is thin, has a reduced number of cells, is poorly stratified, is depleted of suprabasal wing cells, and its most superficial cell layer blisters. In mature Hmgn1(-/-)mice, the basal cells retain the ovoid shape of immature cells, and rest directly on the basal membrane which is disorganized. Gene expression was modified in Hmgn1(-/-) corneas: glutathione-S-transferase (GST)alpha 4 and GST omega 1, epithelial layer-specific markers, were selectively reduced while E-cadherin and alpha-, beta-, and gamma-catenin, components of adherens junctions, were increased. Immunofluorescence analysis reveals a complete co-localization of HMGN1 and p 63 in small clusters of basal corneal epithelial cells of wild-type mice, and an absence of p 63 expressing cells in the central region of the Hmgn1(-/-) cornea. We suggest that interaction of HMGN1 with chromatin modulates the fidelity of gene expression and affects corneal development and maturation.
Collapse
Affiliation(s)
| | | | - Takashi Furusawa
- Protein Section, Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892, USA, Tel: +1-301-496-5234
| | - Eyal Rand
- Protein Section, Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892, USA, Tel: +1-301-496-5234
| | - Joram Piatigorsky
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA, Tel: +1-301-402-4343
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892, USA, Tel: +1-301-496-5234
| |
Collapse
|
108
|
Yoshimoto T, Yamamoto M, Kadomatsu H, Sakoda K, Yonamine Y, Izumi Y. Recombinant human growth/differentiation factor-5 (rhGDF-5) induced bone formation in murine calvariae. J Periodontal Res 2006; 41:140-7. [PMID: 16499717 DOI: 10.1111/j.1600-0765.2005.00847.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Growth/differentiation factor-5 (GDF-5), a member of the transforming growth factor-beta superfamily, shows a close structural relationship to bone morphogenetic proteins and plays crucial roles in skeletal morphogenesis. Recombinant human (rh) GDF-5 was reported as a suitable factor for enhancing healing in bone defect and inducing ectopic bone formation. The purpose of the present study was to investigate the mechanism of bone formation induced by rhGDF-5 in murine calvariae by radiological, histological and immunohistochemical methods. Cell proliferation was also examined in vitro. MATERIAL AND METHODS Cells including primary osteoblasts, periosteum cells and connective tissue fibroblasts were isolated enzymatically from neonatal murine calvariae or head skin. In the presence or absence of rhGDF-5, cell proliferation was estimated by tetrazolium reduction assay. To examine the mechanism of osteoinduction, rhGDF-5/atelocollagen (AC) composite or 0.01 N HCl/AC composite were injected into murine calvariae subcutaneously. Tissue was examined radiologically, histologically and immunohistochemically. RESULTS In the presence of rhGDF-5, proliferation of primary osteoblasts, periosteum cells, and connective tissue fibroblasts was increased significantly in culture. Immunohistochemical observations showed cells at the site injected with rhGDF-5/AC displayed immunoreactivity for proliferating cell nuclear antigen (PCNA). Newly formed bone- and cartilage-like tissue contained chondrocyte osteocyte and osteoclastic cells, and were immunoreactive for both type I and II collagen. CONCLUSION Exposure to GDF-5 promotes proliferation and differentiation of calvarial cells, which give rise to ectopic bone formation.
Collapse
Affiliation(s)
- Takehiko Yoshimoto
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | | | | | | | | | | |
Collapse
|
109
|
Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, Cummins J, Fu FH, Huard J. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. ACTA ACUST UNITED AC 2006; 54:433-42. [PMID: 16447218 DOI: 10.1002/art.21632] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Muscle-derived stem cells (MDSCs) isolated from mouse skeletal muscle exhibit long-time proliferation, high self-renewal, and multipotent differentiation. This study was undertaken to investigate the ability of MDSCs that were retrovirally transduced to express bone morphogenetic protein 4 (BMP-4) to differentiate into chondrocytes in vitro and in vivo and enhance articular cartilage repair. METHODS Using monolayer and micromass pellet culture systems, we evaluated the in vitro chondrogenic differentiation of LacZ- and BMP-4-transduced MDSCs with or without transforming growth factor beta1 (TGFbeta1) stimulation. We used a nude rat model of a full-thickness articular cartilage defect to assess the duration of LacZ transgene expression and evaluate the ability of transplanted cells to acquire a chondrocytic phenotype. We evaluated cartilage repair macroscopically and histologically 4, 8, 12, and 24 weeks after surgery, and performed histologic grading of the repaired tissues. RESULTS BMP-4-expressing MDSCs acquired a chondrocytic phenotype in vitro more effectively than did MDSCs expressing only LacZ; the addition of TGFbeta1 did not alter chondrogenic differentiation of the BMP-4-transduced MDSCs. LacZ expression within the repaired tissue continued for up to 12 weeks. Four weeks after surgery, we detected donor cells that coexpressed beta-galactosidase and type II collagen. Histologic scoring of the defect sites 24 weeks after transplantation revealed significantly better cartilage repair in animals that received BMP-4-transduced MDSCs than in those that received MDSCs expressing only LacZ. CONCLUSION Local delivery of BMP-4 by genetically engineered MDSCs enhanced chondrogenesis and significantly improved articular cartilage repair in rats.
Collapse
Affiliation(s)
- Ryosuke Kuroda
- Children's Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Furusawa T, Lim JH, Catez F, Birger Y, Mackem S, Bustin M. Down-regulation of nucleosomal binding protein HMGN1 expression during embryogenesis modulates Sox9 expression in chondrocytes. Mol Cell Biol 2006; 26:592-604. [PMID: 16382150 PMCID: PMC1346905 DOI: 10.1128/mcb.26.2.592-604.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We find that during embryogenesis the expression of HMGN1, a nuclear protein that binds to nucleosomes and reduces the compaction of the chromatin fiber, is progressively down-regulated throughout the entire embryo, except in committed but continuously renewing cell types, such as the basal layer of the epithelium. In the developing limb bud, the expression of HMGN1 is complementary to Sox9, a master regulator of the chondrocyte lineage. In limb bud micromass cultures, which faithfully mimic in vivo chondrogenic differentiation, loss of HMGN1 accelerates differentiation. Expression of wild-type HMGN1, but not of a mutant HMGN1 that does not bind to chromatin, in Hmgn1-/- micromass cultures inhibits Sox9 expression and retards differentiation. Chromatin immunoprecipitation analysis reveals that HMGN1 binds to Sox9 chromatin in cells that are poised to express Sox9. Loss of HMGN1 elevates the amount of HMGN2 bound to Sox9, suggesting functional redundancy among these proteins. These findings suggest a role for HMGN1 in chromatin remodeling during embryogenesis and in the activation of Sox9 during chondrogenesis.
Collapse
Affiliation(s)
- Takashi Furusawa
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3122, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
111
|
Fujimaki R, Toyama Y, Hozumi N, Tezuka KI. Involvement of Notch signaling in initiation of prechondrogenic condensation and nodule formation in limb bud micromass cultures. J Bone Miner Metab 2006; 24:191-8. [PMID: 16622731 DOI: 10.1007/s00774-005-0671-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 11/21/2005] [Indexed: 11/29/2022]
Abstract
Notch signaling is an evolutionarily conserved mechanism that plays a critical role in the determination of multiple cellular differentiation pathways and morphogenesis during embryogenesis. The limb bud high-density culture is an established model that recapitulates mesenchymal condensation and chondrocyte differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) showed that Notch and its related genes were expressed in such cultures on day 1 and reached a peak between day 3 and day 5, when cell condensation and nodule formation were initiated. Immunohistochemical experiments revealed that the expression of Notch1 was initially localized within the nodules and shifted to their peripheral region as the cell differentiation progressed. We disrupted Notch signaling by using a gamma-secretase inhibitor, N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT), to analyze the function of Notch signaling in the culture system. The blocking of Notch signaling by DAPT apparently promoted the initiation of prechondrogenic condensation and fusion of the nodules, and such an effect was reversed by exogenous expression of the Notch cytoplasmic domain. DAPT treatment also induced chondrogenic markers and bone morphogenetic protein (BMP)-related molecules, including type II collagen, Sox9, GDF5, and Id1. These observations imply that the Notch signal may have an important role in chondrogenic differentiation by negatively regulating the initiation of prechondrogenic condensation and nodule formation.
Collapse
Affiliation(s)
- Ryoji Fujimaki
- Research Institute for Biological Sciences, Tokyo University of Science, Rikadai, Chiba, Japan
| | | | | | | |
Collapse
|
112
|
Ochi K, Derfoul A, Tuan RS. A predominantly articular cartilage-associated gene, SCRG1, is induced by glucocorticoid and stimulates chondrogenesis in vitro. Osteoarthritis Cartilage 2006; 14:30-8. [PMID: 16188469 DOI: 10.1016/j.joca.2005.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 07/26/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage tissue engineering using multipotential human mesenchymal stem cells (hMSCs) is a promising approach to develop treatment for degenerative joint diseases. A key requirement is that the engineered tissues maintain their hyaline articular cartilage phenotype and not proceed towards hypertrophy. It is noteworthy that osteoarthritic articular cartilage frequently contains limited regions of reparative cartilage, suggesting the presence of bioactive factors with regenerative activity. Based on this idea, we recently performed cDNA microarray analysis to identify genes that are strongly expressed only in articular cartilage and encode secreted gene products. One of the genes that met our criteria was SCRG1. This study aims to analyze SCRG1 function in cartilage development using an in vitro mesenchymal chondrogenesis system. METHODS Full-length SCRG1 cDNA was subcloned into pcDNA5 vector, and transfected into hMSCs and murine C3H10T1/2 mesenchymal cells, placed in pellet cultures and micromass cultures, respectively. The cultures were analyzed by reverse transcription-polymerase chain reaction for the expression of SCRG1 and cartilage marker genes, and by histological staining for cartilage phenotype. RESULTS Induction of SCRG1 expression was seen during in vitro chondrogenesis, and was dependent on dexamethasone (DEX) known to promote chondrogenesis. Immunohistochemistry revealed that SCRG1 protein was localized to the extracellular matrix. Forced expression of SCRG1 in hMSCs suppressed their proliferation, and stimulated chondrogenesis in C3H10T1/2 cells, confirmed by reduced collagen type I and elevated collagen type IIB expression. CONCLUSION These results suggest that SCRG1 is involved in cell growth suppression and differentiation during DEX-dependent chondrogenesis. SCRG1 may be of utility in gene-mediated cartilage tissue engineering.
Collapse
Affiliation(s)
- Kensuke Ochi
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-8022, USA
| | | | | |
Collapse
|
113
|
Honig MG, Camilli SJ, Surineni KM, Knight BK, Hardin HM. The contributions of BMP4, positive guidance cues, and repulsive molecules to cutaneous nerve formation in the chick hindlimb. Dev Biol 2005; 282:257-73. [PMID: 15936345 DOI: 10.1016/j.ydbio.2005.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 03/04/2005] [Accepted: 03/10/2005] [Indexed: 11/21/2022]
Abstract
Our previous surgical manipulations have shown that the target ectoderm is necessary for the initial formation of one of the major cutaneous nerves in the embryonic chick limb (Honig, M.G., Camilli, S.J., Xue, Q.S., 2004. Ectoderm removal prevents cutaneous nerve formation and perturbs sensory axon growth in the chick hindlimb. Dev. Biol. 266, 27-42.). Moreover, the target ectoderm is required during a critical time period, at approximately St. 24, when those axons are about to diverge from the hindlimb plexus. To elucidate the underlying mechanisms, here we examined the effects of removing the ectoderm at St. 24 on a variety of molecules expressed within the limb. We find that, while ectoderm removal is accompanied by changes in the expression of Lmx1, fibronectin, EphA7, cDermo-1, and in the complement of muscle cells, these changes do not account for the cutaneous nerve deficit. In contrast, an upregulation of PNA-binding sites and a downregulation of Bmp4 appear to be associated with this nerve deficit. Exogenous BMP4 reversed the effect of ectoderm removal on cutaneous nerve formation, but did not act as a chemoattractant. Our results suggest that BMP4, together with permissive and repulsive molecules that growing cutaneous axons encounter in the local environment and with signaling molecules, originating from and/or dependent on the ectoderm, work in concert to ensure proper cutaneous nerve formation.
Collapse
Affiliation(s)
- Marcia G Honig
- Department of Anatomy and Neurobiology, University of Tennessee College of Medicine, The Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
114
|
Meech R, Edelman DB, Jones FS, Makarenkova HP. The homeobox transcription factor Barx2 regulates chondrogenesis during limb development. Development 2005; 132:2135-46. [PMID: 15800003 DOI: 10.1242/dev.01811] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among the many factors involved in regulation of chondrogenesis, bone morphogenetic proteins (BMPs) and members of the Sox and homeobox transcription factor families have been shown to have crucial roles. Of these regulators, the homeobox transcription factors that function during chondrogenesis have been the least well defined. We show here that the homeobox transcription factor Barx2 is expressed in primary mesenchymal condensations, digital rays, developing joints and articular cartilage of the developing limb, suggesting that it plays a role in chondrogenesis. Using retroviruses and antisense oligonucleotides to manipulate Barx2 expression in limb bud micromass cultures, we determined that Barx2 is necessary for mesenchymal aggregation and chondrogenic differentiation. In accordance with these findings, Barx2 regulates the expression of several genes encoding cell-adhesion molecules and extracellular matrix proteins, including NCAM and collagen II (Col2a1) in the limb bud. Barx2 bound to elements within the cartilage-specific Col2a1 enhancer, and this binding was reduced by addition of Barx2 or Sox9 antibodies, or by mutation of a HMG box adjacent to the Barx2-binding element, suggesting cooperation between Barx2 and Sox proteins. Moreover, both Barx2 and Sox9 occupy Col2a1 enhancer during chondrogenesis in vivo. We also found that two members of the BMP family that are crucial for chondrogenesis, GDF5 and BMP4, regulate the pattern of Barx2 expression in developing limbs. Based on these data, we suggest that Barx2 acts downstream of BMP signaling and in concert with Sox proteins to regulate chondrogenesis.
Collapse
Affiliation(s)
- Robyn Meech
- The Neurosciences Institute 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
115
|
Bai X, Xiao Z, Pan Y, Hu J, Pohl J, Wen J, Li L. Cartilage-derived morphogenetic protein-1 promotes the differentiation of mesenchymal stem cells into chondrocytes. Biochem Biophys Res Commun 2005; 325:453-60. [PMID: 15530414 DOI: 10.1016/j.bbrc.2004.10.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are able to differentiate into many types of cells including chondrocytes. Transforming growth factor beta1 (TGF-beta1) is very important in the regulation of chondrogenesis. Since cartilage-derived morphogenetic protein-1 (CDMP-1) belongs to the TGF-beta superfamily, we tested whether CDMP-1 plays any role in the regulation of the differentiation of MSCs into chondrocytes using a high density pellet culture system. Based on the histological staining of glycosaminoglycan using toluidine blue dye-binding method we found that CDMP-1 could initiate chondrogenic differentiation of MSCs as did TGF-beta1. However, CDMP-1 was less stimulatory than TGF-beta1. The combination of CDMP-1 and TGF-beta1 synergically induced chondrogenesis of MSCs. This synergic chondrogenic effect of CDMP-1 together with TGF-beta1 was further confirmed by quantification of GAG using dimethylmethylene blue dye-binding assay and immunohistochemical analysis of the expression of cartilage-specific protein collagen II. This study may provide an improved induction approach using MSCs for repairing damaged cartilage.
Collapse
Affiliation(s)
- Xiaowen Bai
- Peking University Stem Cell Research Center, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
116
|
Rickert M, Wang H, Wieloch P, Lorenz H, Steck E, Sabo D, Richter W. Adenovirus-mediated gene transfer of growth and differentiation factor-5 into tenocytes and the healing rat Achilles tendon. Connect Tissue Res 2005; 46:175-83. [PMID: 16546820 DOI: 10.1080/03008200500237120] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Growth and differentiation factor-5 (GDF-5) is known to induce tendon tissue and stimulate tendon healing. The hypothesis was that adenoviral GDF-5 transfer leads to transitory transgene expression and improves Achilles tendon healing. In vitro experiments were first performed with rat tenocytes. Transgene expression was evaluated by RT-PCR, Western blotting and GDF-5-ELISA. In vivo virus dosage and transgene expression were examined by a marker gene transfer (LacZ and luciferase). In the main experiment in 131 rats, adenovirus particles (3 x 10(10)) were injected into transected Achilles tendons. The time course of GDF-5 mRNA expression was assessed by real-time RT-PCR. Histology and biomechanical testing were used to evaluate tendon healing and tensile strength. In vitro GDF-5 was secreted with a maximum after 2 weeks (330 ng GDF-5/10(6) cells per 24 hr). In vivo GDF-5 transgene expression showed a maximum at 4 weeks. At 8 weeks, GDF-5 specimens were thicker (p<0.05) with a trend to higher strength (p=0,064). Histology showed greater cartilage formation in type II collagen stains than in controls. Injection of adenovirus particles successfully can deliver the GDF-5 gene in healing tendons and leads to thicker tendon regenerates after 8 weeks. This technique might become a new approach for nonsurgical treatment of tendon injuries.
Collapse
Affiliation(s)
- Markus Rickert
- Department of Orthopaedic Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
117
|
Guo X, Day TF, Jiang X, Garrett-Beal L, Topol L, Yang Y. Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev 2004; 18:2404-17. [PMID: 15371327 PMCID: PMC522990 DOI: 10.1101/gad.1230704] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A critical step in skeletal morphogenesis is the formation of synovial joints, which define the relative size of discrete skeletal elements and are required for the mobility of vertebrates. We have found that several Wnt genes, including Wnt4, Wnt14, and Wnt16, were expressed in overlapping and complementary patterns in the developing synovial joints, where beta-catenin protein levels and transcription activity were up-regulated. Removal of beta-catenin early in mesenchymal progenitor cells promoted chondrocyte differentiation and blocked the activity of Wnt14 in joint formation. Ectopic expression of an activated form of beta-catenin or Wnt14 in early differentiating chondrocytes induced ectopic joint formation both morphologically and molecularly. In contrast, genetic removal of beta-catenin in chondrocytes led to joint fusion. These results demonstrate that the Wnt/beta-catenin signaling pathway is necessary and sufficient to induce early steps of synovial joint formation. Wnt4, Wnt14, and Wnt16 may play redundant roles in synovial joint induction by signaling through the beta-catenin-mediated canonical Wnt pathway.
Collapse
Affiliation(s)
- Xizhi Guo
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|