101
|
Beltrán-García J, Osca-Verdegal R, Romá-Mateo C, Carbonell N, Ferreres J, Rodríguez M, Mulet S, García-López E, Pallardó FV, García-Giménez JL. Epigenetic biomarkers for human sepsis and septic shock: insights from immunosuppression. Epigenomics 2020; 12:617-646. [PMID: 32396480 DOI: 10.2217/epi-2019-0329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a life-threatening condition that occurs when the body responds to an infection damaging its own tissues. Sepsis survivors sometimes suffer from immunosuppression increasing the risk of death. To our best knowledge, there is no 'gold standard' for defining immunosuppression except for a composite clinical end point. As the immune system is exposed to epigenetic changes during and after sepsis, research that focuses on identifying new biomarkers to detect septic patients with immunoparalysis could offer new epigenetic-based strategies to predict short- and long-term pathological events related to this life-threatening state. This review describes the most relevant epigenetic mechanisms underlying alterations in the innate and adaptive immune responses described in sepsis and septic shock, and their consequences for immunosuppression states, providing several candidates to become epigenetic biomarkers that could improve sepsis management and help predict immunosuppression in postseptic patients.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - José Ferreres
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - María Rodríguez
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - Sandra Mulet
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,Intensive Care Unit, Clinical University Hospital of Valencia, Valencia 46010, Spain
| | - Eva García-López
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia 46010, Spain.,Department of Physiology, Faculty of Medicine & Dentistry, University of Valencia, Valencia 46010, Spain.,INCLIVA Biomedical Research Institute, Valencia 46010, Spain.,EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna 46980, Valencia, Spain
| |
Collapse
|
102
|
Ye C, Qi W, Dai S, Zou G, Liu W, Yu B, Tang J. microRNA-223 promotes autophagy to aggravate lung ischemia-reperfusion injury by inhibiting the expression of transcription factor HIF2α. Am J Physiol Lung Cell Mol Physiol 2020; 319:L1-L10. [PMID: 32267722 DOI: 10.1152/ajplung.00009.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lung ischemia-reperfusion (I/R) injury severely endangers human health, and recent studies have suggested that certain microRNAs (miRNAs) play important roles in this pathological phenomenon. The current study aimed to ascertain the ability of miR-223 to influence lung I/R injury by targeting hypoxia-inducible factor-2α (HIF2α). First, mouse models of lung I/R injury were established: during surgical procedures, pulmonary arteries and veins and unilateral pulmonary portal vessels were blocked and resuming bilateral pulmonary ventilation, followed by restoration of bipulmonary ventilation. In addition, a lung I/R injury cell model was constructed by exposure to hypoxic reoxygenation (H/R) in mouse pulmonary microvascular endothelial cells (PMVECs). Expression of miR-223, HIF2α and β-catenin in tissues or cells was determined by RT-qPCR and Western blot analysis. Correlation between miR-223 and HIF2α was analyzed by dual luciferase reporter gene assay. Further, lung tissue injury and mouse PMVEC apoptosis was evaluated by HE, TUNEL staining and flow cytometry. Autophagosomes in cells were detected by light chain3 immunofluorescence assay. miR-223 was expressed at a high level while HIF2α/β-catenin was downregulated in tissues and cells with lung I/R injury. Further, miR-223 targeted and repressed HIF2α expression to downregulate β-catenin expression. The miR-223/HIF2α/β-catenin axis aggravated H/R injury in mouse PMVECs and lung I/R injury in mice by enhancing autophagy. Taken together, miR-223 inhibits HIF2α to repress β-catenin, thus contributing to autophagy to complicate lung I/R injury. These findings provide a promising therapeutic target for treating lung I/R injury.
Collapse
Affiliation(s)
- Chunlin Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, China
| | - Wanghong Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, China
| | - Shaohua Dai
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, China
| | - Guowen Zou
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, China
| | - Weicheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, China
| | - Jian Tang
- Thoracic Surgery, the First Affiliated Hospital of Nanchang University, China
| |
Collapse
|
103
|
Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun 2020; 109:102438. [PMID: 32184036 DOI: 10.1016/j.jaut.2020.102438] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are evolutionally conserved, single-stranded RNAs that regulate gene expression at the posttranscriptional level by disrupting translation. MiRNAs are key players in variety of biological processes that regulate the differentiation, development and activation of immune cells in both innate and adaptive immunity. The disruption and dysfunction of miRNAs can perturb the immune response, stimulate the release of inflammatory cytokines and initiate the production of autoantibodies, and contribute to the pathogenesis of autoimmune diseases, including systemic lupus erythmatosus (SLE), rheumatoid arthritis (RA), primary biliary cholangitis (PBC), and multiple sclerosis (MS). Accumulating studies demonstrate that miRNAs, which can be collected by noninvasive methods, have the potential to be developed as diagnostic and therapeutic biomarkers, the discovery and validation of which is essential for the improvement of disease diagnosis and clinical monitoring. Recently, with the development of detection tools, such as microarrays and NGS (Next Generation Sequencing), large amounts of miRNAs have been identified and suggest a critical role in the pathogenesis of autoimmune diseases. Several miRNAs associated diagnostic biomarkers have been developed and applied clinically, though the pharmaceutical industry is still facing challenges in commercialization and drug delivery. The development of miRNAs is less advanced for autoimmune diseases compared with cancer. However, drugs that target miRNAs have been introduced as candidates and adopted in clinical trials. This review comprehensively summarizes the differentially expressed miRNAs in several types of autoimmune diseases and discusses the role and the significance of miRNAs in clinical management. The study of miRNAs in autoimmunity promises to provide novel and broad diagnostic and therapeutic strategies for a clinical market that is still in its infancy.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical, Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
104
|
ncRNAs in Type-2 Immunity. Noncoding RNA 2020; 6:ncrna6010010. [PMID: 32155783 PMCID: PMC7151598 DOI: 10.3390/ncrna6010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Immunological diseases, including asthma, autoimmunity and immunodeficiencies, affect a growing percentage of the population with significant unmet medical needs. As we slowly untangle and better appreciate these complex genetic and environment-influenced diseases, new therapeutically targetable pathways are emerging. Non-coding RNA species, which regulate epigenetic, transcriptional and translational responses are critical regulators of immune cell development, differentiation and effector function, and may represent one such new class of therapeutic targets. In this review we focus on type-2 immune responses, orchestrated by TH2 cell-derived cytokines, IL-4, IL-5 and IL-13, which stimulate a variety of immune and tissue responses- commonly referred to as type-2 immunity. Evolved to protect us from parasitic helminths, type-2 immune responses are observed in individuals with allergic diseases, including Asthma, atopic dermatitis and food allergy. A growing number of studies have identified the involvement of various RNA species, including microRNAs (miRNA) and long non-coding (lncRNA), in type-2 immune responses and in both clinical and pre-clinical disease settings. We highlight these recent findings, identify gaps in our understanding and provide a perspective on how our current understanding can be harnessed for novel treat opportunities to treat type-2 immune-mediated diseases.
Collapse
|
105
|
Scalavino V, Liso M, Serino G. Role of microRNAs in the Regulation of Dendritic Cell Generation and Function. Int J Mol Sci 2020; 21:ijms21041319. [PMID: 32075292 PMCID: PMC7072926 DOI: 10.3390/ijms21041319] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells with a key role in immune responses. They act as a link between the innate and adaptive systems and they can induce and maintain immunologic tolerance. DCs are subdivided into conventional and plasmacytoid DCs. These cell subsets originate from the same bone marrow precursors and their differentiation process is determined by several extrinsic and intrinsic factors, such as cytokines, transcription factors, and miRNAs. miRNAs are small non-coding RNAs that play a crucial role in modulating physiological and pathological processes mediated by DCs. miRNA deregulation affects many inflammatory conditions and diseases. The aim of this review was to underline the importance of miRNAs in inflammatory processes mediated by DCs in physiological and pathological conditions and to highlight their potential application for future therapies.
Collapse
|
106
|
Diagnostic, Prognostic, and Therapeutic Value of Non-Coding RNA Expression Profiles in Renal Transplantation. Diagnostics (Basel) 2020; 10:diagnostics10020060. [PMID: 31978997 PMCID: PMC7168890 DOI: 10.3390/diagnostics10020060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
End-stage renal disease is a public health problem responsible for millions of deaths worldwide each year. Although transplantation is the preferred treatment for patients in need of renal replacement therapy, long-term allograft survival remains challenging. Advances in high-throughput methods for large-scale molecular data generation and computational analysis are promising to overcome the current limitations posed by conventional diagnostic and disease classifications post-transplantation. Non-coding RNAs (ncRNAs) are RNA molecules that, despite lacking protein-coding potential, are essential in the regulation of epigenetic, transcriptional, and post-translational mechanisms involved in both health and disease. A large body of evidence suggests that ncRNAs can act as biomarkers of renal injury and graft loss after transplantation. Hence, the focus of this review is to discuss the existing molecular signatures of non-coding transcripts and their value to improve diagnosis, predict the risk of rejection, and guide therapeutic choices post-transplantation.
Collapse
|
107
|
Gumbert SD, Kork F, Jackson ML, Vanga N, Ghebremichael SJ, Wang CY, Eltzschig HK. Perioperative Acute Kidney Injury. Anesthesiology 2020; 132:180-204. [PMID: 31687986 PMCID: PMC10924686 DOI: 10.1097/aln.0000000000002968] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perioperative organ injury is among the leading causes of morbidity and mortality of surgical patients. Among different types of perioperative organ injury, acute kidney injury occurs particularly frequently and has an exceptionally detrimental effect on surgical outcomes. Currently, acute kidney injury is most commonly diagnosed by assessing increases in serum creatinine concentration or decreased urine output. Recently, novel biomarkers have become a focus of translational research for improving timely detection and prognosis for acute kidney injury. However, specificity and timing of biomarker release continue to present challenges to their integration into existing diagnostic regimens. Despite many clinical trials using various pharmacologic or nonpharmacologic interventions, reliable means to prevent or reverse acute kidney injury are still lacking. Nevertheless, several recent randomized multicenter trials provide new insights into renal replacement strategies, composition of intravenous fluid replacement, goal-directed fluid therapy, or remote ischemic preconditioning in their impact on perioperative acute kidney injury. This review provides an update on the latest progress toward the understanding of disease mechanism, diagnosis, and managing perioperative acute kidney injury, as well as highlights areas of ongoing research efforts for preventing and treating acute kidney injury in surgical patients.
Collapse
Affiliation(s)
- Sam D. Gumbert
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Felix Kork
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Maisie L. Jackson
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Naveen Vanga
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Semhar J. Ghebremichael
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Christy Y. Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
108
|
Role of microRNAs in host defense against Echinococcus granulosus infection: a preliminary assessment. Immunol Res 2019; 67:93-97. [PMID: 30498955 DOI: 10.1007/s12026-018-9041-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cystic echinococcosis (CE) is a neglected helminthic zoonosis caused by the larval stage of the tapeworm Echinococcus granulosus s.l. MicroRNAs (miRNAs) are regulators of gene expression that have been linked with the pathogenesis of several human diseases, but little exists in the available literature about miRNAs in CE. Here, we investigate the expression profiles of 84 microRNAs relevant to the function of lymphocytes and other immune cells during CE infection in the peripheral blood of patients with cysts in active and inactive stages. We applied the microRNA PCR array technology to blood samples from 20 patients with a single hepatic CE cyst in either the active (CE3b) or inactive (CE4-CE5) stage. Our results show a significant upregulation of eight miRNAs (let-7g-5p, let-7a-5p, miR- 26a-5p, miR- 26b-5p, miR- 195-5p, miR- 16-5p, miR- 30c-5p, and miR- 223-3p) in patients with active cysts compared to those with inactive cysts. The high expression of these miRNAs in patients with active cysts suggests their role in a specific host immune response against the infection. Further work in this direction may help shed light on the pathogenesis of human CE.
Collapse
|
109
|
Abstract
Anesthetics are widely used drugs administered in a multitude of clinical settings. Their impacts on various functions of the immune system have been studied but are still not fully understood. Neutrophil granulocytes are a critical first-line host defense mechanism against infections and contribute to the inflammatory phase of wound healing, but dysregulated neutrophil activation can also precipitate perioperative organ injury. A better understanding of the interactions between common anesthetics and neutrophils may reveal considerations toward optimizing treatment of our most vulnerable patients in the intensive care unit and in the perioperative setting.
Collapse
Affiliation(s)
- Angela Meier
- From the Department of Anesthesiology, Division of Critical Care, University of San Diego, San Diego, California
| | - Victor Nizet
- Department of Pediatrics, Division of Host-Microbe Systems & Therapeutics, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, San Diego, California
| |
Collapse
|
110
|
Shen NN, Zhang C, Li Z, Kong LC, Wang XH, Gu ZC, Wang JL. MicroRNA expression signatures of atrial fibrillation: The critical systematic review and bioinformatics analysis. Exp Biol Med (Maywood) 2019; 245:42-53. [PMID: 31766887 DOI: 10.1177/1535370219890303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Association between microRNA (miRNA) expression signatures and atrial fibrillation has been evaluated with inconsistent findings in different studies. This study aims to identify miRNAs that actually play vital role in pathophysiological process of atrial fibrillation and explore miRNA-targeted genes and the involved pathways. Relevant studies were retrieved from the electronic databases of Embase, Medline, and Cochrane Library to determine the miRNA expression profiles between atrial fibrillation subjects and non-atrial fibrillation controls. Robustness of results was assessed using sensitivity analysis. Subgroup analyses were performed based on species, miRNA detection method, sample source, and ethnicity. Quality assessment of studies was independently conducted according to QUADAS-2. Bioinformatics analysis was applied to explore the potential genes and pathways associated with atrial fibrillation, which were targeted by differentially expressed miRNAs. Form of pooled results was shown as log10 odds ratios (logORs) with 95% confidence intervals (CI), and random-effects model was used. In total, 40 articles involving 283 differentially expressed miRNAs were reported. And 51 significantly dysregulated miRNAs were identified in consistent direction, with 22 upregulated and 29 downregulated. Among above-mentioned miRNAs, miR-223-3p (logOR 6.473; P < 0.001) was the most upregulated, while miR-1-5p (logOR 7.290; P < 0.001) was the most downregulated. Subgroup analysis confirmed 53 significantly dysregulated miRNAs (21 upregulated and 32 downregulated) in cardiac tissue, with miRNA-1-5p and miRNA-223-3p being the most upregulated and downregulated miRNAs, respectively. Additionally, miR-328 and miR-1-5p were highly blood-specific, and miR-133 was animal-specific. In the detection method sub-groups, miRNA-29b and miRNA-223-3p were differentially expressed consistently. Four miRNAs, including miRNA-223-3p, miRNA-21, miRNA-328, and miRNA-1-5p, were consistently dysregulated in both Asian and non-Asian. Results of sensitivity analysis showed that 47 out of 51 (92.16%) miRNAs were dysregulated consistently. Totally, 51 consistently dysregulated miRNAs associated with atrial fibrillation were confirmed in this study. Five important miRNAs, including miR-29b, miR-328, miR-1-5p, miR-21, and miR-223-3p may act as potential biomarkers for atrial fibrillation. Impact statement Atrial fibrillation (AF) is considered as the most common arrhythmia, and it subsequently causes serious complications including thrombosis and heart failure that increase the social burden. The definite mechanisms underlying AF pathogenesis remain complicated and unclear. Many studies attempted to discover the transcriptomic changes using microarray technologies, and the present studies for this hot topic have assessed individual miRNAs profiles for AF. However, results of different articles are controversial and not each reported miRNA is actually associated with the pathogenesis of AF. The present systematic review and meta-analysis identified that 51 consistently dysregulated miRNAs were associated with AF. Of these miRNAs, five miRNAs (miRNA-1-5p, miRNA-328, miRNA-29b, miRNA-21, and miRNA-223-3p) may act as novel biomarkers for AF. The findings could offer a better description of the biological characteristics of miRNAs, meanwhile might serve as new target for the intervention and monitoring AF in future studies.
Collapse
Affiliation(s)
- Nan-Nan Shen
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shao Xing 312000, China.,State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chi Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zheng Li
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ling-Cong Kong
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xin-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhi-Chun Gu
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jia-Liang Wang
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shao Xing 312000, China
| |
Collapse
|
111
|
He Y, Hwang S, Cai Y, Kim SJ, Xu M, Yang D, Guillot A, Feng D, Seo W, Hou X, Gao B. MicroRNA-223 Ameliorates Nonalcoholic Steatohepatitis and Cancer by Targeting Multiple Inflammatory and Oncogenic Genes in Hepatocytes. Hepatology 2019; 70:1150-1167. [PMID: 30964207 PMCID: PMC6783322 DOI: 10.1002/hep.30645] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of diseases ranging from simple steatosis to more severe forms of liver injury including nonalcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC). In humans, only 20%-40% of patients with fatty liver progress to NASH, and mice fed a high-fat diet (HFD) develop fatty liver but are resistant to NASH development. To understand how simple steatosis progresses to NASH, we examined hepatic expression of anti-inflammatory microRNA-223 (miR-223) and found that this miRNA was highly elevated in hepatocytes in HFD-fed mice and in human NASH samples. Genetic deletion of miR-223 induced a full spectrum of NAFLD in long-term HFD-fed mice including steatosis, inflammation, fibrosis, and HCC. Furthermore, microarray analyses revealed that, compared to wild-type mice, HFD-fed miR-223 knockout (miR-223KO) mice had greater hepatic expression of many inflammatory genes and cancer-related genes, including (C-X-C motif) chemokine 10 (Cxcl10) and transcriptional coactivator with PDZ-binding motif (Taz), two well-known factors that promote NASH development. In vitro experiments demonstrated that Cxcl10 and Taz are two downstream targets of miR-223 and that overexpression of miR-223 reduced their expression in cultured hepatocytes. Hepatic levels of miR-223, CXCL10, and TAZ mRNA were elevated in human NASH samples, which positively correlated with hepatic levels of several miR-223 targeted genes as well as several proinflammatory, cancer-related, and fibrogenic genes. Conclusion: HFD-fed miR-223KO mice develop a full spectrum of NAFLD, representing a clinically relevant mouse NAFLD model; miR-223 plays a key role in controlling steatosis-to-NASH progression by inhibiting hepatic Cxcl10 and Taz expression and may be a therapeutic target for the treatment of NASH.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seung-Jin Kim
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dingcheng Yang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin Hou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
112
|
Affiliation(s)
- Steven A. Frank
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| | | |
Collapse
|
113
|
Wang R, Wang FF, Cao HW, Yang JY. MiR-223 regulates proliferation and apoptosis of IL-22-stimulated HaCat human keratinocyte cell lines via the PTEN/Akt pathway. Life Sci 2019; 230:28-34. [PMID: 31108094 DOI: 10.1016/j.lfs.2019.05.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
Abstract
Psoriasis, a chronic inflammatory skin disorder disease, is closely associated with hyperproliferation of keratinocytes. Upregulated miR-223 has been found in peripheral blood mononuclear cells from patients with psoriasis and from psoriatic skin. However, its role in keratinocytes remains unknown. We thus aimed to investigate the function of miR-223 in psoriasis. Interleukin-22 (IL-22) is a crucial keratinocyte trigger in the T-cell-mediated immune response to psoriasis. We found miR-223 to be overexpressed in psoriatic lesions and in IL-22-stimulated HaCaT cells. HaCaT cells then were transfected with a miR-223 mimic or inhibitor to overexpress or inhibit expression of miR-223, respectively. A Cell Counting Kit-8 assay revealed that miR-223 overexpression promoted and miR-223 downregulation inhibited proliferation in IL-22-stimulated HaCaT cells. Flow cytometry analysis certified that miR-223 overexpression decreased HaCaT cell apoptosis, whereas miR-223 downregulation increased it. A dual-luciferase reporter assay demonstrated that miR-223 directly targeted the phosphatase and tensin homolog (PTEN) gene. MiR-223 also negatively regulated mRNA and protein expression of PTEN and modulated the PTEN/Akt pathway in IL-22-stimulated HaCaT cells. PTEN silencing attenuated the activity of the miR-223 inhibitor in these cells via the PTEN/Akt pathway. Overall, the results showed that miR-223 increased proliferation and inhibited apoptosis of IL-22-stimulated keratinocytes via the PTEN/Akt pathway.
Collapse
Affiliation(s)
- Rui Wang
- Department of Dermatovenereology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Fei-Fei Wang
- Department of Dermatovenereology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hong-Wei Cao
- Department of Dermatovenereology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun-Ya Yang
- Department of Dermatovenereology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
114
|
Brook AC, Jenkins RH, Clayton A, Kift-Morgan A, Raby AC, Shephard AP, Mariotti B, Cuff SM, Bazzoni F, Bowen T, Fraser DJ, Eberl M. Neutrophil-derived miR-223 as local biomarker of bacterial peritonitis. Sci Rep 2019; 9:10136. [PMID: 31300703 PMCID: PMC6625975 DOI: 10.1038/s41598-019-46585-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023] Open
Abstract
Infection remains a major cause of morbidity, mortality and technique failure in patients with end stage kidney failure who receive peritoneal dialysis (PD). Recent research suggests that the early inflammatory response at the site of infection carries diagnostically relevant information, suggesting that organ and pathogen-specific "immune fingerprints" may guide targeted treatment decisions and allow patient stratification and risk prediction at the point of care. Here, we recorded microRNA profiles in the PD effluent of patients presenting with symptoms of acute peritonitis and show that elevated peritoneal miR-223 and reduced miR-31 levels were useful predictors of bacterial infection. Cell culture experiments indicated that miR-223 was predominantly produced by infiltrating immune cells (neutrophils, monocytes), while miR-31 was mainly derived from the local tissue (mesothelial cells, fibroblasts). miR-223 was found to be functionally stabilised in PD effluent from peritonitis patients, with a proportion likely to be incorporated into neutrophil-derived exosomes. Our study demonstrates that microRNAs are useful biomarkers of bacterial infection in PD-related peritonitis and have the potential to contribute to disease-specific immune fingerprints. Exosome-encapsulated microRNAs may have a functional role in intercellular communication between immune cells responding to the infection and the local tissue, to help clear the infection, resolve the inflammation and restore homeostasis.
Collapse
Affiliation(s)
- Amy C Brook
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Robert H Jenkins
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Wales Kidney Research Unit, Heath Park Campus, Cardiff, United Kingdom
| | - Aled Clayton
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ann Kift-Morgan
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anne-Catherine Raby
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Wales Kidney Research Unit, Heath Park Campus, Cardiff, United Kingdom
| | - Alex P Shephard
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Barbara Mariotti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Simone M Cuff
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Flavia Bazzoni
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Timothy Bowen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Wales Kidney Research Unit, Heath Park Campus, Cardiff, United Kingdom
| | - Donald J Fraser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Wales Kidney Research Unit, Heath Park Campus, Cardiff, United Kingdom
- Directorate of Nephrology and Transplantation, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
115
|
Circulatory miR-223-3p Discriminates Between Parkinson's and Alzheimer's Patients. Sci Rep 2019; 9:9393. [PMID: 31253822 PMCID: PMC6599033 DOI: 10.1038/s41598-019-45687-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
MiR-223-3p is involved in the regulation of a broad range of cellular processes and in many types of pathological processes as cancer, autoimmune and inflammatory diseases. MiR-223-3p has been indicated as negative regulator of NLRP3 protein, a key protein of inflammasome. The chronic inflammasome activation, an underlying feature of neurodegenerative disorders, is induced by misfolded protein aggregates, including amyloid-beta and alpha-synuclein, resulting in pro-inflammatory cytokines secretion and propagating of neuroinflammation. The aim of the study was to analyze whether circulatory miR-223-3p could be used as biomarker in neurodegeneration and to clarify its possible relationship with inflammasome activation. miR-223-3p concentration was evaluated in serum of Alzheimer’s (AD) and Parkinson’s disease (PD) or mild cognitive impairment (MCI) patients and healthy controls (HC). Compared to HC, miR-223-3p serum concentration was reduced in MCI and AD, but up-regulated in PD (p < 0.0001), and it decreased progressively from MCI to moderate (p < 0.0001) to severe AD (p = 0.0016). Receiver operating characteristic analysis showed that miR-223-3p concentration discriminates between AD, PD and MCI vs. HC, as well as between AD and PD. miR-223-3p serum concentration discriminates between AD/MCI and PD, suggesting that this molecule could be a potential non-invasive biomarker for differential diagnosis and prognosis of these neurodegenerative conditions.
Collapse
|
116
|
Andonian BJ, Chou CH, Ilkayeva OR, Koves TR, Connelly MA, Kraus WE, Kraus VB, Huffman KM. Plasma MicroRNAs in Established Rheumatoid Arthritis Relate to Adiposity and Altered Plasma and Skeletal Muscle Cytokine and Metabolic Profiles. Front Immunol 2019; 10:1475. [PMID: 31316517 PMCID: PMC6610455 DOI: 10.3389/fimmu.2019.01475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background: MicroRNAs have been implicated in the pathogenesis of rheumatoid arthritis (RA), obesity, and altered metabolism. Although RA is associated with both obesity and altered metabolism, expression of RA-related microRNA in the setting of these cardiometabolic comorbidities is unclear. Our objective was to determine relationships between six RA-related microRNAs and RA disease activity, inflammation, body composition, and metabolic function. Methods: Expression of plasma miR-21, miR-23b, miR-27a, miR-143, miR-146a, and miR-223 was measured in 48 persons with seropositive and/or erosive RA (mean DAS-28-ESR 3.0, SD 1.4) and 23 age-, sex-, and BMI-matched healthy controls. Disease activity in RA was assessed by DAS-28-ESR. Plasma cytokine concentrations were determined by ELISA. Body composition was assessed using CT scan to determine central and muscle adipose and thigh muscle tissue size and tissue density. Plasma and skeletal muscle acylcarnitine, amino acid, and organic acid metabolites were measured via mass-spectroscopy. Plasma lipoproteins were measured via nuclear magnetic resonance (NMR) spectroscopy. Spearman correlations were used to assess relationships for microRNA with inflammation and cardiometabolic measures. RA and control associations were compared using Fisher transformations. Results: Among RA subjects, plasma miR-143 was associated with plasma IL-6 and IL-8. No other RA microRNA was positively associated with disease activity or inflammatory markers. In RA, microRNA expression was associated with adiposity, both visceral adiposity (miR-146a, miR-21, miR-23b, and miR-27a) and thigh intra-muscular adiposity (miR-146a and miR-223). RA miR-146a was associated with greater concentrations of cardiometabolic risk markers (plasma short-chain dicarboxyl/hydroxyl acylcarnitines, triglycerides, large VLDL particles, and small HDL particles) and lower concentrations of muscle energy substrates (long-chain acylcarnitines and pyruvate). Despite RA and controls having similar microRNA levels, RA, and controls differed in magnitude and direction for several associations with cytokines and plasma and skeletal muscle metabolic intermediates. Conclusion: Most microRNAs thought to be associated with RA disease activity and inflammation were more reflective of RA adiposity and impaired metabolism. These associations show that microRNAs in RA may serve as an epigenetic link between RA inflammation and cardiometabolic comorbidities.
Collapse
Affiliation(s)
- Brian J Andonian
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ching-Heng Chou
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Timothy R Koves
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Margery A Connelly
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC, United States
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Kim M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
117
|
Rungelrath V, Kobayashi SD, DeLeo FR. Neutrophils in innate immunity and systems biology-level approaches. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1458. [PMID: 31218817 DOI: 10.1002/wsbm.1458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
The innate immune system is the first line of host defense against invading microorganisms. Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in humans and essential to the innate immune response against invading pathogens. Compared to the acquired immune response, which requires time to develop and is dependent on previous interaction with specific microbes, the ability of neutrophils to kill microorganisms is immediate, nonspecific, and not dependent on previous exposure to microorganisms. Historically, studies of PMN-pathogen interaction focused on the events leading to killing of microorganisms, such as recruitment/chemotaxis, transmigration, phagocytosis, and activation, whereas postphagocytosis sequelae were infrequently considered. In addition, it was widely accepted that human neutrophils possessed limited capacity for new gene transcription and thus, relatively little biosynthetic capacity. This notion has changed dramatically within the past 20 years. Further, there is now more effort directed to understand the events occurring in PMNs after killing of microbes. Herein, we give an updated review of the systems biology-level approaches that have been used to gain an enhanced view of the role of neutrophils during host-pathogen interaction and neutrophil-mediated diseases. We anticipate that these and future systems-level studies will continue to provide information important for understanding, treatment, and control of diseases caused by pathogenic microorganisms. This article is categorized under: Physiology > Organismal Responses to Environment Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates.
Collapse
Affiliation(s)
- Viktoria Rungelrath
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
118
|
Differentially Expressed miRNAs Influence Metabolic Processes in Pituitary Oncocytoma. Neurochem Res 2019; 44:2360-2371. [PMID: 30945144 PMCID: PMC6776564 DOI: 10.1007/s11064-019-02789-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
Spindle cell oncocytomas (SCO) of the pituitary are rare tumors accounting for 0.1–0.4% of all sellar tumors. Due to their rarity, little information is available regarding their pathogenesis. Our aim was to investigate miRNA expression profile of pituitary oncocytomas. Total RNA was extracted from 9 formalin-fixed paraffin embedded pituitary samples (4 primary, 3 recurrent oncocytomas and 2 normal tissues). Next-generation sequencing was performed for miRNA profiling. Transcriptome data of additional 6 samples’ were obtained from NBCI GEO database for gene expression reanalysis and tissue-specific target prediction. Bioinformatical analysis, in vitro miRNA mimics transfection, luciferase reporter system and AlamarBlue assay were applied to characterize miRNA’s function. 54 differentially expressed miRNAs and 485 genes in pituitary SCO vs. normal tissue and 8 miRNAs in recurrent vs. primary SCO were determined. Global miRNA downregulation and decreased level of DROSHA were detected in SCO samples vs. normal tissue. Transcriptome analysis revealed cell cycle alterations while miRNAs influenced mainly metabolic processes (tricarboxylic acid cycle-TCA, carbohydrate, lipid metabolism). Through miRNA-target interaction network the overexpressed Aconitase 2 potentially targeted by two downregulated miRNAs (miR-744-5p, miR-127-3p) was revealed. ACO2 and miR-744-5p interaction was validated by luciferase assay. MiR-127-3p and miR-744-5p significantly decreased cell proliferation in vitro. Our study firstly reported miRNA profile of pituitary oncocytoma. Our results suggest that tumor suppressor miRNAs may have an essential role in the pathogenesis of pituitary oncocytoma. Earlier reports showed downregulated TCA cycle in SCO which is extended by our results adding the role of miR-744-5p targeting ACO2.
Collapse
|
119
|
Bai L, Chen Y, Duan ZP, Zheng SJ. A new perspective on acute-on-chronic liver failure: Liver fibrosis and injury resistance. Shijie Huaren Xiaohua Zazhi 2019; 27:139-145. [DOI: 10.11569/wcjd.v27.i3.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is an increasingly recognized entity encompassing an acute deterioration of liver function in patients with pre-existing chronic liver diseases, which is usually associated with a precipitating event. Compared to acute liver failure, ACLF patients exhibit relatively slow disease progression and prolonged survival. Recent studies show that patients without previous decompensation have higher short-term mortality than those with prior hepatic decompensation. These interesting and important facts motivate clinicians and researchers to dissect the underlying mechanisms of ACLF from a new perspective, namely, the correlation between chronic liver diseases and injury resistance. In this review, we will make a comment on the phenomena as well as cellular and molecular mechanisms behind injury resistance in the setting of hepatic fibrosis (simulating the development of ACLF), in hopes of providing novel insights into the pathogenesis and therapy of ACLF.
Collapse
Affiliation(s)
- Li Bai
- Difficult Liver Disease and Artificial Liver Center, Beijing You'an Hospital Affiliated to Capital Medical University (Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research), Beijing 100069, China
| | - Yu Chen
- Difficult Liver Disease and Artificial Liver Center, Beijing You'an Hospital Affiliated to Capital Medical University (Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research), Beijing 100069, China
| | - Zhong-Ping Duan
- Difficult Liver Disease and Artificial Liver Center, Beijing You'an Hospital Affiliated to Capital Medical University (Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research), Beijing 100069, China
| | - Su-Jun Zheng
- Difficult Liver Disease and Artificial Liver Center, Beijing You'an Hospital Affiliated to Capital Medical University (Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research), Beijing 100069, China
| |
Collapse
|
120
|
Neuner SM, Ding S, Kaczorowski CC. Knockdown of heterochromatin protein 1 binding protein 3 recapitulates phenotypic, cellular, and molecular features of aging. Aging Cell 2019; 18:e12886. [PMID: 30549219 PMCID: PMC6351847 DOI: 10.1111/acel.12886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Identifying genetic factors that modify an individual's susceptibility to cognitive decline in aging is critical to understanding biological processes involved and mitigating risk associated with a number of age‐related disorders. Recently, heterochromatin protein 1 binding protein 3 (Hp1bp3) was identified as a mediator of cognitive aging. Here, we provide a mechanistic explanation for these findings and show that targeted knockdown of Hp1bp3 in the hippocampus by 50%–75% is sufficient to induce cognitive deficits and transcriptional changes reminiscent of those observed in aging and Alzheimer's disease brains. Specifically, neuroinflammatory‐related pathways become activated following Hp1bp3 knockdown in combination with a robust decrease in genes involved in synaptic activity and neuronal function. To test the hypothesis that Hp1bp3 mediates susceptibility to cognitive deficits via a role in neuronal excitability, we performed slice electrophysiology demonstrate transcriptional changes after Hp1bp3 knockdown manifest functionally as a reduction in hippocampal neuronal intrinsic excitability and synaptic plasticity. In addition, as Hp1bp3 is a known mediator of miRNA biogenesis, here we profile the miRNA transcriptome and identify mir‐223 as a putative regulator of a portion of observed mRNA changes, particularly those that are inflammatory‐related. In summary, work here identifies Hp1bp3 as a critical mediator of aging‐related changes at the phenotypic, cellular, and molecular level and will help inform the development of therapeutics designed to target either Hp1bp3 or its downstream effectors in order to promote cognitive longevity.
Collapse
Affiliation(s)
- Sarah M. Neuner
- The Jackson Laboratory Bar Harbor Maine
- Neuroscience Institute University of Tennessee Health Science Center Memphis Tennessee
| | | | | |
Collapse
|
121
|
Galloway DA, Blandford SN, Berry T, Williams JB, Stefanelli M, Ploughman M, Moore CS. miR-223 promotes regenerative myeloid cell phenotype and function in the demyelinated central nervous system. Glia 2018; 67:857-869. [PMID: 30548333 DOI: 10.1002/glia.23576] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022]
Abstract
In the injured central nervous system, myeloid cells, including macrophages and microglia, are key contributors to both myelin injury and repair. This immense plasticity emphasizes the need to further understand the precise molecular mechanisms that contribute to the dynamic regulation of myeloid cell polarization and function. Herein, we demonstrate that miR-223 is upregulated in multiple sclerosis (MS) patient monocytes and the alternatively-activated and tissue-regenerating M2-polarized human macrophages and microglia. Using miR-223 knock-out mice, we observed that miR-223 is dispensable for maximal pro-inflammatory responses, but is required for efficient M2-associated phenotype and function, including phagocytosis. Using the lysolecithin animal model, we further demonstrate that miR-223 is required to efficiently clear myelin debris and promote remyelination. These results suggest miR-223 constrains neuroinflammation while also promoting repair, a finding of important pathophysiological relevance to MS as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Stephanie N Blandford
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Tangyne Berry
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - John B Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Mark Stefanelli
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|