101
|
Neurotrophic Factor–Expressing Mesenchymal Stem Cells Survive Transplantation into the Contused Spinal Cord Without Differentiating into Neural Cells. Tissue Eng Part A 2009; 15:3049-59. [DOI: 10.1089/ten.tea.2009.0045] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
102
|
Radtke C, Schmitz B, Spies M, Kocsis JD, Vogt PM. Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. Int J Dev Neurosci 2009; 27:817-23. [PMID: 19699793 DOI: 10.1016/j.ijdevneu.2009.08.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Accepted: 08/14/2009] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow and adipose tissue are being considered for use in neural repair because they can differentiate after appropriate induction in culture into neurons and glia. The question we asked was if neurospheres could be harvested from adipose-derived stem cells and if they then could differentiate in culture to peripheral glial-like cells. Here, we demonstrate that adipose-derived mesenchymal stem cells can form nestin-positive non-adherent neurosphere cellular aggregates when cultured with basic fibroblast growth factor and epidermal growth factor. Dissociation of these neurospheres and removal of mitogens results in expression of the characteristic Schwann cell markers S100 and p75 nerve growth factor receptor and GFAP. The simultaneous expression of these glia markers are characteristic features of Schwann cells and olfactory ensheathing cells which have unique properties regarding remyelination and enhancement of axonal regeneration. When co-cultured with dorsal root ganglion neurons, the peripheral glial-like cells derived from adipose mesenchymal stem cells aligned with neuritis and stimulated neuritic outgrowth. These results indicate that neurospheres can be generated from adipose-derived mesenchymal stem cells, and upon mitogen withdrawal can differentiate into peripheral glial cells with neurotrophic effects.
Collapse
Affiliation(s)
- C Radtke
- Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30659 Hannover, German.
| | | | | | | | | |
Collapse
|
103
|
Treatment of rat spinal cord injury with a Rho-kinase inhibitor and bone marrow stromal cell transplantation. Brain Res 2009; 1295:192-202. [PMID: 19651108 DOI: 10.1016/j.brainres.2009.07.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 01/05/2023]
Abstract
In light of reports that the administration of fasudil, a Rho-kinase inhibitor, improved rats locomotor abilities following spinal cord injury, we hypothesized that combining fasudil with another type of therapy, such as stem cell transplantation, might further improve the level of locomotor recovery. Bone marrow stromal cells (BMSCs) are readily available for stem cell therapy. In the present study, we examined whether fasudil combined with BMSC transplantation would produce synergistic effects on recovery. Adult female Sprague-Dawley rats were subjected to spinal cord contusion injury at the T10 vertebral level using an IH impactor (200 Kdyn). Immediately after contusion, they were administrated fasudil intrathecally for 4 weeks. GFP rat-derived BMSCs (2.5x10(6)) were injected into the lesion site 14 days after contusion. Locomotor recovery was assessed for 9 weeks with BBB scoring. Sensory tests were conducted at 8 weeks. Biotinylated dextran amine (BDA) was injected into the sensory-motor cortex at 9 weeks. In addition to an untreated control group, the study also included a fasudil-only group and a BMSC-only group in order to compare the effects of combined therapy vs. single-agent therapy. Animals were perfused transcardially 11 weeks after contusion, and histological examinations were performed. The combined therapy group showed statistically better locomotor recovery than the untreated control group at 8 and 9 weeks after contusion. Neither of the two single-agent treatments improved open field locomotor function. Sensory tests showed no statistically significant difference by treatment. Histological and immunohistochemical studies provided some supporting evidence for better locomotor recovery following combined therapy. The average area of the cystic cavity was significantly smaller in the fasudil+BMSC group than in the control group. The number of 5-HT nerve fibers was significantly higher in the fasudil+BMSC group than in the control group on the rostral side of the lesion site. BDA-labeled fibers on the caudal side of the lesion epicenter were observed only in the fasudil+BMSC group. On the other hand, only small numbers of GFP-labeled grafted cells remained 9 weeks after transplantation, and these were mainly localized at the site of injection. Double immunofluorescence studies showed no evidence of differentiation of grafted BMSCs into glial cells or neurons. The Rho-kinase inhibitor fasudil combined with BMSC transplantation resulted in better locomotor recovery than occurred in the untreated control group. However, the data failed to demonstrate significant synergism from combined therapy compared with the levels of recovery following single-agent treatment.
Collapse
|
104
|
Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zhang YJ, Li Y, Dong H, Zeng YS. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats. BMC Neurosci 2009; 10:35. [PMID: 19374777 PMCID: PMC2679038 DOI: 10.1186/1471-2202-10-35] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 04/20/2009] [Indexed: 12/31/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spinal cord. Results The spinal cords of adult Sprague-Dawley (SD) rats were completely transected at T10, five experimental groups were performed: 1. sham operated control (Sham-control); 2. operated control (Op-control); 3. electro-acupuncture treatment (EA); 4. MSCs transplantation (MSCs); and 5. MSCs transplantation combined with electro-acupuncture (MSCs+EA). After 2-8 weeks of MSCs transplantation plus EA treatment, we found that the neurotrophin-3 (NT-3), cAMP level, the differentiation of MSCs, the 5-HT positive and CGRP positive nerve fibers in the lesion site and nearby tissue of injured spinal cord were significantly increased in the MSCs+EA group as compared to the group of the MSCs transplantation or the EA treated alone. Furthermore, behavioral test and spinal cord evoked potentials detection demonstrated a significantly functional recovery in the MSCs +EA group. Conclusion These results suggest that EA treatment may promote grafted MSCs survival and differentiation; MSCs transplantation combined with EA treatment could promote axonal regeneration and partial locomotor functional recovery in the transected spinal cord in rats and indicate a promising avenue of treatment of spinal cord injury.
Collapse
Affiliation(s)
- Ying Ding
- Division of Neuroscience, Department of Histology and Embryology, Guangzhou, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Montzka K, Lassonczyk N, Tschöke B, Neuss S, Führmann T, Franzen R, Smeets R, Brook GA, Wöltje M. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. BMC Neurosci 2009; 10:16. [PMID: 19257891 PMCID: PMC2655300 DOI: 10.1186/1471-2202-10-16] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 03/03/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs) are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. RESULTS The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b) are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP) could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. CONCLUSION The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as well as contributing to the ongoing controversy about differentiation capacities of MSCs. Therefore, further studies need to consider the differences between donor samples prior to any treatment as well as the possibility of harvesting donor cells that may be inappropriate for transplantation strategies.
Collapse
Affiliation(s)
- Katrin Montzka
- Department of Neurology, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
The effects of canine bone marrow stromal cells on neuritogenesis from dorsal root ganglion neurons in vitro. Vet Res Commun 2009; 33:645-57. [DOI: 10.1007/s11259-009-9213-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 02/03/2009] [Indexed: 01/01/2023]
|
107
|
Abstract
The characteristic CNS responses to injury including increased cell production and attempts at regenerative repair - implicitly predicted where not directly demonstrated by Cajal, but only now more fully confirmed - have important implications for regenerative therapies. Spontaneous CNS cell replacement compares poorly with the regenerative functional repair seen elsewhere, but harnessing, stimulating or supplementing this process represents a new and attractive therapeutic concept.Stem cells, traditionally defined as clone-forming, self-renewing, pluripotent progenitor cells, have already proved themselves to be an invaluable source of transplantation material in several clinical settings, most notably haematological malignancy, and attention is now turning to a wider variety of diseases in which there may be potential for therapeutic intervention with stem cell transplantation. Neurological diseases, with their reputation for relentless progression and incurability are particularly tantalising targets. The optimal source of stem cells remains to be determined but bone marrow stem cells may themselves be included amongst the contenders.Any development of therapies using stem cells must depend on an underlying knowledge of their basic biology. The haemopoietic system has long been known to maintain circulating populations of cells with short life spans, and this system has greatly informed our knowledge of stem cell biology. In particular, it has helped yield the traditional stem cell model - a hierarchical paradigm of progressive lineage restriction. As cells differentiate, their fate choices become progressively more limited, and their capacity for proliferation reduced, until fully differentiated, mitotically quiescent cells are generated. Even this, however, is now under challenge.
Collapse
Affiliation(s)
- C M Rice
- University of Bristol Institute of Clinical Neurosciences, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|
108
|
Matsuda R, Yoshikawa M, Kimura H, Ouji Y, Nakase H, Nishimura F, Nonaka JI, Toriumi H, Yamada S, Nishiofuku M, Moriya K, Ishizaka S, Nakamura M, Sakaki T. Cotransplantation of Mouse Embryonic Stem Cells and Bone Marrow Stromal Cells following Spinal Cord Injury Suppresses Tumor Development. Cell Transplant 2009; 18:39-54. [DOI: 10.3727/096368909788237122] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Embryonic stem (ES) cells are a potential source for treatment of spinal cord injury (SCI). Although one of the main problems of ES cell-based cell therapy is tumor formation, there is no ideal method to suppress tumor development. In this study, we examined whether transplantation with bone marrow stromal cells (BMSCs) prevented tumor formation in SCI model mice that received ES cell-derived grafts containing both undifferentiated ES cells and neural stem cells. Embryoid bodies (EBs) formed in 4-day hanging drop cultures were treated with retinoic acid (RA) at a low concentration of 5 × 10–9 M for 4 days, in order to allow some of the ES cells to remain in an undifferentiated state. RA-treated EBs were enzymatically digested into single cells and used as ES cell-derived graft cells. Mice transplanted with ES cell-derived graft cells alone developed tumors at the grafted site and behavioral improvement ceased after day 21. In contrast, no tumor development was observed in mice cotransplanted with BMSCs, which also showed sustained behavioral improvement. In vitro results demonstrated the disappearance of SSEA-1 expression in cytochemical examinations, as well as attenuated mRNA expressions of the undifferentiated markers Oct3/4, Utf1, Nanog, Sox2, and ERas by RT-PCR in RA-treated EBs cocultured with BMSCs. In addition, MAP2-immunopositive cells appeared in the EBs cocultured with BMSCs. Furthermore, the synthesis of NGF, GDNF, and BDNF was confirmed in cultured BMSCs, while immunohistochemical examinations demonstrated the survival of BMSCs and their maintained ability of neurotrophic factor production at the grafted site for up to 5 weeks after transplantation. These results suggest that BMSCs induce undifferentiated ES cells to differentiate into a neuronal lineage by neurotrophic factor production, resulting in suppression of tumor formation. Cotransplantation of BMSCs with ES cell-derived graft cells may be useful for preventing the development of ES cell-derived tumors.
Collapse
Affiliation(s)
- Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Masahide Yoshikawa
- Department of Parasitology, Nara Medical University, Nara 634–8521, Japan
| | - Hajime Kimura
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Yukiteru Ouji
- Department of Parasitology, Nara Medical University, Nara 634–8521, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Jun-Ichi Nonaka
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Hayato Toriumi
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Mariko Nishiofuku
- Department of Parasitology, Nara Medical University, Nara 634–8521, Japan
| | - Kei Moriya
- Department of Parasitology, Nara Medical University, Nara 634–8521, Japan
| | - Shigeaki Ishizaka
- Department of Parasitology, Nara Medical University, Nara 634–8521, Japan
| | | | - Toshisuke Sakaki
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| |
Collapse
|
109
|
Croft AP, Przyborski SA. Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells. Exp Neurol 2008; 216:329-41. [PMID: 19159625 DOI: 10.1016/j.expneurol.2008.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 12/08/2008] [Accepted: 12/09/2008] [Indexed: 01/01/2023]
Abstract
The neurogenic response to injury in the postnatal brain is limited and insufficient for restoration of function. Recent evidence suggests that transplantation of mesenchymal stem cells (MSCs) into the injured brain is associated with improved functional recovery, mediated in part through amplification in the endogenous neurogenic response to injury. In the current study we investigate the interactions between bone marrow-derived MSCs and embryonic neural stem cells (NSCs) plus their differentiated progeny using an in vitro co-culture system. Two populations of MSCs were used, MSCs induced to express neural antigens (nestin+, Tuj-1+, GFAP+) and neural antigen negative MSCs. Following co-culture of induced MSCs with differentiating NSC/progenitor cells a significant increase in Tuj-1+ neurons was detected compared to co-cultures of non-induced MSCs in which an increase in astrocyte (GFAP+) differentiation was observed. The effect was mediated by soluble interactions between the two cell populations and was independent of any effect on cell death and proliferation. Induced and non-induced MSCs also promoted the survival of Tuj-1+ cell progeny in long-term cultures and both promoted axonal growth, an effect also seen in differentiating neuroblastoma cells. Therefore, MSCs provide instructive signals that are able to direct the differentiation of NSCs and promote axonal development in neuronal progeny. The data indicates that the nature of MSC derived signals is dependent not only on their microenvironment but on the developmental status of the MSCs. Pre-manipulation of MSCs prior to transplantation in vivo may be an effective means of enhancing the endogenous neurogenic response to injury.
Collapse
Affiliation(s)
- Adam P Croft
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | | |
Collapse
|
110
|
Lu Z, Hu X, Zhu C, Wang D, Zheng X, Liu Q. Overexpression of CNTF in Mesenchymal Stem Cells reduces demyelination and induces clinical recovery in experimental autoimmune encephalomyelitis mice. J Neuroimmunol 2008; 206:58-69. [PMID: 19081144 DOI: 10.1016/j.jneuroim.2008.10.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 10/26/2008] [Accepted: 10/29/2008] [Indexed: 01/09/2023]
Abstract
Human Mesenchymal Stem Cells (MSCs) were previously reported to ameliorate neuronal functional deficits in the MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) mice by inducing T cell anergy. Human Ciliary neurotrophic factor (CNTF) recently was found to promote myelogenesis and reduce inflammation in CNTF-deficient EAE mice. We ectopically overexpressed CNTF in human MSCs to investigate its potential role in promoting remyelination and improving functional recovery in EAE mice. MSCs transfected by Ad-CNTF-IRES-EGFP (MSC-CNTF) were injected intravenously into EAE mice 10 days after the immunization. Neurological functional tests were scored daily by grading clinical signs (score 0-6). Immunofluorescence microscopy was used to detect MSC-CNTF in spinal cord. Expression of NG2, CNTF, and cleaved caspase-3 was measured by immunohistochemistry. CNTF expression was also analyzed by Western blot. Myelin was detected by Solochrome Cyanin staining. Our results found that CNTF concentration in MSC-CNTF cells was 20-fold higher than that in either MSC or Ad-EGFP-transfected MSCs (MSC-EGFP) in vitro. Mice receiving MSC-CNTF cells showed remarkable neuronal functional recovery: the cumulative clinical scores were significantly decreased, and the disease onset was statistically delayed. Mice receiving MSC-CNTF cells showed reduced TNF-alpha, IFN-gamma and increased the level of cytokine IL-10 in peripheral blood and a large number of MSC-CNTF cells were detected in the spleen, but were not detected in other organs such as lung, liver and kidney. In the lesions of these mice, 1) the number of cleaved caspase3-positive cells was significantly reduced; 2) MSC-CNTF- and NG2-positive cells were significantly increased; and 3) the expression of CNTF was dramatically increased. In addition, demyelination was significantly reduced in MSC-CNTF mice. These data indicated that MSC-CNTF may improve functional recovery in EAE mice, possibly by exerting their immunoregulatory activity, inhibiting inflammation, homing MSC-CNTF cells to the lesions, elevating CNTF expression, reducing demyelination, and stimulating oligodendrogenesis.
Collapse
Affiliation(s)
- Zhengqi Lu
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, China
| | | | | | | | | | | |
Collapse
|
111
|
Srivastava N, Seth K, Khanna V, Ansari R, Agrawal A. Long‐term functional restoration by neural progenitor cell transplantation in rat model of cognitive dysfunction: co‐transplantation with olfactory ensheathing cells for neurotrophic factor support. Int J Dev Neurosci 2008; 27:103-10. [DOI: 10.1016/j.ijdevneu.2008.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/04/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022] Open
Affiliation(s)
- N. Srivastava
- Developmental Toxicology DivisionIndian Institute of Toxicology ResearchMahatma Gandhi Marg, Post Box 80Lucknow226001India
| | - K. Seth
- Developmental Toxicology DivisionIndian Institute of Toxicology ResearchMahatma Gandhi Marg, Post Box 80Lucknow226001India
| | - V.K. Khanna
- Developmental Toxicology DivisionIndian Institute of Toxicology ResearchMahatma Gandhi Marg, Post Box 80Lucknow226001India
| | - R.W. Ansari
- Developmental Toxicology DivisionIndian Institute of Toxicology ResearchMahatma Gandhi Marg, Post Box 80Lucknow226001India
| | - A.K. Agrawal
- Developmental Toxicology DivisionIndian Institute of Toxicology ResearchMahatma Gandhi Marg, Post Box 80Lucknow226001India
| |
Collapse
|
112
|
Chen JR, Cheng GY, Sheu CC, Tseng GF, Wang TJ, Huang YS. Transplanted bone marrow stromal cells migrate, differentiate and improve motor function in rats with experimentally induced cerebral stroke. J Anat 2008; 213:249-58. [PMID: 18647194 DOI: 10.1111/j.1469-7580.2008.00948.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone marrow stromal cells are multipotential cells that can be induced to differentiate into osteoblasts, chondrocytes, myocytes and adipocytes in different microenvironments. Recent studies revealed that bone marrow stromal cells could improve neurological deficits of various damages or diseases of the central nervous system such as Parkinson's disease, brain trauma, spinal cord injury and multiple sclerosis, and promote glia-axonal remodeling in animal brain subjected to an experimentally induced stroke. In the present study, bone marrow stromal cells were intracerebrally transplanted into the cerebrum following a transient middle cerebral artery occlusion. Our aim was to find out whether the bone marrow stromal cells could survive and express neural phenotypic proteins and, in addition, whether they could restore the behavioral and functional deficits of the cerebral ischemic rats. Our results demonstrated that transplanted bone marrow stromal cells survived and migrated to areas around the lesion site. Some of them exhibited marker proteins of astrocytes and oligodendrocytes. Bone marrow stromal cell implantation significantly reduced the transient middle cerebral artery occlusion-induced cortical loss and thinning of the white matter and enhanced cortical beta-III-tubulin immunoreactivity. Rats implanted with bone marrow stromal cells showed significant improvement in their performance of elevated body swing test and forelimb footprint analysis and only transient recovery of the adhesive-removal test. Our data support bone marrow stromal cells as a valuable source of autologous or allogenic donor cells for transplantation to improve the outcome following cerebral ischemia.
Collapse
Affiliation(s)
- Jeng-Rung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
113
|
Abstract
Typically patients with multiple sclerosis (MS) experience acute episodes of neurological dysfunction, which recover followed, at a later stage, by slow and insidious accumulation of disability (disease progression). Disease progression reflects axon damage and loss within the central nervous system. However, the precise mechanism of axon injury in MS is not clear. Inflammation occurring during acute relapses undoubtedly causes some degree of acute axon damage, but epidemiological data and treatment studies have suggested that inflammation alone is not the sole cause of axonopathy. Indeed, there appears to be dissociation between inflammation and disease progression once a certain level of clinical disability has been reached because immune suppression in patients who have established disease progression does not halt the slow decrease of function. The slow and insidious loss of neurological function that occurs during the progressive phase of the disease implies a degenerative process. Whether axon drop-out occurs at these later stages because of previous inflammatory damage to axons; because of low grade inflammation causing damage to already vulnerable demyelinated axons; because of loss of trophic environment for axons to survive; or as part of a completely independent neurodegenerative process is not clear. Understanding disease mechanisms involved in the axonopathy of MS allows for the development of rational therapies for disease progression.
Collapse
Affiliation(s)
- A Wilkins
- Department of Neurology, Institute of Clinical Neurosciences, University of Bristol, Frenchay Hospital, Bristol, UK.
| | | |
Collapse
|
114
|
Chiaretti A, Ausili E, Di Rocco C, Antonelli A, Tabacco F, Focarelli B, Rendeli C. Neurotrophic factor expression in newborns with myelomeningocele: preliminary data. Eur J Paediatr Neurol 2008; 12:113-8. [PMID: 17881265 DOI: 10.1016/j.ejpn.2007.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neurotrophic factors play a crucial role in the stimulation of sprouting, synaptic plasticity and reorganization after spinal cord damage. The aim of this study was to investigate the expression of some neurotrophic factors [brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), and nerve growth factor (NGF)] in the cerebrospinal fluid (CSF) of newborns with myelomeningocele (MMC) and to determine their correlations with this malformation. METHODS To measure the expression of BDNF, GDNF, and NGF, we collected CSF samples of six newborns during the neurosurgical operation to correct the open MMC and of 10 matched controls. Endogenous neurotrophic factor levels were quantified using a two-site immuno-enzymatic assay. The statistical analysis was performed using the Mann-Whitney two-tailed two-sample test. FINDINGS In the CSF of patients analysis of neurotrophic factor expression showed a significant increase of BDNF, GDNF, and NGF compared to the mean level of the control group (445.8+/-82.3, 86.5+/-2.6, and 59.9+/-6.2 pg/mL, respectively, respect to 10.2+/-5.9, 19.9+/-11.3, and 15.3+/-2.6 pg/mL) (p<0.001). INTERPRETATION Our study shows an over-expression of neurotrophic factors in the CSF of newborns with MMC. This neurotrophin up-regulation may stimulate axonal sprouting and synaptic reorganization of the damaged neural cells at the site of spinal cord lesion. The neurotrophic factor up-regulation may represent a particularly important biochemical markers of spinal cord damage and might be associated with the severity of spine injury in MMC patients.
Collapse
Affiliation(s)
- A Chiaretti
- Department of Paediatric Science, Catholic University Medical School, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
115
|
Yaghoobi MM, Mahani MT. NGF and BDNF expression drop off in neurally differentiated bone marrow stromal stem cells. Brain Res 2008; 1203:26-31. [PMID: 18313646 DOI: 10.1016/j.brainres.2008.01.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 12/30/2007] [Accepted: 01/23/2008] [Indexed: 01/01/2023]
Abstract
Bone marrow stromal stem cells (BMSC) express two neurotrophins nerve growth factor (NGF) and brain derived growth factor (BDNF) constitutively and can be differentiated into neuronal-like cells and used to treat neural injuries and diseases. The neurotrophins are required for repair of neural tissues. However, it is not evident whether these cells supply the sufficient amounts of the functional growth factors following neuronal differentiation. This study investigates the expression of NGF, BDNF and their processing enzymes Prohormone convertases (PC) Furin, PC5 and PC6 by Real-time RT-PCR during neural differentiation of rat BMSC. The results showed that all inspected processing enzymes are expressed in the cells. The expression of NGF, BDNF and PC5 decreases following differentiation. In addition, BMSCs express Survivin, an anti-apoptotic gene; however, the differentiated cells reduce its expression similar to two neurotrophins, which could make them susceptible to apoptotic death.
Collapse
Affiliation(s)
- Mohammad Mehdi Yaghoobi
- Department of Biotechnology, Research Institute of Environmental Sciences, International Centre for Science, High Technology & Environmental Sciences, Kerman, Iran.
| | | |
Collapse
|
116
|
Offen D, Barhum Y, Levy YS, Burshtein A, Panet H, Cherlow T, Melamed E. Intrastriatal transplantation of mouse bone marrow-derived stem cells improves motor behavior in a mouse model of Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:133-43. [PMID: 17982886 DOI: 10.1007/978-3-211-73574-9_16] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Strategies of cell therapy for the treatment of Parkinson's disease (PD) are focused on replacing damaged neurons with cells to restore or improve function that is impaired due to cell population damage. In our studies, we used mesenchymal stromal cells (MSCs) from mouse bone marrow. Following our novel neuronal differentiation method, we found that the basic cellular phenotype changed to cells with neural morphology that express specific markers including those characteristic for dopaminergic neurons, such as tyrosine hydroxylase (TH). Intrastriatal transplantation of the differentiated MSCs in 6-hydroxydopamine-lesioned mice led to marked reduction in the amphetamine-induced rotations. Immunohistological analysis of the mice brains four months post transplantation, demonstrated that most of the transplanted cells survived in the striatum and expressed TH. Some of the TH positive cells migrated toward the substantia nigra. In conclusion, transplantation of bone marrow derived stem cells differentiated to dopaminergic-like cells, successfully improved behavior in an animal model of PD suggesting an accessible source of cells that may be used for autotransplantation in patient with PD.
Collapse
Affiliation(s)
- D Offen
- Laboratory of Neurosciences, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|
117
|
Isakova IA, Baker K, DuTreil M, Dufour J, Gaupp D, Phinney DG. Age- and dose-related effects on MSC engraftment levels and anatomical distribution in the central nervous systems of nonhuman primates: identification of novel MSC subpopulations that respond to guidance cues in brain. Stem Cells 2007; 25:3261-70. [PMID: 17932418 DOI: 10.1634/stemcells.2007-0543] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells (MSCs) have demonstrated efficacy as therapeutic vectors in rodent models of neurological diseases, but few studies have evaluated their safety and efficacy in a relevant large animal model. Previously, we reported that MSCs transplanted to the central nervous systems (CNS) of adult rhesus macaques engrafted at low levels without adversely affecting animal health, behavior, or motor function. Herein, we injected MSCs intracranially into 10 healthy infant macaques and quantified their engraftment levels and mapped their anatomical distribution in brain by real-time polymerase chain reaction using an sry gene-specific probe. These analyses revealed that MSC engraftment levels in brain were on average 18-fold higher with a maximal observed difference of 180-fold in neonates as compared with that reported previously for young adult macaques. Moreover, engraftment levels were 30-fold higher after injection of a low versus high cell dose and engrafted MSCs were nonrandomly distributed throughout the infant brain and localized to specific anatomical regions. Identification of unique subpopulations of macaque and human MSCs that express receptor proteins known to regulate tangential migration of interneurons may explain their migration patterns in brain. Extensive monitoring of infant transplant recipients using a battery of age appropriate tests found no evidence of any long-term adverse effects on the health or social, behavioral, cognitive, or motor abilities of animals up to 6 months post-transplant. Therefore, direct intracranial injection represents a safe means to deliver therapeutic levels of MSCs to the CNS. Moreover, expressed guidance receptors on MSC subpopulations may regulate migration of cells in the host brain. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Iryna A Isakova
- Center for Gene Therapy, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
118
|
Su YR, Wang J, Wu JJ, Chen Y, Jiang YP. Overexpression of lentivirus-mediated glial cell line-derived neurotrophic factor in bone marrow stromal cells and its neuroprotection for the PC12 cells damaged by lactacystin. Neurosci Bull 2007; 23:67-74. [PMID: 17592528 PMCID: PMC5550589 DOI: 10.1007/s12264-007-0010-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotrophic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). METHODS pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. RESULTS Virus stock of GDNF was harvested with the titer of 5.6 x 100,000 TU/mL. After transduction, GDNF-BMSCs successfully secreted GDNF to supernatant with higher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supernatant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 micromol/L). CONCLUSION Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.
Collapse
Affiliation(s)
- Ya-Ru Su
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | | | | | | | | |
Collapse
|
119
|
Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 2007; 40:609-19. [PMID: 17603514 DOI: 10.1038/sj.bmt.1705757] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transplantation of bone marrow-derived mesenchymal stromal cells (MSCs) into the injured brain or spinal cord may provide therapeutic benefit. Several models of central nervous system (CNS) injury have been examined, including that of ischemic stroke, traumatic brain injury and traumatic spinal cord injury in rodent, primate and, more recently, human trials. Although it has been suggested that differentiation of MSCs into cells of neural lineage may occur both in vitro and in vivo, this is unlikely to be a major factor in functional recovery after brain or spinal cord injury. Other mechanisms of recovery that may play a role include neuroprotection, creation of a favorable environment for regeneration, expression of growth factors or cytokines, vascular effects or remyelination. These mechanisms are not mutually exclusive, and it is likely that more than one contribute to functional recovery. In light of the uncertainty surrounding the fate and mechanism of action of MSCs transplanted into the CNS, further preclinical studies with appropriate animal models are urgently needed to better inform the design of new clinical trials.
Collapse
Affiliation(s)
- A M Parr
- Department of Surgery, University Health Network and Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
120
|
Habisch HJ, Janowski M, Binder D, Kuzma-Kozakiewicz M, Widmann A, Habich A, Schwalenstöcker B, Hermann A, Brenner R, Lukomska B, Domanska-Janik K, Ludolph AC, Storch A. Intrathecal application of neuroectodermally converted stem cells into a mouse model of ALS: limited intraparenchymal migration and survival narrows therapeutic effects. J Neural Transm (Vienna) 2007; 114:1395-406. [PMID: 17510731 DOI: 10.1007/s00702-007-0748-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 04/13/2007] [Indexed: 12/23/2022]
Abstract
Stem and progenitor cells provide a promising therapeutic strategy for amyotrophic lateral sclerosis (ALS). To comparatively evaluate the therapeutic potentials of human bone marrow-derived mesodermal stromal cells (hMSCs) and umbilical cord blood cells (hUBCs) in ALS, we transplanted hMSCs and hUBCs and their neuroectodermal derivatives (hMSC-NSCs and hUBC-NSCs) into the ALS mouse model over-expressing the G93A mutant of the human SOD1 gene. We used a standardized protocol similar to clinical studies by performing a power calculation to estimate sample size prior to transplantation, matching the treatment groups for gender and hSOD-G93A gene content, and applying a novel method for directly injecting 100,000 cells into the CSF (the cisterna magna). Ten days after transplantation we found many cells within the subarachnoidal space ranging from frontal basal cisterns back to the cisterna magna, but only a few cells around the spinal cord. hMSCs and hMSC-NSCs were also located within the Purkinje cell layer. Intrathecal cell application did not affect survival times of mice compared to controls. Consistently, time of disease onset and first pareses, death weight, and motor neuron count in lumbar spinal cord did not vary between treatment groups. Interestingly, transplantation of hMSCs led to an increase of pre-symptomatic motor performance compared to controls in female animals. The negative outcome of the present study is most likely due to insufficient cell numbers within the affected brain regions (mainly the spinal cord). Further experiments defining the optimal cell dose, time point and route of application and particularly strategies to improve the homing of transplanted cells towards the CNS region of interest are warranted to define the therapeutic potential of mesodermal stem cells for the treatment of ALS.
Collapse
Affiliation(s)
- H-J Habisch
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y, Araie M, Yanagi Y. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 2007; 85:234-41. [PMID: 17570362 DOI: 10.1016/j.exer.2007.04.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 03/24/2007] [Accepted: 04/25/2007] [Indexed: 01/14/2023]
Abstract
Because there is no effective treatment for this retinal degeneration, potential application of cell-based therapy has attracted considerable attention. Several investigations support that bone marrow mesenchymal stem cells (MSCs) can be used for a broad spectrum of indications. Bone marrow MSCs exert their therapeutic effect in part by secreting trophic factors to promote cell survival. The current study investigates whether bone marrow MSCs secrete factor(s) to promote photoreceptor cell survival and whether subretinal transplantation of bone marrow MSCs promotes photoreceptor survival in a retinal degeneration model using Royal College of Surgeons (RCS) rats. In vitro, using mouse retinal cell culture, it was demonstrated that the conditioned medium of the MSCs delays photoreceptor cell apoptosis, suggesting that the secreted factor(s) from the MSCs promote photoreceptor cell survival. In vivo, the MSCs were injected into the subretinal space of the RCS rats and histological analysis, real-time RT-PCR and electrophysiological analysis demonstrated that the subretinal transplantation of MSCs delays retinal degeneration and preserves retinal function in the RCS rats. These results suggest that MSC is a useful cell source for cell-replacement therapy for some forms of retinal degeneration.
Collapse
Affiliation(s)
- Yuji Inoue
- Department of Ophthalmology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, Park HC, Park SR, Min BH, Kim EY, Choi BH, Park H, Ha Y. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 2007; 25:2066-73. [PMID: 17464087 DOI: 10.1634/stemcells.2006-0807] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To assess the safety and therapeutic efficacy of autologous human bone marrow cell (BMC) transplantation and the administration of granulocyte macrophage-colony stimulating factor (GM-CSF), a phase I/II open-label and nonrandomized study was conducted on 35 complete spinal cord injury patients. The BMCs were transplanted by injection into the surrounding area of the spinal cord injury site within 14 injury days (n = 17), between 14 days and 8 weeks (n = 6), and at more than 8 weeks (n = 12) after injury. In the control group, all patients (n = 13) were treated only with conventional decompression and fusion surgery without BMC transplantation. The patients underwent preoperative and follow-up neurological assessment using the American Spinal Injury Association Impairment Scale (AIS), electrophysiological monitoring, and magnetic resonance imaging (MRI). The mean follow-up period was 10.4 months after injury. At 4 months, the MRI analysis showed the enlargement of spinal cords and the small enhancement of the cell implantation sites, which were not any adverse lesions such as malignant transformation, hemorrhage, new cysts, or infections. Furthermore, the BMC transplantation and GM-CSF administration were not associated with any serious adverse clinical events increasing morbidities. The AIS grade increased in 30.4% of the acute and subacute treated patients (AIS A to B or C), whereas no significant improvement was observed in the chronic treatment group. Increasing neuropathic pain during the treatment and tumor formation at the site of transplantation are still remaining to be investigated. Long-term and large scale multicenter clinical study is required to determine its precise therapeutic effect. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Seung Hwan Yoon
- Inha Neural Repair Center, Department of Neurosurgery, Inha University College of Medicine, 7-206, Sinheung-dong 3-ga, Jung-Gu, Incheon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
In spite of the commonly held belief that ‘the brain does not regenerate’, it is now accepted that postnatal neurogenesis does occur. Thus, one wonders whether cellular-replacement therapy might be used to heal the brain in diseases caused by neuronal cell loss. The existence of neural stem cells has been demonstrated by many scientists and is now generally accepted. The exact role of these cells, how their numbers are regulated and how they participate in CNS and spinal cord regeneration in postnatal life are still not well known. There are many reviews summarizing work on these cells; consequently, I will focus instead on other cells that may participate in postnatal neurogenesis: bone marrow-derived stem cells. The possibility that bone marrow-derived stem cells populate the CNS and differentiate into various neural elements is certainly not universally accepted.
Collapse
Affiliation(s)
- Eva Mezey
- CSDB, NIDCR, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
124
|
Bentz K, Molcanyi M, Riess P, Elbers A, Pohl E, Sachinidis A, Hescheler J, Neugebauer E, Schäfer U. Embryonic stem cells produce neurotrophins in response to cerebral tissue extract: Cell line-dependent differences. J Neurosci Res 2007; 85:1057-64. [PMID: 17335079 DOI: 10.1002/jnr.21219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we compare the capacity of two different embryonic stem (ES) cell lines to secrete neurotrophins in response to cerebral tissue extract derived from healthy or injured rat brains. The intrinsic capacity of the embryonic cell lines BAC7 (feeder cell-dependent cultivation) to release brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) exceeded the release of these factors by CGR8 cells (feeder cell-free growth) by factors of 10 and 4, respectively. Nerve growth factor (NGF) was secreted only by BAC7 cells. Conditioning of cell lines with cerebral tissue extract derived from healthy or fluid percussion-injured rat brains resulted in a significant time-dependent increase in BDNF release in both cell lines. The increase in BDNF release by BAC7 cells was more pronounced when cells were incubated with brain extract derived from injured brain. However, differences in neurotrophin release associated with the origin of brain extract were at no time statistically significant. Neutrophin-3 and NGF release was inhibited when cell lines were exposed to cerebral tissue extract. The magnitude of the response to cerebral tissue extract was dependent on the intrinsic capacity of the cell lines to release neurotrophins. Our results clearly demonstrate significant variations in the intrinsic capability of different stem cell lines to produce neurotrophic factors. Furthermore, a significant modulation of neurotrophic factor release was observed following conditioning of cell lines with tissue extract derived from rat brains. A significant modulation of neurotrophin release dependent on the source of cerebral tissue extract used was not observed.
Collapse
Affiliation(s)
- Kristine Bentz
- Institute of Developmental Genetics, GSF-National Research Centre for Environment and Health, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Yoshihara H, Shumsky JS, Neuhuber B, Otsuka T, Fischer I, Murray M. Combining motor training with transplantation of rat bone marrow stromal cells does not improve repair or recovery in rats with thoracic contusion injuries. Brain Res 2006; 1119:65-75. [PMID: 17027672 DOI: 10.1016/j.brainres.2006.08.080] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 08/07/2006] [Accepted: 08/15/2006] [Indexed: 01/09/2023]
Abstract
Previous studies have demonstrated that either transplantation of bone marrow stromal cells (MSC) or physical exercise regimens can elicit limited functional recovery following spinal cord injury, presumably through different mechanisms. The present study examined whether transplantation of MSC derived from transgenic Fischer alkaline phosphatase (AP) rats, in combination with exercise, would have synergistic effects leading to recovery of function that is greater than either alone. Adult female Sprague-Dawley rats received a moderate thoracic contusion injury and were divided into three groups: operated controls (Op-Control), MSC transplant recipients (MSC), and MSC transplant recipients plus exercise (MSC+Ex). Nine days after contusion, a Vitrogen matrix +/-one million MSC was injected into the lesion site in all animals. Immunosuppression with high doses of Cyclosporine A, required for MSC survival, was provided for all animals. Passive hindlimb exercise on motorized bicycles was applied 1 h/day, 3 days/week to the MSC+Ex group. A battery of behavioral tests was performed weekly to assess motor and sensory functions in all 3 groups for 12 weeks. Morphological evaluation included MSC survival, evidence of axonal growth into grafts, phenotypic analysis of MSC, and lesion/transplant size. The weight of the medial gastrocnemius muscle, a hindlimb muscle activated during stance, was used to identify extent of atrophy. No differences in motor recovery were found among the three groups. MSC survived 3 months after transplantation, indicating that the immunosuppression treatment was successful. The extent of survival was variable, and there was no correlation between MSC survival and behavioral scores. The matrix persisted, filling the lesion cavity, and some axons grew into the lesion/matrix but to a similar extent in all groups. There was no difference in lesion/matrix size among groups, indicating no neuroprotective effect on the host provided by the treatments. Immunocytochemical analysis provided no evidence that MSC differentiated into neurons, astrocytes or oligodendrocytes. Muscle mass of the medial gastrocnemius was diminished in the Op-Control group indicating significant atrophy, but was partially preserved in both the MSC and MSC+Ex groups. Our results indicate that combining the beneficial effects of rat MSC and this exercise protocol was not sufficient to enhance behavioral recovery.
Collapse
Affiliation(s)
- Hiroyuki Yoshihara
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | |
Collapse
|
126
|
Phinney DG, Baddoo M, Dutreil M, Gaupp D, Lai WT, Isakova IA. Murine mesenchymal stem cells transplanted to the central nervous system of neonatal versus adult mice exhibit distinct engraftment kinetics and express receptors that guide neuronal cell migration. Stem Cells Dev 2006; 15:437-47. [PMID: 16846379 DOI: 10.1089/scd.2006.15.437] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have demonstrated efficacy as cellular vectors for treating a variety of nervous system disorders. Nevertheless, few studies have quantified MSC engraftment levels or explored the mechanisms that promote their survival and migration in nervous tissue. In this study, we compared the engraftment kinetics and anatomical distribution of murine, male MSCs injected intracranially into neonatal versus adult female mice using a real-time PCR assay that targets the mouse SRY gene. These analyses revealed that MSCs exhibited low but equivalent engraftment levels in the central nervous system (CNS) of neonatal and adult transplant recipients at 12 days post-injection. However, MSC engraftment levels were significantly greater at 60 and 150 days post-transplantation in neonates as compared to adults. Despite these differences, engrafted MSCs were widely distributed along the neuraxis of the CNS in both transplant groups. Collectively, these data indicate that proliferation, but not engraftment and migration, of MSCs in brain are regulated by the host microenvironment. Using a genomics approach, we also identified MSC subpopulations that express neural adhesion proteins and receptors that regulate neuronal cell migration in brain, including cadherin 2, neurexin 1, ninjurin 1, neogenin 1, neuropilin 2, and roundabout homolog 1 and 4. Functional studies indicate these proteins confer cell adhesion and migration of MSCs in response to the appropriate chemoattractant. On the basis of these findings, we conclude that the unique molecular composition of MSC subpopulations imparts to them an inherent capacity to engraft and migrate in brain. These subpopulations may represent more potent cellular vectors for treating CNS disorders.
Collapse
Affiliation(s)
- Donald G Phinney
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
127
|
Abstract
Stem cell research has known an enormous development, and cellular transplantation holds great promise for regenerative medicine. However, some aspects, such as the mechanisms underlying stem cell plasticity (cell fusion vs true transdifferentiation) and the functional improvement after stem cell transplantation, are highly debated. Furthermore, the great variability in methodology used by several groups, sometimes leads to confusing, contradicting results. In this chapter, we review a number of studies in this area with an eye on possible technical and other difficulties in interpretation of the obtained results.
Collapse
Affiliation(s)
- Karen Ann Pauwelyn
- University of Leuven, Stem Cell Institute Leuven (SCIL)/Laboratory of Hepatology, UZ Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | | |
Collapse
|
128
|
Bakshi A, Barshinger AL, Swanger SA, Madhavani V, Shumsky JS, Neuhuber B, Fischer I. Lumbar Puncture Delivery of Bone Marrow Stromal Cells in Spinal Cord Contusion: A Novel Method for Minimally Invasive Cell Transplantation. J Neurotrauma 2006; 23:55-65. [PMID: 16430372 DOI: 10.1089/neu.2006.23.55] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cell transplantation as a treatment for spinal cord injury is a promising therapeutic strategy whose effective clinical application would be facilitated by non-invasive delivery protocols. Cells derived from the bone marrow are particularly attractive because they can be obtained easily, expanded to large numbers and potentially used for autologous as well as allogeneic transplantation. In this study we tested the feasibility of a novel minimally invasive method--lumbar puncture (LP)--for transplanting bone marrow stromal stem cells (MSC) into a clinically relevant spinal cord contusion model. We further sought to determine optimal protocols for performing such minimally invasive cell transplantation. Sprague-Dawley rats received a moderate contusion injury at the midthoracic level followed by LP transplantation of MSC derived from transgenic rats that express the human placental alkaline phosphatase (AP) reporter gene. The recipients were analyzed histologically to evaluate the extent of cell delivery and survival at the injury site. We found that MSC delivered by LP reached the contused spinal cord tissues and exerted a significant beneficial effect by reducing cyst and injury size. Transplantation within 14 days of injury provided significantly greater grafting efficiency than more delayed delivery, and increasing MSC dosage improved cell engraftment. The techniques described here can easily be translated to patients, thus accelerating clinical application of stem cell therapies.
Collapse
Affiliation(s)
- Ajay Bakshi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | |
Collapse
|