101
|
Mann M, Mehta A, Zhao JL, Lee K, Marinov GK, Garcia-Flores Y, Lu LF, Rudensky AY, Baltimore D. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nat Commun 2017; 8:851. [PMID: 29021573 PMCID: PMC5636846 DOI: 10.1038/s41467-017-00972-z] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/10/2017] [Indexed: 01/02/2023] Open
Abstract
The innate inflammatory response must be tightly regulated to ensure effective immune protection. NF-κB is a key mediator of the inflammatory response, and its dysregulation has been associated with immune-related malignancies. Here, we describe a miRNA-based regulatory network that enables precise NF-κB activity in mouse macrophages. Elevated miR-155 expression potentiates NF-κB activity in miR-146a-deficient mice, leading to both an overactive acute inflammatory response and chronic inflammation. Enforced miR-155 expression overrides miR-146a-mediated repression of NF-κB activation, thus emphasizing the dominant function of miR-155 in promoting inflammation. Moreover, miR-155-deficient macrophages exhibit a suboptimal inflammatory response when exposed to low levels of inflammatory stimuli. Importantly, we demonstrate a temporal asymmetry between miR-155 and miR-146a expression during macrophage activation, which creates a combined positive and negative feedback network controlling NF-κB activity. This miRNA-based regulatory network enables a robust yet time-limited inflammatory response essential for functional immunity. MicroRNAs (miR) are important regulators of gene transcription, with miR-155 and miR-146a both implicated in macrophage activation. Here the authors show that NF-κB signalling, miR-155 and miR-146a form a complex network of cross-regulations to control gene transcription in macrophages for modulating inflammatory responses.
Collapse
Affiliation(s)
- Mati Mann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Arnav Mehta
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jimmy L Zhao
- Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medical College, 525 E 68th Street, New York, NY, 10065, USA.,Division of Hematology Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Kevin Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Georgi K Marinov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yvette Garcia-Flores
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Li-Fan Lu
- Division of Biological Sciences, University of California, La Jolla, San Diego, CA, 92093, USA.,Moores Cancer Center, University of California, La Jolla, San Diego, CA, 92093, USA.,Center for Microbiome Innovation, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan-Kettering Cancer Center, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
102
|
Zhou Q, Huang SX, Zhang F, Li SJ, Liu C, Xi YY, Wang L, Wang X, He QQ, Sun CC, Li DJ. MicroRNAs: A novel potential biomarker for diagnosis and therapy in patients with non-small cell lung cancer. Cell Prolif 2017; 50. [PMID: 28990243 DOI: 10.1111/cpr.12394] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lung cancer is still one of the most serious causes of cancer-related deaths all over the world. MicroRNAs (miRNAs) are defined as small non-coding RNAs which could play a pivotal role in post-transcriptional regulation of gene expression. Increasing evidence demonstrated dysregulation of miRNA expression associates with the development and progression of NSCLC. AIMS To emphasize a variety of tissue-specific miRNAs, circulating miRNAs and miRNA-derived exosomes could be used as potential diagnostic and therapeutic biomarkers in NSCLC patients. MATERIALS & METHODS In the current review, we paid attention to the significant discoveries of preclinical and clinical studies, which performed on tissue-specific miRNA, circulating miRNA and exosomal miRNA. The related studies were obtained through a systematic search of Pubmed, Web of Science, Embase. RESULTS A variety of tissue-specific miRNAs and circulating miRNAs with high sensitivity and specificity which could be used as potential diagnostic and therapeutic biomarkers in NSCLC patients. In addition, we emphasize that the miRNA-derived exosomes become novel diagnostic biomarkers potentially in these patients with NSCLC. CONCLUSION MiRNAs have emerged as non-coding RNAs, which have potential to be candidates for the diagnosis and therapy of NSCLC.
Collapse
Affiliation(s)
- Qun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Shao-Xin Huang
- Department of Social Medicine and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, China
| | - Feng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Shu-Jun Li
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, 430022, Hubei, China
| | - Cong Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yong-Yong Xi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Liang Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Xin Wang
- Department of Social Medicine and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qi-Qiang He
- Department of School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
103
|
Ibrahim FK, Ali-Labib R, Galal IH, Mahmoud HM. MicroRNA-155 expression in exhaled breath condensate of patients with lung cancer. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2017. [DOI: 10.1016/j.ejcdt.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
104
|
Gao W, Bi Y, Ding L, Zhu W, Ye M. SSa ameliorates the Glu uptaking capacity of astrocytes in epilepsy via AP-1/miR-155/GLAST. Biochem Biophys Res Commun 2017; 493:1329-1335. [PMID: 28958944 DOI: 10.1016/j.bbrc.2017.09.139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuronal glutamate (Glu) release has been reported to mediate the neuronal injury of epilepsy, while Saikosaponin a (Ssa) was shown to ameliorate the epilepsy that induced by pentylenetetrazol (PTZ). However, potential interactions between glutamate release and Ssa has not been fully identified. METHODS Herein, PTZ-induced rat model were established to evaluate the neuron injury, while Ssa was used to treat the model rat. Rat astrocytes were isolated and induced by PTZ to construct cell models of epilepsy, real-time PCR and western blot were used to determine genes' expression. Luciferase reporter assay were performed to validate the relationship between miR-155-5p and glutamate aspartate transporter (GLAST). The level of Glu was sampled for HPLC measurement. RESULTS Ssa treatment could decrease the level of Glu in hippocampus of rat. PTZ-induced astrocytes pretreated with Ssa significantly decreased the expression of AP-1 and miR-155, but increased the expression of GLAST, furthermore, PTZ stimulation enables astrocytes to uptake large amount of extracellular Glu. AP-1 could bind with the promoter of miR-155 to promote its transcription. MiR-155 tragets GLAST to govern its expression. CONCLUSION Ssa treatment played pivotal roles in PTZ-induced epilepsy by promoting the expression of GLAT1 and uptaking of Glu, which was mediated by the expression of AP-1 and miR-155.
Collapse
Affiliation(s)
- Wei Gao
- Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou 215000, China
| | - Yongfeng Bi
- Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou 215000, China
| | - Li Ding
- Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou 215000, China
| | - Weiwei Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou 215000, China
| | - Ming Ye
- Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou 215000, China.
| |
Collapse
|
105
|
Grimaldi A, Zarone MR, Irace C, Zappavigna S, Lombardi A, Kawasaki H, Caraglia M, Misso G. Non-coding RNAs as a new dawn in tumor diagnosis. Semin Cell Dev Biol 2017; 78:37-50. [PMID: 28765094 DOI: 10.1016/j.semcdb.2017.07.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
Abstract
The current knowledge about non-coding RNAs (ncRNAs) as important regulators of gene expression in both physiological and pathological conditions, has been the main engine for the design of innovative platforms to finalize the pharmacological application of ncRNAs as either therapeutic tools or as molecular biomarkers in cancer. Biochemical alterations of cancer cells are, in fact, largely supported by ncRNA disregulation in the tumor site, which, in turn, reflects the cancer-associated specific modification of circulating ncRNA expression pattern. The aim of this review is to describe the state of the art of pre-clinical and clinical studies that analyze the involvement of miRNAs and lncRNAs in cancer-related processes, such as proliferation, invasion and metastases, giving emphasis to their functional role. A central node of our work has been also the examination of advantages and criticisms correlated with the clinical use of ncRNAs, taking into account the pressing need to refine the profiling methods aimed at identify novel diagnostic and prognostic markers and the request to optimize the delivery of such nucleic acids for a therapeutic use in an imminent future.
Collapse
Affiliation(s)
- Anna Grimaldi
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Mayra Rachele Zarone
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Lombardi
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Hiromichi Kawasaki
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy; Wakunaga Pharmaceutical Co. LTD, 4-5-36 Miyahara, Yodogawa-ku, Osaka 532-0003 Japan
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
106
|
Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG. MicroRNAs: Roles in Regulating Neuroinflammation. Neuroscientist 2017; 24:221-245. [PMID: 28737113 DOI: 10.1177/1073858417721150] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that broadly affect cellular and physiological function in all multicellular organisms. Here, the role of miRNAs in neuroinflammation is considered. miRNAs are 21- to 23-oligonucleotide RNAs that regulate translation of specific RNAs by binding to complementary regulatory RNA sequences, thereby causing mRNA degradation or sequestration. More than 5000 miRNAs likely exist in humans, and each miRNA binds an average of 200 RNAs. Specific immunomodulatory miRNAs can regulate a set of RNAs in a coordinated manner, suggesting that effective miRNA-based therapeutic manipulations for neuroinflammatory conditions may be revealed. For instance, miRNAs that preferentially inhibit translation of many cellular anti-inflammatory proteins could drive a pro-inflammatory response. Key pro-inflammatory ( miR-155, miR-27b, miR-326), anti-inflammatory ( miR-124, miR-146a, miR-21, miR-223), and mixed immunomodulatory ( let-7 family) miRNAs regulate neuroinflammation in various pathologies, including spinal cord injury, multiple sclerosis, ischemic stroke, and Alzheimer's disease. miRNAs represent a newly revealed layer of physiological complexity, the therapeutic benefits of which remain to be fully explored and exploited. In this review, we discuss the role of miRNAs in neuroinflammatory regulation and discuss how controlling miRNAs could alter cellular machinery to improve neuroinflammatory dynamics.
Collapse
Affiliation(s)
- Andrew D Gaudet
- 1 Center for Neuroscience, University of Colorado Boulder, CO, USA.,2 Department of Psychology and Neuroscience, University of Colorado Boulder, CO, USA
| | - Laura K Fonken
- 1 Center for Neuroscience, University of Colorado Boulder, CO, USA.,2 Department of Psychology and Neuroscience, University of Colorado Boulder, CO, USA
| | - Linda R Watkins
- 1 Center for Neuroscience, University of Colorado Boulder, CO, USA.,2 Department of Psychology and Neuroscience, University of Colorado Boulder, CO, USA
| | - Randy J Nelson
- 3 Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,4 Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- 3 Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,4 Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,5 Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
107
|
Kotaki R, Koyama-Nasu R, Yamakawa N, Kotani A. miRNAs in Normal and Malignant Hematopoiesis. Int J Mol Sci 2017; 18:ijms18071495. [PMID: 28696359 PMCID: PMC5535985 DOI: 10.3390/ijms18071495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 02/07/2023] Open
Abstract
Lineage specification is primarily regulated at the transcriptional level and lineage-specific transcription factors determine cell fates. MicroRNAs (miRNAs) are 18–24 nucleotide-long non-coding RNAs that post-transcriptionally decrease the translation of target mRNAs and are essential for many cellular functions. miRNAs also regulate lineage specification during hematopoiesis. This review highlights the roles of miRNAs in B-cell development and malignancies, and discusses how miRNA expression profiles correlate with disease prognoses and phenotypes. We also discuss the potential for miRNAs as therapeutic targets and diagnostic tools for B-cell malignancies.
Collapse
Affiliation(s)
- Ryutaro Kotaki
- Department of Hematology and Oncology, Tokai University School of Medicine, Hiratsuka 259-1193, Japan.
| | - Ryo Koyama-Nasu
- Department of Hematology and Oncology, Tokai University School of Medicine, Hiratsuka 259-1193, Japan.
| | - Natsuko Yamakawa
- Department of Hematology and Oncology, Tokai University School of Medicine, Hiratsuka 259-1193, Japan.
| | - Ai Kotani
- Department of Hematology and Oncology, Tokai University School of Medicine, Hiratsuka 259-1193, Japan.
| |
Collapse
|
108
|
Abstract
More and more studies show that chronic inflammation can lead to tumor formation. The complex interactions of inflammatory cells, stroma and tumor parenchymal cell are closely related to tumor formation. Under the state of chronic inflammatory microenvironment, long-term interaction of inflammatory cells and stromal cells as well as the parenchymal cells makes signaling pathway in parenchyma cells disordered. A series of gene level editor modification, epigenetic changes, and the regulation of transcription and translation changes will happen based on signaling pathway disorder. The changes ultimately lead to cell mutations and phenotypic transformation occurred. Recent findings provide an objective basis for cancer treatment and prevention. However, further discusses at the core of the possible molecular in tumor formation provide a theoretical foundation for future study of the pathogenesis and molecular targeted therapy of cancer. This review summarizes the research in the field of chronic inflammation and cancer in recent years, and analyze the molecules network in the process of the carcinogenic inflammation comprehensively. Beyond that, this review intends to describe possible carcinogenic inflammation core molecular and provides a theoretical basis for future study of the pathogenesis, chemoprevention and molecular targeted therapy of cancer.
Collapse
Affiliation(s)
- Hui Zhang
- 1 Department of Gastroenterology, The Shidong Hospital of Shanghai, Shanghai, China
- 2 Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, China
| | - Xuanfu Xu
- 1 Department of Gastroenterology, The Shidong Hospital of Shanghai, Shanghai, China
| |
Collapse
|
109
|
Romero M, Gapihan G, Castro-Vega LJ, Acevedo A, Wang L, Li ZW, El Bouchtaoui M, Di Benedetto M, Ratajczak P, Feugeas JP, Thieblemont C, Saavedra C, Janin A. Primary mediastinal large B-cell lymphoma: transcriptional regulation by miR-92a through FOXP1 targeting. Oncotarget 2017; 8:16243-16258. [PMID: 27806315 PMCID: PMC5369960 DOI: 10.18632/oncotarget.12988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 02/06/2023] Open
Abstract
Background Primary mediastinal large B-cell lymphoma (PMBL) shares pathological features with diffuse large B-cell lymphoma (DLBCL), and molecular features with classical Hodgkin lymphoma (cHL). The miR-17∼92 oncogenic cluster, located at chromosome 13q31, is a region that is amplified in DLBCL. Methods Here we compared the expression of each member of the miR-17∼92 oncogenic cluster in samples from 40 PMBL patients versus 20 DLBCL and 20 cHL patients, and studied the target genes linked to deregulated miRNA in PMBL. Results We found a higher level of miR-92a in PMBL than in DLBCL, but not in cHL. A combination of in silico prediction and transcriptomic analyses enabled us to identify FOXP1 as a main miR-92a target gene in PMBL, a result so far not established. This was confirmed by 3UTR, and RNA and protein expressions in transduced cell lines. In vivo studies using the transduced cell lines in mice enabled us to demonstrate a tumor suppressor effect of miR-92a and an oncogenic effect of FOXP1. A higher expression of miR-92a and the down-regulation of FOXP1 mRNA and protein expression were also found in human samples of PMBL, while miR-92a expression was low and FOXP1 was high in DLBCL. Conclusions We concluded to a post-transcriptional regulation by miR-92a through FOXP1 targeting in PMBL, with a clinico-pathological relevance for better characterisation of PMBL.
Collapse
Affiliation(s)
- Martha Romero
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,INSERM, U1165-Paris, Paris, France.,Hospital-Universitario-Fundación-Santa-Fe-de-Bogotá, Pathology-Department, Bogotá, Colombia
| | - Guillaume Gapihan
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,INSERM, U1165-Paris, Paris, France
| | | | - Andrés Acevedo
- Hospital-Universitario-Fundación-Santa-Fe-de-Bogotá, Pathology-Department, Bogotá, Colombia
| | - Li Wang
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,Pôle-Recherches Sino-Français en Science du Vivant Génomique, Molecular-Pathology, Shanghai, China
| | - Zhao Wei Li
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,Pôle-Recherches Sino-Français en Science du Vivant Génomique, Molecular-Pathology, Shanghai, China
| | - Morad El Bouchtaoui
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France
| | - Mélanie Di Benedetto
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France
| | - Philippe Ratajczak
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,INSERM, U1165-Paris, Paris, France
| | - Jean-Paul Feugeas
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,INSERM, U1137, Paris, France
| | | | - Carlos Saavedra
- Hospital-Universitario-Fundación-Santa-Fe-de-Bogotá, Pathology-Department, Bogotá, Colombia
| | - Anne Janin
- Université-Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire de Pathologie, UMR-S-1165, Paris, France.,INSERM, U1165-Paris, Paris, France.,AP-HP-Hôpital Saint-Louis, Pathology-Department-Paris, Paris, France
| |
Collapse
|
110
|
miR-146 and miR-155: Two Key Modulators of Immune Response and Tumor Development. Noncoding RNA 2017; 3:ncrna3030022. [PMID: 29657293 PMCID: PMC5831915 DOI: 10.3390/ncrna3030022] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of evolutionarily-conserved small, regulatory non-coding RNAs, 19–3 nucleotides in length, that negatively regulate protein coding gene transcripts’ expression. miR-146 (146a and 146b) and miR-155 are among the first and most studied miRs for their multiple roles in the control of the innate and adaptive immune processes and for their deregulation and oncogenic role in some tumors. In the present review, we have focused on the recent acquisitions about the key role played by miR-146a, miR-146b and miR-155 in the control of the immune system and in myeloid tumorigenesis. Growing experimental evidence indicates an opposite role of miR-146a with respect to miR-155 in the fine regulation of many steps of the immune response, acting at the level of the various cell types involved in innate and adaptive immune mechanisms. The demonstration that miR-155 overexpression plays a key pathogenic role in some lymphomas and acute myeloid leukemias has led to the development of an antagomir-based approach as a new promising therapeutic strategy.
Collapse
|
111
|
Cordeiro A, Monzó M, Navarro A. Non-Coding RNAs in Hodgkin Lymphoma. Int J Mol Sci 2017; 18:ijms18061154. [PMID: 28555062 PMCID: PMC5485978 DOI: 10.3390/ijms18061154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression by binding to the 3’-UTR of their target genes, can act as oncogenes or tumor suppressors. Recently, other types of non-coding RNAs—piwiRNAs and long non-coding RNAs—have also been identified. Hodgkin lymphoma (HL) is a B cell origin disease characterized by the presence of only 1% of tumor cells, known as Hodgkin and Reed-Stenberg (HRS) cells, which interact with the microenvironment to evade apoptosis. Several studies have reported specific miRNA signatures that can differentiate HL lymph nodes from reactive lymph nodes, identify histologic groups within classical HL, and distinguish HRS cells from germinal center B cells. Moreover, some signatures are associated with survival or response to chemotherapy. Most of the miRNAs in the signatures regulate genes related to apoptosis, cell cycle arrest, or signaling pathways. Here we review findings on miRNAs in HL, as well as on other non-coding RNAs.
Collapse
Affiliation(s)
- Anna Cordeiro
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, School of Medicine, University of Barcelona, C/Casanova 143, 08032 Barcelona, Spain.
| | - Mariano Monzó
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, School of Medicine, University of Barcelona, C/Casanova 143, 08032 Barcelona, Spain.
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, School of Medicine, University of Barcelona, C/Casanova 143, 08032 Barcelona, Spain.
| |
Collapse
|
112
|
Armand-Labit V, Pradines A. Circulating cell-free microRNAs as clinical cancer biomarkers. Biomol Concepts 2017; 8:61-81. [DOI: 10.1515/bmc-2017-0002] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/21/2017] [Indexed: 12/23/2022] Open
Abstract
AbstractMicroRNAs (miRNAs) are non-coding small RNAs that are master regulators of genic expression and consequently of many cellular processes. But their expression is often deregulated in human tumors leading to cancer development. Recently miRNAs were discovered in body fluids (serum, plasma and others) and their levels have often been reported to be altered in patients. Circulating miRNAs became one of the most promising biomarkers in oncology for early diagnosis, prognosis and therapeutic response prediction. Here we describe the origins and roles of miRNAs, and summarize the most recent studies focusing on their usefulness as cancer biomarkers in lung, breast, colon, prostate, ovary cancers and melanoma. Lastly, we describe the main methodologies related to miRNA detection, which should be standardized for their use in clinical practice.
Collapse
Affiliation(s)
- Virginie Armand-Labit
- Inserm, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Laboratoire de Biologie Médicale Oncologique, Toulouse, France
| | - Anne Pradines
- Inserm, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France
- Institut Claudius Regaud, IUCT-Oncopole, Laboratoire de Biologie Médicale Oncologique, Toulouse, France
| |
Collapse
|
113
|
A Downmodulated MicroRNA Profiling in Patients with Gastric Cancer. Gastroenterol Res Pract 2017; 2017:1526981. [PMID: 28546810 PMCID: PMC5436063 DOI: 10.1155/2017/1526981] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 01/02/2023] Open
Abstract
Objective. Here, we aim to investigate the microRNA (miR) profiling in human gastric cancer (GC). Methods. Tumoral and matched peritumoral gastric specimens were collected from 12 GC patients who underwent routine surgery. A high-throughput miR sequencing method was applied to detect the aberrantly expressed miRs in a subset of 6 paired samples. The stem-loop quantitative real-time polymerase chain reaction (qRT-PCR) assay was subsequently performed to confirm the sequencing results in the remaining 6 paired samples. The profiling results were also validated in vitro in three human GC cell lines (BGC-823, MGC-803, and GTL-16) and a normal gastric epithelial cell line (GES-1). Results. The miR sequencing approach detected 5 differentially expressed miRs, hsa-miR-132-3p, hsa-miR-155-5p, hsa-miR-19b-3p, hsa-miR-204-5p, and hsa-miR-30a-3p, which were significantly downmodulated between the tumoral and peritumoral GC tissues. Most of the results were further confirmed by qRT-PCR, while no change was observed for hsa-miR-30a-3p. The in vitro finding also agreed with the results of both miR sequencing and qRT-PCR for hsa-miR-204-5p, hsa-miR-155-5p, and hsa-miR-132-3p. Conclusion. Together, our findings may serve to identify new molecular alterations as well as to enrich the miR profiling in human GC.
Collapse
|
114
|
A Macro View of MicroRNAs: The Discovery of MicroRNAs and Their Role in Hematopoiesis and Hematologic Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:99-175. [PMID: 28838543 DOI: 10.1016/bs.ircmb.2017.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (MiRNAs) are a class of endogenously encoded ~22 nucleotide, noncoding, single-stranded RNAs that contribute to development, body planning, stem cell differentiation, and tissue identity through posttranscriptional regulation and degradation of transcripts. Given their importance, it is predictable that dysregulation of MiRNAs, which target a wide variety of transcripts, can result in malignant transformation. In this review, we explore the discovery of MiRNAs, their mechanism of action, and the tools that aid in their discovery and study. Strikingly, many of the studies that have expanded our understanding of the contributions of MiRNAs to normal physiology and in the development of diseases have come from studies in the hematopoietic system and hematologic malignancies, with some of the earliest identified functions for mammalian MiRNAs coming from observations made in leukemias. So, with a special focus on the hematologic system, we will discuss how MiRNAs contribute to differentiation of stem cells and how dysregulation of MiRNAs contributes to the development of malignancy, by providing examples of specific MiRNAs that function as oncogenes or tumor suppressors, as well as of defects in MiRNA processing. Finally, we will discuss the promise of MiRNA-based therapeutics and challenges for the future study of disease-causing MiRNAs.
Collapse
|
115
|
Nobili L, Ronchetti D, Taiana E, Neri A. Long non-coding RNAs in B-cell malignancies: a comprehensive overview. Oncotarget 2017; 8:60605-60623. [PMID: 28947998 PMCID: PMC5601166 DOI: 10.18632/oncotarget.17303] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/16/2017] [Indexed: 01/06/2023] Open
Abstract
B-cell malignancies constitute a large part of hematological neoplasias. They represent a heterogeneous group of diseases, including Hodgkin's lymphoma, most non-Hodgkin's lymphomas (NHL), some leukemias and myelomas. B-cell malignancies reflect defined stages of normal B-cell differentiation and this represents the major basis for their classification. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nucleotides, for which many recent studies have demonstrated a function in regulating gene expression, cell biology and carcinogenesis. Deregulated expression levels of lncRNAs have been observed in various types of cancers including hematological malignancies. The involvement of lncRNAs in cancer initiation and progression and their attractive features both as biomarker and for therapeutic research are becoming increasingly evident. In this review, we summarize the recent literature to highlight the status of the knowledge of lncRNAs role in normal B-cell development and in the pathogenesis of B-cell tumors.
Collapse
Affiliation(s)
- Lucia Nobili
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione Cà Granda IRCCS Policlinico, Milano, Italy
| | - Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione Cà Granda IRCCS Policlinico, Milano, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione Cà Granda IRCCS Policlinico, Milano, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Hematology, Fondazione Cà Granda IRCCS Policlinico, Milano, Italy
| |
Collapse
|
116
|
Zhang X, Liu X, Li Y, Lai J, Zhang N, Ming J, Ma X, Ji Q, Xing Y. Downregulation of microRNA-155 ameliorates high glucose-induced endothelial injury by inhibiting NF-κB activation and promoting HO-1 and NO production. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.01.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
117
|
Zhu FQ, Zeng L, Tang N, Tang YP, Zhou BP, Li FF, Wu WG, Zeng XB, Peng SS. MicroRNA-155 Downregulation Promotes Cell Cycle Arrest and Apoptosis in Diffuse Large B-Cell Lymphoma. Oncol Res 2017; 24:415-427. [PMID: 28281962 PMCID: PMC7838747 DOI: 10.3727/096504016x14685034103473] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin’s lymphoma in the adult population, and treatment of DLBCL is still unfavorable. Therefore, there is an urgent requirement to investigate the molecular mechanisms underlying DLBCL tumorigenesis. To study the potential function of microRNA-155 (miR-155) involved in the regulation of lymphoma, we monitored lymphoma cell behavior including proliferation, cell cycle, and apoptosis using CCK-8 and flow cytometry analysis. Real-time PCR was used to detect the expression levels of miR-155 in 118 lymphoma patients’ tissues, and Western blot was also used to analyze the expression level of proteins correlated with cell cycle and apoptosis in lymphoma cells. miR-155 expression levels were higher in lymphoma tissues compared with adjacent tissues. Downregulation of miR-155 inhibited lymphoma cell progress by arresting cell cycle in the G0/G1 phase and promoting apoptosis. Cell cycle-correlated proteins (cyclin B1, cyclin D1, and CDK4) were inhibited by downregulation of miR-155. Apoptosis-correlated proteins level (Bax/Bcl-2 and caspase 3 activity) were increased by downregulation of miR-155. In addition, a significant inverse correlation between the level of miR-155 and transforming growth factor-β receptor 2 (TGFBR2) was observed, which has been demonstrated to be a novel tumor suppressor gene. A further in vivo tumor formation study in nude mice indicated that downregulation of miR-155 in lymphoma cells delayed the progress of tumor formation. These findings indicate that miR-155 may serve as a useful potential target for the treatment of lymphoma.
Collapse
Affiliation(s)
- Fu-Qiang Zhu
- Department of Pathology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
BRG1 regulation by miR-155 in human leukemia and lymphoma cell lines. Clin Transl Oncol 2017; 19:1010-1017. [PMID: 28251496 DOI: 10.1007/s12094-017-1633-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/18/2017] [Indexed: 02/01/2023]
Abstract
INTRODUCTION/PURPOSE BRG1 is a key regulator of leukemia stem cells. Indeed, it has been observed that this type of cells is unable to divide, survive and develop new tumors when BRG1 is down-regulated. MATERIALS AND METHODS We assessed BRG1 and miR-155 expression in 23 leukemia cell lines, and two no pathological lymphocyte samples using qPCR. MiR-155 transfection and western blot were used to analyze the relationship between miR-155 and its validated target, BRG1, by measuring protein expression levels. The effect of miR-155 on cell proliferation and prednisolone sensitivity were studied with resazurin assay. RESULTS BRG1 expression levels could correlate negatively with miR-155 expression levels, at least in Burkitt's lymphoma and diffuse large B cell lymphoma (DLBCL) cell lines. To clarify the role of miR-155 in the regulation of BRG1 expression, we administrated miR-155 mimics in different leukemia/lymphoma cell lines. Our results suggest that miR-155 regulate negatively and significantly the BRG1 expression at least in the MOLT4 cell line. CONCLUSION Our study revealed a previously unknown miR-155 heterogeneity that could result in differences in the treatment with miRNAs in our attempt to inhibit BRG1. However, the expression levels of BRG1 and miR-155, before prednisolone treatment were not statistically significantly associated prednisolone sensitive leukemia cells.
Collapse
|
119
|
Bedewy AML, Elmaghraby SM, Shehata AA, Kandil NS. Prognostic Value of miRNA-155 Expression in B-Cell Non-Hodgkin Lymphoma. Turk J Haematol 2017; 34:207-212. [PMID: 28148469 PMCID: PMC5544039 DOI: 10.4274/tjh.2016.0286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective: MicroRNA-155 (miRNA-155) resides within the B-cell integration cluster gene on chromosome 21. It can act either as an oncogene or as a tumor-suppressor gene, depending on the cell background in which miRNA-155 is performing its specific target gene controlling function. Therefore, the aim of this study was to investigate miRNA-155 expression in patients with B-cell non-Hodgkin lymphoma (NHL) and its relation to disease prognosis in diffuse large B-cell lymphoma (DLBCL) patients. Materials and Methods: Reverse transcription-polymerase chain reaction assay was performed to evaluate the expression levels of miRNA-155 in 84 patients with newly diagnosed B-cell NHL and 15 normal controls. Results: Compared with normal controls, miRNA-155 expression was significantly upregulated in patients. Moreover, higher levels of miRNA-155 were associated with the presence of B symptoms, involvement of extranodal sites, and high Eastern Cooperative Oncology Group (ECOG) score. Higher levels of miRNA-155 in DLBCL were associated with non-germinal B-cell-like type, the presence of B symptoms, involvement of extranodal sites, and higher International Prognostic Index (IPI) and ECOG scores. Only the high IPI score and high miRNA-155 expression indicated a higher risk of lower event-free survival using multivariate Cox regression analysis. Our data demonstrated that the expression of miRNA-155 was upregulated in newly diagnosed B-cell NHL patients. miRNA-155 is expressed at a lower level in GCB-subtype DLBCL. Low IPI score and miRNA-155 expression were predictors of longer event-free survival. Conclusion: Despite contradicting literature reports, the current findings suggest the potential value of miRNA-155 as a biomarker of prognosis and monitoring in B-cell NHL, and especially that of the DLBCL type.
Collapse
Affiliation(s)
- Ahmed M L Bedewy
- Alexandria University Faculty of Medicine, Medical Research Institute, Alexandria Governorate, Egypt
| | | | | | | |
Collapse
|
120
|
Amaral AJ, Andrade J, Foxall RB, Matoso P, Matos AM, Soares RS, Rocha C, Ramos CG, Tendeiro R, Serra-Caetano A, Guerra-Assunção JA, Santa-Marta M, Gonçalves J, Gama-Carvalho M, Sousa AE. miRNA profiling of human naive CD4 T cells links miR-34c-5p to cell activation and HIV replication. EMBO J 2017; 36:346-360. [PMID: 27993935 PMCID: PMC5286376 DOI: 10.15252/embj.201694335] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023] Open
Abstract
Cell activation is a vital step for T-cell memory/effector differentiation as well as for productive HIV infection. To identify novel regulators of this process, we used next-generation sequencing to profile changes in microRNA expression occurring in purified human naive CD4 T cells in response to TCR stimulation and/or HIV infection. Our results demonstrate, for the first time, the transcriptional up-regulation of miR-34c-5p in response to TCR stimulation in naive CD4 T cells. The induction of this miR was further consistently found to be reduced by both HIV-1 and HIV-2 infections. Overexpression of miR-34c-5p led to changes in the expression of several genes involved in TCR signaling and cell activation, confirming its role as a novel regulator of naive CD4 T-cell activation. We additionally show that miR-34c-5p promotes HIV-1 replication, suggesting that its down-regulation during HIV infection may be part of an anti-viral host response.
Collapse
Affiliation(s)
- Andreia J Amaral
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Jorge Andrade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Russell B Foxall
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Paula Matoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Matos
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Rui S Soares
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cheila Rocha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Christian G Ramos
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Rita Tendeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Serra-Caetano
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - José A Guerra-Assunção
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, UK
| | - Mariana Santa-Marta
- Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - João Gonçalves
- Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Margarida Gama-Carvalho
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
121
|
Zhou G, Cao Y, Dong W, Lin Y, Wang Q, Wu W, Hua X, Ling Y, Xie X, Hu S, Cen J, Gu W. The clinical characteristics and prognostic significance of AID, miR-181b, and miR-155 expression in adult patients with de novo B-cell acute lymphoblastic leukemia. Leuk Lymphoma 2017; 58:1-9. [PMID: 28140712 DOI: 10.1080/10428194.2017.1283028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate clinical characteristics and prognostic significance of activation-induced cytidine deaminase (AID) gene, miR-181b and miR-155 expression in de novo adult B-cell acute lymphoblastic leukemia (B-ALL) patients. Results showed that AID and miR-155 expression were higher in B-ALL patients than healthy controls, while miR-181b expression was lower in B-ALL patients. In addition, Ph+ B-ALLs had higher AID expression than Ph- B-ALLs, and its high expression was associated with BCR-ABL. Moreover, B-ALL patients with AIDhigh or miR-181blow expression had a shorter overall survival (OS). AIDhigh with miR-181blow, AIDhigh with miR-155low, miR-181blow, miR-155low, AIDhigh with miR-181blow and miR-155low expression were associated with shorter OS. Combination of the three molecules are more accurate predictors for unfavorable OS compared with univariate group. Therefore, AID, miR-181b and miR-155 provide clinical prognosis of adult de novo B-ALL patients and may refine their molecular risk classification.
Collapse
Affiliation(s)
- Guangquan Zhou
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Yang Cao
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Weimin Dong
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Yan Lin
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Qi Wang
- b Laboratory of Oncology, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Wei Wu
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Xiaoying Hua
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Yun Ling
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Xiaobao Xie
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Shaoyan Hu
- c Department of Hematology , Children's Hospital of Suzhou University , Suzhou , Jiangsu Province , PR China
| | - Jiannong Cen
- d Laboratory of Leukemia, Jiangsu Institute of Hematology, The First Affiliated Hospital of Suzhou University , Suzhou , Jiangsu Province , PR China
| | - Weiying Gu
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| |
Collapse
|
122
|
Targeting MicroRNAs in Cancer Gene Therapy. Genes (Basel) 2017; 8:genes8010021. [PMID: 28075356 PMCID: PMC5295016 DOI: 10.3390/genes8010021] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a kind of conserved small non-coding RNAs that participate in regulating gene expression by targeting multiple molecules. Early studies have shown that the expression of miRNAs changes significantly in different tumor tissues and cancer cell lines. It is well acknowledged that such variation is involved in almost all biological processes, including cell proliferation, mobility, survival and differentiation. Increasing experimental data indicate that miRNA dysregulation is a biomarker of several pathological conditions including cancer, and that miRNA can exert a causal role, as oncogenes or tumor suppressor genes, in different steps of the tumorigenic process. Anticancer therapies based on miRNAs are currently being developed with a goal to improve outcomes of cancer treatment. In our present study, we review the function of miRNAs in tumorigenesis and development, and discuss the latest clinical applications and strategies of therapy targeting miRNAs in cancer.
Collapse
|
123
|
Abstract
The immune system protects us from enormously diverse microbial pathogens but needs to be tightly regulated to avoid deleterious immune-mediated inflammation and tissue damage. A wide range of molecular determinants and cellular components work in concert to control the magnitude and duration of a given immune response. In the past decade, microRNAs (miRNAs), a major class of small non-coding RNA species, have been extensively studied as key molecular players in immune regulation. In this chapter, we will discuss how miRNAs function as negative regulators to restrict innate and adaptive immune responses. Moreover, we will review the current reports regarding miRNAs in human immunological diseases. Finally, we will also address the emerging roles of other non-coding RNAs, long non-coding RNAs (lncRNAs) in particular, in the regulation of the immune system.
Collapse
|
124
|
Fang Y, Zhang L, Li Z, Li Y, Huang C, Lu X. MicroRNAs in DNA Damage Response, Carcinogenesis, and Chemoresistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:1-49. [DOI: 10.1016/bs.ircmb.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
125
|
miR-155 Dysregulation and Therapeutic Intervention in Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:111-131. [DOI: 10.1007/978-981-10-5987-2_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
126
|
Slezak-Prochazka I, Kluiver J, de Jong D, Smigielska-Czepiel K, Kortman G, Winkle M, Rutgers B, Koerts J, Visser L, Diepstra A, Kroesen BJ, van den Berg A. Inhibition of the miR-155 target NIAM phenocopies the growth promoting effect of miR-155 in B-cell lymphoma. Oncotarget 2016; 7:2391-400. [PMID: 26497687 PMCID: PMC4823043 DOI: 10.18632/oncotarget.6165] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/04/2015] [Indexed: 11/25/2022] Open
Abstract
Several studies have indicated an important role for miR-155 in the pathogenesis of B-cell lymphoma. Highly elevated levels of miR-155 were indeed observed in most B-cell lymphomas with the exception of Burkitt lymphoma (BL). However, the molecular mechanisms that underlie the oncogenic role of miR-155 in B-cell lymphoma are not well understood. To identify the miR-155 targets relevant for B-cell lymphoma, we performed RNA immunoprecipitation of Argonaute 2 in Hodgkin lymphoma (HL) cells upon miR-155 inhibition and in BL cells upon ectopic expression of miR-155. We identified 54 miR-155-specific target genes in BL cells and confirmed miR-155 targeting of DET1, NIAM, TRIM32, HOMEZ, PSIP1 and JARID2. Five of these targets are also regulated by endogenous miR-155 in HL cells. Both overexpression of miR-155 and inhibition of expression of the novel miR-155 target gene NIAM increased proliferation of BL cells. In primary B-cell lymphoma NIAM-positive cases have significant lower levels of miR-155 as compared to NIAM-negative cases, suggesting that NIAM is also regulated by miR-155 in primary B-cell lymphoma. Thus, our data indicate an oncogenic role for miR-155 in B-cell lymphoma which involves targeting the tumor suppressor NIAM.
Collapse
Affiliation(s)
- Izabella Slezak-Prochazka
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katarzyna Smigielska-Czepiel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gertrud Kortman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Melanie Winkle
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart-Jan Kroesen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
127
|
Ehtesham N, Sharifi M. From conventional therapy toward microRNA-based therapy in acute promyelocytic leukemia. Adv Biomed Res 2016; 5:187. [PMID: 28028527 PMCID: PMC5156975 DOI: 10.4103/2277-9175.190996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/09/2015] [Indexed: 12/18/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a hematopoietic malignancy that is known with its special cytogenetic feature. Several studies have surveyed expression signature of microRNAs (miRNAs) in APL patients, especially patients who are treated with conventional therapy of this disease. Using miRNAs as diagnostic or prognostic biomarkers in various cancers has been widely studied. Currently, most studies are focusing on exploiting miRNAs as therapeutic tools, and promising progress has been achieved in this field. Recently, studies in the field of miRNA-based therapy in APL have been started.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
128
|
Fernandes Q. MicroRNA: Defining a new niche in Leukemia. Blood Rev 2016; 31:129-138. [PMID: 28087197 DOI: 10.1016/j.blre.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/10/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs found to play key roles in the pathogenesis of leukemia. Apart from being traditionally identified as modulators of oncogenes, the potential roles of miRNAs seems to be growing with novel and recent findings among different subtypes of hematological malignancies. Leukemia is one of the earliest malignancies to be linked to abnormal expression of miRNAs. However, a clear understanding of the involvement of miRNAs in intricate mechanisms of leukemogenesis is still a necessity. This review summarizes the multiple roles of miRNAs in the pathogenesis of leukemia and highlights major research findings contributing to these aspects.
Collapse
|
129
|
van Eijndhoven MA, Zijlstra JM, Groenewegen NJ, Drees EE, van Niele S, Baglio SR, Koppers-Lalic D, van der Voorn H, Libregts SF, Wauben MH, de Menezes RX, van Weering JR, Nieuwland R, Visser L, van den Berg A, de Jong D, Pegtel DM. Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients. JCI Insight 2016; 1:e89631. [PMID: 27882350 PMCID: PMC5111516 DOI: 10.1172/jci.insight.89631] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND. Cell-free circulating nucleic acids, including 22-nt microRNAs (miRNAs), represent noninvasive biomarkers for treatment response monitoring of cancer patients. While the majority of plasma miRNA is bound to proteins, a smaller, less well-characterized pool is associated with extracellular vesicles (EVs). Here, we addressed whether EV-associated miRNAs reflect metabolic disease in classical Hodgkin lymphoma (cHL) patients. METHODS. With standardized size-exclusion chromatography (SEC), we isolated EV-associated extracellular RNA (exRNA) fractions and protein-bound miRNA from plasma of cHL patients and healthy subjects. We performed a comprehensive small RNA sequencing analysis and validation by TaqMan qRT-PCR for candidate discovery. Fluorodeoxyglucose-PET (FDG-PET) status before treatment, directly after treatment, and during long-term follow-up was compared directly with EV miRNA levels. RESULTS. The plasma EV miRNA repertoire was more extensive compared with protein-bound miRNA that was heavily dominated by a few abundant miRNA species and was less informative of disease status. Purified EV fractions of untreated cHL patients and tumor EVs had enriched levels of miR24-3p, miR127-3p, miR21-5p, miR155-5p, and let7a-5p compared with EV fractions from healthy subjects and disease controls. Serial monitoring of EV miRNA levels in patients before treatment, directly after treatment, and during long-term follow-up revealed robust, stable decreases in miRNA levels matching a complete metabolic response, as observed with FDG-PET. Importantly, EV miRNA levels rose again in relapse patients. CONCLUSION. We conclude that cHL-related miRNA levels in circulating EVs reflect the presence of vital tumor tissue and are suitable for therapy response and relapse monitoring in individual cHL patients. FUNDING. Cancer Center Amsterdam Foundation (CCA-2013), Dutch Cancer Society (KWF-5510), Technology Foundation STW (STW Perspectief CANCER-ID). The extracellular RNA repertoire in circulating extracellular vesicles is useful indicator of therapy response and relapse in classical Hodgkin lymphoma patients.
Collapse
Affiliation(s)
| | - Josée M Zijlstra
- Department of Hematology, VU University Medical Center, Amsterdam, Netherlands
| | | | | | | | | | | | | | - Sten Fwm Libregts
- Department of Biochemistry and Cell Biology, Utrecht University, Utrecht, Netherlands
| | - Marca Hm Wauben
- Department of Biochemistry and Cell Biology, Utrecht University, Utrecht, Netherlands
| | - Renee X de Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, Netherlands
| | - Jan Rt van Weering
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, Netherlands
| | - Rienk Nieuwland
- Department of Clinical Chemistry, Academic Medical Center, Amsterdam, Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | - D Michiel Pegtel
- Department of Pathology, Exosomes Research Group, VU University Medical Center, Amsterdam, Netherlands; ExBiome BV, Amsterdam, Netherlands
| |
Collapse
|
130
|
De Santis R, Liepelt A, Mossanen JC, Dueck A, Simons N, Mohs A, Trautwein C, Meister G, Marx G, Ostareck-Lederer A, Ostareck DH. miR-155 targets Caspase-3 mRNA in activated macrophages. RNA Biol 2016; 13:43-58. [PMID: 26574931 DOI: 10.1080/15476286.2015.1109768] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To secure the functionality of activated macrophages in the innate immune response, efficient life span control is required. Recognition of bacterial lipopolysaccharides (LPS) by toll-like receptor 4 (TLR4) induces downstream signaling pathways, which merge to induce the expression of cytokine genes and anti-apoptotic genes. MicroRNAs (miRNAs) have emerged as important inflammatory response modulators, but information about their functional impact on apoptosis is scarce. To identify miRNAs differentially expressed in response to LPS, cDNA libraries from untreated and LPS-activated murine macrophages were analyzed by deep sequencing and regulated miRNA expression was verified by Northern blotting and qPCR. Employing TargetScan(TM) we identified CASPASE-3 (CASP-3) mRNA that encodes a key player in apoptosis as potential target of LPS-induced miR-155. LPS-dependent primary macrophage activation revealed TLR4-mediated enhancement of miR-155 expression and CASP-3 mRNA reduction. Endogenous CASP-3 and cleaved CASP-3 protein declined in LPS-activated macrophages. Accumulation of miR-155 and CASP-3 mRNA in miRNA-induced silencing complexes (miRISC) was demonstrated by ARGONAUTE 2 (AGO2) immunoprecipitation. Importantly, specific antagomir transfection effectively reduced mature miR-155 and resulted in significantly elevated CASP-3 mRNA levels in activated macrophages. In vitro translation assays demonstrated that the target site in the CASP-3 mRNA 3'UTR mediates miR-155-dependent Luciferase reporter mRNA destabilization. Strikingly, Annexin V staining of macrophages transfected with antagomir-155 and stimulated with LPS prior to staurosporine (SSP) treatment implied that LPS-induced miR-155 prevents apoptosis through CASP-3 mRNA down-regulation. In conclusion, we report that miR-155-mediated CASP-3 mRNA destabilization in LPS-activated RAW 264.7 macrophages suppresses apoptosis, as a prerequisite to maintain their crucial function in inflammation.
Collapse
Affiliation(s)
- Rebecca De Santis
- a Department of Intensive Care and Intermediate Care , University Hospital, RWTH Aachen University , Pauwelsstrasse 30, 52074 , Aachen , Germany
| | - Anke Liepelt
- a Department of Intensive Care and Intermediate Care , University Hospital, RWTH Aachen University , Pauwelsstrasse 30, 52074 , Aachen , Germany.,b Department of Internal Medicine III , University Hospital, RWTH Aachen University , Pauwelsstrasse 30, 52074 , Aachen , Germany
| | - Jana C Mossanen
- a Department of Intensive Care and Intermediate Care , University Hospital, RWTH Aachen University , Pauwelsstrasse 30, 52074 , Aachen , Germany
| | - Anne Dueck
- c Biochemistry Center Regensburg (BZR) , Laboratory for RNA Biology, University of Regensburg , Universitätsstrasse 31, 93053 , Regensburg , Germany
| | - Nadine Simons
- a Department of Intensive Care and Intermediate Care , University Hospital, RWTH Aachen University , Pauwelsstrasse 30, 52074 , Aachen , Germany
| | - Antje Mohs
- b Department of Internal Medicine III , University Hospital, RWTH Aachen University , Pauwelsstrasse 30, 52074 , Aachen , Germany
| | - Christian Trautwein
- b Department of Internal Medicine III , University Hospital, RWTH Aachen University , Pauwelsstrasse 30, 52074 , Aachen , Germany
| | - Gunter Meister
- c Biochemistry Center Regensburg (BZR) , Laboratory for RNA Biology, University of Regensburg , Universitätsstrasse 31, 93053 , Regensburg , Germany
| | - Gernot Marx
- a Department of Intensive Care and Intermediate Care , University Hospital, RWTH Aachen University , Pauwelsstrasse 30, 52074 , Aachen , Germany
| | - Antje Ostareck-Lederer
- a Department of Intensive Care and Intermediate Care , University Hospital, RWTH Aachen University , Pauwelsstrasse 30, 52074 , Aachen , Germany
| | - Dirk H Ostareck
- a Department of Intensive Care and Intermediate Care , University Hospital, RWTH Aachen University , Pauwelsstrasse 30, 52074 , Aachen , Germany
| |
Collapse
|
131
|
Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia. Leukemia 2016; 31:808-820. [PMID: 27740637 DOI: 10.1038/leu.2016.279] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 08/26/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Abstract
Enforced expression of microRNA-155 (miR-155) in myeloid cells has been shown to have both oncogenic or tumour-suppressor functions in acute myeloid leukaemia (AML). We sought to resolve these contrasting effects of miR-155 overexpression using murine models of AML and human paediatric AML data sets. We show that the highest miR-155 expression levels inhibited proliferation in murine AML models. Over time, enforced miR-155 expression in AML in vitro and in vivo, however, favours selection of intermediate miR-155 expression levels that results in increased tumour burden in mice, without accelerating the onset of disease. Strikingly, we show that intermediate and high miR-155 expression also regulate very different subsets of miR-155 targets and have contrasting downstream effects on the transcriptional environments of AML cells, including genes involved in haematopoiesis and leukaemia. Furthermore, we show that elevated miR-155 expression detected in paediatric AML correlates with intermediate and not high miR-155 expression identified in our experimental models. These findings collectively describe a novel dose-dependent role for miR-155 in the regulation of AML, which may have important therapeutic implications.
Collapse
|
132
|
Wang J, Iwanowycz S, Yu F, Jia X, Leng S, Wang Y, Li W, Huang S, Ai W, Fan D. microRNA-155 deficiency impairs dendritic cell function in breast cancer. Oncoimmunology 2016; 5:e1232223. [PMID: 27999745 PMCID: PMC5139631 DOI: 10.1080/2162402x.2016.1232223] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 01/06/2023] Open
Abstract
In antitumor immunity, dendritic cells (DCs) capture, process, and present tumor antigens to T cells, initiating a tumoricidal response. However, DCs are often dysfunctional due to their exposure to the tumor microenvironment (TME), leading to tumor escape from immune surveillance. Here, a vital role of microRNA-155 (miR-155) in regulating the function of DCs in breast cancer is reported. Host miR-155 deficiency enhanced breast cancer growth in mice, accompanied by reduced DCs in the tumors and draining lymph nodes. miR-155 deficiency in DCs impaired their maturation, migration ability, cytokine production, and the ability to activate T cells. We demonstrate that miR-155 regulates DC migration through epigenetic modulation of CCR7 expression. Moreover, IL-6 and IL-10, two cytokines abundant in the TME, are found to impair DC maturation by suppressing miR-155 expression. Furthermore, animal studies show that a lack of miR-155 diminishes the effectiveness of DC-based immunotherapy for breast cancer. In conclusion, these findings suggest that miR-155 is a master regulator of DC function in breast cancer, including maturation, cytokine secretion, migration toward lymph nodes, and activation of T-cells. These results suggest that boosting the expression of a single microRNA, miR-155, may significantly improve the efficacy of DC-based immunotherapies for breast cancer.
Collapse
Affiliation(s)
- Junfeng Wang
- Centre for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Stephen Iwanowycz
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine , Columbia, SC, USA
| | - Fang Yu
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine , Columbia, SC, USA
| | - Xuemei Jia
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine , Columbia, SC, USA
| | - Shuilong Leng
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine , Columbia, SC, USA
| | - Yuzhen Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine , Columbia, SC, USA
| | - Wei Li
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine , Columbia, SC, USA
| | - Shiang Huang
- Centre for Stem Cell Research and Application, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Walden Ai
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC, USA
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine , Columbia, SC, USA
| |
Collapse
|
133
|
Joshi T, Elias D, Stenvang J, Alves CL, Teng F, Lyng MB, Lykkesfeldt AE, Brünner N, Wang J, Gupta R, Workman CT, Ditzel HJ. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer. Oncotarget 2016; 7:57239-57253. [PMID: 27528030 PMCID: PMC5302986 DOI: 10.18632/oncotarget.11136] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022] Open
Abstract
Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of miRNA-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all TamRs using both sequencing and LNA-based quantitative PCR technologies. Although the target genes affected by the altered miRNA in the three TamRs differed, good agreement in terms of affected molecular pathways was observed. Moreover, we found evidence of miRNA-mediated regulation of ESR1, PGR1, FOXM1 and 14-3-3 family genes. Integrating the inferred miRNA-target relationships, we investigated the functional importance of 2 central genes, SNAI2 and FYN, which showed increased expression in TamR cells, while their corresponding regulatory miRNA were downregulated. Using specific chemical inhibitors and siRNA-mediated gene knockdown, we showed that both SNAI2 and FYN significantly affect the growth of TamR cell lines. Finally, we show that a combination of 2 miRNAs (miR-190b and miR-516a-5p) exhibiting altered expression in TamR cell lines were predictive of treatment outcome in a cohort of ER+ breast cancer patients receiving adjuvant tamoxifen mono-therapy. Our results provide new insight into the molecular mechanisms of tamoxifen resistance and may form the basis for future medical intervention for the large number of women with tamoxifen-resistant ER+ breast cancer.
Collapse
Affiliation(s)
- Tejal Joshi
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daniel Elias
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Stenvang
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Section of Molecular Disease Biology, Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Carla L. Alves
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Fei Teng
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- BGI (Beijing Genomics Institute), Beishan Industrial Zone, Shenzhen, China
| | - Maria B. Lyng
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anne E. Lykkesfeldt
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nils Brünner
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Section of Molecular Disease Biology, Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jun Wang
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- BGI (Beijing Genomics Institute), Beishan Industrial Zone, Shenzhen, China
| | - Ramneek Gupta
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christopher T. Workman
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik J. Ditzel
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
134
|
MicroRNA miR-155 Is Necessary for Efficient Gammaherpesvirus Reactivation from Latency, but Not for Establishment of Latency. J Virol 2016; 90:7811-21. [PMID: 27334594 DOI: 10.1128/jvi.00521-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED MicroRNA-155 (miR-155) has been shown to play significant roles in the immune response, including in the formation of germinal centers (GC) and the development and maturation of T follicular helper (Tfh) cells. There is in vitro evidence to support a critical role for cellular miR-155 and viral miR-155 homologs in the establishment of gammaherpesvirus latency in B cells. We sought to determine the contribution of miR-155 to the establishment and maintenance of latency in vivo using murine gammaherpesvirus (MHV-68) infection. MHV-68-infected mice deficient in miR-155 exhibited decreases in GC B cells and Tfh cells. However, the frequencies of spleen cells harboring latent MHV-68 genomes were the same in both miR-155-deficient and wild-type (WT) mice. Similar latent loads were also observed in mixed bone marrow chimeric mice, where B cell-extrinsic effects of miR-155 deficiency were normalized. Interestingly, we observed markedly lower efficiency of reactivation from latency in miR-155-deficient cells, indicating an important role for miR-155 in this process. These in vivo data complement previous in vitro studies and lead to the conclusion that miR-155 is not necessary for the establishment or maintenance of gammaherpesvirus latency but that it does affect reactivation efficiency. IMPORTANCE Gammaherpesvirus infection leads to severe disease in immunosuppressed populations. miR-155 has been shown to play important roles in many pathological processes, including tumorigenesis and diseases caused by an overly aggressive immune response. Our work provides valuable in vivo data showing that miR-155 is dispensable for gammaherpesvirus latency but that it is critical for reactivation from latency, which is a crucial step in the viral life cycle.
Collapse
|
135
|
Inhibition of microRNA-155 sensitizes lung cancer cells to irradiation via suppression of HK2-modulated glucose metabolism. Mol Med Rep 2016; 14:1332-8. [PMID: 27315591 DOI: 10.3892/mmr.2016.5394] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 01/11/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding regulatory RNAs, which are involved in the post-transcriptional regulation of gene expression. miRNA (miR)-155, which has previously been reported to be overexpressed in lung cancer, is correlated with poor patient prognosis. The present study aimed to investigate the effects of miR‑155 on the radiosensitivity of human non‑small cell lung cancer (NSCLC) cells. To explore the roles of miRNAs in the regulation of irradiation sensitivity of human lung cancer cells, the expressions of miR‑155 in response to irradiation, have been studied by RT‑qPCR, and the putative direct target of miR‑155 was identified by western blot and luciferase assays. The results of the present study revealed that the expression of miR‑155 was induced by irradiation, thus suggesting a positive correlation between miR‑155 and radiosensitivity. Furthermore, overexpression of miR‑155 rendered lung cancer cells resistant to irradiation. In addition, hexokinase 2 (HK2) was identified as an indirect target of miR‑155; exogenous overexpression of miR‑155 upregulated the expression of HK2, whereas inhibition of miR‑155 by antisense miRNA suppressed HK2 expression. In addition, HK2‑modulated glucose metabolism was significantly upregulated by overexpression of miR‑155. Notably, inhibition of miR‑155 sensitized lung cancer cells to irradiation via suppression of glucose metabolism. In conclusion, the present study reported a novel function for miR‑155 in the regulation of NSCLC cell radiosensitivity, thus suggesting that miR‑155 may be considered a therapeutic target for the development of anticancer drugs.
Collapse
|
136
|
Due H, Svendsen P, Bødker JS, Schmitz A, Bøgsted M, Johnsen HE, El-Galaly TC, Roug AS, Dybkær K. miR-155 as a Biomarker in B-Cell Malignancies. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9513037. [PMID: 27294145 PMCID: PMC4884835 DOI: 10.1155/2016/9513037] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/03/2016] [Indexed: 12/22/2022]
Abstract
MicroRNAs have the potential to be useful biomarkers in the development of individualized treatment since they are easy to detect, are relatively stable during sample handling, and are important determinants of cellular processes controlling pathogenesis, progression, and response to treatment of several types of cancers including B-cell malignancies. miR-155 is an oncomiR with a crucial role in tumor initiation and development of several B-cell malignancies. The present review elucidates the potential of miR-155 as a diagnostic, prognostic, or predictive biomarker in B-cell malignancies using a systematic search strategy to identify relevant literature. miR-155 was upregulated in several malignancies compared to nonmalignant controls and overexpression of miR-155 was further associated with poor prognosis. Elevated expression of miR-155 shows potential as a diagnostic and prognostic biomarker in diffuse large B-cell lymphoma and chronic lymphocytic leukemia. Additionally, in vitro and in vivo studies suggest miR-155 as an efficient therapeutic target, supporting its oncogenic function. The use of inhibiting anti-miR structures indicates promising potential as novel anticancer therapeutics. Reports from 53 studies prove that miR-155 has the potential to be a molecular tool in personalized medicine.
Collapse
Affiliation(s)
- Hanne Due
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
- Department of Haematology, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark
| | - Pernille Svendsen
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Julie Støve Bødker
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Alexander Schmitz
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
- Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
| | - Hans Erik Johnsen
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Tarec Christoffer El-Galaly
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
| | - Anne Stidsholt Roug
- Department of Haematology, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark
| | - Karen Dybkær
- Department of Haematology, Aalborg University Hospital, Hobrovej 18-22, 9100 Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Fredrik Bajers Vej 5, 9100 Aalborg, Denmark
| |
Collapse
|
137
|
Chen L, Wang W, Cao L, Li Z, Wang X. Long Non-Coding RNA CCAT1 Acts as a Competing Endogenous RNA to Regulate Cell Growth and Differentiation in Acute Myeloid Leukemia. Mol Cells 2016; 39:330-6. [PMID: 26923190 PMCID: PMC4844940 DOI: 10.14348/molcells.2016.2308] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/04/2016] [Accepted: 02/11/2016] [Indexed: 12/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in multiple cellular events, as well as in tumorigenesis. Colon cancer-associated transcript-1 (CCAT1) gene encodes an lncRNA whose over-activation was observed in an expanding list of primary human solid tumors and tumor cell lines, however its biological roles in acute myeloid leukaemia (AML) has not been reported yet at present. In this study, the aberrant upregulation of CCAT1 was detected in French-American-British M4 and M5 subtypes of adult AML patients. By gain- and loss-of-function analysis, we determined that CCAT1 repressed monocytic differentiation and promoted cell growth of HL-60 by sequestering tumor suppressive miR-155. Accordingly, a significant decrease in miR-155 level was detected in AML patients. Re-introduction of miR-155 into HL-60 cells restored monocytic maturation and repressed cell proliferation. Furthermore, CCAT1 could up-regulated c-Myc via its competing endogenous RNA (ceRNA) activity on miR-155. In conclusion, these results revealed new mechanism of lncRNA CCAT1 in AML development, and suggested that the manipulation of CCAT1 expression could serve as a potential strategy in AML therapy.
Collapse
Affiliation(s)
- Lianxiang Chen
- Department of Hematology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059,
China
| | - Wei Wang
- Department of Emergency, Inner Mongolia People’s Hospital, Hohhot 010017,
China
| | - Lixia Cao
- Department of Hematology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059,
China
| | - Zhijun Li
- Department of Anatomy, Basic Medical College, The Inner Mongolia Medical University, Hohhot 010059,
China
| | - Xing Wang
- Department of Anatomy, Basic Medical College, The Inner Mongolia Medical University, Hohhot 010059,
China
| |
Collapse
|
138
|
Hua X, Chen L, Wang J, Li J, Wingender E. Identifying cell-specific microRNA transcriptional start sites. ACTA ACUST UNITED AC 2016; 32:2403-10. [PMID: 27153609 DOI: 10.1093/bioinformatics/btw171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/27/2016] [Indexed: 01/05/2023]
Abstract
MOTIVATION Identification of microRNA (miRNA) transcriptional start sites (TSSs) is crucial to understand the transcriptional regulation of miRNA. As miRNA expression is highly cell specific, an automatic and systematic method that could identify miRNA TSSs accurately and cell specifically is in urgent requirement. RESULTS A workflow to identify the TSSs of miRNAs was built by integrating the data of H3K4me3 and DNase I hypersensitive sites as well as combining the conservation level and sequence feature. By applying the workflow to the data for 54 cell lines from the ENCODE project, we successfully identified TSSs for 663 intragenic miRNAs and 620 intergenic miRNAs, which cover 84.2% (1283/1523) of all miRNAs recorded in miRBase 18. For these cell lines, we found 4042 alternative TSSs for intragenic miRNAs and 3186 alternative TSSs for intergenic miRNAs. Our method achieved a better performance than the previous non-cell-specific methods on miRNA TSSs. The cell-specific method developed by Georgakilas et al. gives 158 TSSs of higher accuracy in two cell lines, benefitting from the employment of deep-sequencing technique. In contrast, our method provided a much higher number of miRNA TSSs (7228) for a broader range of cell lines without the limitation of costly deep-sequencing data, thus being more applicable for various experimental cases. Analysis showed that upstream promoters at - 2 kb to - 200 bp of TSS are more conserved for independently transcribed miRNAs, while for miRNAs transcribed with host genes, their core promoters (-200 bp to 200 bp of TSS) are significantly conserved. AVAILABILITY AND IMPLEMENTATION Predicted miRNA TSSs and promoters can be downloaded from supplementary files. CONTACT jwang@nju.edu.cn or jlee@nju.edu.cn or edgar.wingender@bioinf.med.uni-goettingen.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xu Hua
- The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing 210093, China Department of Bioinformatics, Medical School, George August University of Göttingen, Goldschmidtstrasse 1, Göttingen D-37077, Germany
| | - Luxiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing 210093, China
| | - Jin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing 210093, China
| | - Jie Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Science, Nanjing University, Nanjing 210093, China Department of Bioinformatics, Medical School, George August University of Göttingen, Goldschmidtstrasse 1, Göttingen D-37077, Germany
| | - Edgar Wingender
- Department of Bioinformatics, Medical School, George August University of Göttingen, Goldschmidtstrasse 1, Göttingen D-37077, Germany
| |
Collapse
|
139
|
Fernandez-Mercado M, Manterola L, Lawrie CH. MicroRNAs in Lymphoma: Regulatory Role and Biomarker Potential. Curr Genomics 2016; 16:349-58. [PMID: 27047255 PMCID: PMC4763973 DOI: 10.2174/1389202916666150707160147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/19/2022] Open
Abstract
Although it is now evident that microRNAs (miRNAs) play a critical regulatory role in many, if not all, pathological and physiological processes, remarkably they have only formally been recognized for less than fifteen years. These endogenously produced short non-coding RNAs have created a new paradigm of gene control and have utility as both novel biomarkers of cancer and as potential therapeutics. In this review we consider the role of miRNAs in lymphoid biology both under physiological (i.e. lymphopoiesis) and malignant (i.e. lymphomagenesis) conditions. In addition to the functional significance of aberrant miRNA expression in lymphomas we discuss their use as novel biomarkers, both as a in situ tumour biomarker and as a non-invasive surrogate for the tumour by testing miRNAs in the blood of patients. Finally we consider the use of these molecules as potential therapeutic agents for lymphoma (and other cancer) patients and discuss some of the hurdles yet to be overcome in order to translate this potential into clinical practice
Collapse
Affiliation(s)
| | - Lorea Manterola
- Oncology area, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles H Lawrie
- Oncology area, Biodonostia Research Institute, San Sebastián, Spain; ; Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK;; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
140
|
Karkeni E, Astier J, Tourniaire F, El Abed M, Romier B, Gouranton E, Wan L, Borel P, Salles J, Walrand S, Ye J, Landrier JF. Obesity-associated Inflammation Induces microRNA-155 Expression in Adipocytes and Adipose Tissue: Outcome on Adipocyte Function. J Clin Endocrinol Metab 2016; 101:1615-26. [PMID: 26829440 PMCID: PMC4880153 DOI: 10.1210/jc.2015-3410] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Obesity alters adipose tissue's metabolic and endocrine functions and causes a chronic local and systemic low-grade inflammatory state to develop, generating obesity-associated complications. In the last decade, many entities contributing to and regulating this inflammatory state have been identified, among which are microRNAs. OBJECTIVE This study aimed to identify microRNA regulated in inflamed adipocytes and adipose tissue, and its effect on adipocyte biology. DESIGN AND RESULTS We screened the expression profile of TNFα-treated adipocytes (a major pro-inflammatory protein expressed in obese adipose tissue), and identified miR-155 as the most responsive microRNA. The involvement of TNFα on the basal miR-155 expression was confirmed in the adipose tissue of Tnfa−/− mice where miR-155 was significantly reduced. Also, mice overexpressing p65 or invalidated for p65 in adipose tissue respectively increased and decreased miR-155 expression, in line with the involvement of the nuclear factor κB (NF-κB) pathway in miR-155 induction. miR-155 expression was higher in obese subjects' adipose tissue than in that of normal-weight subjects, and correlated with TNFα expression and body mass index. Gain and loss of function of miR-155 showed its effect on adipocyte function, probably via its ability to target PPARγ mRNA 3′UTR. Interestingly, miR-155 overexpression also resulted in an increased inflammatory state in adipocytes. CONCLUSION Altogether, these data are evidence of a proinflammatory loop mediated by NF-κB and miR-155 that could participate in the amplification of inflammatory status in adipocytes.
Collapse
Affiliation(s)
- Esma Karkeni
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Julien Astier
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Franck Tourniaire
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Mouna El Abed
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Béatrice Romier
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Erwan Gouranton
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Lin Wan
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Patrick Borel
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Jérôme Salles
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Stéphane Walrand
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Jianping Ye
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Jean-François Landrier
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| |
Collapse
|
141
|
Micro-RNA (miRNA) profile in Hodgkin lymphoma: association between clinical and pathological variables. Med Oncol 2016; 33:34. [PMID: 26951445 DOI: 10.1007/s12032-016-0749-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/23/2016] [Indexed: 12/13/2022]
Abstract
miRNAs are small RNAs and control the expression of protein-encoding genes. The aim of this study was to determine the association between miRNA profile and clinical variables including age, stage, B symptom, histopathologic subtype, response to treatment, disease-free survival (DFS) and overall survival (OS) in classical Hodgkin lymphoma (cHL). A total of 377 miRNAs were studied by qPCR in 32 cases with cHL, and results were compared with 60 samples taken from cases with reactive lymphadenopathy. Biogazelle qbasePLUS 2.0 software was used to analyze the results. miR-582-3p, miR-525-3p, miR-448, miR-512-3p, miR-642a-5p, miR-876-5p, miR-532-3p, miR-654-5p, miR-128, miR-145-5p, miR-15b-5p, miR-328 and miR-660-5p were found to be decreased in cHL compared with controls. In contrast, miR-34a-5p (2.626-fold), miR-146a-5p (4.32-fold), miR-93-5p (2.347-fold), miR-20a-5p (4.930-fold), miR-339-3p (4.948-fold), miR-324-3p (4.98-fold), miR-372 (7.038-fold), miR-127-3p (8.234-fold), miR-155-5p (4.947-fold), miR-320a (17.502-fold) and miR-370 (21.479-fold) (p < 0.05) were found to be increased in cHL. There was no difference in miRNA profile according to the age, sex, stage, response to treatment, DFS and OS. However, miR-889 was found to be increased in patients with B symptom and miR-127-3p was found to be increased in nodular sclerosing subtype. Some miRNAs increase and some decrease in cHL. However, there was no clinical association between clinical variables and with the majority of the miRNA profile studied in this study. miR-889 and miR-127-3p were related to B symptom and nodular sclerosis subtype, respectively. We need more studies evaluating miRNA profile and clinical outcome in Hodgkin Lymphoma.
Collapse
|
142
|
Mousavi R, Eftekhari M, Haghighi MG. A new approach to human microRNA target prediction using ensemble pruning and rotation forest. J Bioinform Comput Biol 2016; 13:1550017. [DOI: 10.1142/s0219720015500171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have important functions in gene regulation. Since finding miRNA target experimentally is costly and needs spending much time, the use of machine learning methods is a growing research area for miRNA target prediction. In this paper, a new approach is proposed by using two popular ensemble strategies, i.e. Ensemble Pruning and Rotation Forest (EP-RTF), to predict human miRNA target. For EP, the approach utilizes Genetic Algorithm (GA). In other words, a subset of classifiers from the heterogeneous ensemble is first selected by GA. Next, the selected classifiers are trained based on the RTF method and then are combined using weighted majority voting. In addition to seeking a better subset of classifiers, the parameter of RTF is also optimized by GA. Findings of the present study confirm that the newly developed EP-RTF outperforms (in terms of classification accuracy, sensitivity, and specificity) the previously applied methods over four datasets in the field of human miRNA target. Diversity-error diagrams reveal that the proposed ensemble approach constructs individual classifiers which are more accurate and usually diverse than the other ensemble approaches. Given these experimental results, we highly recommend EP-RTF for improving the performance of miRNA target prediction.
Collapse
Affiliation(s)
- Reza Mousavi
- Department of Electrical and Computer Engineering, Graduate University of Advanced Technology, Kerman, Iran
| | - Mahdi Eftekhari
- Department of Computer Engineering, Shahid Bahonar University of Kerman, Iran
| | - Mehdi Ghezelbash Haghighi
- Department of Electrical and Computer Engineering, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
143
|
Chen W, Huang L, Hao C, Zeng W, Luo X, Li X, Zhou L, Jiang S, Chen Z, He Y. MicroRNA-155 promotes apoptosis in SKOV3, A2780, and primary cultured ovarian cancer cells. Tumour Biol 2016; 37:9289-99. [PMID: 26779627 DOI: 10.1007/s13277-016-4804-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/06/2016] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are a large group of small non-coding RNAs that can negatively regulate gene expression at the post-transcriptional level. The deregulation of miRNAs has been associated with tumorigenesis, drug resistance, and prognosis in cancers. Deregulated miR-155 has been reported in numerous cancers; however, its function remains unclear. 4',6-Diamidino-2-phenylindole (DAPI) staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) techniques were used to determine the effects of a miR-155 mimic or inhibitor on the apoptotic ratio of ovarian cancer cells induced by cisplatin. Bioinformatic predictions, the dual-luciferase reporter assay, and western blot analysis were used to detect how miR-155 regulates X-linked inhibitor of apoptosis protein (XIAP). We demonstrated that a miR-155 mimic could decrease the IC50 value of cisplatin in SKOV3 ovarian cancer cells. Subsequently, gain- and loss-of-function analyses with a miR-155 mimic and inhibitor showed that miR-155 sensitizes ovarian cancer cells to cisplatin. Furthermore, the results from the luciferase assays and western blot analysis identified XIAP as the direct target of miR-155. In addition, introducing XIAP cDNA without a three prime untranslated region (3'-UTR) rescued the miR-155 promotion of apoptosis. These results indicate that miR-155 mediates cisplatin-induced apoptosis by targeting XIAP in ovarian cancer cells and that miR-155 could be a potential therapeutic target to increase the efficiency of ovarian cancer interventions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China. .,Department of Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, 510260, China.
| | - Liuxuan Huang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, 510260, China
| | - Chenjun Hao
- Department of Obstetrics and Gynecology, Panyu Maternal and Child Care Service Centre of Guangzhou, Guangzhou, China
| | - Wenshu Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 132 East Waihuan Rd, Rm 312, Higher Education Mega, Guangzhou, 510006, China
| | - Xu Luo
- Gene Science & Health Company, 3003 Shennan Road, Rm 2108, Shenzhen, 518000, China
| | - Xiaodi Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 132 East Waihuan Rd, Rm 312, Higher Education Mega, Guangzhou, 510006, China
| | - Longshu Zhou
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, 510260, China
| | - Songshan Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 132 East Waihuan Rd, Rm 312, Higher Education Mega, Guangzhou, 510006, China
| | - Zheng Chen
- Department of Medical Genetics, Zhongshan Medical College, Sun Yat-sen University, Zhongshan Road 2, Guangzhou, 510080, China.
| | - Yuanli He
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China.
| |
Collapse
|
144
|
Abstract
Toll-like receptors (TLR), a family of pattern-recognition receptors (PRRs) stimulated by pathogen-associated molecular patterns (PAMPs), generate antigen-triggered innate and adaptive immune responses. Recent studies have indicated that several small, regulatory RNAs, called microRNAs (miRNas), are induced by TLR activation in immune cells and that many microRNAs can control the inflammatory process and response to infection by positively or negatively regulating TLR signaling. Among these miRNAs, aberrant microRNA-155 (miR-155) has been implicated in diverse immune processes including the pathogenesis of several autoimmune diseases and cancer. Here, we discuss the role of miR-155 in TLR-mediated and TLR-related immune system regulation. Furthermore, we present our current knowledge of the design, in vivo delivery strategies, and therapeutic efficacy of miR-155 inhibitors in various inflammatory disorders and cancer, including a protocol on the use of miRNA-155 inhibitors in experimental autoimmune encephalomyelitis (EAE).
Collapse
Affiliation(s)
- Lucien P Garo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
145
|
Lutful Kabir FM, Alvarez CE, Bird RC. Canine Mammary Carcinomas: A Comparative Analysis of Altered Gene Expression. Vet Sci 2015; 3:vetsci3010001. [PMID: 29056711 PMCID: PMC5644615 DOI: 10.3390/vetsci3010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/19/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
Breast cancer represents the second most frequent neoplasm in humans and sexually intact female dogs after lung and skin cancers, respectively. Many similar features in human and dog cancers including, spontaneous development, clinical presentation, tumor heterogeneity, disease progression and response to conventional therapies have supported development of this comparative model as an alternative to mice. The highly conserved similarities between canine and human genomes are also key to this comparative analysis, especially when compared to the murine genome. Studies with canine mammary tumor (CMT) models have shown a strong genetic correlation with their human counterparts, particularly in terms of altered expression profiles of cell cycle regulatory genes, tumor suppressor and oncogenes and also a large group of non-coding RNAs or microRNAs (miRNAs). Because CMTs are considered predictive intermediate models for human breast cancer, similarities in genetic alterations and cancer predisposition between humans and dogs have raised further interest. Many cancer-associated genetic defects critical to mammary tumor development and oncogenic determinants of metastasis have been reported and appear to be similar in both species. Comparative analysis of deregulated gene sets or cancer signaling pathways has shown that a significant proportion of orthologous genes are comparably up- or down-regulated in both human and dog breast tumors. Particularly, a group of cell cycle regulators called cyclin-dependent kinase inhibitors (CKIs) acting as potent tumor suppressors are frequently defective in CMTs. Interestingly, comparative analysis of coding sequences has also shown that these genes are highly conserved in mammals in terms of their evolutionary divergence from a common ancestor. Moreover, co-deletion and/or homozygous loss of the INK4A/ARF/INK4B (CDKN2A/B) locus, encoding three members of the CKI tumor suppressor gene families (p16/INK4A, p14ARF and p15/INK4B), in many human and dog cancers including mammary carcinomas, suggested their important conserved genetic order and localization in orthologous chromosomal regions. miRNAs, as powerful post-transcriptional regulators of most of the cancer-associated genes, have not been well evaluated to date in animal cancer models. Comprehensive expression profiles of miRNAs in CMTs have revealed their altered regulation showing a strong correlation with those found in human breast cancers. These genetic correlations between human and dog mammary cancers will greatly advance our understanding of regulatory mechanisms involving many critical cancer-associated genes that promote neoplasia and contribute to the promising development of future therapeutics.
Collapse
Affiliation(s)
- Farruk M Lutful Kabir
- Auburn University Research Initiative in Cancer (AURIC), Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL 36849, USA.
- Current address: Department of Pediatrics, Division of Pulmonology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Carlos E Alvarez
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital Departments of Pediatrics and Veterinary Clinical Sciences, The Ohio State University Colleges of Medicine and Veterinary Medicine, Columbus, OH 43205, USA.
| | - R Curtis Bird
- Auburn University Research Initiative in Cancer (AURIC), Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL 36849, USA.
| |
Collapse
|
146
|
Sczepanski JT, Joyce GF. Specific Inhibition of MicroRNA Processing Using L-RNA Aptamers. J Am Chem Soc 2015; 137:16032-7. [PMID: 26652064 DOI: 10.1021/jacs.5b06696] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In vitro selection was used to obtain l-RNA aptamers that bind the distal stem-loop of various precursor microRNAs (pre-miRs). These l-aptamers, termed "aptamiRs", bind their corresponding pre-miR target through highly specific tertiary interactions rather than Watson-Crick pairing. Formation of a pre-miR-aptamiR complex inhibits Dicer-mediated processing of the pre-miR, which is required to form the mature functional microRNA. One of the aptamiRs, which was selected to bind oncogenic pre-miR-155, inhibits Dicer processing under simulated physiological conditions, with an IC50 of 87 nM. Given that l-RNAs are intrinsically resistant to nuclease degradation, these results suggest that aptamiRs might be pursued as a new class of miR inhibitors.
Collapse
Affiliation(s)
- Jonathan T Sczepanski
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gerald F Joyce
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
147
|
Nakagawa R, Leyland R, Meyer-Hermann M, Lu D, Turner M, Arbore G, Phan TG, Brink R, Vigorito E. MicroRNA-155 controls affinity-based selection by protecting c-MYC+ B cells from apoptosis. J Clin Invest 2015; 126:377-88. [PMID: 26657861 DOI: 10.1172/jci82914] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022] Open
Abstract
The production of high-affinity antibodies by B cells is essential for pathogen clearance. Antibody affinity for antigen is increased through the affinity maturation in germinal centers (GCs). This is an iterative process in which B cells cycle between proliferation coupled with the acquisition of mutations and antigen-based positive selection, resulting in retention of the highest-affinity B cell clones. The posttranscriptional regulator microRNA-155 (miR-155) is critical for efficient affinity maturation and the maintenance of the GCs; however, the cellular and molecular mechanism by which miR-155 regulates GC responses is not well understood. Here, we utilized a miR-155 reporter mouse strain and showed that miR-155 is coexpressed with the proto-oncogene encoding c-MYC in positively selected B cells. Functionally, miR-155 protected positively selected c-MYC+ B cells from apoptosis, allowing clonal expansion of this population, providing an explanation as to why Mir155 deletion impairs affinity maturation and promotes the premature collapse of GCs. We determined that miR-155 directly inhibits the Jumonji family member JARID2, which enhances B cell apoptosis when overexpressed, and thereby promotes GC B cell survival. Our findings also suggest that there is cooperation between c-MYC and miR-155 during the normal GC response, a cooperation that may explain how c-MYC and miR-155 can collaboratively function as oncogenes.
Collapse
|
148
|
Mazloom H, Alizadeh S, Pasalar P, Esfahani EN, Meshkani R. Downregulated microRNA-155 expression in peripheral blood mononuclear cells of type 2 diabetic patients is not correlated with increased inflammatory cytokine production. Cytokine 2015; 76:403-408. [DOI: 10.1016/j.cyto.2015.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
|
149
|
Abstract
MicroRNAs (miRNAs) are differentially regulated in healthy, activated, inflamed, neoplastic, or otherwise pathological cells and tissues. While their main functions are executed intracellularly, many miRNAs can reproducibly be detected extracellularly in plasma and serum. This circulating, extracellular miRNA is protected against degradation by complexation with carrier proteins and/or by being enclosed in subcellular membrane vesicles. This, together with their tissue- and disease-specific expression, has fuelled the interest in using circulating microRNA profiles as harbingers of disease, i.e., as diagnostic analytes and as clues to dysregulated pathways in disease. Many studies show that inflammation and immune dysregulation, e.g., in autoimmune diseases, are associated with distinct miRNA expression changes in targeted tissues and in innate and adaptive immunity cells such as lymphocytes, natural killer cells, neutrophil granulocytes, and monocyte-macrophages. Exploratory studies (only validated in a few cases) also show that specific profiles of circulating miRNAs are associated with different systemic autoimmune diseases including systemic lupus erythematosus (SLE), systemic sclerosis, and rheumatoid arthritis. Even though the link between cellular alterations and extracellular profiles is still unpredictable, the data suggest that circulating miRNAs in autoimmunity may become diagnostically useful. Here, we review important circulating miRNAs in animal models of inflammation and in systemic autoimmunity and summarize some proposed functions of miRNAs in immune regulation and dysregulation. We conclude that the studies suggest new hypotheses and additional experiments, and that further diagnostic development is highly dependent on analytical method development and on obtaining sufficient numbers of uniformly processed samples from clinically well-characterized patients and controls.
Collapse
|
150
|
Differential expression of miR-155 and miR-21 in tumor and stroma cells in diffuse large B-cell lymphoma. Appl Immunohistochem Mol Morphol 2015; 23:188-95. [PMID: 25265435 DOI: 10.1097/pai.0000000000000073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OncomiRs miR-21 and miR-155 have been linked to lymphomagenesis, but information on their implication in diffuse large B-cell lymphoma (DLBCL) is limited. Here, we used locked nucleic acid-based in situ hybridization (ISH) detection techniques on formalin-fixed paraffin-embedded DLBCL tissue samples to identify miR-155 and miR-21 at the cellular level in 56 patients diagnosed with DLBCL, and compared them to miR array data. miR-155 was observed in tumor cells in 19/56 (33.9%) of the samples evaluated by ISH. miR-21 was localized to the stromal compartment in 41/56 (73.2%). A subset of these, 16/56 (28.6%), also showed labeling in tumor cells. When comparing ISH-scores and miR array data, miR-155 in tumor cells, identified by ISH, was associated with miR-155 expression in miR array data (P=0.030). Equally, miR-21 expression by miR array data were highly associated with miR-21 ISH-scores in the stromal cells (P=0.002), whereas no association between miR array data and ISH of miR-21 in tumor cells was observed (P=0.673). We found no association of miR-155 and miR-21 with overall survival or germinal center B-cell-like (GCB) versus non-GCB-like subtypes of DLBCL. In conclusion, miR-ISH added to the biological interpretation of miR expression in DLBCL compared with miR array data, but miR-155 and miR-21 ISH did not add prognostic information in this series.
Collapse
|