101
|
Lorenzatto KR, Monteiro KM, Paredes R, Paludo GP, da Fonsêca MM, Galanti N, Zaha A, Ferreira HB. Fructose-bisphosphate aldolase and enolase from Echinococcus granulosus: genes, expression patterns and protein interactions of two potential moonlighting proteins. Gene 2012; 506:76-84. [PMID: 22750316 DOI: 10.1016/j.gene.2012.06.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/26/2012] [Accepted: 06/17/2012] [Indexed: 01/16/2023]
Abstract
Glycolytic enzymes, such as fructose-bisphosphate aldolase (FBA) and enolase, have been described as complex multifunctional proteins that may perform non-glycolytic moonlighting functions, but little is known about such functions, especially in parasites. We have carried out in silico genomic searches in order to identify FBA and enolase coding sequences in Echinococcus granulosus, the causative agent of cystic hydatid disease. Four FBA genes and 3 enolase genes were found, and their sequences and exon-intron structures were characterized and compared to those of their orthologs in Echinococcus multilocularis, the causative agent of alveolar hydatid disease. To gather evidence of possible non-glycolytic functions, the expression profile of FBA and enolase isoforms detected in the E. granulosus pathogenic larval form (hydatid cyst) (EgFBA1 and EgEno1) was assessed. Using specific antibodies, EgFBA1 and EgEno1 were detected in protoscolex and germinal layer cells, as expected, but they were also found in the hydatid fluid, which contains parasite's excretory-secretory (ES) products. Besides, both proteins were found in protoscolex tegument and in vitro ES products, further suggesting possible non-glycolytic functions in the host-parasite interface. EgFBA1 modeled 3D structure predicted a F-actin binding site, and the ability of EgFBA1 to bind actin was confirmed experimentally, which was taken as an additional evidence of FBA multifunctionality in E. granulosus. Overall, our results represent the first experimental evidences of alternative functions performed by glycolytic enzymes in E. granulosus and provide relevant information for the understanding of their roles in host-parasite interplay.
Collapse
Affiliation(s)
- Karina Rodrigues Lorenzatto
- Laboratório de Genômica Estrutural e Funcional and Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Molecular identification and characterization of leucine aminopeptidase 2, an excretory-secretory product of Clonorchis sinensis. Mol Biol Rep 2012; 39:9817-26. [DOI: 10.1007/s11033-012-1848-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
|
103
|
Wang X, Chen W, Lv X, Tian Y, Men J, Zhang X, Lei H, Zhou C, Lu F, Liang C, Hu X, Xu J, Wu Z, Li X, Yu X. Identification and characterization of paramyosin from cyst wall of metacercariae implicated protective efficacy against Clonorchis sinensis infection. PLoS One 2012; 7:e33703. [PMID: 22470461 PMCID: PMC3312334 DOI: 10.1371/journal.pone.0033703] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/20/2012] [Indexed: 12/14/2022] Open
Abstract
Human clonorchiasis has been increasingly prevalent in recent years and results in a threat to the public health in epidemic regions, motivating current strategies of vaccines to combat Clonorchis sinensis (C. sinensis). In this study, we identified C. sinensis paramyosin (CsPmy) from the cyst wall proteins of metacercariae by proteomic approaches and characterized the expressed recombinant pET-26b-CsPmy protein (101 kDa). Bioinformatics analysis indicated that full-length sequences of paramyosin are conserved in helminthes and numerous B-cell/T-cell epitopes were predicted in amino acid sequence of CsPmy. Western blot analysis showed that CsPmy was expressed at four life stages of C. sinensis, both cyst wall proteins and soluble tegumental components could be probed by anti-CsPmy serum. Moreover, immunolocalization results revealed that CsPmy was specifically localized at cyst wall and excretory bladder of metacercaria, as well as the tegument, oral sucker and vitellarium of adult worm. Both immunoblot and immunolocalization results demonstrated that CsPmy was highly expressed at the stage of adult worm, metacercariae and cercaria, which could be supported by real-time PCR analysis. Both recombinant protein and nucleic acid of CsPmy showed strong immunogenicity in rats and induced combined Th1/Th2 immune responses, which were reflected by continuous high level of antibody titers and increased level of IgG1/IgG2a subtypes in serum. In vaccine trials, comparing with control groups, both CsPmy protein and DNA vaccine exhibited protective effect with significant worm reduction rate of 54.3% (p<0.05) and 36.1% (p<0.05), respectively. In consistence with immune responses in sera, elevated level of cytokines IFN-γ and IL-4 in splenocytes suggested that CsPmy could induce combined cellular immunity and humoral immunity in host. Taken together, CsPmy could be a promising vaccine candidate in the prevention of C. sinensis regarding its high immunogenicity and surface localization.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenjun Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoli Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yanli Tian
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jingtao Men
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xifeng Zhang
- Department of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, People's Republic of China
| | - Huali Lei
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chenhui Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chi Liang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuchu Hu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- * E-mail: (XL); (XY)
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- * E-mail: (XL); (XY)
| |
Collapse
|
104
|
Secreted Opisthorchis viverrini glutathione S-transferase regulates cell proliferation through AKT and ERK pathways in cholangiocarcinoma. Parasitol Int 2012; 61:155-61. [DOI: 10.1016/j.parint.2011.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/07/2011] [Accepted: 07/10/2011] [Indexed: 11/23/2022]
|
105
|
Cantacessi C, Hofmann A, Young ND, Broder U, Hall RS, Loukas A, Gasser RB. Insights into SCP/TAPS proteins of liver flukes based on large-scale bioinformatic analyses of sequence datasets. PLoS One 2012; 7:e31164. [PMID: 22384000 PMCID: PMC3284463 DOI: 10.1371/journal.pone.0031164] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/03/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND SCP/TAPS proteins of parasitic helminths have been proposed to play key roles in fundamental biological processes linked to the invasion of and establishment in their mammalian host animals, such as the transition from free-living to parasitic stages and the modulation of host immune responses. Despite the evidence that SCP/TAPS proteins of parasitic nematodes are involved in host-parasite interactions, there is a paucity of information on this protein family for parasitic trematodes of socio-economic importance. METHODOLOGY/PRINCIPAL FINDINGS We conducted the first large-scale study of SCP/TAPS proteins of a range of parasitic trematodes of both human and veterinary importance (including the liver flukes Clonorchis sinensis, Opisthorchis viverrini, Fasciola hepatica and F. gigantica as well as the blood flukes Schistosoma mansoni, S. japonicum and S. haematobium). We mined all current transcriptomic and/or genomic sequence datasets from public databases, predicted secondary structures of full-length protein sequences, undertook systematic phylogenetic analyses and investigated the differential transcription of SCP/TAPS genes in O. viverrini and F. hepatica, with an emphasis on those that are up-regulated in the developmental stages infecting the mammalian host. CONCLUSIONS This work, which sheds new light on SCP/TAPS proteins, guides future structural and functional explorations of key SCP/TAPS molecules associated with diseases caused by flatworms. Future fundamental investigations of these molecules in parasites and the integration of structural and functional data could lead to new approaches for the control of parasitic diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Hofmann
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - Neil D. Young
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ursula Broder
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - Ross S. Hall
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Loukas
- Queensland Tropical Health Alliance, James Cook University, Smithfield, Queensland, Australia
| | - Robin B. Gasser
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
106
|
Whole-genome sequence of Schistosoma haematobium. Nat Genet 2012; 44:221-5. [PMID: 22246508 DOI: 10.1038/ng.1065] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 12/07/2011] [Indexed: 12/14/2022]
Abstract
Schistosomiasis is a neglected tropical disease caused by blood flukes (genus Schistosoma; schistosomes) and affecting 200 million people worldwide. No vaccines are available, and treatment relies on one drug, praziquantel. Schistosoma haematobium has come into the spotlight as a major cause of urogenital disease, as an agent linked to bladder cancer and as a predisposing factor for HIV/AIDS. The parasite is transmitted to humans from freshwater snails. Worms dwell in blood vessels and release eggs that become embedded in the bladder wall to elicit chronic immune-mediated disease and induce squamous cell carcinoma. Here we sequenced the 385-Mb genome of S. haematobium using Illumina-based technology at 74-fold coverage and compared it to sequences from related parasites. We included genome annotation based on function, gene ontology, networking and pathway mapping. This genome now provides an unprecedented resource for many fundamental research areas and shows great promise for the design of new disease interventions.
Collapse
|
107
|
Virginio VG, Monteiro KM, Drumond F, de Carvalho MO, Vargas DM, Zaha A, Ferreira HB. Excretory/secretory products from in vitro-cultured Echinococcus granulosus protoscoleces. Mol Biochem Parasitol 2012; 183:15-22. [PMID: 22261090 DOI: 10.1016/j.molbiopara.2012.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 01/07/2023]
Abstract
Cystic hydatid disease (CHD) is caused by infection with Echinococcus granulosus metacestodes and affects humans and livestock. Proteins secreted or excreted by protoscoleces, pre-adult worms found in the metacestode, are thought to play fundamental roles in the host-parasite relationship. In this work, we performed an LC-MS/MS proteomic analysis of the excretory-secretory products obtained from the first 48 h of an in vitro culture of the protoscoleces. We identified 32 proteins, including 18 that were never detected previously in metacestode proteomic studies. Among the novel identified excretory-secretory products are antigenic proteins, such as EG19 and P-29 and a calpain protease. We also identified other important protoscolex excretory-secretory products, such as thioredoxin peroxidase and 14-3-3 proteins, which are potentially involved in evasion mechanisms adopted by parasites to establish infection. Several intracellular proteins were found in the excretory-secretory products, revealing a set of identified proteins not previously thought to be exposed at the host-parasite interface. Additionally, immunological analyses established the antigenic profiles of the newly identified excretory-secretory products and revealed, for the first time, the in vitro secretion of the B antigen by protoscoleces. Considering that the excretory-secretory products obtained in vitro might reflect the products released and exposed to the host in vivo, our results provide valuable information on parasite survival strategies in adverse host environments and on the molecular mechanisms underpinning CHD immunopathology.
Collapse
Affiliation(s)
- Veridiana G Virginio
- Laboratório de Biologia Molecular de Cestódeos e Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
108
|
Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, Luo F, Guo L, Lv X, Deng C, Zhou C, Fan Y, Li X, Huang L, Hu Y, Liang C, Hu X, Xu J, Yu X. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol 2011; 12:R107. [PMID: 22023798 PMCID: PMC3333777 DOI: 10.1186/gb-2011-12-10-r107] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 09/13/2011] [Accepted: 10/24/2011] [Indexed: 02/07/2023] Open
Abstract
Background Clonorchis sinensis is a carcinogenic human liver fluke that is widespread in Asian countries. Increasing infection rates of this neglected tropical disease are leading to negative economic and public health consequences in affected regions. Experimental and epidemiological studies have shown a strong association between the incidence of cholangiocarcinoma and the infection rate of C. sinensis. To aid research into this organism, we have sequenced its genome. Results We combined de novo sequencing with computational techniques to provide new information about the biology of this liver fluke. The assembled genome has a total size of 516 Mb with a scaffold N50 length of 42 kb. Approximately 16,000 reliable protein-coding gene models were predicted. Genes for the complete pathways for glycolysis, the Krebs cycle and fatty acid metabolism were found, but key genes involved in fatty acid biosynthesis are missing from the genome, reflecting the parasitic lifestyle of a liver fluke that receives lipids from the bile of its host. We also identified pathogenic molecules that may contribute to liver fluke-induced hepatobiliary diseases. Large proteins such as multifunctional secreted proteases and tegumental proteins were identified as potential targets for the development of drugs and vaccines. Conclusions This study provides valuable genomic information about the human liver fluke C. sinensis and adds to our knowledge on the biology of the parasite. The draft genome will serve as a platform to develop new strategies for parasite control.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Wilson RA, Wright JM, de Castro-Borges W, Parker-Manuel SJ, Dowle AA, Ashton PD, Young ND, Gasser RB, Spithill TW. Exploring the Fasciola hepatica tegument proteome. Int J Parasitol 2011; 41:1347-59. [PMID: 22019596 DOI: 10.1016/j.ijpara.2011.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
The surface tegument of the liver fluke Fasciola hepatica is a syncytial cytoplasmic layer bounded externally by a plasma membrane and covered by a glycocalyx, which constitutes the interface between the parasite and its ruminant host. The tegument's interaction with the immune system during the fluke's protracted migration from the gut lumen through the peritoneal cavity and liver parenchyma to the lumen of the bile duct, plays a key role in the fluke's establishment or elimination. However, little is known about proteins of the tegument surface or its secretions. We applied techniques developed for the blood fluke, Schistosoma mansoni, to enrich a tegument surface membrane preparation and analyse its composition by tandem mass spectrometry using new transcript databases for F. hepatica. We increased the membrane and secretory pathway components of the final preparation to ∼30%, whilst eliminating contaminating proteases. We identified a series of proteins or transcripts shared with the schistosome tegument including annexins, a tetraspanin, carbonic anhydrase and an orthologue of a host protein (CD59) that inhibits complement fixation. Unique to F. hepatica, we also found proteins with lectin, cubulin and von Willebrand factor domains plus 10 proteins with leader sequences or transmembrane helices. Many of these surface proteins are potential vaccine candidates. We were hampered in collecting tegument secretions by the propensity of liver flukes, unlike blood flukes, to vomit their gut contents. We analysed both the 'vomitus' and a second supernatant released from haematin-depleted flukes. We identified many proteases, some novel, as well as a second protein with a von Willebrand factor domain. This study demonstrates that components of the tegumental surface of F. hepatica can be defined using proteomic approaches, but also indicates the need to prevent vomiting if tegument secretions are to be characterised.
Collapse
Affiliation(s)
- R Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Nair SS, Bommana A, Pakala SB, Ohshiro K, Lyon AJ, Suttiprapa S, Periago MV, Laha T, Hotez PJ, Bethony JM, Sripa B, Brindley PJ, Kumar R. Inflammatory response to liver fluke Opisthorchis viverrini in mice depends on host master coregulator MTA1, a marker for parasite-induced cholangiocarcinoma in humans. Hepatology 2011; 54:1388-97. [PMID: 21725997 PMCID: PMC3184196 DOI: 10.1002/hep.24518] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/12/2011] [Indexed: 12/26/2022]
Abstract
UNLABELLED Based on the recently established role for the master coregulator MTA1 and MTA1-containing nuclear remodeling complexes in oncogenesis and inflammation, we explored the links between parasitism by the carcinogenic liver fluke Opisthorchis viverrini and this coregulator using both an Mta1(-/-) mouse model of infection and a tissue microarray of liver fluke-induced human cholangiocarcinomas (CCAs). Intense foci of inflammation and periductal fibrosis in the liver and kidneys of wild-type Mta1(+/+) mice were evident at 23 days postinfection with O. viverrini. In contrast, little inflammatory response was observed in the same organs of infected Mta1(-/-) mice. Livers of infected Mta1(+/+) mice revealed strong up-regulation of fibrosis-associated markers such as cytokeratins 18 and 19 and annexin 2, as determined both by immunostaining and by reverse-transcription polymerase chain reaction compared with infected Mta1(-/-) mice. CD4 expression was up-regulated by infection in the livers of both experimental groups; however, its levels were several-fold higher in the Mta1(+/+) mice than in infected Mta1(-/-) mice. Mta1(-/-) infected mice also exhibited significantly higher systemic and hepatic levels of host cytokines such as interleukin (IL)-12p70, IL-10, and interferon-γ compared with the levels of these cytokines in the Mta1(+/+) mice, suggesting an essential role of MTA1 in the cross-regulation of the Th1 and Th2 responses, presumably due to chromatin remodeling of the target chromatin genes. Immunohistochemical analysis of ≈ 300 liver tissue cores from confirmed cases of O. viverrini-induced CCA showed that MTA1 expression was elevated in >80% of the specimens. CONCLUSION These findings suggest that MTA1 status plays an important role in conferring an optimal cytokine response in mice following infection with O. viverrini and is a major player in parasite-induced CCA in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Sutas Suttiprapa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, 20037, USA
| | - Maria V Periago
- Human Hookworm Vaccine Initiative Laboratório de Imunologia Celular Molecular, Belo Horizonte-MG, CEP 30190-002, Brazil
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Peter J. Hotez
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, 20037, USA
| | - Jeffrey M Bethony
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, 20037, USA
- Human Hookworm Vaccine Initiative Laboratório de Imunologia Celular Molecular, Belo Horizonte-MG, CEP 30190-002, Brazil
| | - Banchob Sripa
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, 20037, USA
| | | |
Collapse
|
111
|
de la Torre-Escudero E, Manzano-Román R, Siles-Lucas M, Pérez-Sánchez R, Moyano JC, Barrera I, Oleaga A. Molecular and functional characterization of a Schistosoma bovis annexin: fibrinolytic and anticoagulant activity. Vet Parasitol 2011; 184:25-36. [PMID: 21889851 DOI: 10.1016/j.vetpar.2011.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/26/2011] [Accepted: 08/08/2011] [Indexed: 02/04/2023]
Abstract
Annexins belong to an evolutionarily conserved multigene family of proteins expressed throughout the animal and plant kingdoms. Although they are soluble cytosolic proteins that lack signal sequences, they have also been detected in extracellular fluids and have been associated with cell surface membranes, where they could be involved in anti-haemostatic and anti-inflammatory functions. Schistosome annexins have been identified on the parasite's tegument surface and excretory/secretory products, but their functions are still unknown. Here we report the cloning, sequencing, in silico analysis, and functional characterization of a Schistosoma bovis annexin. The predicted protein has typical annexin secondary and tertiary structures. Bioassays with the recombinant protein revealed that the protein is biologically active in vitro, showing fibrinolytic and anticoagulant properties. Finally, the expression of the native protein on the tegument surface of S. bovis schistosomula and adult worms is demonstrated, revealing the possibility of exposure to the host's immune system and thus offering a potential vaccine target for the control of schistosomiasis in ruminants.
Collapse
Affiliation(s)
- Eduardo de la Torre-Escudero
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca, Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
112
|
Toledo R, Bernal MD, Marcilla A. Proteomics of foodborne trematodes. J Proteomics 2011; 74:1485-503. [DOI: 10.1016/j.jprot.2011.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/25/2011] [Accepted: 03/26/2011] [Indexed: 01/19/2023]
|
113
|
Senawong G, Laha T, Loukas A, Brindley PJ, Sripa B. Cloning, expression, and characterization of a novel Opisthorchis viverrini calcium-binding EF-hand protein. Parasitol Int 2011; 61:94-100. [PMID: 21782972 DOI: 10.1016/j.parint.2011.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/08/2011] [Accepted: 07/10/2011] [Indexed: 11/28/2022]
Abstract
A novel 22.8 kDa of Opisthorchis viverrini (Ov) calcium-binding EF-hand protein (Ov CaBP) was identified and isolated from an immunoscreening of the adult stage Ov cDNA library by using a human cholangiocarcinoma (CCA) serum. This protein was related to other calcium-binding proteins and conserved among the trematodes. Ov CaBP shared 98% amino acid identity to 22.8 kDa of Clonorchis sinensis CaBP and both were classified as a new group of CaBP EF-hand protein by multiple sequence alignment and phylogenetic tree analysis. The open reading frame of Ov CaBP was 585 bp which encoded for 194 amino acids. The N-terminal part is composed of two calcium-binding EF-hand motifs whereas the C-terminal part contains a dynein light chain motif (DLC). In addition, transcription analysis by RT-PCR revealed that it was constitutively transcribed in all stages, including metacercariae, juvenile, and adult. Furthermore, recombinant Ov CaBP protein (rOv CaBP) was expressed as a soluble protein and antibody generated against this rOv CaBP protein was capable of detecting Ov CaBP in the Ov somatic extracts but not in Ov ES products. This anti-rOv CaBP serum was also used to localize Ov CaBP in Ov infected hamster's liver sections which the distribution of Ov CaBP was located in gut epithelium, miracidia in eggs and slightly in parenchyma. Moreover, rOv CaBP protein showed a calcium-binding property in non-denaturing gel mobility shift assay.
Collapse
Affiliation(s)
- Gulsiri Senawong
- Tropical Disease Research Laboratory, Division of Experimental Pathology, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | |
Collapse
|
114
|
Kang JM, Lee KH, Sohn WM, Na BK. Identification and functional characterization of CsStefin-1, a cysteine protease inhibitor of Clonorchis sinensis. Mol Biochem Parasitol 2011; 177:126-34. [DOI: 10.1016/j.molbiopara.2011.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 11/27/2022]
|
115
|
Sripa J, Pinlaor P, Brindley PJ, Sripa B, Kaewkes S, Robinson MW, Young ND, Gasser RB, Loukas A, Laha T. RNA interference targeting cathepsin B of the carcinogenic liver fluke, Opisthorchis viverrini. Parasitol Int 2011; 60:283-8. [PMID: 21565281 DOI: 10.1016/j.parint.2011.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 01/30/2023]
Abstract
Functional genomics have not been reported for Opisthorchis viverrini or the related fish-borne fluke, Clonorchis sinensis. Here we describe the introduction by square wave electroporation of Cy3-labeled small RNA into adult O. viverrini worms. Adult flukes were subjected to square wave electroporation employing a single pulse for 20 ms of 125V in the presence of 50 μg/ml of Cy3-siRNA. The parasites tolerated this manipulation and, at 24 and 48 h after electroporation, fluorescence from the Cy3-siRNA was evident throughout the parenchyma of the worms, with strong fluorescence evident in the guts and reproductive organs of the adult worms. Second, other worms were treated using the same electroporation settings with double stranded RNA targeting an endogenous papain-like cysteine protease, cathepsin B. This manipulation resulted in a significant reduction in specific mRNA levels encoding cathepsin B, and a significant reduction in cathepsin B activity against the diagnostic peptide, Z-Arg-Arg-AMC. This appears to be the first report of introduction of reporter genes into O. viverrini and the first report of experimental RNA interference (RNAi) in this fluke. The findings indicated the presence of an intact RNAi pathway in these parasites which, in turn, provides an opportunity to probe gene functions in this neglected tropical disease pathogen.
Collapse
Affiliation(s)
- Jittiyawadee Sripa
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Smout MJ, Sripa B, Laha T, Mulvenna J, Gasser RB, Young ND, Bethony JM, Brindley PJ, Loukas A. Infection with the carcinogenic human liver fluke, Opisthorchis viverrini. MOLECULAR BIOSYSTEMS 2011; 7:1367-75. [PMID: 21311794 PMCID: PMC3739706 DOI: 10.1039/c0mb00295j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Throughout Southeast Asia there is a strikingly high incidence of cholangiocarcinoma (CCA--hepatic cancer of the bile duct epithelium), particularly in people from rural settings in Laos and Northeast Thailand who are infected with the liver fluke, Opisthorchis viverrini, one of only three carcinogenic eukaryotic pathogens. More ubiquitous carcinogenic microbes, such as Helicobacter pylori, induce cancer in less than 1% of infected people, while as many as one-sixth of people with opisthorchiasis will develop CCA. The mechanisms by which O. viverrini causes cancer are multi-factorial, involving mechanical irritation from the activities and movements of the flukes, immunopathology, dietary nitrosamines and the secretion of parasite proteins that promote a tumourigenic environment. Genomic and proteomic studies of the liver fluke secretome have accelerated the discovery of parasite proteins with known/potential roles in pathogenesis and tumourigenesis, establishing a framework towards understanding, and ultimately preventing, the morbidity and mortality attributed to this highly carcinogenic parasite.
Collapse
Affiliation(s)
- Michael J Smout
- Queensland Tropical Health Alliance, James Cook University, Cairns, QLD, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Hofmann A, Osman A, Leow CY, Driguez P, McManus DP, Jones MK. Parasite annexins--new molecules with potential for drug and vaccine development. Bioessays 2011; 32:967-76. [PMID: 21105292 DOI: 10.1002/bies.200900195] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last few years, annexins have been discovered in several nematodes and other parasites, and distinct differences between the parasite annexins and those of the hosts make them potentially attractive targets for anti-parasite therapeutics. Annexins are ubiquitous proteins found in almost all organisms across all kingdoms.Here, we present an overview of novel annexins from parasitic organisms, and summarize their phylogenetic and biochemical properties, with a view to using them as drug or vaccine targets. Building on structural and biological information that has been accumulated for mammalian and plant annexins, we describe a predicted additional secondary structure element found in many parasite annexins that may confer unique functional properties, and present a specific antigenic epitope for use as a vaccine.
Collapse
Affiliation(s)
- Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
118
|
Aziz A, Zhang W, Li J, Loukas A, McManus DP, Mulvenna J. Proteomic characterisation of Echinococcus granulosus hydatid cyst fluid from sheep, cattle and humans. J Proteomics 2011; 74:1560-72. [PMID: 21362505 DOI: 10.1016/j.jprot.2011.02.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/17/2011] [Accepted: 02/22/2011] [Indexed: 12/29/2022]
Abstract
The hydatid cyst fluid (HCF) of Echinococcus granulosus is a complex biological mixture containing a wide range of proteins of both parasite and host origin. Using a combination of in- and off-gel protein fractionation techniques and tandem mass spectrometry 130 HCF proteins were identified from fertile cysts of sheep and human origin and infertile cysts from cattle. Forty-eight proteins were of parasite origin including Antigen 5 and Antigen B--the most abundant parasite proteins, thioredoxin, low-density lipoprotein receptors, cyclophilin and ferritin. Across the three host species the identified HCF proteins were broadly similar although, based on spectral counts, three proteins, including an antigen B isoform, were more abundant in sheep HCF compared with the fluids of cattle and human origin. Eighty-two host proteins were identified in HCF from the three species. Host plasma proteins were the most abundant, although approximately thirty of the host proteins that were identified are not considered constituents of plasma. The identification of parasite heat shock proteins and annexin A13 exclusively in infertile cysts, along with an increased spectral count for cathepsin B, supports the hypothesis of increased cellular stress and apoptosis as the cause of their infertility.
Collapse
Affiliation(s)
- Ammar Aziz
- Qld Tropical Health Alliance, James Cook University, Queensland, 4870, Australia
| | | | | | | | | | | |
Collapse
|
119
|
Young ND, Jex AR, Cantacessi C, Campbell BE, Laha T, Sohn WM, Sripa B, Loukas A, Brindley PJ, Gasser RB. Progress on the transcriptomics of carcinogenic liver flukes of humans—Unique biological and biotechnological prospects. Biotechnol Adv 2010; 28:859-70. [DOI: 10.1016/j.biotechadv.2010.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/12/2010] [Accepted: 07/16/2010] [Indexed: 12/22/2022]
|
120
|
Pearson MS, Ranjit N, Loukas A. Blunting the knife: development of vaccines targeting digestive proteases of blood-feeding helminth parasites. Biol Chem 2010; 391:901-11. [DOI: 10.1515/bc.2010.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractProteases are pivotal to parasitism, mediating biological processes crucial to worm survival including larval migration through tissue, immune evasion/modulation and nutrient acquisition by the adult parasite. In haematophagous parasites, many of these proteolytic enzymes are secreted from the intestine (nematodes) or gastrodermis (trematodes) where they act to degrade host haemoglobin and serum proteins as part of the feeding process. These proteases are exposed to components of the immune system of the host when the worms ingest blood, and therefore present targets for the development of anti-helminth vaccines. The protective effects of current vaccine antigens against nematodes that infect humans (hookworm) and livestock (barber's pole worm) are based on haemoglobin-degrading intestinal proteases and act largely as a result of the neutralisation of these proteases by antibodies that are ingested with the blood-meal. In this review, we survey the current status of helminth proteases that show promise as vaccines and describe their vital contribution to a parasitic existence.
Collapse
|
121
|
Young ND, Campbell BE, Hall RS, Jex AR, Cantacessi C, Laha T, Sohn WM, Sripa B, Loukas A, Brindley PJ, Gasser RB. Unlocking the transcriptomes of two carcinogenic parasites, Clonorchis sinensis and Opisthorchis viverrini. PLoS Negl Trop Dis 2010; 4:e719. [PMID: 20582164 PMCID: PMC2889816 DOI: 10.1371/journal.pntd.0000719] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 04/28/2010] [Indexed: 01/29/2023] Open
Abstract
The two parasitic trematodes, Clonorchis sinensis and Opisthorchis viverrini, have a major impact on the health of tens of millions of humans throughout Asia. The greatest impact is through the malignant cancer ( = cholangiocarcinoma) that these parasites induce in chronically infected people. Therefore, both C. sinensis and O. viverrini have been classified by the World Health Organization (WHO) as Group 1 carcinogens. Despite their impact, little is known about these parasites and their interplay with the host at the molecular level. Recent advances in genomics and bioinformatics provide unique opportunities to gain improved insights into the biology of parasites as well as their relationships with their hosts at the molecular level. The present study elucidates the transcriptomes of C. sinensis and O. viverrini using a platform based on next-generation (high throughput) sequencing and advanced in silico analyses. From 500,000 sequences, >50,000 sequences were assembled for each species and categorized as biologically relevant based on homology searches, gene ontology and/or pathway mapping. The results of the present study could assist in defining molecules that are essential for the development, reproduction and survival of liver flukes and/or that are linked to the development of cholangiocarcinoma. This study also lays a foundation for future genomic and proteomic research of C. sinensis and O. viverrini and the cancers that they are known to induce, as well as novel intervention strategies.
Collapse
Affiliation(s)
- Neil D. Young
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Bronwyn E. Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Ross S. Hall
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Aaron R. Jex
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Woon-Mok Sohn
- Department of Parasitology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Alex Loukas
- Queensland Tropical Health Alliance, James Cook University, Smithfield, Cairns, Queensland, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Medical Center, Washington, D. C., United States of America
| | - Robin B. Gasser
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|