101
|
Kirchhoff S, Kim JS, Hagendorff A, Thönnissen E, Krüger O, Lamers WH, Willecke K. Abnormal cardiac conduction and morphogenesis in connexin40 and connexin43 double-deficient mice. Circ Res 2000; 87:399-405. [PMID: 10969038 DOI: 10.1161/01.res.87.5.399] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Connexin40-deficient (Cx40(-/-)/Cx43(+/+)) and connexin43-heterozygous knockout mice (Cx40(+/+)/Cx43(+/-)) are viable but show cardiac conduction abnormalities. The ECGs of adult double heterozygous animals (Cx40(+/-)/Cx43(+/-)) suggest additive effects of Cx40 and Cx43 haploinsufficiency on ventricular, but not on atrial, conduction. We also observed additive effects of both connexins on cardiac morphogenesis. Approximately half of the Cx40(-/-)/Cx43(+/+) embryos died during the septation period, and an additional 16% died after birth. The majority of the latter mice had cardiac hypertrophy in conjunction with common atrioventricular junction or a ventricular septal defect. All Cx40(-/-)/Cx43(+/-) progeny exhibited cardiac malformations and died neonatally. The most frequent defect was common atrioventricular junction with abnormal atrioventricular connection, which was more severe than that seen in Cx40(-/-)/Cx43(+/+) mice. Furthermore, muscular ventricular septal defects, premature closure of the ductus arteriosus, and subcutaneous edema were noticed in these embryos. Cx40(+/-)/Cx43(-/-) embryos showed the same phenotype (ie, obstructed right ventricular outflow tract) as reported for Cx40(+/+)/Cx43(-/-) mice. These findings demonstrate that Cx43 haploinsufficiency aggravates the abnormalities observed in the Cx40(-/-) phenotype, whereas Cx40 haploinsufficiency does not worsen the Cx43(-/-) phenotype. We conclude that the gap-junctional proteins Cx40 and Cx43 contribute to morphogenesis of the heart in an isotype-specific manner.
Collapse
Affiliation(s)
- S Kirchhoff
- Universität Bonn, Institut für Genetik, Abt. Molekulargenetik, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
102
|
Yanagisawa H, Hammer RE, Richardson JA, Emoto N, Williams SC, Takeda SI, Clouthier DE, Yanagisawa M. Disruption of ECE-1 and ECE-2 reveals a role for endothelin-converting enzyme-2 in murine cardiac development. J Clin Invest 2000; 105:1373-82. [PMID: 10811845 PMCID: PMC315458 DOI: 10.1172/jci7447] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Endothelin-converting enzyme-1 and -2 (ECE-1 and -2) are membrane-bound metalloproteases that can cleave biologically the inactive endothelin-1 (ET-1) precursor to form active ET-1 in vitro. We previously reported developmental defects in specific subsets of neural crest-derived tissues, including branchial arch-derived craniofacial structures, aortic arch arteries, and the cardiac outflow tract in ECE-1 knockout mice. To examine the role of ECE-2 in cardiovascular development, we have now generated a null mutation in ECE-2 by homologous recombination. ECE-2 null mice develop normally, are healthy into adulthood, are fertile in both sexes, and live a normal life span. However, when they are bred into an ECE-1-null background, defects in cardiac outflow structures become more severe than those in ECE-1 single knockout embryos. In addition, ECE-1(-/-); ECE-2(-/-) double null embryos exhibited abnormal atrioventricular valve formation, a phenotype never seen in ECE-1 single knockout embryos. In the developing mouse heart, ECE-2 mRNA is expressed in the endocardial cushion mesenchyme from embyronic day (E) 12.5, in contrast to the endocardial expression of ECE-1. Levels of mature ET-1 and ET-2 in whole ECE-1(-/-); ECE-2(-/-) embryos at E12.5 do not differ appreciably from those of ECE-1(-/-) embryos. The significant residual ET-1/ET-2 in the ECE-1(-/-); ECE-2(-/-) embryos indicates that proteases distinct from ECE-1 and ECE-2 can carry out ET-1 activation in vivo.
Collapse
Affiliation(s)
- H Yanagisawa
- Howard Hughes Medical Institute, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75390-9050, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
In vitro and in vivo results are consistent with a critical role for NKX2.1, an epithelial homeodomain transcription factor in lung morphogenesis. Nkx2.1 null mutant embryos die at birth due to respiratory insufficiency caused by profoundly abnormal lungs. However, the precise role of NKX2.1 in the multistep process of lung structural morphogenesis and differentiation of various pulmonary cell types remains unknown. In the current study, we tested the hypothesis that the mutant lungs do not undergo branching morphogenesis beyond the formation of the mainstem bronchi and therefore consist solely of dilated tracheobronchial structures. To test this hypothesis, we determined the spatial and temporal expression pattern of a number of extracellular matrix (ECM) proteins and their cellular receptors, including alpha-integrins, laminin, and collagen type IV. Although laminin is expressed in the mutant Nkx2.1(-/-) lungs, expression of alpha-integrins and collagen type IV is significantly reduced or absent. In addition, examination of regionally specific expression of differentially spliced Vegf (vascular endothelial growth factor) transcripts, clearly indicates that the epithelial phenotype of the Nkx2.1(-/-) lungs is similar to the tracheobronchial epithelium. In contrast to wild-type lungs in which both Vegf1 and Vegf3 are developmentally expressed, Nkx2.1(-/-) lungs are characterized by predominant expression of Vegf1 and reduced or absent Vegf3. A similar pattern of Vegf expression is also observed in isolated tracheo-bronchial tissue. The sum of these findings suggest that at least two separate pathways may exist in embryonic lung morphogenesis: proximal lung morphogenesis is Nkx2.1 independent, while distal lung morphogenesis appears to be strictly dependent on the wild-type activity of Nkx2.1.
Collapse
Affiliation(s)
- B Yuan
- Department of Pediatrics, Women's & Children's Hospital, USC School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
104
|
Abstract
This manuscript reviews gap junctions' roles in control of intestinal motility. Gap junctions (GJs) of small intestine (SmIn) are found between circular muscle (CM) cells, between interstitial cells of Cajal (ICC) of deep muscular plexus (DMP) and between them and adjacent outer circular muscle (OCM). GJs between longitudinal muscle (LM) cells or between cells of inner circular muscle (ICM) have not been reported. Occasional GJs have been reported between ICC of the myenteric plexus (MyP) and rarely between these ICC and adjacent LM or CM cells, or between ICC within CM and smooth muscle cells. In the colon (Co) of several species a special network of ICC lines the inner border of CM, the submuscular plexus (SP). GJs are found between ICCs and between them and CM cells. The ICC of MyP of Co are associated with LM and CM; occasional GJs exist between ICC and each muscle layer. Small GJs are missed by electron microscopy or light microscopic Immunocytochemistry. Therefore, GJ coupling may exist without demonstrated GJs. The consequences for the pacemaking functions of ICC networks of varied densities of GJ between ICC and between ICC of MyP or DMP or of SP and CM are considered. Connexins (Cxs) that compose intestinal GJs may affect coupling, but are incompletely known. Understanding of the role of GJs in coordinating intestinal motility requires knowing: (1) what passes through gap junctions to couple ICC to smooth muscle cells; (2) what Cx with what conductances and what modulatory controls connect ICC and smooth muscle cells; (3) whether smooth muscles can generate slow waves independent of ICC networks; and (4) what happens to motility, slow waves, and IJPs when GJs are selectively uncoupled.
Collapse
Affiliation(s)
- E E Daniel
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada.
| | | |
Collapse
|
105
|
Abstract
Gap junction channels are essential for normal cardiac impulse propagation. Three gap junction proteins, known as connexins, are expressed in the heart: Cx40, Cx43, and Cx45. Each of these proteins forms channels with unique biophysical and electrophysiologic properties, as well as spatial distribution of expression throughout the heart. However, the specific functional role of the individual connexins in normal and abnormal propagation is unknown. The availability of genetically engineered mouse models, together with new developments in optical mapping technology, makes it possible to integrate knowledge about molecular mechanisms of intercellular communication and its regulation with our growing understanding of the microscopic and global dynamics of electrical impulse propagation during normal and abnormal cardiac rhythms. This article reviews knowledge on the mechanisms of cardiac impulse propagation, with particular focus on the role of cardiac connexins in electrical communication between cells. It summarizes results of recent studies on the electrophysiologic consequences of defects in the functional expression of specific gap junction channels in mice lacking either the Cx43 or Cx40 gene. It also reviews data obtained in a transgenic mouse model in which cell loss and remodeling of gap junction distribution leads to increased susceptibility to arrhythmias and sudden cardiac death. Overall, the results demonstrate that these are potentially powerful strategies for studying fundamental mechanisms of cardiac electrical activity and for testing the hypothesis that certain cardiac arrhythmias involve gap junction or other membrane channel dysfunction. These new approaches, which permit one to manipulate electrical wave propagation at the molecular level, should provide new insight into the detailed mechanisms of initiation, maintenance, and termination of cardiac arrhythmias, and may lead to more effective means to treat arrhythmias and prevent sudden cardiac death.
Collapse
Affiliation(s)
- J Jalife
- Department of Pharmacology, SUNY Health Science Center, Syracuse, New York 13210, USA.
| | | | | |
Collapse
|
106
|
Hyer J, Johansen M, Prasad A, Wessels A, Kirby ML, Gourdie RG, Mikawa T. Induction of Purkinje fiber differentiation by coronary arterialization. Proc Natl Acad Sci U S A 1999; 96:13214-8. [PMID: 10557300 PMCID: PMC23927 DOI: 10.1073/pnas.96.23.13214] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A synchronized heart beat is controlled by pacemaking impulses conducted through Purkinje fibers. In chicks, these impulse-conducting cells are recruited during embryogenesis from myocytes in direct association with developing coronary arteries. In culture, the vascular cytokine endothelin converts embryonic myocytes to Purkinje cells, implying that selection of conduction phenotype may be mediated by an instructive cue from arteries. To investigate this hypothesis, coronary arterial development in the chicken embryo was either inhibited by neural crest ablation or activated by ectopic expression of fibroblast growth factor (FGF). Ablation of cardiac neural crest resulted in approximately 70% reductions (P < 0.01) in the density of intramural coronary arteries and associated Purkinje fibers. Activation of coronary arterial branching was induced by retrovirus-mediated overexpression of FGF. At sites of FGF-induced hypervascularization, ectopic Purkinje fibers differentiated adjacent to newly induced coronary arteries. Our data indicate the necessity and sufficiency of developing arterial bed for converting a juxtaposed myocyte into a Purkinje fiber cell and provide evidence for an inductive function for arteriogenesis in heart development distinct from its role in establishing coronary blood circulation.
Collapse
Affiliation(s)
- J Hyer
- Department of Cell Biology, Cornell University Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
107
|
Levin M, Mercola M. Gap junction-mediated transfer of left-right patterning signals in the early chick blastoderm is upstream of Shh asymmetry in the node. Development 1999; 126:4703-14. [PMID: 10518488 DOI: 10.1242/dev.126.21.4703] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Invariant patterning of left-right asymmetry during embryogenesis depends upon a cascade of inductive and repressive interactions between asymmetrically expressed genes. Different cascades of asymmetric genes distinguish the left and right sides of the embryo and are maintained by a midline barrier. As such, the left and right sides of an embryo can be viewed as distinct and autonomous fields. Here we describe a series of experiments that indicate that the initiation of these programs requires communication between the two sides of the blastoderm. When deprived of either the left or the right lateral halves of the blastoderm, embryos are incapable of patterning normal left-right gene expression at Hensen's node. Not only are both flanks required, suggesting that there is no single signaling source for LR pattern, but the blastoderm must be intact. These results are consistent with our previously proposed model in which the orientation of LR asymmetry in the frog, Xenopus laevis, depends on large-scale partitioning of LR determinants through intercellular gap junction channels (M. Levin and M. Mercola (1998) Developmental Biology 203, 90–105). Here we evaluate whether gap junctional communication is required for the LR asymmetry in the chick, where it is possible to order early events relative to the well-characterized left and right hierarchies of gene expression. Treatment of cultured chick embryos with lindane, which diminishes gap junctional communication, frequently unbiased normal LR asymmetry of Shh and Nodal gene expression, causing the normally left-sided program to be recapitulated symmetrically on the right side of the embryo. A survey of early expression of connexin mRNAs revealed that Cx43 is present throughout the blastoderm at Hamburger-Hamilton stage 2–3, prior to known asymmetric gene expression. Application of antisense oligodeoxynucleotides or blocking antibody to cultured embryos also resulted in bilateral expression of Shh and Nodal transcripts. Importantly, the node and primitive streak at these stages lack Cx43 mRNA. This result, together with the requirement for an intact blastoderm, suggests that the path of communication through gap junction channels circumvents the node and streak. We propose that left-right information is transferred unidirectionally throughout the epiblast by gap junction channels in order to pattern left-sided Shh expression at Hensen's node.
Collapse
Affiliation(s)
- M Levin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
108
|
Abstract
The analyses of transgenic and knockout mice with perturbations in alpha 1 connexin (Cx43) function have revealed an important role for gap junctions in cardiac development. This likely involves the modulation of cardiac crest migration and function. Studies carried out with these mouse models suggest that clinically there may be a novel category of cardiac defects involving crest perturbations that do not include outflow septation defects, but rather involve more subtle defects in the pulmonary outflow tract.
Collapse
Affiliation(s)
- C W Lo
- Biology Department, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
109
|
Huang GY, Cooper ES, Waldo K, Kirby ML, Gilula NB, Lo CW. Gap junction-mediated cell-cell communication modulates mouse neural crest migration. J Cell Biol 1998; 143:1725-34. [PMID: 9852163 PMCID: PMC2132985 DOI: 10.1083/jcb.143.6.1725] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1998] [Revised: 10/26/1998] [Indexed: 11/22/2022] Open
Abstract
Previous studies showed that conotruncal heart malformations can arise with the increase or decrease in alpha1 connexin function in neural crest cells. To elucidate the possible basis for the quantitative requirement for alpha1 connexin gap junctions in cardiac development, a neural crest outgrowth culture system was used to examine migration of neural crest cells derived from CMV43 transgenic embryos overexpressing alpha1 connexins, and from alpha1 connexin knockout (KO) mice and FC transgenic mice expressing a dominant-negative alpha1 connexin fusion protein. These studies showed that the migration rate of cardiac neural crest was increased in the CMV43 embryos, but decreased in the FC transgenic and alpha1 connexin KO embryos. Migration changes occurred in step with connexin gene or transgene dosage in the homozygous vs. hemizygous alpha1 connexin KO and CMV43 embryos, respectively. Dye coupling analysis in neural crest cells in the outgrowth cultures and also in the living embryos showed an elevation of gap junction communication in the CMV43 transgenic mice, while a reduction was observed in the FC transgenic and alpha1 connexin KO mice. Further analysis using oleamide to downregulate gap junction communication in nontransgenic outgrowth cultures showed that this independent method of reducing gap junction communication in cardiac crest cells also resulted in a reduction in the rate of crest migration. To determine the possible relevance of these findings to neural crest migration in vivo, a lacZ transgene was used to visualize the distribution of cardiac neural crest cells in the outflow tract. These studies showed more lacZ-positive cells in the outflow septum in the CMV43 transgenic mice, while a reduction was observed in the alpha1 connexin KO mice. Surprisingly, this was accompanied by cell proliferation changes, not in the cardiac neural crest cells, but in the myocardium- an elevation in the CMV43 mice vs. a reduction in the alpha1 connexin KO mice. The latter observation suggests that cardiac neural crest cells may have a role in modulating growth and development of non-neural crest- derived tissues. Overall, these findings suggest that gap junction communication mediated by alpha1 connexins plays an important role in cardiac neural crest migration. Furthermore, they indicate that cardiac neural crest perturbation is the likely underlying cause for heart defects in mice with the gain or loss of alpha1 connexin function.
Collapse
Affiliation(s)
- G Y Huang
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
110
|
Sullivan R, Huang GY, Meyer RA, Wessels A, Linask KK, Lo CW. Heart malformations in transgenic mice exhibiting dominant negative inhibition of gap junctional communication in neural crest cells. Dev Biol 1998; 204:224-34. [PMID: 9851855 DOI: 10.1006/dbio.1998.9089] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transgenic mice were generated expressing an alpha1 connexin/beta-galactosidase fusion protein previously shown to exert dominant negative effects on gap junctional communication. RNase protection analysis and assays for beta-galactosidase enzymatic activity showed that the transgene RNA and protein are expressed in the embryo and adult tissues. In situ hybridization analysis revealed that in the embryo, expression was predominantly restricted to neural crest cells and their progenitors in the dorsal neural tube, regions where the endogenous alpha1 connexin gene is also expressed. Dye-coupling analysis indicated that gap junctional communication was inhibited in the cardiac neural crest cells. All of the transgenic lines were homozygote inviable, dying neonatally and exhibiting heart malformations involving the right ventricular outflow tract-the same region affected in the alpha1 connexin knockout mice. As in the knockout mice, the conotruncal heart malformations were accompanied by outflow tract obstruction. Histological analysis showed that this was associated with abnormalities in the differentiation of the conotruncal myocardium. These results suggest that the precise level of gap junctional communication in cardiac neural crest cells is of critical importance in right ventricular outflow tract morphogenesis. Consistent with this possibility is the fact that cardiac crest cells from the alpha1 connexin knockout mice also exhibited a greatly reduced level of gap junctional communication. These studies show the efficacy of a dominant negative approach for manipulating gap junctional communication in the mouse embryo and demonstrate that targeted expression of this fusion protein can be a powerful tool for examining the role of gap junctions in mammalian development.
Collapse
Affiliation(s)
- R Sullivan
- Department of Biology, Goddard Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | | | | | |
Collapse
|
111
|
Abstract
Studies utilizing knockout and transgenic mouse models revealed an important role for connexin 43 (Cx43) gap junctions in cardiac development. This may involve a quantitative requirement for gap junctions in modulating the development of cardiac crest cells. In addition, studies in humans and Xenopus indicate that Cx43 gap junctions also may play a role in regulating heart laterality. Together, these findings indicate that the perturbation of Cx43 function could play a significant role in specific congenital heart malformations.
Collapse
Affiliation(s)
- C W Lo
- Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | |
Collapse
|