101
|
Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PLoS One 2010; 5:e8636. [PMID: 20072608 PMCID: PMC2797642 DOI: 10.1371/journal.pone.0008636] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 12/02/2009] [Indexed: 11/19/2022] Open
Abstract
The relationship between xylophagous termites and the protists resident in their hindguts is a textbook example of symbiosis. The essential steps of lignocellulose degradation handled by these protists allow the host termites to thrive on a wood diet. There has never been a comprehensive analysis of lignocellulose degradation by protists, however, as it has proven difficult to establish these symbionts in pure culture. The trends in lignocellulose degradation during the evolution of the host lineage are also largely unknown. To clarify these points without any cultivation technique, we performed meta-expressed sequence tag (EST) analysis of cDNA libraries originating from symbiotic protistan communities in four termite species and a wood-feeding cockroach. Our results reveal the establishment of a degradation system with multiple enzymes at the ancestral stage of termite-protistan symbiosis, especially GHF5 and 7. According to our phylogenetic analyses, the enzymes comprising the protistan lignocellulose degradation system are coded not only by genes innate to the protists, but also genes acquired by the protists via lateral transfer from bacteria. This gives us a fresh perspective from which to understand the evolutionary dynamics of symbiosis.
Collapse
|
102
|
Luo H, Yang J, Yang P, Li J, Huang H, Shi P, Bai Y, Wang Y, Fan Y, Yao B. Gene cloning and expression of a new acidic family 7 endo-β-1,3-1,4-glucanase from the acidophilic fungus Bispora sp. MEY-1. Appl Microbiol Biotechnol 2009; 85:1015-23. [DOI: 10.1007/s00253-009-2119-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
|
103
|
Todaka N, Lopez CM, Inoue T, Saita K, Maruyama JI, Arioka M, Kitamoto K, Kudo T, Moriya S. Heterologous expression and characterization of an endoglucanase from a symbiotic protist of the lower termite, Reticulitermes speratus. Appl Biochem Biotechnol 2009; 160:1168-78. [PMID: 19404781 DOI: 10.1007/s12010-009-8626-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/25/2009] [Indexed: 11/24/2022]
Abstract
RsSymEG, an endoglucanase of glycosyl hydrolase family (GHF) 7 encoded by a transcript isolated from the symbiotic protist of the termite Reticulitermes speratus, is expressed in Aspergillus oryzae. Interestingly, purified RsSymEG1 has a relatively higher specific activity (603 micromol min(-1) mg(-1) protein) and V(max) value (769.6 unit/mg protein) than previously reported data for GHF7 endoglucanase of Trichoderma ressei. It also has the same K(m) value (1.97 mg/ml) with Clostridium cellulolyticum enzymes that contain cellulose binding module, a property indicative of high affinity to substrate, though no cellulose binding module is found within it. Thin-layer chromatography analysis revealed that RsSymEG1 preferentially hydrolyzes the beta-1,4-cellulosic linkage of cellodextrins into cellobiose and glucose.
Collapse
Affiliation(s)
- Nemuri Todaka
- Laboratory of Environmental Molecular Biology, RIKEN, 1-7-29 Suehiro-cho, Tsurumi-ward, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Gupta R, Lee Y. Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol Bioeng 2009; 102:1570-81. [DOI: 10.1002/bit.22195] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
105
|
Nakazawa H, Okada K, Kobayashi R, Kubota T, Onodera T, Ochiai N, Omata N, Ogasawara W, Okada H, Morikawa Y. Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II, and III, expressed in Escherichia coli. Appl Microbiol Biotechnol 2008; 81:681-9. [DOI: 10.1007/s00253-008-1667-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 11/30/2022]
|
106
|
Liu P, Xia W, Liu J. The role of carboxyl groups on the chitosanase and CMCase activity of a bifunctional enzyme purified from a commercial cellulase with EDC modification. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
107
|
Parkkinen T, Koivula A, Vehmaanperä J, Rouvinen J. Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Sci 2008; 17:1383-94. [PMID: 18499583 DOI: 10.1110/ps.034488.108] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cellobiohydrolase from Melanocarpus albomyces (Cel7B) is a thermostable, single-module, cellulose-degrading enzyme. It has relatively low catalytic activity under normal temperatures, which allows structural studies of the binding of unmodified substrates to the native enzyme. In this study, we have determined the crystal structure of native Ma Cel7B free and in complex with three different cello-oligomers: cellobiose (Glc(2)), cellotriose (Glc(3)), and cellotetraose (Glc(4)), at high resolution (1.6-2.1 A). In each case, four molecules were found in the asymmetric unit, which provided 12 different complex structures. The overall fold of the enzyme is characteristic of a glycoside hydrolase family 7 cellobiohydrolase, where the loops extending from the core beta-sandwich structure form a long tunnel composed of multiple subsites for the binding of the glycosyl units of a cellulose chain. The catalytic residues at the reducing end of the tunnel are conserved, and the mechanism is expected to be retaining similarly to the other family 7 members. The oligosaccharides in different complex structures occupied different subsite sets, which partly overlapped and ranged from -5 to +2. In four cellotriose and one cellotetraose complex structures, the cello-oligosaccharide also spanned over the cleavage site (-1/+1). There were surprisingly large variations in the amino acid side chain conformations and in the positions of glycosyl units in the different cello-oligomer complexes, particularly at subsites near the catalytic site. However, in each complex structure, all glycosyl residues were in the chair (4C(1)) conformation. Implications in relation to the complex structures with respect to the reaction mechanism are discussed.
Collapse
Affiliation(s)
- Tarja Parkkinen
- Department of Chemistry, University of Joensuu, 80101 Joensuu, Finland
| | | | | | | |
Collapse
|
108
|
Factors affecting xylanase functionality in the degradation of arabinoxylans. Biotechnol Lett 2008; 30:1139-50. [DOI: 10.1007/s10529-008-9669-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/04/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
|
109
|
Paljevac M, Primožič M, Habulin M, Novak Z, Knez Ž. Hydrolysis of carboxymethyl cellulose catalyzed by cellulase immobilized on silica gels at low and high pressures. J Supercrit Fluids 2007. [DOI: 10.1016/j.supflu.2007.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
110
|
Schagerlöf U, Schagerlöf H, Momcilovic D, Brinkmalm G, Tjerneld F. Endoglucanase Sensitivity for Substituents in Methyl Cellulose Hydrolysis Studied Using MALDI-TOFMS for Oligosaccharide Analysis and Structural Analysis of Enzyme Active Sites. Biomacromolecules 2007; 8:2358-65. [PMID: 17616166 DOI: 10.1021/bm0701200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The properties of modified cellulose polymers, such as methylcellulose, are significantly influenced by the distribution of substituents along the polymer backbone. This distribution is difficult to determine due to the lack of suitable analytical methods. One approach is to use cellulose-degrading enzymes to gain information from the capability of the enzymes to cleave the bonds between glucose units. Endoglucanases are cellulase enzymes that can break internal glycosidic linkages and degrade low substituted regions of modified cellulose where the substituents do not interfere with the enzyme active site. In this work methyl cellulose was degraded using five endoglucanases from glycosyl hydrolase families 5 and 7 from three different species. The products were analyzed with reducing end analysis, chromatography (SEC-MALS-RI), and MALDI-TOFMS. The results were correlated with available determined enzyme structures and using structural alignment for unknown enzyme structures. This was performed in order to elucidate the relationship between active site structures and sensitivity for substituents on derivatized cellulose. The evaluation of endoglucanase hydrolysis of methyl cellulose showed that differences in sensitivity could be related to differences in steric hindrance of substituents in the active site, which could explain differences within family 5 and 7 enzymes, as well as the generally higher substituent tolerance for family 5 enzymes. This information is important for use of endoglucanases as tools for characterization of substituent distribution. The results are also valuable since soluble cellulose derivatives are generally used as substrates during enzyme characterization and in endoglucanase activity assays.
Collapse
Affiliation(s)
- U Schagerlöf
- Departments of Molecular Biophysics, Biochemistry, and Technical Analytical Chemistry, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|
111
|
|
112
|
Zhou X, Smith JA, Oi FM, Koehler PG, Bennett GW, Scharf ME. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 2007; 395:29-39. [PMID: 17408885 DOI: 10.1016/j.gene.2007.01.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/15/2007] [Accepted: 01/17/2007] [Indexed: 11/18/2022]
Abstract
Termites have developed cellulose digestion capabilities that allow them to obtain energy and nutrition from nutritionally poor food sources, such as lignocellulosic plant material and residues derived from it (e.g., wood and humus). Lower termites, which are equipped with both endogenous (i.e., of termite origin) and symbiotic cellulases, feed primarily on wood and wood-related materials. This study investigated cellulase gene diversity, structure, and activity in the lower termite, Reticulitermes flavipes (Kollar). We initially used a metagenomics approach to identify four genes encoding one endogenous and three symbiotic cellulases, which we refer to as Cell-1, -2, -3 and -4. These four genes encode proteins that share significant sequence similarity with known endoglucanases, exoglucanases and xylanases. Phylogenetic analyses further supported these inferred relationships by showing that each of the four cellulase proteins clusters tightly with respective termite, protozoan or fungal cellulases. Gene structure studies revealed that Cell-1, -3 and -4 are intron-free, while Cell-2 contains the first intron sequence to be identified from a termite symbiont cellulase. Quantitative real-time PCR (qRT-PCR) revealed that the endogenous Cell-1 gene is expressed exclusively in the salivary gland/foregut, whereas symbiotic Cell-2, -3, and -4 are highly expressed in the hindgut (where cellulolytic protists are harbored). Cellulase activity assays mapped the distribution pattern of endoglucanase, exoglucanase and xylanase activity throughout the R. flavipes digestive tract. Cellulase gene expression correlated well with the specific types of cellulolytic activities observed in each gut region (foregut+salivary gland, midgut and hindgut). These results suggest the presence of a single unified cellulose digestion system, whereby endogenous and symbiotic cellulases work sequentially and collaboratively across the entire digestive tract of R. flavipes.
Collapse
Affiliation(s)
- Xuguo Zhou
- Entomology and Nematology Department, University of Florida, Gainesville, Florida 32611-0620, USA
| | | | | | | | | | | |
Collapse
|
113
|
Blanchard S, Cottaz S, Coutinho PM, Patkar S, Vind J, Boer H, Koivula A, Driguez H, Armand S. Mutation of fungal endoglucanases into glycosynthases and characterization of their acceptor substrate specificity. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcatb.2006.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
114
|
Schagerlöf H, Johansson M, Richardson S, Brinkmalm G, Wittgren B, Tjerneld F. Substituent Distribution and Clouding Behavior of Hydroxypropyl Methyl Cellulose Analyzed Using Enzymatic Degradation. Biomacromolecules 2006; 7:3474-81. [PMID: 17154477 DOI: 10.1021/bm0604799] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distribution of substituents along the polymer backbone will have a strong influence on the properties of modified cellulose. Endoglucanases were used to degrade three different batches of hydroxypropyl methyl cellulose (HPMC) derivatives with similar chemical properties. The phase separation of the HPMCs as a function of temperature, i.e., the clouding behavior, was analyzed prior to degradation. The total amount of unsubstituted glucose was determined using total acid hydrolysis followed by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The products after enzymatic degradation were analyzed with size-exclusion chromatography with online multiangle light scattering and refractive index detection and also with reducing end determination. To further characterize the formed products, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for analysis of short-chained oligosaccharides. The different endoglucanases showed varying degradation capability of HPMC derivatives, depending on structure of the active site. The investigated HPMCs had different susceptibility to degradation by the endoglucanases. The results showed a difference in substituent distribution between HPMC batches, which could explain the differing clouding behaviors. The batch with the lowest cloud point was shown to contain a higher number of non-degradable, highly substituted regions.
Collapse
Affiliation(s)
- Herje Schagerlöf
- Department of Biochemistry, Lund University, P. O. Box 124, S-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
115
|
Sikorski P, Sørbotten A, Horn SJ, Eijsink VGH, Vårum KM. Serratia marcescens chitinases with tunnel-shaped substrate-binding grooves show endo activity and different degrees of processivity during enzymatic hydrolysis of chitosan. Biochemistry 2006; 45:9566-74. [PMID: 16878991 DOI: 10.1021/bi060370l] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modes of action of three family 18 chitinases (ChiA, ChiB, and ChiC) from Serratia marcescens during the degradation of a water-soluble polymeric substrate, chitosan, were investigated using a combination of viscosity measurements, reducing end assays, and characterization of the size-distribution of the oligomeric products. All three enzymes yielded a fast reduction in molecular weight of the chitosan substrate at a very early stage of hydrolysis, which is typical for endo-acting enzymes. For ChiA and ChiB, this is inconsistent with the previously proposed exo-attack mode of action. The main difference between ChiA, ChiB, and ChiC is the degree of processivity. ChiC is an endo enzyme with no apparent processivity. ChiA and ChiB are processive enzymes in which the substrate remains bound to the active cleft after successful hydrolysis and is moved along for the next hydrolysis to occur. ChiA and ChiB perform on average 9.1 and 3.4 cleavages, respectively, for the formation of each enzyme-substrate complex. ChiA and ChiB have deep, tunnel-like substrate-binding grooves. The demonstration of endo activity shows that substrate binding must involve the temporary restructuring of the loops that make up the roofs of the substrate-binding grooves, similar to what has been proposed for cellobiohydrolase Cel6A. The data suggest that the exo-type of activity observed for ChiA and ChiB during the degradation of solid crystalline chitin is due to the better accessibility of chain ends, rather than intrinsic enzyme properties.
Collapse
Affiliation(s)
- Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
116
|
Jagtap S, Rao M. Conformation and microenvironment of the active site of a low molecular weight 1,4-β-d-glucan glucanohydrolase from an alkalothermophilic Thermomonospora sp.: Involvement of lysine and cysteine residues. Biochem Biophys Res Commun 2006; 347:428-32. [PMID: 16828055 DOI: 10.1016/j.bbrc.2006.06.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 06/16/2006] [Indexed: 11/26/2022]
Abstract
Conformation and microenvironment at the active site of 1,4-beta-D-glucan glucanohydrolase was probed with fluorescent chemo-affinity labeling using o-phthalaldehyde. OPTA has been known to form a fluorescent isoindole derivative by cross-linking the proximal thiol and amino groups of cysteine and lysine. Modification of lysine of the enzyme by TNBS and of cysteine residue by PHMB abolished the ability of the enzyme to form an isoindole derivative with OPTA. Kinetic analysis of the TNBS and PHMB-modified enzyme suggested the presence of essential lysine and cysteine residues, respectively, at the active site of the enzyme. The substrate protection of the enzyme with carboxymethylcellulose (CMC) confirmed the involvement of lysine and cysteine residues in the active site of the enzyme. Multiple sequence alignment of peptides obtained by tryptic digestion of the enzyme showed cysteine is one of the conserved amino acids corroborating the chemical modification studies.
Collapse
Affiliation(s)
- Sharmili Jagtap
- Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | | |
Collapse
|
117
|
Taylor EJ, Gloster TM, Turkenburg JP, Vincent F, Brzozowski AM, Dupont C, Shareck F, Centeno MSJ, Prates JAM, Puchart V, Ferreira LMA, Fontes CMGA, Biely P, Davies GJ. Structure and Activity of Two Metal Ion-dependent Acetylxylan Esterases Involved in Plant Cell Wall Degradation Reveals a Close Similarity to Peptidoglycan Deacetylases. J Biol Chem 2006; 281:10968-75. [PMID: 16431911 DOI: 10.1074/jbc.m513066200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzymatic degradation of plant cell wall xylan requires the concerted action of a diverse enzymatic syndicate. Among these enzymes are xylan esterases, which hydrolyze the O-acetyl substituents, primarily at the O-2 position of the xylan backbone. All acetylxylan esterase structures described previously display a alpha/beta hydrolase fold with a "Ser-His-Asp" catalytic triad. Here we report the structures of two distinct acetylxylan esterases, those from Streptomyces lividans and Clostridium thermocellum, in native and complex forms, with x-ray data to between 1.6 and 1.0 A resolution. We show, using a novel linked assay system with PNP-2-O-acetylxyloside and a beta-xylosidase, that the enzymes are sugar-specific and metal ion-dependent and possess a single metal center with a chemical preference for Co2+. Asp and His side chains complete the catalytic machinery. Different metal ion preferences for the two enzymes may reflect the surprising diversity with which the metal ion coordinates residues and ligands in the active center environment of the S. lividans and C. thermocellum enzymes. These "CE4" esterases involved in plant cell wall degradation are shown to be closely related to the de-N-acetylases involved in chitin and peptidoglycan degradation (Blair, D. E., Schuettelkopf, A. W., MacRae, J. I., and Aalten, D. M. (2005) Proc. Natl. Acad. Sci. U. S. A., 102, 15429-15434), which form the NodB deacetylase "superfamily."
Collapse
Affiliation(s)
- Edward J Taylor
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W. Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol 2006; 71:23-33. [PMID: 16550377 DOI: 10.1007/s00253-006-0377-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/08/2006] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Agars and carrageenans are 1,3-alpha-1,4-beta-galactans from the cell walls of red algae, substituted by zero (agarose), one (kappa-), two (iota-), or three (lambda-carrageenan) sulfate groups per disaccharidic monomer. Agars, kappa-, and iota-carrageenans auto-associate into crystalline fibers and are well known for their gelling properties, used in a variety of laboratory and industrial applications. These sulfated galactans constitute a crucial carbon source for a number of marine bacteria. These microorganisms secrete glycoside hydrolases specific for these polyanionic, insoluble polysaccharides, agarases and carrageenases. This article reviews the microorganisms involved in the degradation of agars and carrageenans, in their environmental and taxonomic diversity. We also present an overview on the biochemistry of the different families of galactanases. The structure-function relationships of the family GH16 beta-agarases and kappa-caraggeenases and of the family GH82 iota-carrageenases are discussed in more details. In particular, we examine how the active site topologies of these glycoside hydrolases influence their mode of action in heterogeneous phase. Finally, we discuss the next challenges in the basic and applied field of the galactans of red algae and of their related degrading microorganisms.
Collapse
Affiliation(s)
- Gurvan Michel
- Equipe Glycobiologie Marine, UMR7139 Végétaux Marins et Biomolécules (CNRS/UPMC), Station Biologique, Roscoff, Bretagne, France
| | | | | | | | | |
Collapse
|
119
|
Affiliation(s)
- Robert Stern
- Department of Pathology and Comprehensive Cancer Center, School of Medicine, University of California, San Francisco, CA 94143-0511, USA
| | - Mark J. Jedrzejas
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
120
|
Shibuya H, Kaneko S, Hayashi K. A single amino acid substitution enhances the catalytic activity of family 11 xylanase at alkaline pH. Biosci Biotechnol Biochem 2005; 69:1492-7. [PMID: 16116276 DOI: 10.1271/bbb.69.1492] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Random mutagenesis of the gene encoding family 11 xylanase was used to obtain alkalophilic mutants. The catalytic domain of the chimeric enzyme Stx15, which was constructed from Streptomyces lividans xylanase B and Thermobifida fusca xylanase A, was mutated using error-prone PCR and screened for halo formation on dye-linked xylan plates and activity toward soluble xylan. A positive mutant, M1011, was isolated, and it was found that mutation A49V was responsible for the alkalophilicity of the mutant. Mutation A49V increased the specific activity at pH 9.1 and the stability of mutant A49V was not significantly different from that of Stx15 at 60 degrees C. Both enzymes retained more than 90% of their relative activity from pH 4.7 to 9.1 after 1 h of incubation at 60 degrees C. Analysis of the kinetic parameters at various pH values showed that the A49V mutation reduced the Km in the alkaline pH range, resulting in the higher specific activity of the A49V mutant enzyme.
Collapse
Affiliation(s)
- Hajime Shibuya
- Forestry and Forest Products Research Institute, Ibaraki, Japan.
| | | | | |
Collapse
|
121
|
Tsai LC, Shyur LF, Cheng YS, Lee SH. Crystal Structure of Truncated Fibrobacter succinogenes 1,3-1,4-β-d-Glucanase in Complex with β-1,3-1,4-Cellotriose. J Mol Biol 2005; 354:642-51. [PMID: 16246371 DOI: 10.1016/j.jmb.2005.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/09/2005] [Accepted: 09/14/2005] [Indexed: 10/25/2022]
Abstract
Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (Fsbeta-glucanase) catalyzes the specific hydrolysis of beta-1,4 glycosidic bonds adjacent to beta-1,3 linkages in beta-D-glucans or lichenan. This is the first report to elucidate the crystal structure of a truncated Fsbeta-glucanase (TFsbeta-glucanase) in complex with beta-1,3-1,4-cellotriose, a major product of the enzyme reaction. The crystal structures, at a resolution of 2.3 angstroms, reveal that the overall fold of TFsbeta-glucanase remains virtually unchanged upon sugar binding. The enzyme accommodates five glucose residues, forming a concave active cleft. The beta-1,3-1,4-cellotriose with subsites -3 to -1 bound to the active cleft of TFsbeta-glucanase with its reducing end subsite -1 close to the key catalytic residues Glu56 and Glu60. All three subsites of the beta-1,3-1,4-cellotriose adopted a relaxed C(1)4 conformation, with a beta-1,3 glycosidic linkage between subsites -2 and -1, and a beta-1,4 glycosidic linkage between subsites -3 and -2. On the basis of the enzyme-product complex structure observed in this study, a catalytic mechanism and substrate binding conformation of the active site of TFsbeta-glucanase is proposed.
Collapse
Affiliation(s)
- Li-Chu Tsai
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | | | | | | |
Collapse
|
122
|
Mulakala C, Reilly PJ. Force calculations in automated docking: Enzyme-substrate interactions in Fusarium oxysporum Cel7B. Proteins 2005; 61:590-6. [PMID: 16138313 DOI: 10.1002/prot.20632] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AutoDock is a small-molecule docking program that uses an energy function to score docked ligands. Here AutoDock's grid-based method for energy evaluation was exploited to evaluate the force exerted by Fusarium oxysporum Cel7B on the atoms of docked cellooligosaccharides and a thiooligosaccharide substrate analog. Coupled with the interaction energies evaluated for each docked ligand, these forces give insight into the dynamics of the ligand in the active site, and help to elucidate the relative importance of specific enzyme-substrate interactions in stabilizing the substrate transition-state conformation. The processive force on the docked substrate in the F. oxysporum Cel7B active site is less than half of that on the docked substrate in the Hypocrea jecorina Cel7A active site. Hydrogen bonding interactions of the enzyme with the C2 hydroxyl group of the glucosyl residue in subsite -2 and with the C3 hydroxyl group of the glucosyl residue in subsite +1 are the most significant in stabilizing the distorted14B transition-state conformation of the glucosyl residue in subsite -1. The force calculations also help to elucidate the mechanism that prevents the active site from fouling.
Collapse
Affiliation(s)
- Chandrika Mulakala
- Department of Chemical and Biological Engineering, Iowa State University, Ames 50011-2230, USA
| | | |
Collapse
|
123
|
Hildén L, Johansson G. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett 2005; 26:1683-93. [PMID: 15604820 DOI: 10.1007/s10529-004-4579-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This review concerns basic research on cellulases and cellulose-specific carbohydrate-binding modules (CBMs). As a background, glycosyl hydrolases are also briefly reviewed. The nomenclature of cellulases and CBMs is discussed. The main cellulase-producing organisms and their cellulases are described. Synergy, enantioseparation, cellulases in plants, cellulosomes, cellulases and CBMs as analytical tools and cellulase-like enzymes are also briefly reviewed.
Collapse
Affiliation(s)
- Lars Hildén
- WURC, Department of Wood Science, Swedish University of Agricultural Sciences, Box 7008, Uppsala, 750 07, Sweden.
| | | |
Collapse
|
124
|
Zhang YHP, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 2005; 88:797-824. [PMID: 15538721 DOI: 10.1002/bit.20282] [Citation(s) in RCA: 905] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Information pertaining to enzymatic hydrolysis of cellulose by noncomplexed cellulase enzyme systems is reviewed with a particular emphasis on development of aggregated understanding incorporating substrate features in addition to concentration and multiple cellulase components. Topics considered include properties of cellulose, adsorption, cellulose hydrolysis, and quantitative models. A classification scheme is proposed for quantitative models for enzymatic hydrolysis of cellulose based on the number of solubilizing activities and substrate state variables included. We suggest that it is timely to revisit and reinvigorate functional modeling of cellulose hydrolysis, and that this would be highly beneficial if not necessary in order to bring to bear the large volume of information available on cellulase components on the primary applications that motivate interest in the subject.
Collapse
|
125
|
Ubhayasekera W, Muñoz IG, Vasella A, Ståhlberg J, Mowbray SL. Structures of Phanerochaete chrysosporium Cel7D in complex with product and inhibitors. FEBS J 2005; 272:1952-64. [PMID: 15819888 DOI: 10.1111/j.1742-4658.2005.04625.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cellobiohydrolase Pc_Cel7D is the major cellulase produced by the white-rot fungus Phanerochaete chrysosporium, constituting approximately 10% of the total secreted protein in liquid culture on cellulose. The enzyme is classified into family 7 of the glycoside hydrolases and, like other family members, catalyses cellulose hydrolysis with net retention of the anomeric carbon configuration. Previous work described the apo structure of the enzyme. Here we investigate the binding of the product, cellobiose, and several inhibitors, i.e. lactose, cellobioimidazole, Tris/HCl, calcium and a thio-linked substrate analogue, methyl 4-S-beta-cellobiosyl-4-thio-beta-cellobioside (GG-S-GG). The three disaccharides bind in the glucosyl-binding subsites +1 and +2, close to the exit of the cellulose-binding tunnel/cleft. Pc_Cel7D binds to lactose more strongly than cellobiose, while the opposite is true for the homologous Trichoderma reesei cellobiohydrolase Tr_Cel7A. Although both sugars bind Pc_Cel7D in a similar fashion, the different preferences can be explained by varying interactions with nearby loops. Cellobioimidazole is bound at a slightly different position, displaced approximately 2 A toward the catalytic centre. Thus the Pc_Cel7D complexes provide evidence for two binding modes of the reducing-end cellobiosyl moiety; this conclusion is confirmed by comparison with other available structures. The combined results suggest that hydrolysis of the glycosyl-enzyme intermediate may not require the prior release of the cellobiose product from the enzyme. Further, the structure obtained in the presence of both GG-S-GG and cellobiose revealed electron density for Tris at the catalytic centre. Inhibition experiments confirm that both Tris and calcium are effective inhibitors at the conditions used for crystallization.
Collapse
Affiliation(s)
- Wimal Ubhayasekera
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
126
|
Proctor MR, Taylor EJ, Nurizzo D, Turkenburg JP, Lloyd RM, Vardakou M, Davies GJ, Gilbert HJ. Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A. Proc Natl Acad Sci U S A 2005; 102:2697-702. [PMID: 15708971 PMCID: PMC549454 DOI: 10.1073/pnas.0500051102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Indexed: 11/18/2022] Open
Abstract
Enzymes acting on polymeric substrates are frequently classified as exo or endo, reflecting their preference for, or ignorance of, polymer chain ends. Most biotechnological applications, especially in the field of polysaccharide degradation, require either endo- or exo-acting hydrolases, or they harness the essential synergy between these two modes of action. Here, we have used genomic data in tandem with structure to modify, radically, the chain-end specificity of the Cellvibrio japonicus exo-arabinanase CjArb43A. The structure of Bacillus subtilis endo-arabinanase 43A (BsArb43A) in harness with chain-end recognition kinetics of CjArb43A directed a rational design approach that led to the conversion of the Cellvibrio enzyme from an exo to an endo mode of action. One of the exo-acting mutants, D35L/Q316A, displays similar activity to WT CjArb43A and the removal of the steric block mediated by the side chains of Gln-316 and Asp-53 at the -3 subsite confers its capacity to attack internal glycoside bonds. This study provides a template for the production of tailored industrial catalysts. The introduction of subtle changes informed by comparative 3D structural and genomic data can lead to fundamental changes in the mode of action of these enzymes.
Collapse
Affiliation(s)
- Mark R Proctor
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kindgom
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Tempel W, Liu ZJ, Horanyi PS, Deng L, Lee D, Newton MG, Rose JP, Ashida H, Li SC, Li YT, Wang BC. Three-dimesional structure of GlcNAcα1-4Gal releasing Endo-β-Galactosidase from Clostridium perfringens. Proteins 2005; 59:141-4. [PMID: 15688452 DOI: 10.1002/prot.20363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wolfram Tempel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 2005; 29:3-23. [PMID: 15652973 DOI: 10.1016/j.femsre.2004.06.005] [Citation(s) in RCA: 1056] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 06/10/2004] [Accepted: 06/14/2004] [Indexed: 11/28/2022] Open
Abstract
Xylanases are hydrolytic enzymes which randomly cleave the beta 1,4 backbone of the complex plant cell wall polysaccharide xylan. Diverse forms of these enzymes exist, displaying varying folds, mechanisms of action, substrate specificities, hydrolytic activities (yields, rates and products) and physicochemical characteristics. Research has mainly focused on only two of the xylanase containing glycoside hydrolase families, namely families 10 and 11, yet enzymes with xylanase activity belonging to families 5, 7, 8 and 43 have also been identified and studied, albeit to a lesser extent. Driven by industrial demands for enzymes that can operate under process conditions, a number of extremophilic xylanases have been isolated, in particular those from thermophiles, alkaliphiles and acidiphiles, while little attention has been paid to cold-adapted xylanases. Here, the diverse physicochemical and functional characteristics, as well as the folds and mechanisms of action of all six xylanase containing families will be discussed. The adaptation strategies of the extremophilic xylanases isolated to date and the potential industrial applications of these enzymes will also be presented.
Collapse
Affiliation(s)
- Tony Collins
- Laboratory of Biochemistry, Institute of Chemistry B6, University of Liège, B-4000 Liège, Belgium.
| | | | | |
Collapse
|
129
|
Sandgren M, Ståhlberg J, Mitchinson C. Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 89:246-91. [PMID: 15950056 DOI: 10.1016/j.pbiomolbio.2004.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this review we will describe how we have gathered structural and biochemical information from several homologous cellulases from one class of glycoside hydrolases (GH family 12), and used this information within the framework of a protein-engineering program for the design of new variants of these enzymes. These variants have been characterized to identify some of the positions and the types of mutations in the enzymes that are responsible for some of the biochemical differences in thermal stability and activity between the homologous enzymes. In this process we have solved the three-dimensional structure of four of these homologous GH 12 cellulases: Three fungal enzymes, Humicola grisea Cel12A, Hypocrea jecorina Cel12A and Hypocrea schweinitzii Cel12A, and one bacterial, Streptomyces sp. 11AG8 Cel12A. We have also determined the three-dimensional structures of the two most stable H. jecorina Cel12A variants. In addition, four ligand-complex structures of the wild-type H. grisea Cel12A enzyme have been solved and have made it possible to characterize some of the interactions between substrate and enzyme. The structural and biochemical studies of these related GH 12 enzymes, and their variants, have provided insight on how specific residues contribute to protein thermal stability and enzyme activity. This knowledge can serve as a structural toolbox for the design of Cel12A enzymes with specific properties and features suited to existing or new applications.
Collapse
Affiliation(s)
- Mats Sandgren
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Husargatan 3, Box 596, SE-751 24 Uppsala, Sweden.
| | | | | |
Collapse
|
130
|
Grassick A, Murray PG, Thompson R, Collins CM, Byrnes L, Birrane G, Higgins TM, Tuohy MG. Three-dimensional structure of a thermostable native cellobiohydrolase, CBH IB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. ACTA ACUST UNITED AC 2004; 271:4495-506. [PMID: 15560790 DOI: 10.1111/j.1432-1033.2004.04409.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The X-ray structure of native cellobiohydrolase IB (CBH IB) from the filamentous fungus Talaromyces emersonii, PDB 1Q9H, was solved to 2.4 A by molecular replacement. 1Q9H is a glycoprotein that consists of a large, single domain with dimensions of approximately 60 A x 40 A x 50 A and an overall beta-sandwich structure, the characteristic fold of Family 7 glycosyl hydrolases (GH7). It is the first structure of a native glycoprotein and cellulase from this thermophilic eukaryote. The long cellulose-binding tunnel seen in GH7 Cel7A from Trichoderma reesei is conserved in 1Q9H, as are the catalytic residues. As a result of deletions and other changes in loop regions, the binding and catalytic properties of T. emersonii 1Q9H are different. The gene (cel7) encoding CBH IB was isolated from T. emersonii and expressed heterologously with an N-terminal polyHis-tag, in Escherichia coli. The deduced amino acid sequence of cel7 is homologous to fungal cellobiohydrolases in GH7. The recombinant cellobiohydrolase was virtually inactive against methylumberiferyl-cellobioside and chloronitrophenyl-lactoside, but partial activity could be restored after refolding of the urea-denatured enzyme. Profiles of cel7 expression in T. emersonii, investigated by Northern blot analysis, revealed that expression is regulated at the transcriptional level. Putative regulatory element consensus sequences for cellulase transcription factors have been identified in the upstream region of the cel7 genomic sequence.
Collapse
Affiliation(s)
- Alice Grassick
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Schubot FD, Kataeva IA, Chang J, Shah AK, Ljungdahl LG, Rose JP, Wang BC. Structural basis for the exocellulase activity of the cellobiohydrolase CbhA from Clostridium thermocellum. Biochemistry 2004; 43:1163-70. [PMID: 14756552 DOI: 10.1021/bi030202i] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous bacterial and fungal organisms have evolved elaborate sets of modular glycoside hydrolases and similar enzymes aimed at the degradation of polymeric carbohydrates. Presently, on the basis of sequence similarity catalytic modules of these enzymes have been classified into 90 families. Representatives of a particular family display similar fold and catalytic mechanisms. However, within families distinctions occur with regard to enzymatic properties and type of activity against carbohydrate chains. Cellobiohydrolase CbhA from Clostridium thermocellum is a large seven-modular enzyme with a catalytic module belonging to family 9. In contrast to other representatives of that family possessing only endo- and, in few cases, endo/exo-cellulase activities, CbhA is exclusively an exocellulase. The crystal structures of the combination of the immunoglobulin-like module and the catalytic module of CbhA (Ig-GH9_CbhA) and that of an inactive mutant Ig-GH9_CbhA(E795Q) in complex with cellotetraose (CTT) are reported here. The detailed analysis of these structures reveals that, while key catalytic residues and overall fold are conserved in this enzyme and those of other family 9 glycoside hydrolases, the active site of GH9_CbhA is blocked off after the -2 subsite. This feature which is created by an extension and altered conformation of a single loop region explains the inability of the active site of CbhA to accommodate a long cellulose chain and to cut it internally. This altered loop region is responsible for the exocellulolytic activity of the enzyme.
Collapse
Affiliation(s)
- Florian D Schubot
- Department of Biochemistry & Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Eriksson T, Stals I, Collén A, Tjerneld F, Claeyssens M, Stålbrand H, Brumer H. Heterogeneity of homologously expressed Hypocrea jecorina (Trichoderma reesei) Cel7B catalytic module. ACTA ACUST UNITED AC 2004; 271:1266-76. [PMID: 15030476 DOI: 10.1111/j.1432-1033.2004.04031.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic module of Hypocrea jecorina (previously Trichoderma reesei) Cel7B was homologously expressed by transformation of strain QM9414. Post-translational modifications in purified Cel7B preparations were analysed by enzymatic digestions, high performance chromatography, mass spectrometry and site-directed mutagenesis. Of the five potential sites found in the wild-type enzyme, only Asn56 and Asn182 were found to be N-glycosylated. GlcNAc(2)Man(5) was identified as the predominant N-glycan, although lesser amounts of GlcNAc(2)Man(7) and glycans carrying a mannophosphodiester bond were also detected. Repartition of neutral and charged glycan structures over the two glycosylation sites mainly accounts for the observed microheterogeneity of the protein. However, partial deamidation of Asn259 and a partially occupied O-glycosylation site give rise to further complexity in enzyme preparations.
Collapse
Affiliation(s)
- Torny Eriksson
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Sweden
| | | | | | | | | | | | | |
Collapse
|
133
|
Mosier NS, Wilker JJ, Ladisch MR. Rapid chromatography for evaluating adsorption characteristics of cellulase binding domain mimetics. Biotechnol Bioeng 2004; 86:756-64. [PMID: 15162451 DOI: 10.1002/bit.20104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cost of cellulolytic enzymes is one barrier to the economic production of fermentable sugars from lignocellulosic biomass for the production of fuels and chemicals. One functional characteristic of cellulolytic enzymes that improves reaction kinetics over mineral acids is a cellulose binding domain that concentrates the catalytic domain to the substrate surface. We have identified maleic acid as an attractive catalytic domain with pK(a) and dicarboxylic acid structure properties that hydrolyze cellulose while producing minimal degradation of the glucose formed. In this study we report results of a rapid chromatographic method to assess the binding characteristics of potential cellulose binding domains for the construction of a synthetic cellulase over a wide range of temperatures (20 degrees to 120 degrees C). Aromatic, planar chemical structures appear to be key indicators of cellulose adsorption. Indole, the side-chain of the amino acid tryptophan, has been shown to reversibly adsorb to cellulose at temperatures between 30 degrees and 120 degrees C. Trypan blue, a polyaromatic, planar molecule, was shown to be irreversibly adsorbed to cotton cellulose at temperatures of <120 degrees C on the time scale of the experiments. These results confirm the importance of hydrophobic cellulose and the cellulose-binding component of cellulolytic enzymes and cellulolytic enzyme mimetics.
Collapse
Affiliation(s)
- Nathan S Mosier
- Department of Agricultural and Biological Engineering, 500 Central Drive, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
134
|
Genta FA, Terra WR, Ferreira C. Action pattern, specificity, lytic activities, and physiological role of five digestive beta-glucanases isolated from Periplaneta americana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1085-1097. [PMID: 14563360 DOI: 10.1016/s0965-1748(03)00121-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three laminarinases (LAM, LIC 1, and LIC 2) and two cellulases (CEL 1 and CEL 2) were purified to homogeneity from Periplaneta americana midguts. These beta-glucanases are secreted by salivary glands, stabilized by calcium ions, and have pH optima around 6. LAM (46 kDa) is active only on laminarin, native or with oxidized ends, and so it is an endo-beta-1,3-glucanase (EC 3.2.1.39). It processively releases mainly glucose from laminarin and shows lytic activity on fungal cells. LIC 1 (25 kDa) is an endo-beta-1,3(4)-glucanase (EC 3.2.1.6.), because it cleaves internal bonds on both laminarin and lichenin. LIC 1 lyses fungal cells and apparently have high affinity for sequences of cellotetraoses linked by beta-1,3 links, releasing cellotetraose from lichenin. The reaction catalyzed by LIC 1 is not in rapid equilibrium, as suggested by activity-pH data. These data also showed that a group in LIC 1 with pK=4.9 is necessary for substrate binding. LIC 2 (23 kDa) seems to be similar to LIC 1. The laminarinases are inactivated by carbodiimide, suggesting the presence of a carboxyl group involved in catalysis. LAM and LIC 2 are inhibited by excess laminarin as substrate. CEL 1 (72 kDa) and CEL 2 (73 kDa) quickly decrease the molecular weight of lichenin used as substrate. Therefore, they are endo-beta-1,4-glucanases (EC 3.2.1.4). Both CEL 1 and CEL 2 are also active on crystalline cellulose. The specificities of P. americana beta-glucanases agree with the omnivorous detritus-feeding habit of this insect, as they are able to attack plant (CEL 1, CEL 2, LIC 1 and LIC 2) and fungal (LIC 1 and LAM) cell walls.
Collapse
Affiliation(s)
- Fernando A Genta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, 05513-970, São Paulo, Brazil
| | | | | |
Collapse
|
135
|
Schmoll M, Kubicek CP. Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. A review. Acta Microbiol Immunol Hung 2003; 50:125-45. [PMID: 12894484 DOI: 10.1556/amicr.50.2003.2-3.3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present article reviews the current understanding of regulation of cellulase gene transcription in Hypocrea jecorina (= Trichoderma reesei). Special emphasis is put on the mechanism of action of low molecular weight inducers of cellulase formation, the presence and role of recently identified transactivating proteins (Ace1, Ace2, Hap2/3/5), and the role of the carbon catabolite repressor Cre1. We also report on some recent genomic approaches towards understanding how cellulase inducers signal their presence to the transcriptional apparatus.
Collapse
Affiliation(s)
- Monika Schmoll
- Area Molecular Biotechnology, Section Applied Biochemistry and Gene Technology, Institute for Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, A-1060 Wien, Austria
| | | |
Collapse
|
136
|
Hui JPM, White TC, Thibault P. Identification of glycan structure and glycosylation sites in cellobiohydrolase II and endoglucanases I and II from Trichoderma reesei. Glycobiology 2002; 12:837-49. [PMID: 12499406 DOI: 10.1093/glycob/cwf089] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mass spectrometric techniques combined with enzymatic digestions were applied to determine the glycosylation profiles of cellobiohydrolase (CBH II) and endoglucanases (EG I, II) purified from filamentous fungus Trichoderma reesei. Electrospray mass spectrometry (ESMS) analyses of the intact cellulases revealed the microheterogeneity in glycosylation where glycoforms were spaced by hexose units. These analyses indicated that glycosylation accounted for 12-24% of the molecular mass and that microheterogeneity in both N- and O-linked glycans was observed for each glycoprotein. The identification of N-linked attachment sites was carried out by MALDI-TOF and capillary liquid chromatography-ESMS analyses of tryptic digests from each purified cellulase component with and without PNGase F incubation. Potential tryptic glycopeptide candidates were first detected by stepped orifice-voltage scanning and the glycan structure and attachment site were confirmed by tandem mass spectrometry. For purified CBH II, 74% of glycans found on Asn310 were high mannose, predominantly Hex(7-9)GlcNAc(2), whereas the remaining amount was single GlcNAc; Asn289 had 18% single GlcNAc occupancy, and Asn14 remained unoccupied. EG I presented N-linked glycans at two out of the six potential sites. The Asn56 contained a single GlcNAc residue, and Asn182 showed primarily a high-mannose glycan Hex(8)GlcNAc(2) with only 8% being occupied with a single GlcNAc. Finally, EG II presented a single GlcNAc residue at Asn103. It is noteworthy that the presence of a single GlcNAc in all cellulase enzymes investigated and the variability in site occupancy suggest the secretion of an endogenous endo H enzyme in cultures of T. reesei.
Collapse
Affiliation(s)
- Joseph P M Hui
- Institute for Biological Sciences, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6
| | | | | |
Collapse
|
137
|
Richardson S, Lundqvist J, Wittgren B, Tjerneld F, Gorton L. Initial characterization of ethyl(hydroxyethyl) cellulose using enzymic degradation and chromatographic methods. Biomacromolecules 2002; 3:1359-63. [PMID: 12425676 DOI: 10.1021/bm020081m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two different ethyl(hydroxyethyl) cellulose (EHEC) samples were characterized by size-exclusion chromatography (SEC) with multiangle light scattering (MALS) detection and high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD). The aim of the study was to investigate the molar mass distribution and the heterogeneity of the substituent distribution, factors that are thought to affect the functional properties of EHEC. The presence of blocks of unsubstituted glucose units was studied by enzymic degradation of EHEC by two different endoglucanases from Trichoderma reesei. The SEC-MALS analysis of the hydrolysis products showed that both enzymes were strongly inhibited by the large number of substituents along the cellulose chain. However, as the weight-average molar mass was reduced from approximately 360,000 to 80,000 g/mol in one of the polymers and from 770,000 to 60,000 g/mol in the other polymer, it was suggested that both samples were composed of some unsubstituted regions where the enzymes got access to the glucosidic bonds. The amount of glucose released upon endoglucanase hydrolysis was determined by HPAEC-PAD, which gave information on the homogeneity of the substituent distribution. The production of unsubstituted glucose units indicated that one of the polymers had a more uneven distribution compared with the other. It was demonstrated that chemical characterization of EHEC is a complex task, which requires an analytical approach involving numerous different methods and techniques.
Collapse
Affiliation(s)
- Sara Richardson
- Department of Analytical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|
138
|
Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F. Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol 2002; 99:63-78. [PMID: 12204558 DOI: 10.1016/s0168-1656(02)00156-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trichoderma reesei produces five known endoglucanases. The most studied are Cel7B (EG I) and Cel5A (EG II) which are the most abundant of the endoglucanases. We have performed a characterisation of the enzymatic properties of the less well-studied endoglucanases Cel12A (EG III), Cel45A (EG V) and the catalytic core of Cel45A. For comparison, Cel5A and Cel7B were included in the study. Adsorption studies on microcrystalline cellulose (Avicel) and phosphoric acid swollen cellulose (PASC) showed that Cel5A, Cel7B, Cel45A and Cel45Acore adsorbed to these substrates. In contrast, Cel12A adsorbed weakly to both Avicel and PASC. The products formed on Avicel, PASC and carboxymethylcellulose (CMC) were analysed. Cel7B produced glucose and cellobiose from all substrates. Cel5A and Cel12A also produced cellotriose, in addition to glucose and cellobiose, on the substrates. Cel45A showed a clearly different product pattern by having cellotetraose as the main product, with practically no glucose and cellobiose formation. The kinetic constants were determined on cellotriose, cellotetraose and cellopentaose for the enzymes. Cel12A did not hydrolyse cellotriose. The k(Cat) values for Cel12A on cellotetraose and cellopentaose were significantly lower compared with Cel5A and Cel7B. Cel7B was the only endoglucanase which rapidly hydrolysed cellotriose. Cel45Acore did not show activity on any of the three studied cello-oligosaccharides. The four endoglucanases' capacity to hydrolyse beta-glucan and glucomannan were studied. Cel12A hydrolysed beta-glucan and glucomannan slightly less compared with Cel5A and Cel7B. Cel45A was able to hydrolyse glucomannan significantly more compared with beta-glucan. The capability of Cel45A to hydrolyse glucomannan was higher than that observed for Cel12A, Cel5A and Cel7B. The results indicate that Cel45A is a glucomannanase rather than a strict endoglucanase.
Collapse
Affiliation(s)
- Johan Karlsson
- Department of Biochemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
139
|
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002; 66:506-77, table of contents. [PMID: 12209002 PMCID: PMC120791 DOI: 10.1128/mmbr.66.3.506-577.2002] [Citation(s) in RCA: 2366] [Impact Index Per Article: 102.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
Collapse
Affiliation(s)
- Lee R Lynd
- Chemical and Biochemical Engineering, Thayer School of Engineering and Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | | | | | |
Collapse
|
140
|
Parry NJ, Beever DE, Owen E, Nerinckx W, Claeyssens M, Van Beeumen J, Bhat MK. Biochemical characterization and mode of action of a thermostable endoglucanase purified from Thermoascus aurantiacus. Arch Biochem Biophys 2002; 404:243-53. [PMID: 12147262 DOI: 10.1016/s0003-9861(02)00301-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A major extracellular endoglucanase purified to homogeneity from Thermoascus aurantiacus had a M(r) of 34 kDa and a pI of 3.7 and was optimally active at 70-80 degrees C and pH 4.0-4.4. It was stable at pH 2.8-6.8 at 50 degrees C for 48 h and maintained its secondary structure and folded conformation up to 70 degrees C at pH 5.0 and 2.8, respectively. A 33-amino acid sequence at the N terminus showed considerable homology with 14 microbial endoglucanases having highly conserved 8 amino acids (positions 10-17) and Gly, Pro, Gly, and Pro at positions 8, 22, 23, and 32, respectively. The enzyme is rich in Asp (15%) and Glu (10%) with a carbohydrate content of 2.7%. Polyclonal antibodies of endoglucanase cross-reacted with their own antigen and with other purified cellulases from T. aurantiacus. The endoglucanase was specific for polymeric substrates with highest activity toward carboxymethyl cellulose followed by barley beta-glucan and lichenan. It preferentially cleaved the internal glycosidic bonds of Glc(n) and MeUmbGlc(n) and possessed an extended substrate-binding site with five subsites. The data indicate that the endoglucanase from T. aurantiacus is a member of glycoside hydrolase family 5.
Collapse
Affiliation(s)
- N J Parry
- Food Materials Science Division, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | | | | | | | | | | | | |
Collapse
|
141
|
Collén A, Selber K, Hyytiä T, Persson J, Nakari-Setlä T, Bailey M, Fagerström R, Kula MR, Penttilä M, Stålbrand H, Tjerneld F. Primary recovery of a genetically engineered Trichoderma reesei endoglucanase I (Cel 7B) fusion protein in cloud point extraction systems. Biotechnol Bioeng 2002; 78:385-94. [PMID: 11948445 DOI: 10.1002/bit.10232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Here we present data to demonstrate how partitioning of a hydrophilic enzyme can be directed to the hydrophobic detergent-enriched phase of an aqueous two-phase system by addition of short stretches of amino acid residues to the protein molecule. The target enzyme was the industrially important endoglucanase I, EGI (endo-1,4-beta-D-glucan-4-glucanohydrolase, EC 3.2.1.4, Cel7B) of Trichoderma reesei. We investigated the partitioning of three EGI variants containing various C-terminal peptide extensions including Trp-Pro motifs of different lengths and localizations. Additionally, a recently developed system composed of the thermoseparating copolymer HM-EOPO was utilized to study the effects of fusion tags. The addition of peptides containing tryptohan residues enhanced the partitioning of EGI to the HM-EOPO-rich phase. The system composed of a nonionic detergent (Agrimul NRE1205) resulted in the highest partition coefficient (K = 31) and yield (90%) with the construct EGI(core-P5)(WP)(4) containing (Trp-Pro)(4) after a short linker stretch. A recombinant strain of T. reesei Rut-C30 for large-scale production was constructed in which the fusion protein EGI(core-P5)(WP)(4) was expressed from the strong promoter of the cellulase gene cbh1. The fusion protein was successfully expressed and secreted from the fungus during shake-flask cultivations. Cultivation in a 28-L bioreactor however, revealed that the fusion protein is sensitive to proteases. Consequently, only low production levels were obtained in large-scale production trials.
Collapse
Affiliation(s)
- Anna Collén
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Collén A, Penttilä M, Stålbrand H, Tjerneld F, Veide A. Extraction of endoglucanase I (Ce17B) fusion proteins from Trichoderma reesei culture filtrate in a poly(ethylene glycol)-phosphate aqueous two-phase system. J Chromatogr A 2002; 943:55-62. [PMID: 11820281 DOI: 10.1016/s0021-9673(01)01433-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Endoglucanases (EGI) (endo-1,4-beta-D-glucan-4-glucanohydrolase, EC 3.2.1.4, Ce17B) of Trichoderma reesei are industrially important enzymes. Thus, there is a great need for development of a primary recovery method suitable for large-scale utilization. In this study we present a concept applicable for large-scale purification of an EGI fusion protein by one-step extraction in a poly(ethylene glycol) PEG-sodium/potassium phosphate aqueous two-phase system. EGI is a two-module enzyme composed of an N-terminal catalytic module and a C-terminal cellulose binding module (CBM) separated by a glycosylated linker region. Partitioning of six different EGI constructs, containing the C-terminal extensions (WP)2, (WP)4 or the amphiphilic protein hydrophobin I (HFB) of T. reesei instead of the CBM were studied to evaluate if any of the fusions could improve the partition coefficient sufficiently to be suitable for large-scale production. All constructs showed improved partitioning in comparison to full length EGI. The (WP)4 extensions resulted in 26- to 60-fold improvement of partition coefficient. Consequently, a relative minor change in amino acid sequence on the two-module protein EGI improved the partition coefficient significantly in the PEG 4000-sodium/potassium phosphate system. The addition of HFBI to EGI clearly enhanced the partition coefficient (K=1.2) in comparison to full-length EGI (K=0.035). Partitioning of the construct with (WP)4 fused to the catalytic module and a short sequence of the linker [EGI(core-P5)(WP)4] resulted in the highest partition coefficient (K=54) and a yield of 98% in the PEG phase. Gel electrophoresis showed that the construct with the (WP)4 tag attached after a penta-proline linker could be purified from the other bulk proteins by only a single-step separation in the PEG 4000-sodium/potassium phosphate system. This is a major improvement in comparison with the previously studied model (ethylene oxide-propylene oxide)-dextran system. Hence, this construct will be suitable for further optimization of the extraction of the enzyme in a PEG 4000-sodium/potassium phosphate system from culture filtrate.
Collapse
Affiliation(s)
- Anna Collén
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Sweden
| | | | | | | | | |
Collapse
|
143
|
Karlsson J, Momcilovic D, Wittgren B, Schülein M, Tjerneld F, Brinkmalm G. Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei. Biopolymers 2002; 63:32-40. [PMID: 11754346 DOI: 10.1002/bip.1060] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Enzymatic hydrolysis of carboxymethyl cellulose (CMC) has been studied with purified endoglucanases Hi Cel5A (EG II), Hi Cel7B (EG I), and Hi Cel45A (EG V) from Humicola insolens, and Tr Cel7B (EG I), Tr Cel12A (EG III), and Tr Cel45Acore (EG V) from Trichoderma reesei. The CMC, with a degree of substitution (DS) of 0.7, was hydrolyzed with a single enzyme until no further hydrolysis was observed. The hydrolysates were analyzed for production of substituted and non-substituted oligosaccharides with size exclusion chromatography (SEC) and with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS). Production of reducing ends and of nonsubstituted oligosaccharides was determined as well. The two most effective endoglucanases for CMC hydrolysis were Hi Cel5A and Tr Cel7B. These enzymes degraded CMC to lower molar mass fragments compared with the other endoglucanases. The products had the highest DS determined by MALDI-TOF-MS. Thus, Hi Cel5A and Tr Cel7B were less inhibited by the substituents than the other endoglucanases. The endoglucanase with clearly the lowest activity on CMC was Tr Cel45Acore. It produced less than half of the amount of reducing ends compared to Tr Cel7B; furthermore, the products had significantly lower DS. By MALDI-TOF-MS, oligosaccharides with different degree of polymerization (DP) and with different number of substituents could be separated and identified. The average oligosaccharide DS as function of DP could be measured for each enzyme after hydrolysis. The combination of techniques for analysis of product formation gave information on average length of unsubstituted blocks of CMC.
Collapse
Affiliation(s)
- Johan Karlsson
- Department of Biochemistry, Lund University, P. O. Box 124, S-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
144
|
Muñoz IG, Ubhayasekera W, Henriksson H, Szabó I, Pettersson G, Johansson G, Mowbray SL, Ståhlberg J. Family 7 cellobiohydrolases from Phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 A resolution and homology models of the isozymes. J Mol Biol 2001; 314:1097-111. [PMID: 11743726 DOI: 10.1006/jmbi.2000.5180] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellobiohydrolase 58 (Cel7D) is the major cellulase produced by the white-rot fungus Phanerochaete chrysosporium, constituting approximately 10 % of the total secreted protein in liquid culture on cellulose. The enzyme is classified into family 7 of the glycosyl hydrolases, together with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) from Trichoderma reesei. Like those enzymes, it catalyses cellulose hydrolysis with net retention of the anomeric carbon configuration. The structure of the catalytic module (431 residues) of Cel7D was determined at 3.0 A resolution using the structure of Cel7A from T. reesei as a search model in molecular replacement, and ultimately refined at 1.32 A resolution. The core structure is a beta-sandwich composed of two large and mainly antiparallel beta-sheets packed onto each other. A long cellulose-binding groove is formed by loops on one face of the sandwich. The catalytic residues are conserved and the mechanism is expected to be the same as for other family members. The Phanerochaete Cel7D binding site is more open than that of the T. reesei cellobiohydrolase, as a result of deletions and other changes in the loop regions, which may explain observed differences in catalytic properties. The binding site is not, however, as open as the groove of the corresponding endoglucanase. A tyrosine residue at the entrance of the tunnel may be part of an additional subsite not present in the T. reesei cellobiohydrolase. The Cel7D structure was used to model the products of the five other family 7 genes found in P. chrysosporium. The results suggest that at least two of these will have differences in specificity and possibly catalytic mechanism, thus offering some explanation for the presence of Cel7 isozymes in this species, which are differentially expressed in response to various growth conditions.
Collapse
Affiliation(s)
- I G Muñoz
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Karlsson J, Saloheimo M, Siika-Aho M, Tenkanen M, Penttilä M, Tjerneld F. Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6498-507. [PMID: 11737205 DOI: 10.1046/j.0014-2956.2001.02605.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There are currently four proteins in family 61 of the glycoside hydrolases, from Trichoderma reesei, Agaricus bisporus, Cryptococcus neoformans and Neurospora crassa. The enzymatic activity of these proteins has not been studied thoroughly. We report here the homologous expression and purification of T. reesei Cel61A [previously named endoglucanase (EG) IV]. The enzyme was expressed in high amounts with a histidine tag on the C-terminus and purified by metal affinity chromatography. This is the first time that a histidine tag has been used as a purification aid in the T. reesei expression system. The enzyme activity was studied on a series of carbohydrate polymers. The only activity exhibited by Cel61A was an endoglucanase activity observed on substrates containing beta-1,4 glycosidic bonds, e.g. carboxymethylcellulose (CMC), hydroxyethylcellulose (HEC) and beta-glucan. The endoglucanase activity on CMC and beta-glucan was determined by viscosity analysis, by measuring the production of reducing ends and by following the degradation of the polymer on a size exclusion chromatography system. The formation of soluble sugars by Cel61A from microcrystalline cellulose (Avicel; Merck), phosphoric acid swollen cellulose (PASC), and CMC were analysed on a HPLC system. Cel61A produced small amounts of oligosaccharides from these substrates. Furthermore, Cel61A showed activity against cellotetraose and cellopentaose. The activity of Cel61A was several orders of magnitude lower compared to Cel7B (previously EG I) of T. reesei on all substrates. One significant difference between Cel61A and Cel7B was that cellotriose was a poor substrate for Cel61A but was readily hydrolysed by Cel7B. The enzyme activity for Cel61A was further studied on a large number of carbohydrate substrates but the enzyme showed no activity towards any of these substrates.
Collapse
Affiliation(s)
- J Karlsson
- Department of Biochemistry, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
146
|
Ahn JH, Sposato P, Kim SI, Walton JD. Molecular cloning and characterization of cel2 from the fungus Cochlibolus carbonum. Biosci Biotechnol Biochem 2001; 65:1406-11. [PMID: 11471744 DOI: 10.1271/bbb.65.1406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new cellulase gene, cel2, from the filamentous fungus Cochliobolus carbonum was cloned by using egl-1 of Trichoderma reesei as a heterologous probe. DNA blot analysis of cel2 showed that this gene is present as a single copy. The gene contains one 49-bp- intron. cel2 encodes a predicted protein (Cel2p) of 423 amino acids with a molecular mass of 45.8 kDa. The predicted pI is 4.96. It shows similarity to other endoglucanases from various fungi. From the comparison with other cellulase genes, cel2 belongs to family 7 of glucohydrolases. cel2 is located on a 2.5-Mb chromosome in C. carbonum and its expression is repressed by sucrose. A cel2 mutant of C. carbonum was created by transformation-mediated gene disruption. The pathogenicity of the mutant was indistinguishable from the wild type, indicating that cel2 by itself is not important for pathogenicity.
Collapse
Affiliation(s)
- J H Ahn
- Department of Forest Resource, Konkuk University, Seoul, Korea.
| | | | | | | |
Collapse
|
147
|
Michel G, Chantalat L, Duee E, Barbeyron T, Henrissat B, Kloareg B, Dideberg O. The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases. Structure 2001; 9:513-25. [PMID: 11435116 DOI: 10.1016/s0969-2126(01)00612-8] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND kappa-carrageenans are gel-forming, sulfated 1,3-alpha-1,4-beta-galactans from the cell walls of marine red algae. The kappa-carrageenase from the marine, gram-negative bacterium Pseudoalteromonas carrageenovora degrades kappa-carrageenan both in solution and in solid state by an endoprocessive mechanism. This beta-galactanase belongs to the clan-B of glycoside hydrolases. RESULTS The structure of P. carrageenovora kappa-carrageenase has been solved to 1.54 A resolution by the multiwavelength anomalous diffraction (MAD) method, using a seleno-methionine-substituted form of the enzyme. The enzyme folds into a curved beta sandwich, with a tunnel-like active site cavity. Another remarkable characteristic is the presence of an arginine residue at subsite -1. CONCLUSIONS The crystal structure of P. carrageenovora kappa-carrageenase is the first three-dimensional structure of a carrageenase. Its tunnel-shaped active site, the first to be reported for enzymes other than cellulases, suggests that such tunnels are associated with the degradation of solid polysaccharides. Clan-B glycoside hydrolases fall into two subgroups, one with catalytic machinery held by an ancestral beta bulge, and the other in which it is held by a regular beta strand. At subsite -1, all of these hydrolases exhibit an aromatic amino acid that interacts with the hexopyranose ring of the monosaccharide undergoing catalysis. In addition, in kappa-carrageenases, an arginine residue recognizes the sulfate-ester substituents of the beta-linked kappa-carrageenan monomers. It also appears that, in addition to the nucleophile and acid/base catalysts, two other amino acids are involved with the catalytic cycle, accelerating the deglycosylation step.
Collapse
Affiliation(s)
- G Michel
- Laboratoire de Cristallographie Macromoléculaire, Institut de Biologie Structurale Jean-Pierre Ebel, CNRS/CEA, 41 Avenue des Martyrs, 38027 Cedex 1, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
148
|
Becker D, Braet C, Brumer H, Claeyssens M, Divne C, Fagerström BR, Harris M, Jones TA, Kleywegt GJ, Koivula A, Mahdi S, Piens K, Sinnott ML, Ståhlberg J, Teeri TT, Underwood M, Wohlfahrt G. Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant. Biochem J 2001; 356:19-30. [PMID: 11336632 PMCID: PMC1221808 DOI: 10.1042/0264-6021:3560019] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala(224)) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 A (=0.1 nm) closer to the acid/base Glu(217) residue, with a 3.1 A contact between N(epsilon2) and O(epsilon1). The pH variation of k(cat)/K(m) for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK(1) shifting from 2.22+/-0.03 in the wild-type to 3.19+/-0.03 in the mutant, and pK(2) shifting from 5.99+/-0.02 to 6.78+/-0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative k(cat) for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower k(cat)/K(m) values for both lactosides and cellobiosides, and a marginally lower stability. However, k(cat) values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds.
Collapse
Affiliation(s)
- D Becker
- Department of Paper Science, University of Manchester Institute of Science and Technology, P.O. Box 88, Sackville Street, Manchester M60 lQD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Collén A, Ward M, Tjerneld F, Stålbrand H. Genetic engineering of the Trichoderma reesei endoglucanase I (Cel7B) for enhanced partitioning in aqueous two-phase systems containing thermoseparating ethylene oxide--propylene oxide copolymers. J Biotechnol 2001; 87:179-91. [PMID: 11278040 DOI: 10.1016/s0168-1656(01)00241-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Endoglucanases (endo-1,4-beta-D-glucan-4-glucanohydrolase, EC 3.2.1.4) are industrially important enzymes. In this study endoglucanase I (EGI or Cel7B) of the filamentous fungi Trichoderma reesei has been genetically engineered to investigate the influence of tryptophan rich peptide extensions (tags) on partitioning in an aqueous two-phase model system. EGI is a two-domain enzyme and is composed of a N-terminal catalytic domain and a C-terminal cellulose binding domain, separated by a linker. The aim was to find an optimal tag and fusion position, which further could be utilised for large scale extractions. Peptide tags of different length and composition were attached at various localisations of EGI. The fusion proteins were expressed from T. reesei with the use of the gpdA promoter from Aspergillus nidulans. Variations in secreted levels between the engineered proteins were obtained. The partitioning of EGI in an aqueous two-phase system composed of a thermoseparating ethylene oxide-propylene oxide random copolymer (EO(50)PO(50)) and dextran, could be significantly improved by relatively minor genetic engineering. The (Trp-Pro)(4) tag added after a short stretch of the linker, containing five proline residues, gave in the highest partition coefficient of 12.8. The yield in the top phase was 94%. The specific activity was 83% of the specific activity of unmodified EGI on soluble substrate. The efficiency of a tag fused to a protein is shown by the tag efficiency factor (TEF). A hypothetical TEF of 1.0 would indicate full tag exposure and optimal contribution to the protein partitioning by the fused tag. The location of the fusion point after the sequence of five proline residues in the linker of EGI is the most beneficial in two-phase separation. The highest TEF (0.97) was obtained with the (Trp-Pro)(2) tag at this position, indicating full exposure and intactness of the tag. However, the peptide tag composed of (Trp-Pro)(4) improved the partition properties the most but had lower TEF in comparison to (Trp-Pro)(2).
Collapse
Affiliation(s)
- A Collén
- Department of Biochemistry, Lund University, PO Box 124, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
150
|
Collén A, Ward M, Tjerneld F, Stålbrand H. Genetically engineered peptide fusions for improved protein partitioning in aqueous two-phase systems. Effect of fusion localization on endoglucanase I of Trichoderma reesei. J Chromatogr A 2001; 910:275-84. [PMID: 11261722 DOI: 10.1016/s0021-9673(00)01212-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genetic engineering has been used for fusion of the peptide tag, Trp-Pro-Trp-Pro, on a protein to study the effect on partitioning in aqueous two-phase systems. As target protein for the fusions the cellulase, endoglucanase I (endo-1,4-beta-Dglucan-4-glucanohydrolase, EC 3.2.1.4, EGI, Cel7B) of Trichoderma reesei was used. For the first time a glycosylated two-domain enzyme has been utilized for addition of peptide tags to change partitioning in aqueous two-phase systems. The aim was to find an optimal fusion localization for EGI. The peptide was (1) attached to the C-terminus end of the cellulose binding domain (CBD), (2) inserted in the glycosylated linker region, (3) added after a truncated form of EGI lacking the CBD and a small part of the linker. The different constructs were expressed in the filamentous fungus T. reesei under the gpdA promoter from Aspergillus nidulans. The expression levels were between 60 and 100 mg/l. The partitioning behavior of the fusion proteins was studied in an aqueous two-phase model system composed of the thermoseparating ethylene oxide (EO)-propylene oxide (PO) random copolymer EO-PO (50:50) (EO50PO50) and dextran. The Trp-Pro-Trp-Pro tag was found to direct the fusion protein to the top EO50PO50 phase. The partition coefficient of a fusion protein can be predicted with an empirical correlation based on independent contributions from partitioning of unmodified protein and peptide tag in this model system. The fusion position at the end of the CBD, with the spacer Pro-Gly, was shown to be optimal with respect to partitioning and tag efficiency factor (TEF) was 0.87, where a fully exposed tag would have a TEF of 1.0. Hence, this position can further be utilized for fusion with longer tags. For the other constructs the TEF was only 0.43 and 0.10, for the tag fused to the truncated EGI and in the linker region of the full length EGI, respectively.
Collapse
Affiliation(s)
- A Collén
- Department of Biochemistry, Lund University, Sweden
| | | | | | | |
Collapse
|