101
|
A fluorescence-quencher pair for DNA hybridization studies based on hydrophobic base surrogates. Tetrahedron 2007. [DOI: 10.1016/j.tet.2006.12.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
102
|
Srivatsan SG, Tor Y. Fluorescent pyrimidine ribonucleotide: synthesis, enzymatic incorporation, and utilization. J Am Chem Soc 2007; 129:2044-53. [PMID: 17256858 PMCID: PMC2517582 DOI: 10.1021/ja066455r] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fluorescent nucleobase analogues that respond to changes in their microenvironment are valuable for studying RNA structure, dynamics, and recognition. The most commonly used fluorescent ribonucleoside is 2-aminopurine, a highly responsive purine analogue. Responsive isosteric fluorescent pyrimidine analogues are, however, rare. Appending five-membered aromatic heterocycles at the 5-position on a pyrimidine core has recently been found to provide a family of responsive fluorescent nucleoside analogues with emission in the visible range. To explore the potential utility of this chromophore for studying RNA-ligand interactions, an efficient incorporation method is necessary. Here we describe the synthesis of the furan-containing ribonucleoside and its triphosphate, as well as their basic photophysical characteristics. We demonstrate that T7 RNA polymerase accepts this fluorescent ribonucleoside triphosphate as a substrate in in vitro transcription reactions and very efficiently incorporates it into RNA oligonucleotides, generating fluorescent constructs. Furthermore, we utilize this triphosphate for the enzymatic preparation of a fluorescent bacterial A-site, an RNA construct of potential therapeutic utility. We show that the binding of this RNA target to aminoglycoside antibiotics, its cognate ligands, can be effectively monitored by fluorescence spectroscopy. These observations are significant since isosteric emissive U derivatives are scarce and the trivial synthesis and effective enzymatic incorporation of the furan-containing U triphosphate make it accessible to the biophysical community.
Collapse
Affiliation(s)
- Seergazhi G. Srivatsan
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, CA 92093-0358, E-mail:
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, CA 92093-0358, E-mail:
| |
Collapse
|
103
|
Ma H, Nie L, Xiong S. Recognition of Guanine by a Designed Triazine-based Fluorescent Probe through Intermolecular Multiple Hydrogen Bonding. Supramol Chem 2007. [DOI: 10.1080/10610270410001688564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Huimin Ma
- a Laboratory of Chemical Biology, Center for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing, 100080, People's Republic of China
| | - Lihua Nie
- a Laboratory of Chemical Biology, Center for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing, 100080, People's Republic of China
| | - Shaoxiang Xiong
- a Laboratory of Chemical Biology, Center for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing, 100080, People's Republic of China
| |
Collapse
|
104
|
Turingan RS, Liu C, Hawkins ME, Martin CT. Structural confirmation of a bent and open model for the initiation complex of T7 RNA polymerase. Biochemistry 2007; 46:1714-23. [PMID: 17253774 PMCID: PMC2517905 DOI: 10.1021/bi061905d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
T7 RNA polymerase is known to induce bending of its promoter DNA upon binding, as evidenced by gel-shift assays and by recent end-to-end fluorescence energy transfer distance measurements. Crystal structures of promoter-bound and initially transcribing complexes, however, lack downstream DNA, providing no information on the overall path of the DNA through the protein. Crystal structures of the elongation complex do include downstream DNA and provide valuable guidance in the design of models for the complete melted bubble structure at initiation. In the current study, we test a specific structural model for the initiation complex, obtained by alignment of the C-terminal regions of the protein structures from both initiation and elongation and then simple transferal of the downstream DNA from the elongation complex onto the initiation complex. Fluorescence resonance energy transfer measurement of distances from a point upstream on the promoter DNA to various points along the downstream helix reproduce the expected helical periodicity in the distances and support the model's orientation and phasing of the downstream DNA. The model also makes predictions about the extent of melting downstream of the active site. By monitoring fluorescent base analogues incorporated at various positions in the DNA, we have mapped the downstream edge of the bubble, confirming the model. The initially melted bubble, in the absence of substrate, encompasses 7-8 bases and is sufficient to allow synthesis of a three base transcript before further melting is required. The results demonstrate that despite massive changes in the N-terminal portion of the protein and in the DNA upstream of the active site, the DNA downstream of the active site is virtually identical in both initiation and elongation complexes.
Collapse
Affiliation(s)
| | - Cuihua Liu
- Department of Chemistry, University of Massachusetts, Amherst
| | | | - Craig T. Martin
- Department of Chemistry, University of Massachusetts, Amherst
- *To whom correspondence should be addressed. Phone (413) 545-3299. Fax: (413) 545-4490. E–mail:
| |
Collapse
|
105
|
Kapanidis AN, Margeat E, Ho SO, Kortkhonjia E, Weiss S, Ebright RH. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 2006; 314:1144-7. [PMID: 17110578 PMCID: PMC2754788 DOI: 10.1126/science.1131399] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Using fluorescence resonance energy transfer to monitor distances within single molecules of abortively initiating transcription initiation complexes, we show that initial transcription proceeds through a "scrunching" mechanism, in which RNA polymerase (RNAP) remains fixed on promoter DNA and pulls downstream DNA into itself and past its active center. We show further that putative alternative mechanisms for RNAP active-center translocation in initial transcription, involving "transient excursions" of RNAP relative to DNA or "inchworming" of RNAP relative to DNA, do not occur. The results support a model in which a stressed intermediate, with DNA-unwinding stress and DNA-compaction stress, is formed during initial transcription, and in which accumulated stress is used to drive breakage of interactions between RNAP and promoter DNA and between RNAP and initiation factors during promoter escape.
Collapse
Affiliation(s)
- Achillefs N. Kapanidis
- Department of Chemistry and Biochemistry and Department of Physiology, University of California, Los Angeles, CA 90095, USA
- Clarendon Laboratory, Department of Physics, and IRC in Bionanotechnology, University of Oxford, Oxford, United Kingdom
| | - Emmanuel Margeat
- Department of Chemistry and Biochemistry and Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Sam On Ho
- Department of Chemistry and Biochemistry and Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Ekaterine Kortkhonjia
- Department of Chemistry and Biochemistry and Department of Physiology, University of California, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, Department of Chemistry, and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry and Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Richard H. Ebright
- Howard Hughes Medical Institute, Department of Chemistry, and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
106
|
Abstract
Abortive transcription, the premature release of short transcripts 2-8 bases in length, is a unique feature of transcription, accompanying the transition from initiation to elongation in all RNA polymerases. The current study focuses on major factors that relate to the stability of initially transcribing abortive complexes in T7 RNA polymerase. Building on previous studies, results reveal that collapse of the DNA from the downstream end of the bubble is a major contributor to the characteristic instability of abortive complexes. Furthermore, transcription from a novel DNA construct containing a nick between positions -14 and -13 of the nontemplate strand suggests that the more flexible promoter reduces somewhat the strain inherent in initially transcribing complexes, with a resulting decrease in abortive product release. Finally, as assessed by exonuclease III footprinting and transcription profiles, a DNA construct defective in bubble collapse specifically from the downstream end exhibits less abortive cycling and little perturbation of the final transition to elongation, including the process of promoter release.
Collapse
Affiliation(s)
- Peng Gong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9336, USA
| | | |
Collapse
|
107
|
Datta K, Johnson NP, von Hippel PH. Mapping the conformation of the nucleic acid framework of the T7 RNA polymerase elongation complex in solution using low-energy CD and fluorescence spectroscopy. J Mol Biol 2006; 360:800-13. [PMID: 16784751 DOI: 10.1016/j.jmb.2006.05.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 05/19/2006] [Accepted: 05/20/2006] [Indexed: 11/28/2022]
Abstract
The bacteriophage T7 elongation complex is an excellent model system in which to characterize the fundamental steps of transcription. We have formed functional elongation complexes, by mixing preassembled and RNA-primed DNA "bubble" constructs with T7 RNA polymerase and by initiating transcription at promoters, and have monitored the low-energy CD and fluorescence spectra of pairs of 2-aminopurine residues that have been inserted at defined sites within the DNA and RNA scaffold of the complex. In this way, we have been able to probe specific changes in the local conformations of the bases and base-pairs at these positions as the elongation complex goes through the various steps of the nucleotide addition cycle. The advantage of using pairs of 2-aminopurine residues, inserted at defined nucleic acid positions, as probes, is that the rest of the complex is spectrally "transparent" at wavelengths >300 nm. Thus, by combining CD and fluorescence measurements we obtain both structural and dynamic information that applies uniquely at each position within the functioning complex. In this way, we have mapped the details of steps central to transcription, including the formation and translocation of the transcription bubble, the formation and unwinding of the RNA-DNA hybrid, the passage of the nascent RNA through the exit channel of the polymerase, and the events of the template-controlled NTP selection process that controls transcriptional fidelity. This approach defines specific structural aspects of the elongation process under physiological conditions, and can be extended to examine other key aspects of transcriptional regulation, such as termination, editing, pausing, etc., that involve conformational rearrangements within the nucleic acid framework of the transcription complex.
Collapse
Affiliation(s)
- Kausiki Datta
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | |
Collapse
|
108
|
Bandwar RP, Tang GQ, Patel SS. Sequential release of promoter contacts during transcription initiation to elongation transition. J Mol Biol 2006; 360:466-83. [PMID: 16780876 DOI: 10.1016/j.jmb.2006.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 11/17/2022]
Abstract
Bacteriophage T7 RNA polymerase undergoes major conformational changes as transcription proceeds from initiation to elongation. Using limited trypsin digestion and stopped-flow fluorescence kinetic methods, we have monitored promoter release, initial bubble collapse, and refolding of the 152-205 region (subdomain H), the latter being important for RNA channel formation. The kinetic studies show that the conformational changes are temporally coupled, commencing at the synthesis of 9 nt and completing by the synthesis of 12 nt of RNA. The temporal coupling of initial bubble collapse and RNA channel formation is proposed to facilitate proper binding of the RNA dissociated from the late initiation complexes into the RNA channel. Using promoter mutations, we have determined that promoter contacts are broken sequentially during transition from initiation to elongation. The specificity loop interactions are broken after synthesis of 8 nt or 9 nt of RNA, whereas the upstream promoter contacts persists up to synthesis of 12 nt of RNA. Both promoter contacts need to be broken for transition into elongation. The A-15C mutation resulted in efficient transition to elongation by synthesis of 9 nt of RNA, whereas the C-9A mutation resulted in early transition to elongation by synthesis of 7-8 nt of RNA. The effect of early promoter clearance in the mutant promoters was observed as reduced production of long abortive products.
Collapse
Affiliation(s)
- Rajiv P Bandwar
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
109
|
Martí AA, Jockusch S, Li Z, Ju J, Turro NJ. Molecular beacons with intrinsically fluorescent nucleotides. Nucleic Acids Res 2006; 34:e50. [PMID: 16595796 PMCID: PMC1428799 DOI: 10.1093/nar/gkl134] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/23/2005] [Accepted: 03/14/2006] [Indexed: 01/14/2023] Open
Abstract
We report the design, synthesis and characterization of a novel molecular beacon (MB-FB) which uses the fluorescent bases (FB) 2-aminopurine (AP) and pyrrolo-dC (P-dC) as fluorophores. Because the quantum yield of these FB depend on hybridization with complementary target, the fluorescent properties of MB-FB were tuned by placing the FB site specifically within the MB such that hybridization with complementary sequence switches from single strand to double strand for AP and vice versa for P-dC. The MB-FB produces a ratiometric fluorescence increase (the fluorescence emission of P-dC over that of AP in the presence and absence of complementary sequence) of 8.5 when excited at 310 nm, the maximum absorption of AP. This ratiometric fluorescence is increased to 14 by further optimizing excitation (325 nm). The fluorescence lifetime is also affected by the addition of target, producing a change in the long-lived component from 6.5 to 8.7 ns (Exc. 310 nm, Em. 450 nm). Thermal denaturation profiles monitored at 450 nm (P-dC emission) show a cooperative denaturation of the MB-FB with a melting temperature of 53 degrees C. The thermal denaturation profile of MB-FB hybridized with its target shows a marked fluorescence reduction at 53 degrees C, consistent with a transition from double stranded helix to random coil DNA.
Collapse
Affiliation(s)
- Angel A. Martí
- Department of Chemistry, Columbia UniversityNew York, NY 10027, USA
| | - Steffen Jockusch
- Department of Chemistry, Columbia UniversityNew York, NY 10027, USA
| | - Zengmin Li
- Department of Chemical Engineering, Columbia UniversityNew York, NY 10027, USA
- Columbia Genome Center, Columbia University College of Physicians and SurgeonsNew York, NY, 10032, USA
| | - Jingyue Ju
- Department of Chemical Engineering, Columbia UniversityNew York, NY 10027, USA
- Columbia Genome Center, Columbia University College of Physicians and SurgeonsNew York, NY, 10032, USA
| | - Nicholas J. Turro
- Department of Chemistry, Columbia UniversityNew York, NY 10027, USA
- Department of Chemical Engineering, Columbia UniversityNew York, NY 10027, USA
| |
Collapse
|
110
|
Tinsley RA, Walter NG. Pyrrolo-C as a fluorescent probe for monitoring RNA secondary structure formation. RNA (NEW YORK, N.Y.) 2006; 12:522-9. [PMID: 16431979 PMCID: PMC1383589 DOI: 10.1261/rna.2165806] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pyrrolo-C (PC), or 3-[beta-D-2-ribofuranosyl]-6-methylpyrrolo[2,3-d]pyrimidin-2(3H)-one, is a fluorescent analog of the nucleoside cytidine that retains its Watson-Crick base-pairing capacity with G. Due to its red-shifted absorbance, it can be selectively excited in the presence of natural nucleosides, making it a potential site-specific probe for RNA structure and dynamics. Similar to 2-aminopurine nucleoside, which base-pairs with uridine (or thymidine), PC's fluorescence becomes reversibly quenched upon base-pairing, most likely due to stacking interactions with neighboring bases. To test its utility as an RNA probe, we examined PC's fluorescent properties over a wide range of ionic strengths, pH, organic cosolvents, and temperatures. Incorporation of PC into a single-stranded RNA results in an approximately 60% reduction of fluorescence intensity, while duplex formation reduces the fluorescence by approximately 75% relative to the free ribonucleoside. We find that the fluorescence intensity of PC is only moderately affected by ionic strength, pH, and temperature, while it is slightly enhanced by organic cosolvents, making it a versatile probe for a broad range of buffer conditions. We demonstrate two applications for PC: fluorescent measurements of the kinetics of formation and dissociation of an RNA/DNA complex, and fluorescent monitoring of the thermal denaturation of the central segment of an RNA duplex. Taken together, our data showcase the potential of pyrrolo-C as an effective fluorescent probe to study RNA structure, dynamics, and function, complementary to the popular 2-aminopurine ribonucleoside.
Collapse
Affiliation(s)
- Rebecca A Tinsley
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
111
|
Smalley MK, Silverman SK. Fluorescence of covalently attached pyrene as a general RNA folding probe. Nucleic Acids Res 2006; 34:152-66. [PMID: 16401611 PMCID: PMC1326244 DOI: 10.1093/nar/gkj420] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fluorescence techniques are commonly and powerfully applied to monitor biomolecular folding. In a limited fashion, the fluorescence emission intensity of covalently attached pyrene has been used as a reporter of RNA conformational changes. Here, we pursue two goals: we examine the relationship between tether identity and fluorescence response, and we determine the general utility of pyrene fluorescence to monitor RNA folding. The P4–P6 domain of the Tetrahymena group I intron RNA was systematically modified at multiple nucleotide positions with pyrene derivatives that provide a range of tether lengths and compositions between the RNA and chromophore. Certain tethers typically lead to a superior fluorescence signal upon RNA folding, as demonstrated by equilibrium titrations with Mg2+. In addition, useful fluorescence responses were obtained with pyrene placed at several nucleotide positions dispersed throughout P4–P6. This suggests that monitoring of tertiary folding by fluorescence of covalently attached pyrene will be generally applicable to structured RNA molecules.
Collapse
Affiliation(s)
| | - Scott K. Silverman
- To whom correspondence should be addressed. Tel: +1 217 244 4489; Fax: +1 217 244 8024;
| |
Collapse
|
112
|
H. E. Hudson R, K. Dambenieks A. Synthesis of N1-Unsubstituted 5-Alkynylcytosine and Derivatives Thereof. HETEROCYCLES 2006. [DOI: 10.3987/com-06-10727] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
113
|
Hudson RHE, Dambenieks AK, Viirre RD. A direct synthesis of pyrrolocytosine from 5-iodocytosine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:581-4. [PMID: 16247992 DOI: 10.1081/ncn-200061905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have employed a tandem Sonogashira/annulation reaction between 5-iodocytosine derivatives and terminal alkynes to yield the fluorescent bicyclic nucleobase pyrrolcytosine. Pyrrolocytosine bearing substituents only on the pyrrole ring are conveniently synthesized from 5-iodocytosine. Water soluble pyrrolocytosines are being investigated as reporter groups in SNP analysis.
Collapse
Affiliation(s)
- R H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | | | |
Collapse
|
114
|
Sandin P, Wilhelmsson LM, Lincoln P, Powers VEC, Brown T, Albinsson B. Fluorescent properties of DNA base analogue tC upon incorporation into DNA--negligible influence of neighbouring bases on fluorescence quantum yield. Nucleic Acids Res 2005; 33:5019-25. [PMID: 16147985 PMCID: PMC1201328 DOI: 10.1093/nar/gki790] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The quantum yield of the fluorescent tricyclic cytosine analogue, 1,3-diaza-2-oxophenothiazine, tC, is high and virtually unaffected by incorporation into both single- and double-stranded DNA irrespective of neighbouring bases (0.17-0.24 and 0.16-0.21, respectively) and the corresponding fluorescence decay curves are all mono-exponential, properties that are unmatched by any base analogue so far. The fluorescence lifetimes increase when going from tC free in solution (3.2 ns) to single- and double-stranded DNA (on average 5.7 and 6.3 ns, respectively). The mono-exponential decays further support previous NMR results where it was found that tC has a well-defined position and geometry within the DNA helix. Furthermore, we find that the oxidation potential of tC is 0.4 V lower than for deoxyguanosine, the natural base with the lowest oxidation potential. This suggests that tC may be of interest in charge transfer studies in DNA as an electron hole acceptor. We also present a novel synthetic route to the phosphoramidite form of tC. The results presented here together with previous work show that tC is a very good C-analogue that induces minimal perturbation to the native structure of DNA. This makes tC unique as a fluorescent base analogue and is thus highly interesting in a range of applications for studying e.g. structure, dynamics and kinetics in nucleic acid systems.
Collapse
Affiliation(s)
| | - L. Marcus Wilhelmsson
- To whom the correspondence should be addressed. Tel: +46 31 7723051; Fax: +46 31 7723858;
| | | | - Vicki E. C. Powers
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | - Tom Brown
- School of Chemistry, University of SouthamptonHighfield, Southampton SO17 1BJ, UK
| | | |
Collapse
|
115
|
Johnson NP, Baase WA, von Hippel PH. Investigating local conformations of double-stranded DNA by low-energy circular dichroism of pyrrolo-cytosine. Proc Natl Acad Sci U S A 2005; 102:7169-73. [PMID: 15883388 PMCID: PMC1129127 DOI: 10.1073/pnas.0502359102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Local base stacking and conformational mobility play a major role in the structure and function of nucleic acids. We have recently shown that the low-energy CD spectrum of 2-aminopurine (2-AP), i.e., the CD spectral region above 300 nm, can be used to monitor conformational changes in polynucleotides at or near mono- and dinucleotide 2-AP residues that replace adenine residues in DNA and RNA. Here, we extend this technique to pyrrolo-cytosine (PC), a fluorescent analogue of cytosine. The low-energy CD spectrum of a PC dinucleotide in dsDNA exhibits an exciton couplet with two bands of opposite sign centered at 350 nm. This signal is characteristic of base stacking between adjacent PC residues in a right helical conformation. Isolated PC nucleotide residues inserted into polynucleotide chains also display chirality that reflects the asymmetric environment of their sequence context. Thus, we show that the low-energy CD spectra of C(PC)A and A(PC)C sequences in dsDNA have opposite signs. It appears that the measurement of the low-energy CD spectra of PC residues will usefully complement 2-AP measurements by serving to characterize the local conformations and dynamics of nucleic acids near C residues and G-C base pairs.
Collapse
Affiliation(s)
- Neil P Johnson
- Institut de Pharmacologie et de Biologie Structurale, Unité Mixte de Recherche 5089, Centre National de la Recherche Scientifique, 205 route de Narbonne, 31077 Toulouse, France.
| | | | | |
Collapse
|
116
|
Shipova E, Gates KS. A fluorimetric assay for the spontaneous release of an N7-alkylguanine residue from duplex DNA. Bioorg Med Chem Lett 2005; 15:2111-3. [PMID: 15808479 DOI: 10.1016/j.bmcl.2005.02.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/09/2005] [Accepted: 02/10/2005] [Indexed: 11/28/2022]
Abstract
A fluorimetric assay for monitoring depurination of the N7-alkylguanine adduct derived from the anticancer natural product leinamycin is described. This general approach could potentially provide the foundation for a high throughput assay that detects DNA-alkylating agents or a convenient continuous fluorimetric assay for base excision repair enzymes.
Collapse
Affiliation(s)
- Ekaterina Shipova
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | |
Collapse
|
117
|
Thompson KC, Miyake N. Properties of a New Fluorescent Cytosine Analogue, Pyrrolocytosine. J Phys Chem B 2005; 109:6012-9. [PMID: 16851656 DOI: 10.1021/jp046177n] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyrrolocytosine is a novel, environment sensitive, fluorescent base that can be used in place of cytosine as a fluorescent marker in nucleic acids. In this work the results of a detailed computational investigation into the hybridization and photochemical properties of the base are reported. The interaction energy of the base pair formed between pyrrolocytosine and guanine, calculated at the MP2/6-31G(d,0.25)//HF/6-31G(d,p) level, was found to be -27.2 kcal mol(-1), comparing very favorably with the value calculated for the cytosine and guanine base pair, -25.8 kcal mol(-1). The wavelengths for the vertical transitions of pyrrolocytosine and cytosine were determined using both the configuration interaction technique, with singly excited configurations (CIS) and time-dependent density functional theory using the B3LYP functional (TDB3LYP). It was found that the spacing between the first pipi state and the first npi state was significantly larger in the case of pyrrolocytosine than cytosine, providing a rationale for the higher fluorescence quantum yield of the former. Hydrogen bonding of pyrrolocytosine to guanine did not affect the predicted fluorescence properties of pyrrolocytosine whereas stacking guanine above pyrrolocytosine, in a manner appropriate to B-form DNA, significantly reduced the predicted fluorescence. Calculations on the two base systems using the TDB3LYP method produced low-lying charge-transfer states which are not predicted when the CIS method is used and are not thought to be physically meaningful.
Collapse
Affiliation(s)
- Katherine C Thompson
- School of Biological and Chemical Sciences, Birkbeck University of London, Malet Street, London WC1E 7HX, U.K
| | | |
Collapse
|
118
|
Martin CT, Esposito EA, Theis K, Gong P. Structure and function in promoter escape by T7 RNA polymerase. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:323-47. [PMID: 16164978 DOI: 10.1016/s0079-6603(05)80008-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
MESH Headings
- Bacteriophage T7/genetics
- Bacteriophage T7/metabolism
- Base Sequence
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Directed RNA Polymerases/chemistry
- DNA-Directed RNA Polymerases/genetics
- DNA-Directed RNA Polymerases/metabolism
- Models, Biological
- Models, Molecular
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational
- Peptide Chain Initiation, Translational
- Promoter Regions, Genetic
- Protein Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Transcription, Genetic
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Craig T Martin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
119
|
Jiang M, Ma N, Vassylyev DG, McAllister WT. RNA displacement and resolution of the transcription bubble during transcription by T7 RNA polymerase. Mol Cell 2004; 15:777-88. [PMID: 15350221 DOI: 10.1016/j.molcel.2004.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 06/07/2004] [Accepted: 06/17/2004] [Indexed: 11/26/2022]
Abstract
Unlike DNA polymerases, RNA polymerases (RNAPs) must displace the nascent product from the template and restore the DNA to duplex form after passage of the transcription complex. To accomplish this, RNAPs establish a locally denatured "bubble" that encloses a short RNA:DNA hybrid. As the polymerase advances along the template, the RNA is displaced at the trailing edge of the bubble and the two DNA strands are reannealed. Structural analyses have revealed a number of elements that are likely to be involved in this process in T7 RNAP. In this work, we used genetic and biochemical methods to explore the roles of these elements during the transition from an initiation complex to an elongation complex. The results indicate that the transition is a multistep process and reveal a critical role for the nontemplate strand of the DNA.
Collapse
Affiliation(s)
- Manli Jiang
- Morse Institute of Molecular Genetics, Department of Microbiology and Immunology, SUNY Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
120
|
Gong P, Esposito EA, Martin CT. Initial bubble collapse plays a key role in the transition to elongation in T7 RNA polymerase. J Biol Chem 2004; 279:44277-85. [PMID: 15337752 DOI: 10.1074/jbc.m409118200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerases bind to specific sequences in DNA, melt open duplex DNA around the start site, and start transcription within the initially melted bubble. The initially transcribing complex is relatively unstable, releasing short abortive products. After synthesis of a minimal length of RNA (approximately 10-12 bases in the T7 system), RNA polymerases complete the transition to a processive (highly stable) elongation phase and lose the initial promoter contacts. The current study strongly supports a model for T7 RNA polymerase in which initial bubble collapse from position -4 to position +3 is responsible for initiating RNA displacement in the transition process. More specifically, collapse of the bubble from position -4 to position -1 indirectly and energetically facilitates the direct strand invasion offered by collapse at positions +1 to +3. Parallel work shows that promoter release, another key event occurring during this stage of transcription, begins after translocation to position +8 and is largely complete upon translocation to about position +12. The timing of promoter release agrees with the timing of initial bubble collapse determined by our previous fluorescence studies, suggesting that these two events are closely related.
Collapse
Affiliation(s)
- Peng Gong
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, Massachusetts 01003-9336, USA
| | | | | |
Collapse
|
121
|
Dash C, Rausch JW, Le Grice SFJ. Using pyrrolo-deoxycytosine to probe RNA/DNA hybrids containing the human immunodeficiency virus type-1 3' polypurine tract. Nucleic Acids Res 2004; 32:1539-47. [PMID: 15004241 PMCID: PMC390295 DOI: 10.1093/nar/gkh307] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent structural analyses indicate that localized regions of abnormal base pairing exist within RNA/DNA hybrids containing the HIV-1 polypurine tract (PPT) and that these distortions may play a role in PPT function. To examine this directly, we have introduced pyrrolo-deoxycytosine (pdC), a fluorescent, environmentally sensitive analog of deoxycytosine (dC), into the DNA strand of PPT-containing hybrids. Steady-state fluorescence analysis of these hybrids reveals that the DNA base 11 nt from the PPT-U3 junction is unpaired even in the absence of reverse transcriptase (RT). Unstable base pairing is also observed within the (rG:dC)6 tract in the downstream portion of the duplex, suggesting that HIV-1 RT may recognize multiple pre-existing distortions during PPT selection. HIV-1 RT hydrolyzes pdC-containing hybrids primarily at the PPT-U3 junction, indicating that the analog does not induce a gross structural deformation of the duplex. However, aberrant cleavage is frequently observed 3 bp from the site of pdC substitution, most likely reflecting a specific interaction between the analog and amino acid residues within the RNase H primer grip. pdC substitution within the template strand of a DNA duplex does not appear to significantly affect RT-catalyzed DNA synthesis. Implications of these findings on the use of pdC to examine nucleic acid structure are discussed.
Collapse
Affiliation(s)
- Chandravanu Dash
- Resistance Mechanisms Laboratory, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
122
|
Pyrrolo-dC and pyrrolo-C: fluorescent analogs of cytidine and 2′-deoxycytidine for the study of oligonucleotides. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.01.108] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
123
|
Patel SS, Bandwar RP. Fluorescence methods for studying the kinetics and thermodynamics of transcription initiation. Methods Enzymol 2004; 370:668-86. [PMID: 14712683 DOI: 10.1016/s0076-6879(03)70055-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Smita S Patel
- Department Biochemistry, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
124
|
Kalogeraki VS, Tornaletti S, Hanawalt PC. Transcription arrest at a lesion in the transcribed DNA strand in vitro is not affected by a nearby lesion in the opposite strand. J Biol Chem 2003; 278:19558-64. [PMID: 12646562 DOI: 10.1074/jbc.m301060200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cis-syn cyclobutane pyrimidine dimers (CPDs) are the most frequently formed lesions in UV-irradiated DNA. CPDs are repaired by the nucleotide excision repair pathway. Additionally, they are subject to transcription-coupled DNA repair. In the general model for transcription-coupled DNA repair, an RNA polymerase arrested at a lesion on the transcribed DNA strand facilitates repair by recruiting the repair machinery to the site of the lesion. Consistent with this model, transcription experiments in vitro have shown that CPDs in the transcribed DNA strand interfere with the translocation of prokaryotic and eukaryotic RNA polymerases. Here, we study the behavior of RNA polymerase when transcribing a template that contains two closely spaced lesions, one on each DNA strand. Similar DNA templates containing no CPD, or a single CPD on either the transcribed or the nontranscribed strand were used as controls. Using an in vitro transcription system with purified T7 RNA polymerase (T7 RNAP) or rat liver RNAP II, we characterized transcript length and efficiency of transcription in vitro. We also tested the sensitivity of the arrested RNAP II-DNA-RNA ternary complex, at a CPD in the transcribed strand, to transcription factor TFIIS. The presence of a nearby CPD in the nontranscribed strand did not affect the behavior of either RNA polymerase nor did it affect the reverse translocation ability of the RNAP II-arrested complex. Our results additionally indicate that the sequence context of a CPD affects the efficiency of T7 RNAP arrest more significantly than that of RNAP II.
Collapse
Affiliation(s)
- Virginia S Kalogeraki
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | |
Collapse
|
125
|
Martin CT, Ujvári A, Liu C. Evaluation of Fluorescence Spectroscopy Methods for Mapping Melted Regions of DNA Along the Transcription Pathway. Methods Enzymol 2003; 371:13-33. [PMID: 14712689 DOI: 10.1016/s0076-6879(03)71002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Craig T Martin
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003-9336, USA
| | | | | |
Collapse
|
126
|
Temiakov D, Anikin M, McAllister WT. Characterization of T7 RNA polymerase transcription complexes assembled on nucleic acid scaffolds. J Biol Chem 2002; 277:47035-43. [PMID: 12351656 DOI: 10.1074/jbc.m208923200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used synthetic oligomers of DNA and RNA to assemble nucleic acid scaffolds that, when mixed with T7 RNA polymerase, allow the formation of functional transcription complexes. Manipulation of the scaffold structure allows the contribution of each element in the scaffold to transcription activity to be independently determined. The minimal scaffold that allows efficient extension after challenge with 200 mm NaCl consists of an 8-nt RNA primer hybridized to a DNA template (T strand) that extends 5-10 nt downstream. Constructs in which the RNA-DNA hybrid is less than or greater than 8 bp are less salt-resistant, and the hybrid cannot be extended beyond 12-13 bp. Although the presence of a complementary nontemplate strand downstream of the primer does not affect salt resistance, the presence of DNA upstream decreases resistance. The addition of a 4-nt unpaired "tail" to the 5' end of the primer increases salt resistance, as does the presence of an unpaired nontemplate strand in the region that contains the 8-bp hybrid (thereby generating an artificial transcription "bubble"). Scaffold complexes having these features remain active for over 1 week in the absence of salt and exhibit many of the properties of halted elongation complexes, including resistance to salt challenge, a similar trypsin cleavage pattern, and a similar pattern of RNA-RNA polymerase cross-linking.
Collapse
Affiliation(s)
- Dmitri Temiakov
- Morse Institute of Molecular Genetics, Department of Microbiology and Immunology, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203-2098, USA
| | | | | |
Collapse
|
127
|
Abstract
The consensus 23 base-pair T7 DNA promoter is classically divided into two domains, an upstream binding domain (-17 to -5), and a downstream initiation domain (-4 to +6) relative to the transcription start site at +1. During transcription initiation, T7 RNA polymerase (T7 RNAP) melts specifically the -4 to +2/+3 (TATAGG/G) region of the duplex DNA promoter to form a pre-initiation open complex. No external energy source is used and the energy for open complex formation is derived from the free energy of specific interactions with the binding domain, particularly the specificity region (-13 to -6). Using 2-aminopurine fluorescence-based equilibrium and kinetic measurements, we have measured the binding affinities of various topologically modified DNA promoters (40 bp in length) that represent initial, final, and transition-state analogs of the promoter DNA in the T7 RNAP-DNA complex, to determine the energy of specific binding interactions, and the energy required for forming an initiation bubble. The results indicate that 16-16.5 kcal mol(-1) of free energy is made available upon T7 RNAP binding (through specificity loop) to the promoter binding domain. To melt the TATAGG/G sequence 7-8 kcal mol(-1) of free energy is utilized; this compares with approximately 6 kcal mol(-1) predicted from nearest neighbor analysis. The remaining 8.5-9.5 kcal mol(-1) of net free energy is retained for stabilization of the specific pre-initiation binary complex. Of the 7-8 kcal mol(-1) energy that is used to generate the pre-initiation DNA bubble in the open complex, we estimate that one half (3.5-4 kcal mol(-1)) is utilized for nucleation/deformation process (through bending, untwisting, etc.) in the melting region (-4 to -1 TATA) of the initiation domain (-4 to +6), and appears to be independent of the nucleation site within this region. The other half is utilized in unpairing the +1 to +2/+3 GG/G sequence for initiation. The interactions of T7 RNAP with a 20-bp non-specific DNA on the other hand are very weak (DeltaG<-5k cal mol(-1)), which is not sufficient to melt and stabilize an open complex of a non-specific DNA.
Collapse
Affiliation(s)
- Rajiv P Bandwar
- Department of Biochemistry, UMDNJ Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
128
|
Ma K, Temiakov D, Jiang M, Anikin M, McAllister WT. Major conformational changes occur during the transition from an initiation complex to an elongation complex by T7 RNA polymerase. J Biol Chem 2002; 277:43206-15. [PMID: 12186873 DOI: 10.1074/jbc.m206658200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To examine changes that occur during the transition from an initiation complex (IC) to an elongation complex (EC) in T7 RNA polymerase (RNAP), we used nucleic acid-protein cross-linking methods to probe interactions of the RNAP with RNA and DNA in a halted EC. As the RNA is displaced from the RNA-DNA hybrid approximately 9 bp upstream from the active site (at -9) it interacts with a region within the specificity loop (residues 744-750) and is directed toward a positively charged surface that surrounds residues Lys-302 and Lys-303. Surprisingly, the template and non-template strands of the DNA at the upstream edge of the hybrid (near the site where the RNA is displaced) interact with a region in the N-terminal domain of the RNAP (residues 172-191) that is far away from the specificity loop before isomerization (in the IC). To bring these two regions of the RNAP into proximity, major conformational changes must occur during the transition from an IC to an EC. The observed nucleic acid-protein interactions help to explain the behavior of a number of mutant RNAPs that are affected at various stages in the initiation process and in termination.
Collapse
Affiliation(s)
- Kaiyu Ma
- Morse Institute of Molecular Genetics, Department of Microbiology and Immunology, State University of New York Health Science Center, Brooklyn, New York 11203-2098, USA
| | | | | | | | | |
Collapse
|
129
|
Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S. Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution. Nature 2002; 420:43-50. [PMID: 12422209 DOI: 10.1038/nature01129] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 09/19/2002] [Indexed: 01/22/2023]
Abstract
The single-subunit bacteriophage T7 RNA polymerase carries out the transcription cycle in an identical manner to that of bacterial and eukaryotic multisubunit enzymes. Here we report the crystal structure of a T7 RNA polymerase elongation complex, which shows that incorporation of an 8-base-pair RNA-DNA hybrid into the active site of the enzyme induces a marked rearrangement of the amino-terminal domain. This rearrangement involves alternative folding of about 130 residues and a marked reorientation (about 130 degrees rotation) of a stable core subdomain, resulting in a structure that provides elements required for stable transcription elongation. A wide opening on the enzyme surface that is probably an RNA exit pathway is formed, and the RNA-DNA hybrid is completely buried in a newly formed, deep protein cavity. Binding of 10 base pairs of downstream DNA is stabilized mostly by long-distance electrostatic interactions. The structure implies plausible mechanisms for the various phases of the transcription cycle, and reveals important structural similarities with the multisubunit RNA polymerases.
Collapse
Affiliation(s)
- Tahir H Tahirov
- High Throughput Factory, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | |
Collapse
|
130
|
Liu C, Martin CT. Promoter clearance by T7 RNA polymerase. Initial bubble collapse and transcript dissociation monitored by base analog fluorescence. J Biol Chem 2002; 277:2725-31. [PMID: 11694519 DOI: 10.1074/jbc.m108856200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Footprinting, fluorescence, and x-ray structural information from the initial, promoter-bound complex of T7 RNA polymerase describes the very beginning of the initiation of transcription, whereas recent fluorescence and biochemical studies paint a preliminary picture of an elongation complex. The current work focuses on the transition from an initially transcribing, promoter-bound complex to an elongation complex clear of the promoter. Fluorescence quenching is used to follow the melted state of the DNA bubble, and a novel approach using a locally mismatched fluorescent base analog reports on the local structure of the heteroduplex. Fluorescent base analogs placed at positions -2 and -1 of the promoter indicate that this initially melted, nontranscribed region remains melted as the polymerase translocates through to position +8. In progressing to position +9, this region of the DNA bubble begins to collapse. Probes placed at positions +1 and +2 of the template strand indicate that the 5' end of the RNA remains in a heteroduplex as the complex translocates to position +10. Subsequent translocation leads to sequential dissociation of the first 2 bases of the RNA. These results show that the initially transcribing complex bubble can reach a size of up to 13 base pairs and a maximal heteroduplex length of 10 base pairs. They further indicate that initial bubble collapse precedes dissociation of the 5' end of the RNA.
Collapse
Affiliation(s)
- Cuihua Liu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
131
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|