101
|
Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol 2013; 4:32. [PMID: 23565108 PMCID: PMC3615191 DOI: 10.3389/fneur.2013.00032] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/21/2013] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke continues to be one of the most challenging diseases in translational neurology. Tissue plasminogen activator (tPA) remains the only approved treatment for acute ischemic stroke, but its use is limited to the first hours after stroke onset due to an increased risk of hemorrhagic transformation over time resulting in enhanced brain injury. In this review we discuss the role of matrix metalloproteinases (MMPs) in blood-brain barrier (BBB) disruption as a consequence of ischemic stroke. MMP-9 in particular appears to play an important role in tPA-associated hemorrhagic complications. Reactive oxygen species can enhance the effects of tPA on MMP activation through the loss of caveolin-1 (cav-1), a protein encoded in the cav-1 gene that serves as a critical determinant of BBB permeability. This review provides an overview of MMPs' role in BBB breakdown during acute ischemic stroke. The possible role of MMPs in combination treatment of acute ischemic stroke is also examined.
Collapse
Affiliation(s)
- Shaheen E Lakhan
- Biosciences Department, Global Neuroscience Initiative Foundation Beverly Hills, CA, USA ; Neurological Institute, Cleveland Clinic Cleveland, OH, USA
| | | | | | | |
Collapse
|
102
|
Alam M, Shuaib A. Complexity in differentiating the expression of truncated or matured forms of MMP-2 and MMP-9 through zymography in rat brain tissues after acute ischaemic stroke. J Neurosci Methods 2013; 216:22-7. [PMID: 23523510 DOI: 10.1016/j.jneumeth.2013.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
Abstract
Matrix metalloproteinases (MMPs) play an important role in the pathogenesis of ischaemic stroke. In particular, the mature forms of MMPs 2 and 9 have similar sizes and share gelatine as a common substrate. Both MMPs are upregulated in ischaemic stroke and play detrimental roles during stroke pathogenesis. Throughout this study, we demonstrated that pro-MMP-2 and pro-MMP-9 from ischaemic rat brain tissue homogenate is detected either through immunoblotting or zymography because of the remarkable size difference between these enzymes (72 versus 95 kDa, respectively). However, the mature MMP-2 and MMP-9 cannot be discriminated through zymography because of the almost identical sizes of these forms (66 and 67 kDa, respectively). The use of gelatine zymography on ischaemic rat brain tissue homogenate revealed a 65-kDa MMP band, corresponding to the heterogeneous band of mature MMP-2 and/or MMP-9. Furthermore, we also detected mature MMPs of 65 kDa generated from both recombinant human MMP-2 and MMP-9. Using a pull down assay in rat brain tissue homogenate with gelatine-agarose beads, we showed increased activities for both the pro and mature forms of MMP-2 and MMP-9. However, we could not determine the origin of the respective mature MMPs from the heterogeneous band. Thus, in this study, we demonstrated that the identification and quantification of mature MMP-2 and MMP-9 could not be achieved using zymography alone. Therefore, the development of a reliable technique to identify and measure the respective MMPs is needed to test new stroke therapies targeting MMP-2 and MMP-9.
Collapse
Affiliation(s)
- Mustafa Alam
- Stroke Research Laboratory, Department of Medicine-Neurology, University of Alberta, Canada
| | | |
Collapse
|
103
|
Bajor M, Michaluk P, Gulyassy P, Kekesi AK, Juhasz G, Kaczmarek L. Synaptic cell adhesion molecule-2 and collapsin response mediator protein-2 are novel members of the matrix metalloproteinase-9 degradome. J Neurochem 2012; 122:775-88. [DOI: 10.1111/j.1471-4159.2012.07829.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
104
|
Pompei LM, Steiner ML, Theodoro TR, Souza PZ, Romanini ACA, Coulson-Thomas V, Pinhal MAS, Fernandes CE. Effect of estrogen therapy on vascular perlecan and metalloproteinases 2 and 9 in castrated rats. Climacteric 2012; 16:147-53. [DOI: 10.3109/13697137.2012.667173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- L. M. Pompei
- Department of Gynecology and Obstetrics, Faculdade de Medicina do ABC, Santo André
| | - M. L. Steiner
- Department of Gynecology and Obstetrics, Faculdade de Medicina do ABC, Santo André
| | - T. R. Theodoro
- Department of Biochemistry, Faculdade de Medicina do ABC, Santo André
| | - P. Z. Souza
- Graduate Student, Faculdade de Medicina do ABC, Santo André
| | | | - V. Coulson-Thomas
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M. A. S. Pinhal
- Department of Biochemistry, Faculdade de Medicina do ABC, Santo André
| | - C. E. Fernandes
- Department of Gynecology and Obstetrics, Faculdade de Medicina do ABC, Santo André
| |
Collapse
|
105
|
Lee WH, Warrington JP, Sonntag WE, Lee YW. Irradiation alters MMP-2/TIMP-2 system and collagen type IV degradation in brain. Int J Radiat Oncol Biol Phys 2012; 82:1559-66. [PMID: 22429332 DOI: 10.1016/j.ijrobp.2010.12.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/09/2010] [Accepted: 12/15/2010] [Indexed: 02/06/2023]
Abstract
PURPOSE Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. METHODS AND MATERIALS Animals received either whole-brain irradiation (a single dose of 10 Gy γ-rays or a fractionated dose of 40 Gy γ-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. RESULTS A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. CONCLUSIONS The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.
Collapse
Affiliation(s)
- Won Hee Lee
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | | | | | |
Collapse
|
106
|
Michalski D, Heindl M, Kacza J, Laignel F, Küppers-Tiedt L, Schneider D, Grosche J, Boltze J, Löhr M, Hobohm C, Härtig W. Spatio-temporal course of macrophage-like cell accumulation after experimental embolic stroke depending on treatment with tissue plasminogen activator and its combination with hyperbaric oxygenation. Eur J Histochem 2012; 56:e14. [PMID: 22688295 DOI: 10.4081/ejh.2012.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 01/01/2023] Open
Abstract
Inflammation following ischaemic stroke attracts high priority in current research, particularly using human-like models and long-term observation periods considering translational aspects. The present study aimed on the spatio-temporal course of macrophage-like cell accumulation after experimental thromboembolic stroke and addressed microglial and astroglial reactions in the ischaemic border zone. Further, effects of tissue plasminogen activator (tPA) as currently best treatment for stroke and the potentially neuroprotective co-administration of hyperbaric oxygen (HBO) were investigated. Rats underwent middle cerebral artery occlusion and were assigned to control, tPA or tPA+HBO. Twenty-four hours, 7, 14 and 28 days were determined as observation time points. The accumulation of macrophage-like cells was semiquantitatively assessed by CD68 staining in the ischaemic area and ischaemic border zone, and linked to the clinical course. CD11b, ionized calcium binding adaptor molecule 1 (Iba), glial fibrillary acidic protein (GFAP) and Neuronal Nuclei (NeuN) were applied to reveal delayed glial and neuronal alterations. In all groups, the accumulation of macrophage-like cells increased distinctly from 24 hours to 7 days post ischaemia. tPA+HBO tended to decrease macrophage-like cell accumulation at day 14 and 28. Overall, a trend towards an association of increased accumulation and pronounced reduction of the neurological deficit was found. Concerning delayed inflammatory reactions, an activation of microglia and astrocytes with co-occurring neuronal loss was observed on day 28. Thereby, astrogliosis was found circularly in contrast to microglial activation directly in the ischaemic area. This study supports previous data on long-lasting inflammatory processes following experimental stroke, and additionally provides region-specific details on glial reactions. The tendency towards a decreasing macrophage-like cell accumulation after tPA+HBO needs to be discussed critically since neuroprotective properties were recently ascribed to long-term inflammatory processes.
Collapse
Affiliation(s)
- D Michalski
- Department of Neurology, University of Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Suofu Y, Clark JF, Broderick JP, Kurosawa Y, Wagner KR, Lu A. Matrix metalloproteinase-2 or -9 deletions protect against hemorrhagic transformation during early stage of cerebral ischemia and reperfusion. Neuroscience 2012; 212:180-9. [PMID: 22521821 DOI: 10.1016/j.neuroscience.2012.03.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/28/2012] [Accepted: 03/15/2012] [Indexed: 02/02/2023]
Abstract
MMP-9 deficiency protected against photochemical thrombosis-induced brain hemorrhagic transformation (HT), but it did not protect against tissue plasminogen activator-induced brain hemorrhage. The roles of MMP-2 and/or MMP-9 knockout (KO) in mechanical reperfusion induced HT after ischemia have not been investigated. Here we assessed the effects of MMP-2 KO, MMP-9 KO and MMP-2/9 double KO (dKO) in protecting against mechanical reperfusion induced HT and other brain injuries after the early stages of cerebral ischemia in mice of the same genetic background. Middle cerebral artery occlusion (MCAO) was performed in mice. Reperfusion was started at 1 or 1.5h after onset of MCAO. All mice were sacrificed 8h after MCAO. We found that both pro- and active MMP-2 and MMP-9 levels were significantly elevated in the early ischemic brain. After the early stages of ischemia and reperfusion, the hemorrhagic incidence was reduced in the cortex of MMP-2 KO mice (p<0.05 vs. WT). The hemorrhagic volume was significantly decreased in the cortexes of MMP-2 and/or -9 knockout mice (MMP-9 KO vs. WT: p<0.01, MMP-2 KO and dKO vs. WT: p<0.001). In the basal ganglia, MMP-2 KO and MMP-2/9 dKO mice displayed a remarkable decrease in hemorrhagic volume (p<0.01 or 0.05 vs. WT), but MMP-9 KOs did not protect against hemorrhage. MMP-2 and/or -9 knockout mice displayed significantly decreased infarction volume in both the cortex and striatum, in addition to improved neurological function (p<0.001 vs. WT). The results suggested that MMP-2 deficiency and MMP-2 and MMP-9 double deficiency were more protective than MMP-9 deficiency against HT after the early stages of ischemia and reperfusion. These studies increase our understanding of MMP-2 and MMP-9 in HT development and will help to selectively target MMPs to protect the post-ischemic brain from injury and HT.
Collapse
Affiliation(s)
- Y Suofu
- Department of Neurology, University of Cincinnati, Cincinnati, OH 45267-0532, USA
| | | | | | | | | | | |
Collapse
|
108
|
Hästbacka J, Tiainen M, Hynninen M, Kolho E, Tervahartiala T, Sorsa T, Lauhio A, Pettilä V. Serum matrix metalloproteinases in patients resuscitated from cardiac arrest. The association with therapeutic hypothermia. Resuscitation 2012; 83:197-201. [DOI: 10.1016/j.resuscitation.2011.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/07/2011] [Accepted: 07/24/2011] [Indexed: 10/17/2022]
|
109
|
Marco I, Valhondo M, Martín-Fontecha M, Vázquez-Villa H, Del Río J, Planas A, Sagredo O, Ramos JA, Torrecillas IR, Pardo L, Frechilla D, Benhamú B, López-Rodríguez ML. New serotonin 5-HT(1A) receptor agonists with neuroprotective effect against ischemic cell damage. J Med Chem 2011; 54:7986-99. [PMID: 22029386 DOI: 10.1021/jm2007886] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report the synthesis of new compounds 4-35 based on structural modifications of different moieties of previously described lead UCM-2550. The new nonpiperazine derivatives, representing second-generation agonists, were assessed for binding affinity, selectivity, and functional activity at the 5-HT(1A) receptor (5-HT(1A)R). Computational β(2)-based homology models of the ligand-receptor complexes were used to explain the observed structure-affinity relationships. Selected candidates were also evaluated for their potential in vitro and in vivo neuroprotective properties. Interestingly, compound 26 (2-{6-[(3,4-dihydro-2H-chromen-2-ylmethyl)amino]hexyl}tetrahydro-1H-pyrrolo[1,2-c]imidazole-1,3(2H)-dione) has been characterized as a high-affinity and potent 5-HT(1A)R agonist (K(i) = 5.9 nM, EC(50) = 21.8 nM) and exhibits neuroprotective effect in neurotoxicity assays in primary cell cultures from rat hippocampus and in the MCAO model of focal cerebral ischemia in rats.
Collapse
Affiliation(s)
- Isabel Marco
- Departamento de Química Orgánica I, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Kumari R, Willing LB, Patel SD, Baskerville KA, Simpson IA. Increased cerebral matrix metalloprotease-9 activity is associated with compromised recovery in the diabetic db/db mouse following a stroke. J Neurochem 2011; 119:1029-40. [PMID: 21923664 DOI: 10.1111/j.1471-4159.2011.07487.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes is a major risk factor of stroke and is associated with increased frequency of stroke and a poorer prognosis for recovery. In earlier studies we have utilized type 2 diabetic mouse models of stroke and demonstrated that diabetic db/db and ob/ob mice experience larger infarct volumes and impaired recovery associated with greater infiltration of macrophage following hypoxic-ischemic (H/I) insult than their heterozygous non-diabetic db/+ and ob/+ littermates. To obtain a better understanding of the pathogenesis of the impaired recovery, we have investigated the role of matrix metalloproteases and their endogenous inhibitors in the breakdown of the blood-brain barrier (BBB) following H/I. Diabetic db/db mice showed a significant and more rapid increase in matrix metalloprotease (MMP)-9 mRNA, protein and gelatinolytic activity compared with db/+, which resulted in an increased degradation of occludin and collagen IV and subsequently, an increased BBB permeability and greater infiltration of neutrophils into the infarct area. The expression of the MMPs, especially in the db/+ mice, is preceded by an elevated expression of their endogenous tissue inhibitors of metalloproteases (TIMPs) 1, 2, and 3, whereas in the db/db mice, a lower expression of the TIMPs is associated with greater MMP 3 and 9 expression. These results suggest that an imbalance in the MMPs/TIMPs cascade in the diabetic mouse, particularly MMP-9, results in a greater neutrophil invasion, a compromised BBB and consequently a greater insult.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Neural and Behavioral Sciences, College of Medicine, Penn State University, Hershey Medical Center, Hershey, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
111
|
Akamatsu Y, Saito A, Fujimura M, Shimizu H, Mekawy M, Hasumi K, Tominaga T. Stachybotrys microspora triprenyl phenol-7, a novel fibrinolytic agent, suppresses superoxide production, matrix metalloproteinase-9 expression, and thereby attenuates ischemia/reperfusion injury in rat brain. Neurosci Lett 2011; 503:110-4. [PMID: 21871536 DOI: 10.1016/j.neulet.2011.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
Stachybotrys microspora triprenyl phenol-7 (SMTP-7) is a novel fibrinolytic agent with anti-inflammatory effect. Previous study demonstrated that SMTP-7 further ameliorated infarction volume in a mouse embolic stroke model compared with tissue type plasminogen activator (tPA), but the reason SMTP-7 has more beneficial effect than tPA has not yet been determined. In the present study, we investigated whether SMTP-7 has an intrinsic neuroprotective effect against transient focal cerebral ischemia (tFCI). Sprague-Dawley rats were subjected to tFCI by intraluminal middle cerebral artery occlusion for 2h. Following induction of tFCI, rats were randomized into two groups based on the agent administered: SMTP-7 group and vehicle group. We examined cerebral infarction volume 24h after reperfusion, and evaluated superoxide production, the expressions of nitrotyrosine and matrix metalloproteinase-9 (MMP-9), which play major roles in secondary brain injury and hemorrhagic transformation. The findings showed that SMTP-7 significantly suppressed superoxide production, the expression of nitrotyrosine and MMP-9 after tFCI, and consequently attenuated ischemic neuronal damage. These results suggest that SMTP-7 has an intrinsic neuroprotective effect on ischemia/reperfusion injury through the suppression of oxidative stress and MMP-9 activation.
Collapse
Affiliation(s)
- Yosuke Akamatsu
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
112
|
Wu Y, Wang YP, Guo P, Ye XH, Wang J, Yuan SY, Yao SL, Shang Y. A lipoxin A4 analog ameliorates blood-brain barrier dysfunction and reduces MMP-9 expression in a rat model of focal cerebral ischemia-reperfusion injury. J Mol Neurosci 2011; 46:483-91. [PMID: 21845429 DOI: 10.1007/s12031-011-9620-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 08/04/2011] [Indexed: 12/15/2022]
Abstract
LXA(4) methyl ester (LXA(4)ME), a lipoxin A(4) analog, reduces ischemic insult in the rat models of transient or permanent cerebral ischemic injury. We investigated whether LXA(4)ME could ameliorate blood-brain barrier (BBB) dysfunction after stroke by reducing matrix metalloproteinase (MMP)-9 expression. Adult male rats were subjected to 2-h middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion. Brain infarctions were detected by triphenyltetrazolium chloride (TTC) staining. BBB dysfunction was determined by examining brain edema and Evans Blue extravasation. Temporal expression of MMP-9 was determined by zymography and Western blot. The presence of tissue inhibitors of metalloproteinase-1 (TIMP-1) was also determined by Western blot in tissue protein sample. Brain edema and Evans Blue leakage were significantly reduced after stroke in the LXA(4)ME group and were associated with reduced brain infarct volumes. MMP-9 activity and expression were inhibited by LXA(4)ME after stroke. In addition, LXA(4)ME significantly increased TIMP-1 protein levels. Our results indicate that LXA(4)ME reduces brain injury by improving BBB function in a rat model of MCAO, and that a relationship exists between BBB permeability and MMP-9 expression following ischemic insult. Furthermore, these results suggest that LXA(4)ME-mediated reduction of MMP-9 following stroke are attributed to increased TIMP-1 expression.
Collapse
Affiliation(s)
- Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Duran-Vilaregut J, del Valle J, Manich G, Camins A, Pallàs M, Vilaplana J, Pelegrí C. Role of matrix metalloproteinase-9 (MMP-9) in striatal blood-brain barrier disruption in a 3-nitropropionic acid model of Huntington's disease. Neuropathol Appl Neurobiol 2011; 37:525-37. [DOI: 10.1111/j.1365-2990.2010.01157.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
114
|
Dejonckheere E, Vandenbroucke RE, Libert C. Matrix metalloproteinases as drug targets in ischemia/reperfusion injury. Drug Discov Today 2011; 16:762-78. [PMID: 21745586 DOI: 10.1016/j.drudis.2011.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/24/2011] [Accepted: 06/27/2011] [Indexed: 12/11/2022]
Abstract
Deficient blood supply (ischemia) is a common consequence of some surgical procedures and certain pathologies. Once blood circulation is re-established (reperfusion), a complex series of events results in recruitment of inflammatory cells, rearrangement of the extracellular matrix and induction of cell death, which lead to organ dysfunction. Although ischemia/reperfusion (I/R) injury is an important cause of death, there is no effective therapy targeting the molecular mechanism of disease progression. Matrix metalloproteinases (MMPs), which are important regulators of many cellular activities, have a central role in disease progression after I/R injury, as suggested by numerous studies using MMP inhibitors or MMP-deficient mice. Here, we review the involvement of MMP activity in the various processes following I/R injury and the therapeutic potential of MMP inhibition.
Collapse
|
115
|
Michalski D, Pelz J, Weise C, Kacza J, Boltze J, Grosche J, Kamprad M, Schneider D, Hobohm C, Härtig W. Early outcome and blood-brain barrier integrity after co-administered thrombolysis and hyperbaric oxygenation in experimental stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2011; 3:5. [PMID: 21679435 PMCID: PMC3144445 DOI: 10.1186/2040-7378-3-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/16/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND After promising results in experimental stroke, normobaric (NBO) or hyperbaric oxygenation (HBO) have recently been discussed as co-medication with tissue plasminogen activator (tPA) for improving outcome. This study assessed the interactions of hyperoxia and tPA, focusing on survival, early functional outcome and blood-brain barrier (BBB) integrity following experimental stroke. METHODS Rats (n = 109) underwent embolic middle cerebral artery occlusion or sham surgery. Animals were assigned to: Control, NBO (60-minute pure oxygen), HBO (60-minute pure oxygen at 2.4 absolute atmospheres), tPA, or HBO+tPA. Functional impairment was assessed at 4 and 24 hours using Menzies score, followed by intravenous application of FITC-albumin as a BBB permeability marker, which was allowed to circulate for 1 hour. Further, blood sampling was performed at 5 and 25 hours for MMP-2, MMP-9, TIMP-1 and TIMP-2 concentration. RESULTS Mortality rates did not differ significantly between groups, whereas functional improvement was found for NBO, tPA and HBO+tPA. NBO and HBO tended to stabilize BBB and to reduce MMP-2. tPA tended to increase BBB permeability with corresponding MMP and TIMP elevation. Co-administered HBO failed to attenuate these early deleterious effects, independent of functional improvement. CONCLUSIONS The long-term consequences of simultaneously applied tPA and both NBO and HBO need to be addressed by further studies to identify therapeutic potencies in acute stroke, and to avoid unfavorable courses following combined treatment.
Collapse
Affiliation(s)
- Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Johann Pelz
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Christopher Weise
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Johannes Kacza
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
- Translational Centre for Regenerative Medicine, University of Leipzig, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Jens Grosche
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Manja Kamprad
- Institute of Clinical Immunology and Transfusion Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | - Dietmar Schneider
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Carsten Hobohm
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| |
Collapse
|
116
|
Karetko-Sysa M, Skangiel-Kramska J, Nowicka D. Disturbance of perineuronal nets in the perilesional area after photothrombosis is not associated with neuronal death. Exp Neurol 2011; 231:113-26. [PMID: 21683696 DOI: 10.1016/j.expneurol.2011.05.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/26/2011] [Accepted: 05/22/2011] [Indexed: 11/28/2022]
Abstract
Perineuronal nets (PNNs) are a condensed form of extracellular matrix that covers the surface of a subset of neurons. Their presence limits neuronal plasticity and may protect neurons against harmful agents. Here we analyzed the relationship between spatiotemporal changes in PNN expression and cell death markers after focal cortical photothrombotic stroke in rats. We registered a substantial decrease in PNN density using Wisteria floribunda agglutinin staining and CAT-315 and brevican immunoreactivity; the decrease occurred not only in the lesion core but also in the perilesional and remote cortex as well as in homotopic contralateral cortical regions. Fluoro Jade C and TUNEL staining in perilesional and remote areas, however, showed a low density of dying cells. Our results suggest that the PNN reduction was not a result of cellular death and could be considered an attempt to create conditions favorable for synaptic remodeling.
Collapse
Affiliation(s)
- Magdalena Karetko-Sysa
- Department of Molecular and Cellular Neurobiology, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|
117
|
Hoffmann A, Bredno J, Wendland MF, Derugin N, Hom J, Schuster T, Su H, Ohara PT, Young WL, Wintermark M. Validation of in vivo magnetic resonance imaging blood-brain barrier permeability measurements by comparison with gold standard histology. Stroke 2011; 42:2054-60. [PMID: 21636816 DOI: 10.1161/strokeaha.110.597997] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We sought to validate the blood-brain barrier permeability measurements extracted from perfusion-weighted MRI through a relatively simple and frequently applied model, the Patlak model, by comparison with gold standard histology in a rat model of ischemic stroke. METHODS Eleven spontaneously hypertensive rats and 11 Wistar rats with unilateral 2-hour filament occlusion of the right middle cerebral artery underwent imaging during occlusion at 4 hours and 24 hours after reperfusion. Blood-brain barrier permeability was imaged by gradient echo imaging after the first pass of the contrast agent bolus and quantified by a Patlak analysis. Blood-brain barrier permeability was shown on histology by the extravasation of Evans blue on fluorescence microscopy sections matching location and orientation of MR images. Cresyl-violet staining was used to detect and characterize hemorrhage. Landmark-based elastic image registration allowed a region-by-region comparison of permeability imaging at 24 hours with Evans blue extravasation and hemorrhage as detected on histological slides obtained immediately after the 24-hour image set. RESULTS Permeability values in the nonischemic tissue (marginal mean ± SE: 0.15 ± 0.019 mL/min 100 g) were significantly lower compared to all permeability values in regions of Evans blue extravasation or hemorrhage. Permeability values in regions of weak Evans blue extravasation (0.23 ± 0.016 mL/min 100 g) were significantly lower compared to permeability values of in regions of strong Evans blue extravasation (0.29 ± 0.020 mL/min 100 g) and macroscopic hemorrhage (0.35 ± 0.049 mL/min 100 g). Permeability values in regions of microscopic hemorrhage (0.26 ± 0.024 mL/min 100 g) only differed significantly from values in regions of nonischemic tissue (0.15 ± 0.019 mL/min 100 g). CONCLUSIONS Areas of increased permeability measured in vivo by imaging coincide with blood-brain barrier disruption and hemorrhage observed on gold standard histology.
Collapse
Affiliation(s)
- Angelika Hoffmann
- University of Virginia, Department of Radiology, Neuroradiology Division, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Zhao H, Zhang Q, Xue Y, Chen X, Haun RS. Effects of hyperbaric oxygen on the expression of claudins after cerebral ischemia-reperfusion in rats. Exp Brain Res 2011; 212:109-17. [PMID: 21626096 DOI: 10.1007/s00221-011-2702-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/15/2011] [Indexed: 01/09/2023]
Abstract
The malfunction of tight junctions (TJs) between endothelial cells in the blood brain barrier (BBB) is the pathophysiological basis for cerebral ischemia-reperfusion (IR) injury. Claudins, major molecular elements of the TJs, play a key role in the paracellular permeability of the BBB. Although several studies have demonstrated the impact of hyperbaric oxygenation (HBO) on boosting oxygen supply and reducing infarct size, its effect and underlying mechanism on the integrity of the BBB is unknown. To study the function of HBO on claudins and the permeability of the BBB, we replicated the animal model of local cerebral IR. Using Evans blue dye, permeability of the BBB was examined. Transmission electron microscopy (TEM), immunohistochemistry, western blot, and gelatin zymography were used to detect the integrity of the BBB, the expression of claudin-1 and claudin-5, and the activity of matrix metalloproteinases (MMPs) in brain microvessel endothelium. Our data indicate that compared with the sham-operated group, IR increased permeability of the BBB to Evans blue dye (P < 0.01), peaking at 4 h. The BBB ultrastructure was disrupted and the expression of claudin-5 and claudin-1 decreased (P < 0.01) in the 4 and 72 h IR group, respectively. Increased claudin-5 and claudin-1 expression and decreased permeability of the BBB were observed in the HBO + IR group (P < 0.01) via the suppression of MMP-2 and MMP-9, respectively. Our study provides direct evidence that HBO decreases the permeability of the BBB by reducing the enzymatic activity of MMPs and augmenting the expression of claudins at different stages in cerebral IR injury.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Experimental Center of Functional Subjects, College of Basic Medicine, China Medical University, Shenyang 110001, China.
| | | | | | | | | |
Collapse
|
119
|
Lewandowski KC, Banach E, Bieńkiewicz M, Lewiński A. Matrix metalloproteinases in type 2 diabetes and non-diabetic controls: effects of short-term and chronic hyperglycaemia. Arch Med Sci 2011; 7:294-303. [PMID: 22291770 PMCID: PMC3258712 DOI: 10.5114/aoms.2011.22081] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/25/2009] [Accepted: 12/17/2009] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The role of matrix metalloproteinases (MMPs) in type 2 diabetes mellitus (DM) is not clear as increased activation of MMPs in the vasculature contrasts with decreased activity of MMPs in the kidneys, contributing to development of nephropathy. MATERIAL AND METHODS We measured serum MMP-2 and MMP-9 in 22 subjects with type 2 DM age (mean ± SD) 56.7 ±16.8 years, BMI 31.8 ±4.6 kg/m(2), HbA(1c) 8.45 ±1.78% and in 32 controls, age 39.2 ±16.0 years, BMI 35.2 ±8.5 kg/m(2). In 15 subjects with 2 DM we also measured MMP-2 and MMP-9 at discharge from hospital and after 3 months (n = 8). In controls, MMP-2 and -9 were also measured during 75 g oral glucose tolerance test (OGTT). RESULTS Concentrations of MMP-2 and MMP-9 were lower in subjects with type 2 DM (219 ±62 ng/ml vs. 305 ±63 ng/ml and 716 ±469 ng/ml vs. 1285 ±470 ng/ml, for MMP-2 and MMP-9, respectively, p < 0.05). MMP-9 concentrations fell at 120 min of OGTT from 1675 ±372 ng/ml to 1276 ±422 ng/ml (p < 0.05). In diabetic subjects there was a correlation between MMP-9 and HbA(1c) (r = 0.51, p< 0.05). In subjects with diabetes there was a fall of HbA(1c) from 9.77 ±1.76% to 8.36 ±1.54% (p < 0.01), at three months post-discharge. There was no difference in MMP-2, but there was a fall in MMP-9 at three months post-discharge in comparison to concentrations observed at admission (854 ±560 ng/ml vs. 500 ±235 ng/ml, p= 0.02). CONCLUSIONS Matrix metalloproteinases in type 2 and MMP-9 concentrations were lower in subjects with 2 DM than in non-diabetic controls. Regulation of MMPs appears to be complex as hyperglycaemia during OGTT results in a decrease in MMP-9, while chronic hyperglycaemia, reflected by HbA(1c), correlates with MMP-9 concentrations in subjects with 2 DM.
Collapse
Affiliation(s)
- Krzysztof C. Lewandowski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
| | - Ewa Banach
- Department of Internal Medicine, St. Alexander Hospital, Kielce, Poland
| | - Małgorzata Bieńkiewicz
- Department of Quality Control and Radiation Protection, Medical University of Lodz, Poland
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Polish Mother’s Memorial Hospital – Research Institute, Lodz, Poland
| |
Collapse
|
120
|
Wang L, Zhou C, Wang Z, Liu J, Jing Z, Zhang Z, Wang Y. Dynamic variation of genes profiles and pathways in the hippocampus of ischemic mice: A genomic study. Brain Res 2011; 1372:13-21. [DOI: 10.1016/j.brainres.2010.11.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 11/30/2022]
|
121
|
Zhang H, Adwanikar H, Werb Z, Noble-Haeusslein LJ. Matrix metalloproteinases and neurotrauma: evolving roles in injury and reparative processes. Neuroscientist 2010; 16:156-70. [PMID: 20400713 DOI: 10.1177/1073858409355830] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Matrix metalloproteinases (MMPs) are involved in a wide range of proteolytic events in fetal development and normal tissue remodeling as well as wound healing and inflammation. In the CNS, they have been implicated in a variety of neurodegenerative diseases ranging from multiple sclerosis to Alzheimer disease and are integral to stroke-related cell damage. Although studies implicate increased activity of MMPs in pathogenesis in the CNS, there is also a growing literature to support their participation in events that support recovery processes. Here the authors provide a brief overview of MMPs and their regulation, address their complex roles following traumatic injuries to the adult and developing CNS, and consider their time- and context-dependent signatures that influence both injury and reparative processes.
Collapse
Affiliation(s)
- Haoqian Zhang
- Department of Neurosurgery, University of California, San Francisco, CA 94143-0110, USA.
| | | | | | | |
Collapse
|
122
|
Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia 2010; 59:242-55. [DOI: 10.1002/glia.21094] [Citation(s) in RCA: 341] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
123
|
Koyama Y, Tanaka K. Intracerebroventricular administration of an endothelin ET(B)-receptor agonist increases expression of matrix metalloproteinase-2 and -9 in rat brain. J Pharmacol Sci 2010; 114:433-43. [PMID: 21127388 DOI: 10.1254/jphs.10195fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Matrix metalloproteinases (MMPs), a family of zinc-endopeptidases, have a critical role in the pathophysiological responses in damaged brains. MMPs are up-regulated in brain pathologies. To clarify the extracellular signals involved in brain MMP production, the effects of endothelins (ETs), a family of vasoconstricting peptides, were examined. Intracerebroventricular administration of 500 pmol/day Ala(1,3,11,15)-ET-1, an ET(B)-receptor agonist, increased the mRNAs of MMP2 and MMP9 in rat hippocampus and cerebrum. Ala(1,3,11,15)-ET-1 did not affect mRNA levels of MMP 1, 12, and 14. Administration of Ala(1,3,11,15)-ET-1 for 7 days also increased the protein content and proteolytic activities of MMP2 and MMP9 in the cerebrum. Immunohistochemical observations showed that astrocytes in the hippocampus and the cerebrum of ET-infused rats had MMP2 and MMP9 reactivities. In rat cultured astrocytes, both Ala(1,3,11,15)-ET-1 (100 nM) and ET-1 (100 nM) increased MMP2 and MMP9 mRNAs. ET-1 stimulated the protein releases and the proteolytic activities of MMP2 and MMP9 from cultured astrocytes. BQ788, an ET(B) antagonist, inhibited the effects of ET-1 on astrocytic MMP2 and MMP9. The ET-induced expression of MMP9, but not MMP2, was inhibited by pyrrolidine dithiocarbamate, proteasome inhibitor I, and MG132. These results suggest that ET stimulates astrocytic MMP2 and MMP9 production through ET(B) receptors.
Collapse
Affiliation(s)
- Yutaka Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Tonda-bayashi, Osaka 584-8540, Japan.
| | | |
Collapse
|
124
|
Sans-Fons MG, Sole S, Sanfeliu C, Planas AM. Matrix metalloproteinase-9 and cell division in neuroblastoma cells and bone marrow macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2870-85. [PMID: 20971732 DOI: 10.2353/ajpath.2010.090050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinases (MMPs) degrade the extracellular matrix and carry out key functions in cell development, cancer, injury, and regeneration. In addition to its well recognized extracellular action, functional intracellular MMP activity under certain conditions is supported by increasing evidence. In this study, we observed higher gelatinase activity by in situ zymography and increased MMP-9 immunoreactivity in human neuroblastoma cells and in bone marrow macrophages undergoing mitosis compared with resting cells. We studied the pattern of immunoreactivity at the different stages of cell division by confocal microscopy. Immunostaining with different monoclonal antibodies against MMP-9 revealed a precise, dynamic, and well orchestrated localization of MMP-9 at the different stages of cell division. The cellular distribution of MMP-9 staining was studied in relation to that of microtubules. The spatial pattern of MMP-9 immunoreactivity suggested some participation in both the reorganization of the nuclear content and the process of chromatid segmentation. We then used several MMP-9 inhibitors to find out whether MMP-9 might be involved in the cell cycle. These drugs impaired the entry of cells into mitosis, as revealed by flow cytometry, and reduced cell culture growth. In addition, the silencing of MMP-9 expression with small interfering RNA also reduced cell growth. Taken together, these results suggest that intracellular MMP-9 is involved in the process of cell division in neuroblastoma cells and in primary cultures of macrophages.
Collapse
Affiliation(s)
- M Gloria Sans-Fons
- Department of Brain Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d’Investigacions Biomèdiques August Pi i Sunyer, E-08036, Barcelona, Spain
| | | | | | | |
Collapse
|
125
|
Kurzepa J, Bielewicz J, Grabarska A, Stelmasiak Z, Stryjecka-Zimmer M, Bartosik-Psujek H. Matrix metalloproteinase-9 contributes to the increase of tau protein in serum during acute ischemic stroke. J Clin Neurosci 2010; 17:997-9. [PMID: 20627731 DOI: 10.1016/j.jocn.2010.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 12/28/2009] [Accepted: 01/01/2010] [Indexed: 10/19/2022]
Abstract
Previous studies indicate that tau protein, a marker of damage to neurons, is present in the serum of healthy patients at a concentration approximately 40 percent that of patients with ischemic stroke We assumed that increased serum activity of gelatinases (matrix metalloproteinase [MMP]-2 and MMP-9) can influence the level of tau protein in serum, probably due to disruption of the blood-brain barrier. We obtained blood sera from 31 patients admitted within the first 24 hours of ischemic stroke on days 1, 5 and 10, following the onset of stroke. Tau protein was detected in the serum of 12 patients (38.7 percent). The highest MMP-9 activity was recorded on day 5 (p < 0.05). Serum gelatinase activity did not differ between tau protein-positive or -negative individuals. However, a high degree of correlation between mean MMP-9 activity and the maximum tau protein level was observed for patients with detectable tau protein (r = 0.71, p = 0.009). Our study suggests that MMP-9 can increase the tau protein level in the sera of patients during acute ischemic stroke.
Collapse
Affiliation(s)
- Jacek Kurzepa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
126
|
Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis 2010; 38:376-85. [PMID: 20302940 DOI: 10.1016/j.nbd.2010.03.008] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/06/2010] [Accepted: 03/10/2010] [Indexed: 01/09/2023] Open
Abstract
Blood-brain barrier (BBB) disruption, mediated through matrix metalloproteinases (MMPs) and other mechanisms, is a critical event during ischemic stroke. Tissue plasminogen activator (tPA) is the only FDA-approved thrombolytic therapy for acute ischemic stroke, but the efficacy and safety of its therapeutic application are limited by narrow treatment time windows and side effects. Thus, there is a pressing need to develop combinational therapy that could offset tPA side effects and improve efficacy in clinical practice. Recent experimental studies indicate that tPA has previously unidentified functions in the brain beyond its well-established thrombolytic activity, which might contribute to tPA-related side effects through MMPs (mainly MMP-9) and several signaling pathways involved in LDL receptor-related protein (LRP), activated protein C (APC) and protease-activated receptor 1 (PAR-1), platelet-derived growth factor C (PDGF-C), and N-methyl-d-aspartate (NMDA) receptor. Therapeutic targeting of MMPs and/or tPA-related signaling pathways might offer promising new approaches to combination therapies for ischemic stroke. This review provides an overview of the relationship between structural components and function of the BBB/neurovascular unit with respect to ischemic stroke. We discuss how MMPs and tPA contribute to BBB disruption during ischemic stroke and highlight recent findings of molecular signaling pathways involved in neurotoxicity of tPA therapy.
Collapse
|
127
|
Guan J. Insulin-like growth factor -1 (IGF-1) derived neuropeptides, a novel strategy for the development of pharmaceuticals for managing ischemic brain injury. CNS Neurosci Ther 2010; 17:250-5. [PMID: 20236140 DOI: 10.1111/j.1755-5949.2009.00128.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Insulin-Like Growth Factor-1 (IGF-1) is neuroprotective and improves long-term function after brain injury. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake, and mitogenic potential. Glycine-proline-glutamate (GPE) is naturally cleaved from the IGF-1 N-terminal and is also neuroprotective after ischemic injury, thus providing a potential novel strategy of drug discovery for management of neurological disorders. GPE is not enzymatically stable, thus intravenous infusion of GPE becomes necessary for stable and potent neuroprotection. The broad effective dose range and treatment window of 3-7 h after the lesion suggest its potential for treating acute brain injuries. The neuroprotective action of GPE is not age selective, is not dependent on cerebral reperfusion, plasma glucose concentrations, and core body temperature. G-2mPE, a GPE analogue designed to be more resistant to enzymatic activity, has a prolonged plasma half-life and is more potent in neuroprotection. Neuroprotection by GPE and its analogue may be involved in modulation of inflammation, promotion of astrocytosis, inhibition of apoptosis, and in vascular remodeling. Small neuropeptides have advantages over growth factors in the treatment of brain injury, and modified neuropeptides, designed to overcome the limitations of their endogenous counterparts, represent a novel strategy of pharmaceutical discovery for neurological disorders.
Collapse
Affiliation(s)
- Jian Guan
- Liggins Institute, The University of Auckland, New Zealand.
| |
Collapse
|
128
|
Park JW, Hong JS, Lee KS, Kim HY, Lee JJ, Lee SR. Green tea polyphenol (-)-epigallocatechin gallate reduces matrix metalloproteinase-9 activity following transient focal cerebral ischemia. J Nutr Biochem 2009; 21:1038-44. [PMID: 19962294 DOI: 10.1016/j.jnutbio.2009.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/13/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Green tea polyphenol (-)-epigallocatechin gallate (EGCG) has been reported to reduce neuronal damage after cerebral ischemic insult. EGCG is known to reduce matrix metalloproteinase (MMP) activity. MMP can play an important role in the pathophysiology of neurological disorders including cerebral ischemia. The purpose of the current study was to investigate whether EGCG shows an inhibitory effect on MMP activity and neural tissue damage following transient focal cerebral ischemia. In the present study, C57BL/6 mice were subjected to 80 min of focal ischemia induced by middle cerebral artery occlusion (MCAO). Animals were killed 24 h after ischemia. EGCG (50 mg/kg) was administered intraperitoneally immediately after ischemia. Gelatin gel zymography showed an increase in the active form of MMP-9 after ischemia. EGCG reduced ischemia-induced up-regulation of the active form of MMP-9. In in situ zymography, EGCG reduced up-regulation of gelatinase activity induced by cerebral ischemia. Co-incubation with EGCG reduced gelatinase activity directly in postischemic brain section. In 2,3,5-triphenyltetrazolium chloride (TTC) assay, brain infarction was remarkable in the middle cerebral artery territory after focal cerebral ischemia. In EGCG-treated mice, infarct volume was significantly reduced compared with vehicle-treated mice. These results demonstrate that EGCG, a green tea polyphenol, may reduce up-regulation of MMP-9 activity and neuronal damage following transient focal cerebral ischemia. In addition to its antioxidant effect, MMP-9 inhibition might be a possible mechanism potentially involved in the neuroprotective effect of a green tea polyphenol, EGCG.
Collapse
Affiliation(s)
- Jong-Wook Park
- Chronic Disease Research Center and Institute for Medical Science, School of Medicine, Keimyung University, Taegu 700-712, South Korea.
| | | | | | | | | | | |
Collapse
|
129
|
Dong X, Song YN, Liu WG, Guo XL. Mmp-9, a potential target for cerebral ischemic treatment. Curr Neuropharmacol 2009; 7:269-75. [PMID: 20514206 PMCID: PMC2811860 DOI: 10.2174/157015909790031157] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 09/22/2009] [Accepted: 10/05/2009] [Indexed: 11/27/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) which is a member of matrix metalloproteinases family that normally remodel the extracellular matrix, has been shown to play an important role in both animal models of cerebral ischemia and human stroke. The expression of MMP-9 is elevated after cerebral ischemia which is involved in accelerating matrix degradation, disrupting the blood-brain barrier, increasing the infarct size and relating to hemorrhagic transformation. Recently, many drugs, such as tetracycline derivatives, cyclooxygenase inhibitors, ACEI inhibitors and AT1 receptor blockers, etc., have been found to attenuate the elevated expression levels of MMP-9 after ischemia and to reduce the damage of cerebral ischemic. This article reviews the physiological features of MMP-9 and its important role in the genesis, propagation, and therapeutics of cerebral ischemic diseases.
Collapse
Affiliation(s)
- Xue Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 WenHuaXi Road, Jinan 250012, P.R. China
| | - Yu-Ning Song
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 WenHuaXi Road, Jinan 250012, P.R. China
| | - Wei-Guo Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 WenHuaXi Road, Jinan 250012, P.R. China
- Qianfoshan Hospital, Jinan 250014, P.R. China
| | - Xiu-Li Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 WenHuaXi Road, Jinan 250012, P.R. China
| |
Collapse
|
130
|
Chen F, Ohashi N, Li W, Eckman C, Nguyen JH. Disruptions of occludin and claudin-5 in brain endothelial cells in vitro and in brains of mice with acute liver failure. Hepatology 2009; 50:1914-23. [PMID: 19821483 PMCID: PMC2925168 DOI: 10.1002/hep.23203] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Brain edema in acute liver failure (ALF) remains lethal. The role of vasogenic mechanisms of brain edema has not been explored. We previously demonstrated that matrix metalloproteinase-9 (MMP-9) contributes to the pathogenesis of brain edema. Here, we show that MMP-9 mediates disruptions in tight junction (TJ) proteins in vitro and in brains of mice with ALF. We transfected murine brain endothelial cells (ECs) with MMP-9 complementary DNA (cDNA) using pc DNA3.1 (+)/Myc-His A expression vector. Tissue inhibitor of matrix metalloproteinases (TIMP-1) cDNA transfection or GM6001 was used to inhibit MMP-9. ALF was induced in mice with azoxymethane. Endogenous overexpression of MMP-9 in brain ECs resulted in significant degradation of the TJ proteins occludin and claudin-5. The alterations in TJ proteins correlated with increased permeability to fluorescein isothiocyanate-dextran molecules. The degradation of TJ proteins and the increased permeability were reversed by TIMP-1 and GM6001. Similar results were found when MMP-9 was exogenously added to brain ECs. We also found that TJ protein degradation was reversed with GM6001 in the brains of mice with ALF. CONCLUSION TJ proteins are significantly perturbed in brains of mice with ALF. These data corroborate the important role of MMP-9 in the vasogenic mechanism of brain edema in ALF.
Collapse
Affiliation(s)
- Florence Chen
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida
| | - Norifumi Ohashi
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida
| | - Wensheng Li
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida
| | | | - Justin H. Nguyen
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
131
|
Yang Y, Candelario-Jalil E, Thompson JF, Cuadrado E, Estrada EY, Rosell A, Montaner J, Rosenberg GA. Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia. J Neurochem 2009; 112:134-49. [PMID: 19840223 DOI: 10.1111/j.1471-4159.2009.06433.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increased matrix metalloproteinase (MMP) activity is implicated in proteolysis of extracellular matrix in ischemic stroke. We recently observed intranuclear MMP activity in ischemic brain neurons at early reperfusion, suggesting a possible role in nuclear matrix proteolysis. Nuclear proteins, poly-ADP-ribose polymerase-1 (PARP-1) and X-ray cross-complementary factor 1 (XRCC1), as well as DNA repair enzymes, are important in DNA fragmentation and cell apoptosis. We hypothesized that intranuclear MMP activity facilitates oxidative injury in neurons during early ischemic insult by cleaving PARP-1 and XRCC1, interfering with DNA repair. We induced a 90-min middle cerebral artery occlusion in rats. Increase activity of MMP-2 and -9, detected in the ischemic neuronal nuclei at 3 h, was associated with DNA fragmentation at 24 and 48 h reperfusion. The intranuclear MMPs cleaved PARP-1. Treatment of the rats with a broad-spectrum MMP inhibitor, BB1101, significantly attenuated ischemia-induced PARP-1 cleavage, increasing its activity. Degradation of XRCC1 caused by ischemic insult in rat brain was also significantly attenuated by BB1101. We found elevation of oxidized DNA, apurinic/apyrimidinic sites, and 8-hydroxy-2'-deoxyguanosine, in ischemic brain cells at 3 h reperfusion. BB1101 markedly attenuated the early increase of oxidized DNA. Using tissue from stroke patients, we found increased intranuclear MMP expression. Our data suggest that intranuclear MMP activity cleaves PARP-1 and XRCC1, interfering with oxidative DNA repair. This novel role for MMPs could contribute to neuronal apoptosis in ischemic injuries.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Cuadrado E, Rosell A, Penalba A, Slevin M, Alvarez-Sabín J, Ortega-Aznar A, Montaner J. Vascular MMP-9/TIMP-2 and neuronal MMP-10 up-regulation in human brain after stroke: a combined laser microdissection and protein array study. J Proteome Res 2009; 8:3191-7. [PMID: 19317417 DOI: 10.1021/pr801012x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Matrix Metalloproteinases (MMPs) play an important role in brain injury after ischemic stroke. In the present study, we aimed to assess the global expression of MMP-Family proteins in the human brain after stroke by using a combination of Searchlight Protein Array and Laser Microdissection to determine their cellular origin. This study demonstrated that MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, and TIMP-1 were upregulated in the infarcted tissue compared to healthy control areas. Using laser microdissection we obtained specific neuronal and vascular populations from both infarcted and control areas. From these fractions, we showed that MMP-9 and TIMP-2 were highly produced in brain microvessels while MMP-10 was notably increased in neurons of the ischemic brain but not in healthy areas. These findings demonstrate a selective cell-dependent MMP secretion, opening the possibility of selectively targeting specific MMPs for neuroprotection or vasculoprotection following stroke.
Collapse
Affiliation(s)
- Eloy Cuadrado
- Neurovascular Research Laboratory, Neurovascular Unit, Department of Neurology, Universitat Autonoma de Barcelona, Institut de Recerca, Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
133
|
Guan J, Gluckman PD. IGF-1 derived small neuropeptides and analogues: a novel strategy for the development of pharmaceuticals for neurological conditions. Br J Pharmacol 2009; 157:881-91. [PMID: 19438508 DOI: 10.1111/j.1476-5381.2009.00256.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is neuroprotective and improves long-term function after brain injury. However, its clinical application to neurological disorders is limited by its large molecular size, poor central uptake and mitogenic potential. Glycine-proline-glutamate (GPE) is naturally cleaved from the IGF-1 N-terminal and it is also neuroprotective after ischemic injury, which provided a novel strategy of drug discovery for neurological disorders. GPE is not enzymatically stable, thus intravenous infusion of GPE becomes necessary for stable and potent neuroprotection. The broad effective dose range and treatment window of 3-7 h after the lesion suggest its potential for treating acute brain injuries. G-2meth-PE, a GPE analogue designed to be more enzymatic resistant, has a prolonged plasma half-life and is more potent in neuroprotection. Neuroprotection by GPE and its analogue may involve modulation of inflammation, promotion of astrocytosis, inhibition of apoptosis and vascular remodelling. Acute administration of GPE also prevents 6-OHDA-induced nigrostrial dopamine depletion. Delayed treatment with GPE does not prevent dopamine loss, but improves long-term function. Cyclo-glycyl-proline (cyclic Gly-Pro) is an endogenous DKP that may be derived from GPE. Cyclic Gly-Pro and its analogue cyclo-L-glycyl-L-2-allylproline (NNZ 2591) are both neuroprotective after ischaemic injury. NNZ2591 is highly enzymatic resistant and centrally accessible. Its peripheral administration improves somatosensory-motor function and long-term histological outcome after brain injury. Our research suggests that small neuropeptides have advantages over growth factors in the treatment of brain injury, and that modified neuropeptides designed to overcome the limitations of their endogenous counterparts represent a novel strategy of pharmaceutical discovery for neurological disorders.
Collapse
Affiliation(s)
- Jian Guan
- Liggins Institute, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|
134
|
Amaro S, Obach V, Cervera A, Urra X, Gómez-Choco M, Planas AM, Chamorro A. Course of matrix metalloproteinase-9 isoforms after the administration of uric acid in patients with acute stroke: a proof-of-concept study. J Neurol 2009; 256:651-6. [PMID: 19444535 DOI: 10.1007/s00415-009-0153-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/17/2008] [Accepted: 11/07/2008] [Indexed: 11/26/2022]
Abstract
Oxidative stress as well as expression and activity of matrix metalloproteinase 9 (MMP-9) are rapidly enhanced after cerebral ischemia. The magnitude of these effects is related to stroke outcome. In human stroke, the extent of oxidative stress correlates well with increased MMP-9 expression. The aim of this study was to evaluate whether treatment with the antioxidant molecule uric acid (UA) decreased the levels of MMP-9 in stroke patients treated with rtPA. The patients were part of a pilot, double-blind, randomized, vehicle-controlled study of patients with acute stroke treated with rtPA (< 3 h) and randomized to receive an intravenous infusion of UA (n = 16) or vehicle (n = 8). Total matrix metalloproteinase (tMMP)-9 and active (aMMP-9) levels were measured in serum at baseline (< 3 h), at the end of study treatment infusion (< 5.5 h), and at 48 hours. Total MMP-9 and aMMP-9 increased very early after stroke onset in patients allocated vehicle after rtPA therapy. Lower increments of aMMP-9 were associated with better outcome at 3 months. UA treatment was associated with reduced levels of aMMP-9 at T1 (p < 0.02) in multivariate models adjusted for age, NIHSS score, and baseline aMMP-9 levels. The decline of aMMP-9 attained after UA administration supports further clinical assessment of UA therapy in patients with acute stroke.
Collapse
Affiliation(s)
- Sergio Amaro
- Stroke Unit, Institute of Neurosciences, Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
135
|
Mechanisms and markers for hemorrhagic transformation after stroke. ACTA NEUROCHIRURGICA. SUPPLEMENT 2009; 105:173-8. [PMID: 19066105 DOI: 10.1007/978-3-211-09469-3_34] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracerebral hemorrhagic transformation is a multifactorial phenomenon in which ischemic brain tissue converts into a hemorrhagic lesion with blood vessel leakage. Hemorrhagic transformation can significantly contribute to additional brain injury after stroke. Especially threatening are the thrombolytic-induced hemorrhages after reperfusion therapy with tissue plasminogen activator (tPA), the only treatment available for ischemic stroke. In this context, it is important to understand its underlying mechanisms and identify early markers of hemorrhagic transformation, so that we can both search for new treatments as well as predict clinical outcomes in patients. In this review, we discuss the emerging mechanisms for hemorrhagic transformation after stroke, and briefly survey potential molecular, genetic, and neuroimaging markers that might be used for early detection of this challenging clinical problem.
Collapse
|
136
|
Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 2009; 276:13-26. [PMID: 19087196 DOI: 10.1111/j.1742-4658.2008.06766.x] [Citation(s) in RCA: 333] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuroinflammatory mediators play a crucial role in the pathophysiology of brain ischemia, exerting either deleterious effects on the progression of tissue damage or beneficial roles during recovery and repair. Within hours after the ischemic insult, increased levels of cytokines and chemokines enhance the expression of adhesion molecules on cerebral endothelial cells, facilitating the adhesion and transendothelial migration of circulating neutrophils and monocytes. These cells may accumulate in the capillaries, further impairing cerebral blood flow, or extravasate into the brain parenchyma. Infiltrating leukocytes, as well as resident brain cells, including neurons and glia, may release pro-inflammatory mediators, such as cytokines, chemokines and oxygen/nitrogen free radicals that contribute to the evolution of tissue damage. Moreover, recent studies have highlighted the involvement of matrix metalloproteinases in the propagation and regulation of neuroinflammatory responses to ischemic brain injury. These enzymes cleave protein components of the extracellular matrix such as collagen, proteoglycan and laminin, but also process a number of cell-surface and soluble proteins, including receptors and cytokines such as interleukin-1beta. The present work reviewed the role of neuroinflammatory mediators in the pathophysiology of ischemic brain damage and their potential exploitation as drug targets for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Diana Amantea
- Department of Pharmacobiology, University of Calabria, Rende (CS), Italy.
| | | | | | | | | |
Collapse
|
137
|
Lee SR, Kim HY, Hong JS, Baek WK, Park JW. PPARγ agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia. Biochem Biophys Res Commun 2009; 380:17-21. [DOI: 10.1016/j.bbrc.2008.12.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Accepted: 12/28/2008] [Indexed: 11/16/2022]
|
138
|
Cuadrado E, Rosell A, Borrell-Pagès M, García-Bonilla L, Hernández-Guillamon M, Ortega-Aznar A, Montaner J. Matrix metalloproteinase-13 is activated and is found in the nucleus of neural cells after cerebral ischemia. J Cereb Blood Flow Metab 2009; 29:398-410. [PMID: 18985055 DOI: 10.1038/jcbfm.2008.130] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Matrix metalloproteinases (MMPs) have been implicated in the pathophysiology of ischemic stroke. In this study, we investigated the time course of gelatinolytic activation in a rat model of permanent ischemia. We observed an activation of MMPs as early as 30 mins after the ischemic insult, mainly in the nuclei of brain cells. Besides, we explored MMP-13 expression in brain samples of the animal model and stroke deceased patients. We observed an upregulation of active MMP-13 in rat brains (P<0.05) after 90 mins of cerebral ischemia. Human infarct/periinfarct samples also showed higher levels of active MMP-13 (P<0.05) compared with contralateral ones. Interestingly, we found that MMP-13 colocalized with 46-diamidino-2-phenyl indole signal by immunohistochemistry in both humans and rats, suggesting an intranuclear localization for MMP-13. Immunohistochemistry also revealed that MMP-13 was mainly produced by neurons, in both species, but also by oligodendrocytes in rats, and by astrocytes in humans. Finally we subjected a rat primary neuronal culture to oxygen and glucose deprivation (OGD) and we reproduced the nuclear translocation of MMP-13 in vitro. Nuclear extracts from cells confirmed upregulation of active MMP-13 after OGD (P<0.05). These results suggest that MMP-13 activation and its nuclear translocation is an early consequence of an ischemic stimulus.
Collapse
Affiliation(s)
- Eloy Cuadrado
- Department of Neurology, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
139
|
Ranasinghe HS, Williams CE, Christophidis LJ, Mitchell MD, Fraser M, Scheepens A. Proteolytic activity during cortical development is distinct from that involved in hypoxic ischemic injury. Neuroscience 2008; 158:732-44. [PMID: 18809469 DOI: 10.1016/j.neuroscience.2008.07.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 06/19/2008] [Accepted: 07/03/2008] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases involved in brain development and the etiology of adult cerebral injuries. In this study, we determined the MMP-2 and 9 responses following hypoxic ischemia (HI) injury in the developing brain. First, we characterized the developmental changes of MMP activity in the rat brain from embryonic day 18 (E18) to postnatal day 120 (P120). MMP-2 activity was high from E18 to P3 and decreased with age (P< or =0.001), while MMP-9 activity was not detectable. MMP-2 immunoreactivity was closely associated with differentiating cortical plate and subplate neurons. Next, we characterized the proteolytic changes after unilateral HI brain injury in 3- (P3) and 21- (P21) day-old rats. Zymography revealed that in the P21 rat brain, MMP-9 activity (150 and 92 kDa forms) was increased at 6 h and remained elevated 24 h post-injury in the ipsilateral injured hemisphere (P< or =0.001), whereas there was a gradual increase in MMP-2 (65 kDa) activity, reaching a peak at 5 days (P< or =0.001). Similarly, quantitative real time polymerase chain reaction (qRT-PCR) indicated significant elevations in MMP-9 and MMP-2 mRNA expression in the injured cortex (P< or =0.05) and hippocampus (P< or =0.05) at 1 and 5 days post-injury, respectively in the P21 rat brain. In the P3 rat brain, zymography results revealed that both pro (92 kDa) and cleaved (87 kDa) MMP-9 activities were upregulated in the ipsilateral injured hemisphere from 6 h to 1 day after injury (P< or =0.001). In contrast, cleaved MMP-2 (60 kDa) was only moderately upregulated at 6 h (P< or =0.01), while pro MMP-2 (65 kDa) levels were unaffected. MMP-9 mRNA expression was also increased at 6 h (P< or =0.05) following injury at P3, whereas MMP-2 expression remained unchanged compared with the uninjured contralateral hemisphere. Immunohistochemistry indicated that MMP-9 protein expression was localized predominantly to neurons and peri-vascular astrocytes in the affected regions at early time points, whereas MMP-2 was present on reactive astrocytes surrounding the infarct at later time points. Together, these results indicate that MMP-2 may be primarily associated with the development and differentiation of cortical plate neurons and wound recovery processes. Conversely, MMP-9 appeared to be associated with more acute processes during the period of lesion development.
Collapse
Affiliation(s)
- H S Ranasinghe
- Liggins Institute, University of Auckland, 2-6 Park Avenue, Grafton, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
140
|
Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 2008; 158:983-94. [PMID: 18621108 DOI: 10.1016/j.neuroscience.2008.06.025] [Citation(s) in RCA: 412] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/04/2008] [Accepted: 06/08/2008] [Indexed: 12/15/2022]
Abstract
Regulation of the extracellular matrix by proteases and protease inhibitors is a fundamental biological process for normal growth, development and repair in the CNS. Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) are the major extracellular-degrading enzymes. Two other enzyme families, a disintegrin and metalloproteinase (ADAM), and the serine proteases, plasminogen/plasminogen activator (P/PA) system, are also involved in extracellular matrix degradation. Normally, the highly integrated action of these enzyme families remodels all of the components of the matrix and performs essential functions at the cell surface involved in signaling, cell survival, and cell death. During the inflammatory response induced in infection, autoimmune reactions and hypoxia/ischemia, abnormal expression and activation of these proteases lead to breakdown of the extracellular matrix, resulting in the opening of the blood-brain barrier (BBB), preventing normal cell signaling, and eventually leading to cell death. There are several key MMPs and ADAMs that have been implicated in neuroinflammation: gelatinases A and B (MMP-2 and -9), stromelysin-1 (MMP-3), membrane-type MMP (MT1-MMP or MMP-14), and tumor necrosis factor-alpha converting enzyme (TACE). In addition, TIMP-3, which is bound to the cell surface, promotes cell death and impedes angiogenesis. Inhibitors of metalloproteinases are available, but balancing the beneficial and detrimental effects of these agents remains a challenge.
Collapse
|
141
|
The effects of eight-week walking programs of two different intensities on serum lipids and circulating markers of collagen remodelling in humans. Sci Sports 2008. [DOI: 10.1016/j.scispo.2007.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
142
|
Costanzo RM, Perrino LA. Peak in matrix metaloproteinases-2 levels observed during recovery from olfactory nerve injury. Neuroreport 2008; 19:327-31. [PMID: 18303576 DOI: 10.1097/wnr.0b013e3282f50c7b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteineases are associated with extracellular remodeling that occurs in injury and repair processes in the central nervous system (CNS). We examined the role of MMP-2 in a model of olfactory nerve injury and found that MMP-2 levels increased several hours following injury, peaked at day 7 and then decreased rapidly. We previously reported a rapid increase in MMP-9, within 5 h after nerve injury, corresponding to neuronal degeneration and increased glial activity. In this study, we show that MMP-2 peaks later than MMP-9, at the onset of neuronal regeneration and repair. Using MMP-9 knockout mice, we determined that the MMP-2 increase is independent of MMP-9. Our data suggest that MMP-2 and MMP-9 may play different roles in the injury and repair processes.
Collapse
Affiliation(s)
- Richard M Costanzo
- Department of Physiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | |
Collapse
|
143
|
Haddad M, Beray-Berthat V, Coqueran B, Palmier B, Szabo C, Plotkine M, Margaill I. Reduction of hemorrhagic transformation by PJ34, a poly(ADP-ribose)polymerase inhibitor, after permanent focal cerebral ischemia in mice. Eur J Pharmacol 2008; 588:52-7. [PMID: 18468597 DOI: 10.1016/j.ejphar.2008.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/28/2008] [Accepted: 04/03/2008] [Indexed: 11/26/2022]
Abstract
Hemorrhagic transformation is an aggravating event that occurs in 15 to 43% of patients suffering from ischemic stroke. This phenomenon due to blood-brain barrier breakdown appears to be mediated in part by matrix metalloproteinases (MMPs) among which MMP-2 and MMP-9 could be particularly involved. Recent experimental studies demonstrated that post-ischemic MMP-9 overexpression is regulated by poly(ADP-ribose)polymerase (PARP). In this context, our study aimed to evaluate the effect of PJ34 (N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-2-(N,N-dimethylamino)acetamide), a potent PARP inhibitor, on MMP-2 and MMP-9 levels and on hemorrhagic transformations in a model of permanent focal cerebral ischemia in mice. PJ34 (6.25-12.5 mg/kg, i.p.) was given at the time of ischemia onset and 4 h later. Hemorrhagic transformations, divided into microscopic and macroscopic hemorrhages, were counted 48 h after ischemia on 12 coronal brain slices. Microscopic and macroscopic hemorrhages were respectively reduced by 38% and 69% with 6.25 mg/kg PJ34. The anti-hemorrhagic effect of PJ34 was associated with a 57% decrease in MMP-9 overexpression assessed by gelatin zymography. No increase in MMP-2 activity was observed after ischemia in our model. The vascular protection achieved by PJ34 was associated with a reduction in the motor deficit (P<0.05) and in infarct volume (-31%, P<0.01). In conclusion, our study demonstrates for the first time that PJ34 reduces hemorrhagic transformations after cerebral ischemia. Thus this PARP inhibitor exhibits both anti-hemorrhagic and neuroprotective effects that may be of valuable interest for the treatment of stroke.
Collapse
Affiliation(s)
- Marianne Haddad
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | | | | | |
Collapse
|
144
|
Rosell A, Cuadrado E, Ortega-Aznar A, Hernández-Guillamon M, Lo EH, Montaner J. MMP-9–Positive Neutrophil Infiltration Is Associated to Blood–Brain Barrier Breakdown and Basal Lamina Type IV Collagen Degradation During Hemorrhagic Transformation After Human Ischemic Stroke. Stroke 2008; 39:1121-6. [DOI: 10.1161/strokeaha.107.500868] [Citation(s) in RCA: 386] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background and Purpose—
An abnormal expression of some matrix metalloproteinases (MMPs) is related with hemorrhagic transformation events after stroke. Our aim was to investigate MMP-2 and MMP-9 in the ischemic brain and its relation with blood–brain barrier breakdown after hemorrhagic transformation in human stroke.
Methods—
We assessed 5 cases of fatal ischemic strokes with hemorrhagic complications; brain samples were obtained from infarct, hemorrhagic, and contralateral tissue. MMP-9 and MMP-2 content was analyzed by zymography and immunohistochemistry was performed to localize MMP-9 and to assess collagen IV integrity in the basal lamina. Laser capture microdissection was performed to isolate blood–brain barrier vessels to study these MMPs.
Results—
Overall, MMP-9 levels were higher both in hemorrhagic and nonhemorrhagic infarcted tissue compared to contralateral areas (
P
<0.0001 and
P
<0.05). Moreover, levels of the cleaved MMP-9 85kDa-form were significantly elevated in the hemorrhagic compared to nonhemorrhagic and contralateral areas (
P
=0.033 and
P
<0.0001). No changes were found for MMP-2 content. Immunostaining revealed a strong MMP-9–positive neutrophil infiltration surrounding brain microvessels associated with severe basal lamina type IV collagen degradation and blood extravasation. Microdissection confirmed that content of MMP-9 was similarly high in microvessel endothelium from hemorrhagic and infarcted areas compared to contralateral hemisphere vessels (
P
<0.05), pointing to neutrophils surrounding dissected microvessels as the main source of MMP-9 in hemorrhagic areas.
Conclusions—
Our results show a strong neutrophil infiltration in the infarcted and hemorrhagic areas with local high MMP-9 content closely related to basal lamina collagen IV degradation and blood–brain barrier breakdown. Microvessel and inflammatory MMP-9 response are associated with hemorrhagic complications after stroke.
Collapse
Affiliation(s)
- Anna Rosell
- From Neurovascular Research Laboratory (A.R., E.C., M.H.-G., J.M.), Neurovascular Unit, Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d’Hebron, Barcelona, Spain; Neuropathology Unit (A.O-A.), Department of Pathology, Hospital Vall d’Hebron, Barcelona, Spain; Neuroprotection Research Laboratory (A.R., E.H.L.), Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Charlestown, Mass
| | - Eloy Cuadrado
- From Neurovascular Research Laboratory (A.R., E.C., M.H.-G., J.M.), Neurovascular Unit, Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d’Hebron, Barcelona, Spain; Neuropathology Unit (A.O-A.), Department of Pathology, Hospital Vall d’Hebron, Barcelona, Spain; Neuroprotection Research Laboratory (A.R., E.H.L.), Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Charlestown, Mass
| | - Arantxa Ortega-Aznar
- From Neurovascular Research Laboratory (A.R., E.C., M.H.-G., J.M.), Neurovascular Unit, Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d’Hebron, Barcelona, Spain; Neuropathology Unit (A.O-A.), Department of Pathology, Hospital Vall d’Hebron, Barcelona, Spain; Neuroprotection Research Laboratory (A.R., E.H.L.), Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Charlestown, Mass
| | - Mar Hernández-Guillamon
- From Neurovascular Research Laboratory (A.R., E.C., M.H.-G., J.M.), Neurovascular Unit, Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d’Hebron, Barcelona, Spain; Neuropathology Unit (A.O-A.), Department of Pathology, Hospital Vall d’Hebron, Barcelona, Spain; Neuroprotection Research Laboratory (A.R., E.H.L.), Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Charlestown, Mass
| | - Eng H. Lo
- From Neurovascular Research Laboratory (A.R., E.C., M.H.-G., J.M.), Neurovascular Unit, Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d’Hebron, Barcelona, Spain; Neuropathology Unit (A.O-A.), Department of Pathology, Hospital Vall d’Hebron, Barcelona, Spain; Neuroprotection Research Laboratory (A.R., E.H.L.), Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Charlestown, Mass
| | - Joan Montaner
- From Neurovascular Research Laboratory (A.R., E.C., M.H.-G., J.M.), Neurovascular Unit, Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d’Hebron, Barcelona, Spain; Neuropathology Unit (A.O-A.), Department of Pathology, Hospital Vall d’Hebron, Barcelona, Spain; Neuroprotection Research Laboratory (A.R., E.H.L.), Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Charlestown, Mass
| |
Collapse
|
145
|
Amantea D, Corasaniti M, Mercuri N, Bernardi G, Bagetta G. Brain regional and cellular localization of gelatinase activity in rat that have undergone transient middle cerebral artery occlusion. Neuroscience 2008; 152:8-17. [DOI: 10.1016/j.neuroscience.2007.12.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/13/2007] [Accepted: 12/14/2007] [Indexed: 12/25/2022]
|
146
|
Obrenovitch TP. Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 2008; 88:211-47. [PMID: 18195087 DOI: 10.1152/physrev.00039.2006] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ischemic tolerance describes the adaptive biological response of cells and organs that is initiated by preconditioning (i.e., exposure to stressor of mild severity) and the associated period during which their resistance to ischemia is markedly increased. This topic is attracting much attention because preconditioning-induced ischemic tolerance is an effective experimental probe to understand how the brain protects itself. This review is focused on the molecular and related functional changes that are associated with, and may contribute to, brain ischemic tolerance. When the tolerant brain is subjected to ischemia, the resulting insult severity (i.e., residual blood flow, disruption of cellular transmembrane gradients) appears to be the same as in the naive brain, but the ensuing lesion is substantially reduced. This suggests that the adaptive changes in the tolerant brain may be primarily directed against postischemic and delayed processes that contribute to ischemic damage, but adaptive changes that are beneficial during the subsequent test insult cannot be ruled out. It has become clear that multiple effectors contribute to ischemic tolerance, including: 1) activation of fundamental cellular defense mechanisms such as antioxidant systems, heat shock proteins, and cell death/survival determinants; 2) responses at tissue level, especially reduced inflammatory responsiveness; and 3) a shift of the neuronal excitatory/inhibitory balance toward inhibition. Accordingly, an improved knowledge of preconditioning/ischemic tolerance should help us to identify neuroprotective strategies that are similar in nature to combination therapy, hence potentially capable of suppressing the multiple, parallel pathophysiological events that cause ischemic brain damage.
Collapse
Affiliation(s)
- Tihomir Paul Obrenovitch
- Division of Pharmacology, School of Life Sciences, University of Bradford, Bradford, United Kingdom.
| |
Collapse
|
147
|
Lu A, Clark JF, Broderick JP, Pyne-Geithman GJ, Wagner KR, Ran R, Khatri P, Tomsick T, Sharp FR. Reperfusion activates metalloproteinases that contribute to neurovascular injury. Exp Neurol 2007; 210:549-59. [PMID: 18187134 DOI: 10.1016/j.expneurol.2007.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/31/2007] [Accepted: 12/04/2007] [Indexed: 12/17/2022]
Abstract
In this study, we examine the effects of reperfusion on the activation of matrix metalloproteinase (MMP) and assess the relationship between MMP activation during reperfusion and neurovascular injury. Ischemia was produced using suture-induced middle cerebral artery occlusion in rats. The MMP activation was examined with in situ and gel zymography. Injury to cerebral endothelial cells and basal lamina was assessed using endothelial barrier antigen (EBA) and collagen IV immunohistochemistry. Injury to neurons and glial cells was assessed using Cresyl violet staining. These were examined at 3 h after reperfusion (8 h after initiation of ischemia) and compared with permanent ischemia at the same time points to assess the effects of reperfusion. A broad-spectrum MMP inhibitor, AHA (p-aminobenzoyl-Gly-Pro-D-Leu-D-Ala-hydroxamate, 50 mg/kg intravenously) was administered 30 min before reperfusion to assess the roles of MMPs in activating gelatinolytic enzymes and in reperfusion-induced injury. We found that reperfusion accelerated and potentiated MMP-9 and MMP-2 activation and injury to EBA and collagen IV immunopositive microvasculature and to neurons and glial cells in ischemic cortex and striatum relative to permanent ischemia. Administering AHA 30 min before reperfusion decreased MMP-9 activation and neurovascular injury in ischemic cerebral cortex.
Collapse
Affiliation(s)
- Aigang Lu
- Department of Neurology, University of Cincinnati, Cincinnati, OH 45267-0532,
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Guo M, Cox B, Mahale S, Davis W, Carranza A, Hayes K, Sprague S, Jimenez D, Ding Y. Pre-ischemic exercise reduces matrix metalloproteinase-9 expression and ameliorates blood-brain barrier dysfunction in stroke. Neuroscience 2007; 151:340-51. [PMID: 18160227 DOI: 10.1016/j.neuroscience.2007.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 09/18/2007] [Accepted: 10/15/2007] [Indexed: 12/14/2022]
Abstract
Exercise reduces ischemia and reperfusion (I/R) injury in the rat stroke model. We investigated whether pre-ischemic exercise ameliorates blood-brain barrier (BBB) dysfunction in stroke by reducing matrix metalloproteinase (MMP)-9 expression and strengthening basal lamina. Adult male Sprague-Dawley rats were subjected to a 30 min exercise program on a treadmill 5 days a week for 3 weeks. Stroke was induced by a 2-h middle cerebral artery (MCA) occlusion using an intraluminal filament in the exercised and non-exercised groups. Brain infarction was measured and neurological deficits were scored. BBB dysfunction was determined by examining brain edema and Evans Blue extravasation. Expression of collagen IV, the major component of basal lamina essential for maintenance of the endothelial permeability barrier, was quantitatively detected by Western blot and immunocytochemistry. Ex vivo techniques were used to compare collagen IV-labeled vessels in response to ischemic insult. Temporal relationship of expression of MMP-9 and its endogenous inhibitor, the tissue inhibitors of metalloproteinase-1 (TIMP-1), was determined by real-time PCR for mRNA and Western blot for protein during reperfusion. Brain edema and Evans Blue leakage were both significantly (P<0.01) reduced after stroke in the exercised group, in association with reduced brain infarct volume and neurological deficits. Western blot analysis indicated that exercise enhanced collagen IV expression and reduced the collagen loss after stroke. Immunocytochemistry demonstrated that collagen IV-labeled vessels were significantly (P<0.01) increased in exercised rats. In the ex vivo study, after exercised brains were incubated with ischemic brain tissue, a significantly (P<0.01) higher level of collagen IV-labeled vessels was observed as compared with non-exercised brains following the same treatment. The ex vivo study also revealed a key role of MMP-9 in exercise-strengthened collagen IV expression against I/R injury. TIMP-1 protein levels were significantly (P<0.01) increased by exercise. Our results indicate that pre-ischemic exercise reduces brain injury by improving BBB function and enhancing basal lamina integrity in stroke. This study suggests that the neuroprotective effect of physical exercise is associated with an imbalance of MMP-9 and TIMP-1 expression.
Collapse
Affiliation(s)
- M Guo
- Department of Neurosurgery, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Davis W, Mahale S, Carranza A, Cox B, Hayes K, Jimenez D, Ding Y. Exercise pre-conditioning ameliorates blood-brain barrier dysfunction in stroke by enhancing basal lamina. Neurol Res 2007; 29:382-7. [PMID: 17626734 DOI: 10.1179/016164107x204701] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE We investigated whether exercise pre-conditioning ameliorates stroke-induced blood-brain barrier (BBB) dysfunction by strengthening basal lamina. METHODS Adult male Sprague-Dawley rats were subjected to a 30 minute exercise program on a treadmill each day for 3 weeks. Stroke was induced by a 2 hour middle cerebral artery (MCA) occlusion using an intraluminal filament in the exercised and non-exercised groups. BBB dysfunction was then determined by brain edema. Expression of collagen IV, the major component of basal lamina essential for maintenance of the endothelial permeability barrier, was quantitatively detected by Western blot and immunocytochemistry. Ex vivo techniques were used to compare collagen IV-labeled vessels in response to ischemic insult. RESULTS Brain edema was significantly (p<0.05) reduced after stroke in the exercised group. Western blot analysis indicated that exercise pre-conditioning enhanced collagen IV expression and reduced the loss after stroke. Immunocytochemistry demonstrated that collagen IV-positive vessels were significantly (p<0.01) increased in exercised rats. In ex vivo study, after exercised brain was incubated with ischemic brain tissue, a significantly (p<0.01) higher expression of collagen IV in cortex and striatum was observed compared to non-exercised brain following the same treatment. The ex vivo study also revealed that matrix metalloproteinase (MMP)-9 plays a key role in exercise-strengthened collagen IV expression against ischemia/reperfusion injury. DISCUSSION Our results indicate that exercise pre-conditioning improved BBB function and enhanced basal lamina, which involved MMP-9.
Collapse
Affiliation(s)
- William Davis
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Papp AM, Nyilas R, Szepesi Z, Lorincz ML, Takács E, Abrahám I, Szilágyi N, Tóth J, Medveczky P, Szilágyi L, Juhász G, Juhász G. Visible light induces matrix metalloproteinase-9 expression in rat eye. J Neurochem 2007; 103:2224-33. [PMID: 17854381 DOI: 10.1111/j.1471-4159.2007.04917.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Up-regulation of matrix metalloproteinase-9 (MMP-9, gelatinase B) in the nervous system has been demonstrated when excitotoxicity-induced tissue remodeling and neuronal death occurs. Induction of MMP-9 by a natural stimulus has not been observed yet. Using RT-PCR and gelatin-zymography we demonstrated MMP-9 induction at transcriptional and protein levels in different structures of the rat eye following over-stimulation with white light. MMP-9 elevation occurred in the retina without reduction in photoreceptor number or major anatomical reorganization. A transient decrease in electroretinogram b-wave indicated the functional recovery. Retrobulbar injection of a broad-spectrum MMP-inhibitor GM6001, slowed the recovery rate of b-wave amplitude. Even room-light applied to dark-adapted awake animals induced MMP-9 increase in the retina, which suggests a role for MMP-9 in physiological functional plasticity of the nervous system, such as light adaptation. This is the first demonstration of MMP-9 induction by a sensory stimulus.
Collapse
MESH Headings
- Adaptation, Ocular/drug effects
- Adaptation, Ocular/physiology
- Adaptation, Ocular/radiation effects
- Animals
- Dark Adaptation/drug effects
- Dark Adaptation/physiology
- Dark Adaptation/radiation effects
- Enzyme Induction/radiation effects
- Enzyme Inhibitors/pharmacology
- Light
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase 9/radiation effects
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Membrane Potentials/radiation effects
- Neuronal Plasticity/drug effects
- Neuronal Plasticity/physiology
- Neuronal Plasticity/radiation effects
- Photic Stimulation
- RNA, Messenger
- Rats
- Rats, Sprague-Dawley
- Retina/drug effects
- Retina/enzymology
- Retina/radiation effects
- Stress, Physiological/enzymology
- Stress, Physiological/etiology
- Stress, Physiological/physiopathology
- Vision, Ocular/drug effects
- Vision, Ocular/physiology
- Vision, Ocular/radiation effects
Collapse
Affiliation(s)
- Andrea M Papp
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|